1
|
Sasikumar J, Shaikh HA, Naik B, Laha S, Das SP. Emergence of fungal hybrids - Potential threat to humans. Microb Pathog 2025; 200:107278. [PMID: 39805347 DOI: 10.1016/j.micpath.2025.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer. Genetic mating barriers, changes in ploidy, chromosomal instability, and genomic diversity influence hybridization. These factors directly impact the fitness and adaptation of hybrid offspring. Epigenetic factors, including DNA methylation, histone modifications, non-coding RNAs, and chromatin remodelling, play a role in post-mating isolation in hybrids. In addition to all these mechanisms, successful hybridization in fungi is ensured by cellular mechanisms like mitochondrial inheritance, transposable elements, and other genome conversion mechanisms. These mechanisms support hybrid life and enhance the virulence and pathogenicity of fungal hybrids, which provoke diseases in host organisms. Recent advancements in sequencing have uncovered fungal hybrids in pathogens like Aspergillus, Candida, and Cryptococcus. Examples of these hybrids, such as Aspergillus latus, Candida metapsilosis, and Cryptococcus neoformans, induce severe human infections. Identifying fungal hybrids is challenging due to their altered genome traits. ITS sequencing has emerged as a promising method for diagnosing these hybrids. To prevent the emergence of novel hybrid fungal pathogens, it is crucial to develop effective diagnostic techniques and closely monitor pathogenic fungal populations for signs of hybridization. This comprehensive review delves into various facts about fungal hybridization, including its causes, genetic outcomes, barriers, diagnostic strategies, and examples of emerging fungal hybrids. The review emphasises the potential threat that fungal hybrids pose to human health and highlights their clinical significance.
Collapse
Affiliation(s)
- Jayaprakash Sasikumar
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Heena Azhar Shaikh
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Bharati Naik
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Suparna Laha
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
2
|
Rogério F, Van Oosterhout C, De Mita S, Cuevas-Fernández FB, García-Rodríguez P, Becerra S, Gutiérrez-Sánchez S, Jacquat AG, Bettiol W, Hosaka GK, Ulla SB, Hiltbrunner J, Santiago R, Revilla P, Dambolena JS, Vicente-Villardón JL, Buhiniček I, Sukno SA, Thon MR. Long-distance gene flow and recombination shape the evolutionary history of a maize pathogen. IMA Fungus 2025; 16:e138888. [PMID: 40052074 PMCID: PMC11882024 DOI: 10.3897/imafungus.16.138888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
The evolutionary history of crop pathogens is shaped by a complex interaction of natural and anthropogenic factors. The fungus Colletotrichumgraminicola causes maize anthracnose which results in significant yield losses worldwide. We conducted a comprehensive investigation into the evolutionary genomics of C.graminicola using a collection of 212 isolates from 17 countries across five continents. Genomic analyses supported the existence of three geographically isolated genetic lineages, with a significant pattern of isolation by distance. We identified two distinct gene flow patterns, driven by short- and long-distance dispersal, likely resulting from the natural spread of the pathogen and the exchange of contaminated seeds. We present evidence of genetic introgression between lineages, suggesting a long history of recombination. We identified significant recombination events coalescing at distinct points in time, with the North American lineage displaying evidence of the most ancient recombination. Demographic modelling has indicated that North America is an intermediate between Brazil, Europe and an ancestral, unsampled source population, which is hypothesised to be Mesoamerican. Our analyses revealed that the global genomic structure of C.graminicola is shaped by geographic differentiation driven by long-distance migration and a long history of recombination and introgression. We show historical relationships amongst these lineages, identifying a potential route for fungal spread, with the North American population emerging ancestrally, followed sequentially by the Brazilian and European populations. Our research indicates that the European lineage is more virulent, which has implications for the potential emergence of new outbreaks of maize anthracnose in Europe.
Collapse
Affiliation(s)
- Flávia Rogério
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
- Present Address: Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Cock Van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Stéphane De Mita
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Francisco Borja Cuevas-Fernández
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| | - Pablo García-Rodríguez
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| | - Sioly Becerra
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| | - Silvia Gutiérrez-Sánchez
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| | - Andrés G. Jacquat
- Faculty of Exact, Physical and Natural Science, National University of Córdoba, IMBIV-CONICET-ICTA, Córdoba, Argentina
| | | | - Guilherme Kenichi Hosaka
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sofia B. Ulla
- Faculty of Exact, Physical and Natural Science, National University of Córdoba, IMBIV-CONICET-ICTA, Córdoba, Argentina
| | - Jürg Hiltbrunner
- Federal Department of Economic Affairs, Agroscope, Centre of Competences Plants and Plant Products, Zurich, Switzerland
| | - Rogelio Santiago
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Pontevedra, Spain
| | - Pedro Revilla
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Pontevedra, Spain
| | - José S. Dambolena
- Faculty of Exact, Physical and Natural Science, National University of Córdoba, IMBIV-CONICET-ICTA, Córdoba, Argentina
| | - José L. Vicente-Villardón
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| | - Ivica Buhiniček
- Statistics Department, University of Salamanca, Salamanca, Spain
| | - Serenella A. Sukno
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| | - Michael R. Thon
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor, Salamanca, Spain
| |
Collapse
|
3
|
Tenório BG, Kollath DR, Gade L, Litvintseva AP, Chiller T, Jenness JS, Stajich JE, Matute DR, Hanzlicek AS, Barker BM, Teixeira MDM. Tracing histoplasmosis genomic epidemiology and species occurrence across the USA. Emerg Microbes Infect 2024; 13:2315960. [PMID: 38465644 PMCID: PMC10930103 DOI: 10.1080/22221751.2024.2315960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 03/12/2024]
Abstract
ABSTRACTHistoplasmosis is an endemic mycosis in North America frequently reported along the Ohio and Mississippi River Valleys, although autochthonous cases occur in non-endemic areas. In the United States, the disease is provoked by two genetically distinct clades of Histoplasma capsulatum sensu lato, Histoplasma mississippiense (Nam1) and H. ohiense (Nam2). To bridge the molecular epidemiological gap, we genotyped 93 Histoplasma isolates (62 novel genomes) including clinical, environmental, and veterinarian samples from a broader geographical range by whole-genome sequencing, followed by evolutionary and species niche modelling analyses. We show that histoplasmosis is caused by two major lineages, H. ohiense and H. mississippiense; with sporadic cases caused by H. suramericanum in California and Texas. While H. ohiense is prevalent in eastern states, H. mississipiense was found to be prevalent in the central and western portions of the United States, but also geographically overlapping in some areas suggesting that these species might co-occur. Species Niche Modelling revealed that H. ohiense thrives in places with warmer and drier conditions, while H. mississippiense is endemic to areas with cooler temperatures and more precipitation. In addition, we predicted multiple areas of secondary contact zones where the two species co-occur, potentially facilitating gene exchange and hybridization. This study provides the most comprehensive understanding of the genomic epidemiology of histoplasmosis in the USA and lays a blueprint for the study of invasive fungal diseases.
Collapse
Affiliation(s)
| | - Daniel R. Kollath
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeff S. Jenness
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Daniel R. Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew S. Hanzlicek
- MiraVista Diagnostics, Indianapolis, IN, USA
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília, Brasília, Brazil
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
4
|
Babu S, Vineeth VK, Reshma TR, Philip S. Integrating multilocus phylogeny and morphological analysis reveals the prevalence of Phytophthora meadii (McRae) associated with abnormal leaf fall disease of Hevea brasiliensis in India. Fungal Biol 2024; 128:2042-2053. [PMID: 39174239 DOI: 10.1016/j.funbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
The Oomycetes fungus Phytophthora spp. which causes Abnormal leaf fall (ALF) disease poses a significant threat as one of the most devastating diseases affecting rubber trees in India. A total of 30 Phytophthora isolates were obtained from ALF-affected samples collected during the Southwest monsoon season of Kerala. The colony morphology of Phytophthora isolates revealed eight different types of growth patterns, with stellate, stellate striated, and petaloid patterns growing rapidly, whereas chrysanthemum pattern grew slowly. Sporangia were papillate to non-papillate in various shapes, and sporangiophores exhibited simple, simple sympodial, or irregularly branching patterns. Highly virulent isolates exhibited petaloid morphology and rapid growth rates. Regardless of their virulence, all isolates showed susceptibility to the fungicide metalaxyl. Under in vitro conditions, the highly virulent isolate (R17) from rubber caused severe infections in chili, brinjal, and tomato with brown water-soaked lesions. Sequence analysis and multi-locus phylogeny of Internal transcribed spacer (ITS), cCytochrome c oxidase 1 (COX 1), Heat shock protein 90 (HSP 90), and Ribosomal protein L10 (RPL 10) confirmed the pathogen as Phytophthora meadii. A comprehensive understanding of both morphological and molecular traits of P. meadii is crucial for precise identification and future genetic variability studies.
Collapse
Affiliation(s)
- Shilpa Babu
- Plant Pathology Division, Rubber Research Institute of India, Rubber Board P.O, Kottayam, Kerala, 686009, India.
| | - V K Vineeth
- Plant Pathology Division, Rubber Research Institute of India, Rubber Board P.O, Kottayam, Kerala, 686009, India.
| | - T R Reshma
- Plant Pathology Division, Rubber Research Institute of India, Rubber Board P.O, Kottayam, Kerala, 686009, India.
| | - Shaji Philip
- Plant Pathology Division, Rubber Research Institute of India, Rubber Board P.O, Kottayam, Kerala, 686009, India.
| |
Collapse
|
5
|
Jofre GI, Dagilis AJ, Sepúlveda VE, Anspach T, Singh A, Chowdhary A, Matute DR. Admixture in the fungal pathogen Blastomyces. Genetics 2024; 228:iyae155. [PMID: 39315610 PMCID: PMC11631411 DOI: 10.1093/genetics/iyae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
Blastomyces is an emerging primary fungal pathogen that affects patients worldwide. The evolutionary processes that have resulted in the current diversity in the genus remain largely unexplored. We used whole genome sequences from 99 Blastomyces isolates, including two sequenced in this study using long-read technologies, to infer the phylogenetic relationships between Blastomyces species. We find that five different methods infer five different phylogenetic trees. Additionally, we find gene tree discordance along the genome with differences in the relative phylogenetic placement of several species of Blastomyces, which we hypothesize is caused by introgression. Our results suggest the urgent need to systematically collect Blastomyces samples around the world and study the evolutionary processes that govern intra- and interspecific variation in these medically important fungi.
Collapse
Affiliation(s)
- Gaston I Jofre
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrius J Dagilis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Ecology, Evolution and Behavior, University of Connecticut, Storrs, CT 06269, USA
| | | | - Tayte Anspach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
7
|
Del Olmo V, Gabaldón T. Hybrids unleashed: exploring the emergence and genomic insights of pathogenic yeast hybrids. Curr Opin Microbiol 2024; 80:102491. [PMID: 38833792 PMCID: PMC11358589 DOI: 10.1016/j.mib.2024.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Hybridisation is the crossing of two divergent lineages that give rise to offspring carrying an admixture of both parental genomes. Genome sequencing has revealed that this process is common in the Saccharomycotina, where a growing number of hybrid strains or species, including many pathogenic ones, have been recently described. Hybrids can display unique traits that may drive adaptation to new niches, and some pathogenic hybrids have been shown to have higher prevalence over their parents in human and environmental niches, suggesting a higher fitness and potential to colonise humans. Here, we discuss how hybridisation and its genomic and phenotypic outcomes can shape the evolution of fungal species and may play a role in the emergence of new pathogens.
Collapse
Affiliation(s)
- Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034 Barcelona, Spain; Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
8
|
Kozhar O, Burns KS, Schoettle AW, Stewart JE. Distribution of Cronartium x flexili, an interspecific hybrid of two fungal tree rust pathogens, in subalpine forest ecosystems of western USA. Fungal Biol 2024; 128:1578-1589. [PMID: 38341263 DOI: 10.1016/j.funbio.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024]
Abstract
Interspecific hybridization plays a key role in the evolution of novel fungal pathogens, and when it occurs between native and invasive species, can lead to potentially serious consequences. In this study, we examined the temporal and spatial distribution of a recently detected hybrid (Cronartium x flexili) of two tree pathogens, invasive to North America Cronartium ribicola and native Cronartium comandrae. In total, 726 and 1452 aecia from 178 Pinus contorta ssp. latifolia and 357 Pinus flexilis trees were collected from 26 sites in four national forests in 2019-2021. Using morphological and molecular analyses, 71 aecia collected from 25 P. flexilis trees had intermediate morphology and contained heterozygous SNPs in two genomic regions. Population analyses revealed the presence of multiple hybrid genotypes randomly distributed among sites and years. No aecia from P. contorta ssp. latifolia were identified as hybrids suggesting unidirectional gene flow from native C. comandrae to invasive C. ribicola. Aeciospores from 2 hybrid aecia produced urediniospores on Ribes nigrum. Overall, these results suggest that, even though low in frequency, C. x flexili is persistent in the region and has pathogenic potential. Hybrid expansion into the large range of susceptible pines could have cascading impacts on forest health.
Collapse
Affiliation(s)
- Olga Kozhar
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| | - Kelly S Burns
- Forest Health Protection, Rocky Mountain Region, USDA Forest Service, Golden, CO, USA
| | - Anna W Schoettle
- Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO, USA
| | - Jane E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
9
|
Pham NQ, Duong TA, Wingfield BD, Barnes I, Durán A, Wingfield MJ. Characterisation of the mating-type loci in species of Elsinoe causing scab diseases. Fungal Biol 2023; 127:1484-1490. [PMID: 38097322 DOI: 10.1016/j.funbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
The genus Elsinoe includes many aggressive plant pathogens that infect various economically important agricultural, horticultural and forestry plants. Significant diseases include citrus scab caused by E. fawcettii and E. australis, grapevine spot anthracnose by E. ampelina, and the emerging Eucalyptus scab and shoot malformation disease caused by the recently described E. necatrix. Despite their importance as plant pathogens, little is known regarding the biology of many Elsinoe spp. To gain insights into the reproductive biology of these fungi, we characterized the mating-type loci of seven species using whole genome sequence data. Results showed that the MAT1 locus organization and its flanking genes is relatively conserved in most cases. All seven species manifested a typical heterothallic mating system characterized by having either the MAT1-1 or MAT1-2 idiomorph present in an isolate. These idiomorphs were defined by the MAT1-1-1 or the MAT1-2-1 gene, respectively. A unique MAT1-1 idiomorph containing a truncated MAT1-2-1 gene, and a MAT1-1-1 gene, was identified in E. necatrix and E. fawcettii genomes. Additionally, two idiomorph-specific proteins were found in the MAT1-1 and MAT1-2 idiomorphs of E. australis. Universal mating-type markers confirmed heterothallism across 21 Elsinoe spp., are poised to advance future studies regarding the biology of these fungi.
Collapse
Affiliation(s)
- N Q Pham
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - I Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - A Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, 28300, Riau, Indonesia
| | - M J Wingfield
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
10
|
Hill R, McMullan M. Recombination triggers fungal crop disease. Nat Ecol Evol 2023; 7:1961-1962. [PMID: 37945943 DOI: 10.1038/s41559-023-02132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
|
11
|
Katche E, Katche EI, Vasquez-Teuber P, Idris Z, Lo YT, Nugent D, Zou J, Batley J, Mason AS. Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny. Chromosome Res 2023; 31:22. [PMID: 37596507 PMCID: PMC10439240 DOI: 10.1007/s10577-023-09733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Elizabeth Ihien Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez, 595, Chillán, Chile
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Kinneberg VB, Lü DS, Peris D, Ravinet M, Skrede I. Introgression between highly divergent fungal sister species. J Evol Biol 2023; 36:1133-1149. [PMID: 37363874 DOI: 10.1111/jeb.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
To understand how species evolve and adapt to changing environments, it is important to study gene flow and introgression due to their influence on speciation and radiation events. Here, we apply a novel experimental system for investigating these mechanisms using natural populations. The system is based on two fungal sister species with morphological and ecological similarities occurring in overlapping habitats. We examined introgression between these species by conducting whole genome sequencing of individuals from populations in North America and Europe. We assessed genome-wide nucleotide divergence and performed crossing experiments to study reproductive barriers. We further used ABBA-BABA statistics together with a network analysis to investigate introgression, and conducted demographic modelling to gain insight into divergence times and introgression events. The results revealed that the species are highly divergent and incompatible in vitro. Despite this, small regions of introgression were scattered throughout the genomes and one introgression event likely involves a ghost population (extant or extinct). This study demonstrates that introgression can be found among divergent species and that population histories can be studied without collections of all the populations involved. Moreover, the experimental system is shown to be a useful tool for research on reproductive isolation in natural populations.
Collapse
Affiliation(s)
- Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Evolution and Paleobiology, Natural History Museum, University of Oslo, Oslo, Norway
| | - Dabao Sun Lü
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Mathers TC, Wouters RHM, Mugford ST, Biello R, van Oosterhout C, Hogenhout SA. Hybridisation has shaped a recent radiation of grass-feeding aphids. BMC Biol 2023; 21:157. [PMID: 37443008 PMCID: PMC10347838 DOI: 10.1186/s12915-023-01649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Aphids are common crop pests. These insects reproduce by facultative parthenogenesis involving several rounds of clonal reproduction interspersed with an occasional sexual cycle. Furthermore, clonal aphids give birth to live young that are already pregnant. These qualities enable rapid population growth and have facilitated the colonisation of crops globally. In several cases, so-called "super clones" have come to dominate agricultural systems. However, the extent to which the sexual stage of the aphid life cycle has shaped global pest populations has remained unclear, as have the origins of successful lineages. Here, we used chromosome-scale genome assemblies to disentangle the evolution of two global pests of cereals-the English (Sitobion avenae) and Indian (Sitobion miscanthi) grain aphids. RESULTS Genome-wide divergence between S. avenae and S. miscanthi is low. Moreover, comparison of haplotype-resolved assemblies revealed that the S. miscanthi isolate used for genome sequencing is likely a hybrid, with one of its diploid genome copies closely related to S. avenae (~ 0.5% divergence) and the other substantially more divergent (> 1%). Population genomics analyses of UK and China grain aphids showed that S. avenae and S. miscanthi are part of a cryptic species complex with many highly differentiated lineages that predate the origins of agriculture. The complex consists of hybrid lineages that display a tangled history of hybridisation and genetic introgression. CONCLUSIONS Our analyses reveal that hybridisation has substantially contributed to grain aphid diversity, and hence, to the evolutionary potential of this important pest species. Furthermore, we propose that aphids are particularly well placed to exploit hybridisation events via the rapid propagation of live-born "frozen hybrids" via asexual reproduction, increasing the likelihood of hybrid lineage formation.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
- Tree of Life, Welcome Sanger Institute, Hinxton, Cambridge, UK.
| | - Roland H M Wouters
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Roberto Biello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
14
|
van der Walt D, Steenkamp ET, Wingfield BD, Wilken PM. Evidence of Biparental Mitochondrial Inheritance from Self-Fertile Crosses between Closely Related Species of Ceratocystis. J Fungi (Basel) 2023; 9:686. [PMID: 37367622 DOI: 10.3390/jof9060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Hybridization is recognized as a notable driver of evolution and adaptation, which closely related species may exploit in the form of incomplete reproductive barriers. Three closely related species of Ceratocystis (i.e., C. fimbriata, C. manginecans and C. eucalypticola) have previously been shown to hybridize. In such studies, naturally occurring self-sterile strains were mated with an unusual laboratory-generated sterile isolate type, which could have impacted conclusions regarding the prevalence of hybridization and inheritance of mitochondria. In the current study, we investigated whether interspecific crosses between fertile isolates of these three species are possible and, if so, how mitochondria are inherited by the progeny. For this purpose, a PCR-RFLP method and a mitochondrial DNA-specific PCR technique were custom-made. These were applied in a novel approach of typing complete ascospore drops collected from the fruiting bodies in each cross to distinguish between self-fertilizations and potential hybridization. These markers showed hybridization between C. fimbriata and C. eucalypticola and between C. fimbriata and C. manginecans, while no hybridization was detected in the crosses involving C. manginecans and C. eucalypticola. In both sets of hybrid progeny, we detected biparental inheritance of mitochondria. This study was the first to successfully produce hybrids from a cross involving self-fertile isolates of Ceratocystis and also provided the first direct evidence of biparental mitochondrial inheritance in the Ceratocystidaceae. This work lays the foundation for further research focused on investigating the role of hybridization in the speciation of Ceratocystis species and if mitochondrial conflict could have influenced the process.
Collapse
Affiliation(s)
- Daniella van der Walt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
15
|
Benavent-Celma C, McLaggan D, van West P, Woodward S. Evidence of a Natural Hybrid Oomycete Isolated from Ornamental Nursery Stock. J Fungi (Basel) 2023; 9:627. [PMID: 37367563 DOI: 10.3390/jof9060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
The oomycete genus Phytophthora includes many plant pathogens important in agricultural and environmental systems. Natural interspecific hybridization has been reported several times in Phytophthora, and although the fundamental processes of interspecific hybridization and the consequences of subsequent ecological distribution are poorly understood, reports suggest some hybrids can infect a broader host range and display enhanced virulence compared to the putative parental species. During a survey carried out at the University of Aberdeen in 2014-2015, of oomycetes present in ornamental plants purchased via the internet, a batch of oomycete isolates remained unidentified, showing, in some isolates, features generally related to hybridization. The aim of this study was to determine whether hybridization events had occurred between endemic and introduced oomycetes, probably/possibly facilitated through the international plant trade. The list of isolates examined included a putative hybrid closely related to Phytophthora cryptogea. The putative hybrid isolate was further characterized, and pathogenicity were tests carried out on Eucalyptus globulus, using an isolate of P. cryptogea as a positive control. Cloning of ITS, COXI and β-tubulin genes resulted in different sequence versions of the putative hybrid isolate; after mapping and a polymorphism position comparison, it was concluded that the studied isolate contained genetic information from P. cryptogea, P. erythroseptica, P. kelmanii, P. sansomeana and Phytopythium chamaehyphon. A PCR-RFLP assay, a NEBcutter analysis and flow cytometry analysis (genomes ranged between 0.168 to 0.269 pg/2C) added further evidence of the hybrid nature of this isolate. The putative hybrid presented complex growing patterns ranging from rosaceous to chrysanthemum-like and had an optimum growth temperature of 25 °C. Although the putative hybrid produced visible symptoms of disease on E. globulus seedlings, assessment of the relative susceptibility of E. globulus to P. cryptogea and the putative hybrid indicated that P. cryptogea was significantly more virulent than the putative hybrid, based on mortality, disease severity and foliar symptoms.
Collapse
Affiliation(s)
- Clara Benavent-Celma
- Department of Plant and Soil Science, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, UK
| | - Debbie McLaggan
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Pieter van West
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Steve Woodward
- Department of Plant and Soil Science, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland, UK
| |
Collapse
|
16
|
Rogério F, Baroncelli R, Cuevas-Fernández FB, Becerra S, Crouch J, Bettiol W, Azcárate-Peril MA, Malapi-Wight M, Ortega V, Betran J, Tenuta A, Dambolena JS, Esker PD, Revilla P, Jackson-Ziems TA, Hiltbrunner J, Munkvold G, Buhiniček I, Vicente-Villardón JL, Sukno SA, Thon MR. Population Genomics Provide Insights into the Global Genetic Structure of Colletotrichum graminicola, the Causal Agent of Maize Anthracnose. mBio 2023; 14:e0287822. [PMID: 36533926 PMCID: PMC9973043 DOI: 10.1128/mbio.02878-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the genetic diversity and mechanisms underlying genetic variation in pathogen populations is crucial to the development of effective control strategies. We investigated the genetic diversity and reproductive biology of Colletotrichum graminicola isolates which infect maize by sequencing the genomes of 108 isolates collected from 14 countries using restriction site-associated DNA sequencing (RAD-seq) and whole-genome sequencing (WGS). Clustering analyses based on single-nucleotide polymorphisms revealed three genetic groups delimited by continental origin, compatible with short-dispersal of the pathogen and geographic subdivision. Intra- and intercontinental migration was observed between Europe and South America, likely associated with the movement of contaminated germplasm. Low clonality, evidence of genetic recombination, and high phenotypic diversity were detected. We show evidence that, although it is rare (possibly due to losses of sexual reproduction- and meiosis-associated genes) C. graminicola can undergo sexual recombination. Our results support the hypotheses that intra- and intercontinental pathogen migration and genetic recombination have great impacts on the C. graminicola population structure. IMPORTANCE Plant pathogens cause significant reductions in yield and crop quality and cause enormous economic losses worldwide. Reducing these losses provides an obvious strategy to increase food production without further degrading natural ecosystems; however, this requires knowledge of the biology and evolution of the pathogens in agroecosystems. We employed a population genomics approach to investigate the genetic diversity and reproductive biology of the maize anthracnose pathogen (Colletotrichum graminicola) in 14 countries. We found that the populations are correlated with their geographical origin and that migration between countries is ongoing, possibly caused by the movement of infected plant material. This result has direct implications for disease management because migration can cause the movement of more virulent and/or fungicide-resistant genotypes. We conclude that genetic recombination is frequent (in contrast to the traditional view of C. graminicola being mainly asexual), which strongly impacts control measures and breeding programs aimed at controlling this disease.
Collapse
Affiliation(s)
- Flávia Rogério
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Riccardo Baroncelli
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Francisco Borja Cuevas-Fernández
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sioly Becerra
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - JoAnne Crouch
- Foreign Disease and Weed Science Unit, United States Department of Agriculture, Fort Detrick, Maryland, USA
| | | | - M. Andrea Azcárate-Peril
- Center for Gastrointestinal Biology and Disease, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
- UNC Microbiome Core, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Martha Malapi-Wight
- USDA Animal and Plant Health Inspection Services, Biotechnology Regulatory Services, Riverdale, Maryland, USA
| | | | | | - Albert Tenuta
- Ontario Ministry of Agriculture, Food, and Rural Affairs, University of Guelph-Ridgetown, Ridgetown, Ontario, Canada
| | - José S. Dambolena
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, IMBIV-CONICET-ICTA, Córdoba, Argentina
| | - Paul D. Esker
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Pedro Revilla
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Pontevedra, Spain
| | | | | | - Gary Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Ivica Buhiniček
- BC Institute for Breeding and Production of Field Crops, Dugo Selo, Croatia
| | | | - Serenella A. Sukno
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Michael R. Thon
- Instituto de Investigación en Agrobiotecnología (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Hulbert JM, Hallett RA, Roy HE, Cleary M. Citizen science can enhance strategies to detect and manage invasive forest pests and pathogens. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Incorporating a citizen science approach into biological invasion management strategies can enhance biosecurity. Many citizen science projects exist to strengthen the management of forest pest and pathogen invasions within both pre- and post-border scenarios. Besides the value of citizen science initiatives for early detection and monitoring, they also contribute widely to raising awareness, informing decisions about eradication and containment efforts to minimize pest and pathogen spread, and even finding resistant plant material for restoration of landscapes degraded by disease. Overall, many projects actively engage citizens in the different stages of forest pest and pathogen invasions, but it is unclear how they work together across all stages of the entire biological invasion process to enhance biosecurity. Here we provide examples of citizen science projects for each stage of the biological invasion process, discuss options for developing a citizen science program to enhance biosecurity, and suggest approaches for integrating citizen science into biosecurity measures to help safeguard forest resources in the future.
Collapse
|
18
|
Peng Y, Derks MFL, Groenen MAM, Zhao Y, Bosse M. Distinct traces of mixed ancestry in western commercial pig genomes following gene flow from Chinese indigenous breeds. Front Genet 2023; 13:1070783. [PMID: 36712875 PMCID: PMC9880450 DOI: 10.3389/fgene.2022.1070783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Studying gene flow between different livestock breeds will benefit the discovery of genes related to production traits and provide insight into human historical breeding. Chinese pigs have played an indispensable role in the breeding of Western commercial pigs. However, the differences in the timing and volume of the contribution of pigs from different Chinese regions to Western pigs are not yet apparent. In this paper, we combine the whole-genome sequencing data of 592 pigs from different studies and illustrate patterns of gene flow from Chinese pigs into Western commercial pigs. We describe introgression patterns from four distinct Chinese indigenous groups into five Western commercial groups. There were considerable differences in the number and length of the putative introgressed segments from Chinese pig groups that contributed to Western commercial pig breeds. The contribution of pigs from different Chinese geographical locations to a given western commercial breed varied more than that from a specific Chinese pig group to different Western commercial breeds, implying admixture within Europe after introgression. Within different Western commercial lines from the same breed, the introgression patterns from a given Chinese pig group seemed highly conserved, suggesting that introgression of Chinese pigs into Western commercial pig breeds mainly occurred at an early stage of breed formation. Finally, based on analyses of introgression signals, allele frequencies, and selection footprints, we identified a ∼2.65 Mb Chinese-derived haplotype under selection in Duroc pigs (CHR14: 95.68-98.33 Mb). Functional and phenotypic studies demonstrate that this PRKG1 haplotype is related to backfat and loin depth in Duroc pigs. Overall, we demonstrate that the introgression history of domestic pigs is complex and that Western commercial pigs contain distinct traces of mixed ancestry, likely derived from various Chinese pig breeds.
Collapse
Affiliation(s)
- Yebo Peng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Martijn FL Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
- Topigs Norsvin Research Center, Beuningen, Netherlands
| | - Martien AM Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mirte Bosse
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
- Amsterdam Insitute of Life and Environment (A-Life), VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Ngou BPM, Heal R, Wyler M, Schmid MW, Jones JDG. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. NATURE PLANTS 2022; 8:1146-1152. [PMID: 36241733 PMCID: PMC9579050 DOI: 10.1038/s41477-022-01260-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/09/2022] [Indexed: 05/10/2023]
Abstract
Recent reports suggest that cell-surface and intracellular immune receptors function synergistically to activate robust defence against pathogens, but whether they co-evolve is unclear. Here we determined the numbers of cell-surface and intracellular immune receptors in 350 species. Surprisingly, the number of receptor genes that are predicted to encode cell-surface and intracellular immune receptors is strongly correlated. We suggest this is consistent with mutual potentiation of immunity initiated by cell-surface and intracellular receptors being reflected in the concerted co-evolution of the size of their repertoires across plant species.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
21
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
22
|
Hamelin RC, Bilodeau GJ, Heinzelmann R, Hrywkiw K, Capron A, Dort E, Dale AL, Giroux E, Kus S, Carleson NC, Grünwald NJ, Feau N. Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Commun Biol 2022; 5:477. [PMID: 35589982 PMCID: PMC9120034 DOI: 10.1038/s42003-022-03394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.
Collapse
Affiliation(s)
- Richard C Hamelin
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | - Renate Heinzelmann
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kelly Hrywkiw
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud Capron
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Erika Dort
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Angela L Dale
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Emilie Giroux
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Stacey Kus
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Nick C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Horticultural Crops Research Unit, USDA ARS, Corvallis, OR, USA
| | - Nicolas Feau
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
24
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
25
|
O’Brien CE, Zhai B, Ola M, Bergin SA, Ó Cinnéide E, O’Connor Í, Rolling T, Miranda E, Babady NE, Hohl TM, Butler G. Identification of a novel Candida metapsilosis isolate reveals multiple hybridization events. G3 (BETHESDA, MD.) 2022; 12:jkab367. [PMID: 34791169 PMCID: PMC8727981 DOI: 10.1093/g3journal/jkab367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023]
Abstract
Candida metapsilosis is a member of the Candida parapsilosis species complex, a group of opportunistic human pathogens. Of all the members of this complex, C. metapsilosis is the least virulent, and accounts for a small proportion of invasive Candida infections. Previous studies established that all C. metapsilosis isolates are hybrids, originating from a single hybridization event between two lineages, parent A and parent B. Here, we use MinION and Illumina sequencing to characterize a C. metapsilosis isolate that originated from a separate hybridization. One of the parents of the new isolate is very closely related to parent A. However, the other parent (parent C) is not the same as parent B. Unlike C. metapsilosis AB isolates, the C. metapsilosis AC isolate has not undergone introgression at the mating type-like locus. In addition, the A and C haplotypes are not fully collinear. The C. metapsilosis AC isolate has undergone loss of heterozygosity with a preference for haplotype A, indicating that this isolate is in the early stages of genome stabilization.
Collapse
Affiliation(s)
- Caoimhe E O’Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mihaela Ola
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sean A Bergin
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eoin Ó Cinnéide
- School of Medicine, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Ísla O’Connor
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edwin Miranda
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - N Esther Babady
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10007, USA
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
26
|
Michelotti LA, Sun S, Heitman J, James TY. Clonal evolution in serially passaged Cryptococcus neoformans × deneoformans hybrids reveals a heterogenous landscape of genomic change. Genetics 2022; 220:iyab142. [PMID: 34849836 PMCID: PMC8733418 DOI: 10.1093/genetics/iyab142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans × deneoformans hybrids (also known as serotype AD hybrids) are basidiomycete yeasts that are common in a clinical setting. Like many hybrids, the AD hybrids are largely locked at the F1 stage and are mostly unable to undergo normal meiotic reproduction. However, these F1 hybrids, which display a high (∼10%) sequence divergence are known to genetically diversify through mitotic recombination and aneuploidy, and this diversification may be adaptive. In this study, we evolved a single AD hybrid genotype in six diverse environments by serial passaging and then used genome resequencing of evolved clones to determine evolutionary mechanisms of adaptation. The evolved clones generally increased fitness after passaging, accompanied by an average of 3.3 point mutations, 2.9 loss of heterozygosity (LOH) events, and 0.7 trisomic chromosomes per clone. LOH occurred through nondisjunction of chromosomes, crossing over consistent with break-induced replication, and gene conversion, in that order of prevalence. The breakpoints of these recombination events were significantly associated with regions of the genome with lower sequence divergence between the parents and clustered in sub-telomeric regions, notably in regions that had undergone introgression between the two parental species. Parallel evolution was observed, particularly through repeated homozygosity via nondisjunction, yet there was little evidence of environment-specific parallel change for either LOH, aneuploidy, or mutations. These data show that AD hybrids have both a remarkable genomic plasticity and yet are challenged in the ability to recombine through sequence divergence and chromosomal rearrangements, a scenario likely limiting the precision of adaptive evolution to novel environments.
Collapse
Affiliation(s)
- Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Dahanayaka BA, Vaghefi N, Snyman L, Martin A. Investigating In Vitro Mating Preference Between or Within the Two Forms of Pyrenophora teres and Its Hybrids. PHYTOPATHOLOGY 2021; 111:2278-2286. [PMID: 34033506 DOI: 10.1094/phyto-02-21-0058-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Net blotch diseases result in significant yield losses to barley industries worldwide. They occur as net-form and spot-form net blotch caused by Pyrenophora teres f. teres and P. teres f. maculata, respectively. Hybridization between the forms was proposed to be rare, but recent identifications of field hybrids has renewed interest in the frequency and mechanisms underlying hybridization. This study investigates the mating preference of P. teres f. teres, P. teres f. maculata, and laboratory-produced hybrids in vitro, using 24 different isolates and four different experimental setups. Two crosses in our study produced ascospores during two intervals separated by a 32- to 35-day period of no ascospore production. For these crosses, P. teres f. teres isolates mated with isolates of the same form during the early ascospore production interval, and produced hybrids during the later interval. P. teres f. maculata isolates did not mate with isolates of the same form, but instead hybridized with P. teres f. teres isolates. Analyses based on DArTseq markers confirmed that laboratory-produced hybrids, when given the choice to mate with both P. teres f. teres and P. teres f. maculata, mated with P. teres f. teres isolates. These results unravel a novel concept that P. teres f. teres seems to have a greater reproduction vigor than P. teres f. maculata, which could lead to increased prevalence of hybrid incidences in vivo.
Collapse
Affiliation(s)
- Buddhika A Dahanayaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lislé Snyman
- Department of Agriculture and Fisheries Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
28
|
Müller MC, Kunz L, Graf J, Schudel S, Keller B. Host Adaptation Through Hybridization: Genome Analysis of Triticale Powdery Mildew Reveals Unique Combination of Lineage-Specific Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1350-1357. [PMID: 34503345 DOI: 10.1094/mpmi-05-21-0111-sc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emergence of new fungal pathogens through hybridization represents a serious challenge for agriculture. Hybridization between the wheat mildew (Blumeria graminis f. sp. tritici) and rye mildew (B. graminis f. sp. secalis) pathogens has led to the emergence of a new mildew form (B. graminis f. sp. triticale) growing on triticale, a man-made amphiploid crop derived from crossing rye and wheat, which was originally resistant to the powdery mildew disease. The identification of the genetic basis of host adaptation in triticale mildew has been hampered by the lack of a reference genome. Here, we report the 141.4-Mb reference assembly of triticale mildew isolate THUN-12 derived from long-read sequencing and genetic map-based scaffolding. All 11 triticale mildew chromosomes were assembled from telomere-to-telomere and revealed that 19.7% of the hybrid genome was inherited from the rye mildew parental lineage. We identified lineage-specific regions in the hybrid, inherited from the rye or wheat mildew parental lineages, that harbor numerous bona fide candidate effectors. We propose that the combination of lineage-specific effectors in the hybrid genome is crucial for host adaptation, allowing the fungus to simultaneously circumvent the immune systems contributed by wheat and rye in the triticale crop. In line with this, we demonstrate the functional transfer of the SvrPm3 effector from wheat to triticale mildew, a virulence effector that specifically suppresses resistance of the wheat Pm3 allelic series. This transfer is the likely underlying cause for the observed poor effectiveness of several Pm3 alleles against triticale mildew and exemplifies the negative implications of pathogen hybridizations on resistance breeding.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Marion C Müller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Lukas Kunz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Seraina Schudel
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Ottenburghs J. The genic view of hybridization in the Anthropocene. Evol Appl 2021; 14:2342-2360. [PMID: 34745330 PMCID: PMC8549621 DOI: 10.1111/eva.13223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Human impact is noticeable around the globe, indicating that a new era might have begun: the Anthropocene. Continuing human activities, including land-use changes, introduction of non-native species and rapid climate change, are altering the distributions of countless species, often giving rise to human-mediated hybridization events. While the interbreeding of different populations or species can have detrimental effects, such as genetic extinction, it can be beneficial in terms of adaptive introgression or an increase in genetic diversity. In this paper, I first review the different mechanisms and outcomes of anthropogenic hybridization based on literature from the last five years (2016-2020). The most common mechanisms leading to the interbreeding of previously isolated taxa include habitat change (51% of the studies) and introduction of non-native species (34% intentional and 19% unintentional). These human-induced hybridization events most often result in introgression (80%). The high incidence of genetic exchange between the hybridizing taxa indicates that the application of a genic view of speciation (and introgression) can provide crucial insights on how to address hybridization events in the Anthropocene. This perspective considers the genome as a dynamic collection of genetic loci with distinct evolutionary histories, giving rise to a heterogenous genomic landscape in terms of genetic differentiation and introgression. First, understanding this genomic landscape can lead to a better selection of diagnostic genetic markers to characterize hybrid populations. Second, describing how introgression patterns vary across the genome can help to predict the likelihood of negative processes, such as demographic and genetic swamping, as well as positive outcomes, such as adaptive introgression. It is especially important to not only quantify how much genetic material introgressed, but also what has been exchanged. Third, comparing introgression patterns in pre-Anthropocene hybridization events with current human-induced cases might provide novel insights into the likelihood of genetic swamping or species collapse during an anthropogenic hybridization event. However, this comparative approach remains to be tested before it can be applied in practice. Finally, the genic view of introgression can be combined with conservation genomic studies to determine the legal status of hybrids and take appropriate measures to manage anthropogenic hybridization events. The interplay between evolutionary and conservation genomics will result in the constant exchange of ideas between these fields which will not only improve our knowledge on the origin of species, but also how to conserve and protect them.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and ConservationWageningen University & ResearchWageningenThe Netherlands
- Forest Ecology and Forest ManagementWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
30
|
Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:716511. [PMID: 37744103 PMCID: PMC10512312 DOI: 10.3389/ffunb.2021.716511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 09/26/2023]
Abstract
Natural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various "omics" technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields.
Collapse
Affiliation(s)
- Tomás A. Rush
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Him K. Shrestha
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Margaret K. Spangler
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - J. Christopher Ellis
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Jesse L. Labbé
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul E. Abraham
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
31
|
Magyar D, Tischner Z, Páldy A, Kocsubé S, Dancsházy Z, Halász Á, Kredics L. Impact of global megatrends on the spread of microscopic fungi in the Pannonian Biogeographical Region. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Storfie ERM, Saville BJ. Fungal Pathogen Emergence: Investigations with an Ustilago maydis × Sporisorium reilianum Hybrid. J Fungi (Basel) 2021; 7:672. [PMID: 34436211 PMCID: PMC8400639 DOI: 10.3390/jof7080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of new fungal pathogens threatens sustainable crop production worldwide. One mechanism by which new pathogens may arise is hybridization. To investigate hybridization, the related smut fungi, Ustilago maydis and Sporisorium reilianum, were selected because they both infect Zea mays, can hybridize, and tools are available for their analysis. The hybrid dikaryons of these fungi grew as filaments on plates but their colonization and virulence in Z. mays were reduced compared to the parental dikaryons. The anthocyanin induction caused by the hybrid dikaryon infections was distinct, suggesting its interaction with the host was different from that of the parental dikaryons. Selected virulence genes previously characterized in U. maydis and their predicted S. reilianum orthologs had altered transcript levels during hybrid infection of Z. mays. The downregulated U. maydis effectors, tin2, pit2, and cce1, and transcription factors, rbf1, hdp2, and nlt1, were constitutively expressed in the hybrid. Little impact was observed with increased effector expression; however, increased expression of rbf1 and hdp2, which regulate early pathogenic development by U. maydis, increased the hybrid's capacity to induce symptoms including the rare induction of small leaf tumors. These results establish a base for investigating molecular aspects of smut fungal hybrid pathogen emergence.
Collapse
Affiliation(s)
- Emilee R. M. Storfie
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Barry J. Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Program, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
33
|
|
34
|
|
35
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
36
|
Abstract
Hybridization is an important evolutionary mechanism that can enable organisms to adapt to environmental challenges. It has previously been shown that the fungal allodiploid species Verticillium longisporum, the causal agent of verticillium stem striping in rapeseed, originated from at least three independent hybridization events between two haploid Verticillium species. To reveal the impact of genome duplication as a consequence of hybridization, we studied the genome and transcriptome dynamics upon two independent V. longisporum hybridization events, represented by the hybrid lineages “A1/D1” and “A1/D3.” We show that V. longisporum genomes are characterized by extensive chromosomal rearrangements, including between parental chromosomal sets. V. longisporum hybrids display signs of evolutionary dynamics that are typically associated with the aftermath of allodiploidization, such as haploidization and more relaxed gene evolution. The expression patterns of the two subgenomes within the two hybrid lineages are more similar than those of the shared A1 parent between the two lineages, showing that the expression patterns of the parental genomes homogenized within a lineage. However, as genes that display differential parental expression in planta do not typically display the same pattern in vitro, we conclude that subgenome-specific responses occur in both lineages. Overall, our study uncovers genomic and transcriptomic plasticity during the evolution of the filamentous fungal hybrid V. longisporum and illustrates its adaptive potential.
Collapse
|
37
|
Orihara T, Healy R, Corrales A, Smith ME. Multilocus phylogenies reveal three new truffle-like taxa and the traces of interspecific hybridization in Octaviania (Boletaceae, Boletales). IMA Fungus 2021; 12:14. [PMID: 34116729 PMCID: PMC8194053 DOI: 10.1186/s43008-021-00066-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/09/2021] [Indexed: 01/11/2023] Open
Abstract
Among many convergently evolved sequestrate fungal genera in Boletaceae (Boletales, Basidiomycota), the genus Octaviania is the most diverse. We recently collected many specimens of Octaviania subg. Octaviania, including several undescribed taxa, from Japan and the Americas. Here we describe two new species in subgenus Octaviania, O. tenuipes and O. tomentosa, from temperate to subtropical evergreen Fagaceae forests in Japan based on morphological observation and robust multilocus phylogenetic analyses (nrDNA ITS and partial large subunit [LSU], translation elongation factor 1-α gene [TEF1] and the largest subunit of RNA polymerase II gene [RPB1]). Based on specimens from the Americas as well as studies of the holotype, we also taxonomically re-evaluate O. asterosperma var. potteri. Our analysis suggests that O. asterosperma var. potteri is a distinct taxon within the subgenus Octaviania so we recognize this as O. potteri stat. nov. We unexpectedly collected O. potteri specimens from geographically widespread sites in the USA, Japan and Colombia. This is the first verified report of Octaviania from the South American continent. Our molecular analyses also revealed that the RPB1 sequence of one O. tenuipes specimen was identical to that of a closely related species, O. japonimontana, and that one O. potteri specimen from Minnesota had an RPB1 sequence of an unknown species of O. subg. Octaviania. Additionally, one O. japonimontana specimen had an unusually divergent TEF1 sequence. Gene-tree comparison and phylogenetic network analysis of the multilocus dataset suggest that these heterogenous sequences are most likely the result of previous inter- and intra-specific hybridization. We hypothesize that frequent hybridization events in Octaviania may have promoted the high genetic and species diversity found within the genus.
Collapse
Affiliation(s)
- Takamichi Orihara
- Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031, Japan.
| | - Rosanne Healy
- Department of Plant Pathology, University of Florida, Gainesville, Florida, 32611-0680, USA
| | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida, 32611-0680, USA
| |
Collapse
|
38
|
Brasier C, Franceschini S, Forster J, Kirk S. Enhanced Outcrossing, Directional Selection and Transgressive Segregation Drive Evolution of Novel Phenotypes in Hybrid Swarms of the Dutch Elm Disease Pathogen Ophiostoma novo-ulmi. J Fungi (Basel) 2021; 7:jof7060452. [PMID: 34204036 PMCID: PMC8228177 DOI: 10.3390/jof7060452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
In the 1970s, clones of the two subspecies of Ophiostoma novo-ulmi, subsp. americana (SSAM) and subsp. novo-ulmi (SSNU) began to overlap in Europe, resulting in hybrid swarms. By 1983-1986, hybrids with high, SSAM-like growth and pathogenic fitness comprised ~75% of popula-tions at Limburg, Netherlands and Orvieto, Italy. We resampled these populations in 2008 to examine trends in hybrid fitness traits. Since preliminary sampling in 1979-1980, MAT-1 locus frequency had increased from ~0% to ~32% at Orvieto and 5% to ~43% at Limburg, and vegeta-tive incompatibility type frequency had changed from near clonal to extremely diverse at both sites. This represents an enormous increase in outcrossing and recombination potential, due in part to selective acquisition (under virus pressure) of MAT-1 and vic loci from the resident O. ulmi and in part to SSAM × SSNU hybridisation. Overt virus infection in the 2008 samples was low (~4%), diagnostic SSAM and SSNU cu and col1 loci were recombinant, and no isolates exhib-ited a parental SSAM or SSNU colony pattern. At both sites, mean growth rate and mean patho-genicity to 3-5 m clonal elm were high SSAM-like, indicating sustained directional selection for these characters, though at Orvieto growth rate was slower. The once frequent SSNU-specific up-mut colony dimorphism was largely eliminated at both sites. Perithecia formed by Limburg isolates were mainly an extreme, long-necked SSNU-like form, consistent with transgressive segregation resulting from mismatch of SSAM and SSNU developmental loci. Orvieto isolates produced more parental-like perithecia, suggesting the extreme phenotypes may have been se-lected against. The novel phenotypes in the swarms are remodelling O. novo-ulmi in Europe. Locally adapted genotypes may emerge.
Collapse
|
39
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
40
|
Medina D, Greenspan SE, Carvalho T, Becker CG, Toledo LF. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol 2021; 97:6134751. [PMID: 33580951 DOI: 10.1093/femsec/fiab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Amphibian skin bacteria may confer protection against the fungus Batrachochytrium dendrobatidis (Bd), but responses of skin bacteria to different Bd lineages are poorly understood. The global panzootic lineage (Bd-GPL) has caused amphibian declines and extinctions globally. However, other lineages are enzootic (Bd-Asia-2/Brazil). Increased contact rates between Bd-GPL and enzootic lineages via globalization pose unknown consequences for host-microbiome-pathogen dynamics. We conducted a laboratory experiment and used 16S rRNA amplicon-sequencing to assess: (i) whether two lineages (Bd-Asia-2/Brazil and Bd-GPL) and their recombinant, in single and mixed infections, differentially affect amphibian skin bacteria; (ii) and the changes associated with the transition to laboratory conditions. We determined no clear differences in bacterial diversity among Bd treatments, despite differences in infection intensity. However, we observed an additive effect of mixed infections on bacterial alpha diversity and a potentially antagonistic interaction between Bd genotypes. Additionally, observed changes in community composition suggest a higher ability of Bd-GPL to alter skin bacteria. Lastly, we observed a drastic reduction in bacterial diversity and a change in community structure in laboratory conditions. We provide evidence for complex interactions between Bd genotypes and amphibian skin bacteria during coinfections, and expand on the implications of experimental conditions in ecological studies.
Collapse
Affiliation(s)
- Daniel Medina
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil.,Sistema Nacional de Investigación, SENACYT, Building 205, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
41
|
Boufleur TR, Ciampi‐Guillardi M, Tikami Í, Rogério F, Thon MR, Sukno SA, Massola Júnior NS, Baroncelli R. Soybean anthracnose caused by Colletotrichum species: Current status and future prospects. MOLECULAR PLANT PATHOLOGY 2021; 22:393-409. [PMID: 33609073 PMCID: PMC7938629 DOI: 10.1111/mpp.13036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is one of the most important cultivated plants worldwide as a source of protein-rich foods and animal feeds. Anthracnose, caused by different lineages of the hemibiotrophic fungus Colletotrichum, is one of the main limiting factors to soybean production. Losses due to anthracnose have been neglected, but their impact may threaten up to 50% of the grain production. TAXONOMY While C. truncatum is considered the main species associated with soybean anthracnose, recently other species have been reported as pathogenic on this host. Until now, it has not been clear whether the association of new Colletotrichum species with the disease is related to emerging species or whether it is due to the undergoing changes in the taxonomy of the genus. DISEASE SYMPTOMS Typical anthracnose symptoms are pre- and postemergence damping-off; dark, depressed, and irregular spots on cotyledons, stems, petioles, and pods; and necrotic laminar veins on leaves that can result in premature defoliation. Symptoms may evolve to pod rot, immature opening of pods, and premature germination of grains. CHALLENGES As accurate species identification of the causal agent is decisive for disease control and prevention, in this work we review the taxonomic designation of Colletotrichum isolated from soybean to understand which lineages are pathogenic on this host. We also present a comprehensive literature review of soybean anthracnose, focusing on distribution, symptomatology, epidemiology, disease management, identification, and diagnosis. We consider the knowledge emerging from population studies and comparative genomics of Colletotrichum spp. associated with soybean providing future perspectives in the identification of molecular factors involved in the pathogenicity process. USEFUL WEBSITE Updates on Colletotrichum can be found at http://www.colletotrichum.org/. All available Colletotrichum genomes on GenBank can be viewed at http://www.colletotrichum.org/genomics/.
Collapse
Affiliation(s)
- Thais R. Boufleur
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Maisa Ciampi‐Guillardi
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Ísis Tikami
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Flávia Rogério
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Michael R. Thon
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Serenella A. Sukno
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| | - Nelson S. Massola Júnior
- Department of Plant Pathology and NematologyUniversity of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ)Piracicaba, São PauloBrazil
| | - Riccardo Baroncelli
- Instituto Hispano‐Luso de Investigaciones Agrarias (CIALE)Universidad de SalamancaSalamancaSpain
| |
Collapse
|
42
|
Mehta N, Baghela A. Quorum sensing-mediated inter-specific conidial anastomosis tube fusion between Colletotrichum gloeosporioides and C. siamense. IMA Fungus 2021; 12:7. [PMID: 33789776 PMCID: PMC8015167 DOI: 10.1186/s43008-021-00058-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Many plant pathogenic filamentous fungi undergo fusion of conidia through conidial anastomosis tubes (CATs), which is believed to facilitate horizontal gene transfer between species. We discovered a remarkable inter-specific CAT fusion between two important plant fungal pathogens Colletotrichum gloeosporioides and C. siamense. In an invitro assay, under no selection pressure, the inter-specific CAT fusion was preferred with higher frequency (25% ± 5%) than intra-specific CAT fusion (11% ± 3.6%). Different stages of CAT fusion viz. CAT induction, homing, and fusion were observed during this inter-specific CAT fusion. The CAT fusion was found to be higher in absence of nutrients and under physiological stresses. This CAT fusion involved a quorum sensing phenomenon, wherein the CAT induction was dependent on conidial density and the putative quorum sensing molecule was extractable in chloroform. Movement of nuclei, mitochondria, and lipid droplets were observed during the CAT fusion. Post CAT fusion, the resulting conidia gave rise to putative heterokaryotic progenies with variable colony characteristics as compared to their parental strains. Few heterokaryons showed variable AFLP banding pattern compared to their parental strains, thereby suggesting a possible genetic exchange between the two species through CAT fusion. The heterokaryotic progenies exhibited varied fitness under different stress conditions. Our study illustrated a possible role of inter-specific CAT fusion in generation of genetic and phenotypic diversity in these fungal pathogens.
Collapse
Affiliation(s)
- Nikita Mehta
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India.,Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Baghela
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India. .,Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
43
|
Brewer MT, Cameron CJ, Chan CT, Dutta B, Gitaitis RD, Grauke LJ, Brock JH, Brenneman TB. Neofusicoccum caryigenum, a new species causing leaf dieback disease of pecan ( Carya illinoinensis). Mycologia 2021; 113:586-598. [PMID: 33783338 DOI: 10.1080/00275514.2021.1880216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neofusicoccum species are endophytes and pathogens of woody hosts and members of the Botryosphaeriaceae. Leaf dieback is a new disease resulting in death of compound leaves and extensive defoliation of pecan trees (Carya illinoinensis) throughout the southeastern United States. Currently, the disease is consistently most severe on trees that are not managed with fungicides for pecan scab. Preliminary observations of the fungus isolated from symptomatic leaves indicated that it was a member of the genus Neofusicoccum. Our objectives were to confirm that this is the causal organism of leaf dieback disease of pecan and to determine whether this disease is caused by a new or previously described species of Neofusicoccum. Morphological observations of pure cultures, conidiomata, conidiogenous cells, and conidia were consistent with members of the genus Neofusicoccum. Using Koch's postulates, we established that Neofusicoccum sp. isolated from symptomatic leaves caused the disease. We sequenced the internal transcribed spacer of the rDNA (ITS), elongation factor 1-α (EF1-α), the second largest subunit of RNA polymerase II (RPB2), and β-tubulin (TUB2) of 11 isolates collected from Georgia and Texas. Phylogenetic and network analyses of these sequences combined with publicly available sequences of 40 members of the N. parvum-N. ribis species complex and the outgroup N. australe revealed that this fungus is a member of the species complex but is genetically distinct from previously described species. We determined that leaf dieback of pecan is caused by a novel species, named herein N. caryigenum.
Collapse
Affiliation(s)
- Marin T Brewer
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602
| | - Courtney J Cameron
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602
| | - Cynthia T Chan
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, Georgia 31793
| | - Ronald D Gitaitis
- Department of Plant Pathology, University of Georgia, Tifton, Georgia 31793
| | - L J Grauke
- Pecan Breeding and Genetics, Agricultural Research Service, United States Department of Agriculture, Somerville, Texas 77879
| | - Jason H Brock
- Department of Plant Pathology, University of Georgia, Tifton, Georgia 31793
| | | |
Collapse
|
44
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
45
|
Lind AL, Pollard KS. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. MICROBIOME 2021; 9:58. [PMID: 33658077 PMCID: PMC7931531 DOI: 10.1186/s40168-021-01015-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbial eukaryotes are found alongside bacteria and archaea in natural microbial systems, including host-associated microbiomes. While microbial eukaryotes are critical to these communities, they are challenging to study with shotgun sequencing techniques and are therefore often excluded. RESULTS Here, we present EukDetect, a bioinformatics method to identify eukaryotes in shotgun metagenomic sequencing data. Our approach uses a database of 521,824 universal marker genes from 241 conserved gene families, which we curated from 3713 fungal, protist, non-vertebrate metazoan, and non-streptophyte archaeplastida genomes and transcriptomes. EukDetect has a broad taxonomic coverage of microbial eukaryotes, performs well on low-abundance and closely related species, and is resilient against bacterial contamination in eukaryotic genomes. Using EukDetect, we describe the spatial distribution of eukaryotes along the human gastrointestinal tract, showing that fungi and protists are present in the lumen and mucosa throughout the large intestine. We discover that there is a succession of eukaryotes that colonize the human gut during the first years of life, mirroring patterns of developmental succession observed in gut bacteria. By comparing DNA and RNA sequencing of paired samples from human stool, we find that many eukaryotes continue active transcription after passage through the gut, though some do not, suggesting they are dormant or nonviable. We analyze metagenomic data from the Baltic Sea and find that eukaryotes differ across locations and salinity gradients. Finally, we observe eukaryotes in Arabidopsis leaf samples, many of which are not identifiable from public protein databases. CONCLUSIONS EukDetect provides an automated and reliable way to characterize eukaryotes in shotgun sequencing datasets from diverse microbiomes. We demonstrate that it enables discoveries that would be missed or clouded by false positives with standard shotgun sequence analysis. EukDetect will greatly advance our understanding of how microbial eukaryotes contribute to microbiomes. Video abstract.
Collapse
Affiliation(s)
- Abigail L Lind
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
46
|
O’Brien CE, Oliveira-Pacheco J, Ó Cinnéide E, Haase MAB, Hittinger CT, Rogers TR, Zaragoza O, Bond U, Butler G. Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLoS Pathog 2021; 17:e1009138. [PMID: 33788904 PMCID: PMC8041210 DOI: 10.1371/journal.ppat.1009138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/12/2021] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
Candida tropicalis is a human pathogen that primarily infects the immunocompromised. Whereas the genome of one isolate, C. tropicalis MYA-3404, was originally sequenced in 2009, there have been no large-scale, multi-isolate studies of the genetic and phenotypic diversity of this species. Here, we used whole genome sequencing and phenotyping to characterize 77 isolates of C. tropicalis from clinical and environmental sources from a variety of locations. We show that most C. tropicalis isolates are diploids with approximately 2-6 heterozygous variants per kilobase. The genomes are relatively stable, with few aneuploidies. However, we identified one highly homozygous isolate and six isolates of C. tropicalis with much higher heterozygosity levels ranging from 36-49 heterozygous variants per kilobase. Our analyses show that the heterozygous isolates represent two different hybrid lineages, where the hybrids share one parent (A) with most other C. tropicalis isolates, but the second parent (B or C) differs by at least 4% at the genome level. Four of the sequenced isolates descend from an AB hybridization, and two from an AC hybridization. The hybrids are MTLa/α heterozygotes. Hybridization, or mating, between different parents is therefore common in the evolutionary history of C. tropicalis. The new hybrids were predominantly found in environmental niches, including from soil. Hybridization is therefore unlikely to be associated with virulence. In addition, we used genotype-phenotype correlation and CRISPR-Cas9 editing to identify a genome variant that results in the inability of one isolate to utilize certain branched-chain amino acids as a sole nitrogen source.
Collapse
Affiliation(s)
- Caoimhe E. O’Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - João Oliveira-Pacheco
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Max A. B. Haase
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas R. Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Dublin, Ireland; Department of Microbiology, St James’s Hospital, Dublin, Ireland
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km2, Majadahonda, Madrid, Spain
| | - Ursula Bond
- Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
47
|
Hessenauer P, Feau N, Gill U, Schwessinger B, Brar GS, Hamelin RC. Evolution and Adaptation of Forest and Crop Pathogens in the Anthropocene. PHYTOPATHOLOGY 2021; 111:49-67. [PMID: 33200962 DOI: 10.1094/phyto-08-20-0358-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.
Collapse
Affiliation(s)
- Pauline Hessenauer
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
| | - Nicolas Feau
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Upinder Gill
- College of Agriculture, Food Systems, and Natural Resources, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Acton, ACT 2601 Australia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Richard C Hamelin
- Faculty of Forestry, Geography and Geomatics, Laval University, Quebec City, QC, G1V 0A6 Canada
- Faculty of Forestry, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
48
|
Natural Fungicolous Regulators of Biscogniauxia destructiva sp. nov. That Causes Beech Bark Tarcrust in Southern European ( Fagus sylvatica) Forests. Microorganisms 2020; 8:microorganisms8121999. [PMID: 33333832 PMCID: PMC7765258 DOI: 10.3390/microorganisms8121999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Mycoparasites are a collection of fungicolous eukaryotic organisms that occur on and are antagonistic to a wide range of plant pathogenic fungi. To date, this fungal group has largely been neglected by biodiversity studies. However, this fungal group is of interest, as it may contain potential biocontrol agents of pathogenic fungi that cause beech Tarcrust disease (BTC), which has contributed to the devastation of European beech (Fagus sylvatica) forests. Biscogniauxia nummularia has been demonstrated to cause BTC. However, a trophic association between mycoparasites and pathogenic Biscogniauxia spp., has not been established. This study aimed to taxonomically identify and characterize Biscogniauxia, a fungus causing destructive BTC disease in European beech at Lovćen national park, Montenegro and to uncover the diversity of mycopathogens that are natural regulators of xylariaceous Biscogniauxia stroma formation, associated with beech decline. This finding is supported by distinctive phylogenetic and evolutionary characteristics, as well as unique morphological-microscopic fungal features indicating that Biscogniauxia from Montenegro, which is a major cause of BTC occurring in ancient beech forests at the edge of southern Fagus sylvatica distribution, may be described as a novel fungus specific to Fagus. Its evolutionary nuSSU–complete ITS–partial nuLSU rDNA phylogeny indicates its likely emergence by asexual fusion or introgressive hybridization between diverged B. nummularia and B. anceps species. The name Biscogniauxia destructiva is proposed for the novel fungus, as it is aggressive and highly destructive BTC disease.
Collapse
|
49
|
Mizeriene G, Cerny K, Zyka V, Bakonyi J, Nagy ZÁ, Oliva J, Redondo MA, Corcobado T, Martín-García J, Prospero S. Patterns of Genetic Diversification in the Invasive Hybrid Plant Pathogen Phytophthora × alni and Its Parental Species P. uniformis. PHYTOPATHOLOGY 2020; 110:1959-1969. [PMID: 32633698 DOI: 10.1094/phyto-12-19-0475-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In pathogenic fungi and oomycetes, interspecific hybridization may lead to the formation of new species having a greater impact on natural ecosystems than the parental species. From the early 1990s, a severe alder (Alnus spp.) decline due to an unknown Phytophthora species was observed in several European countries. Genetic analyses revealed that the disease was caused by the triploid hybrid P. × alni, which originated in Europe from the hybridization of P. uniformis and P. × multiformis. Here, we investigated the population structure of P. × alni (158 isolates) and P. uniformis (85 isolates) in several European countries using microsatellite markers. Our analyses confirmed the genetic structure previously observed in other European populations, with P. uniformis populations consisting of at most two multilocus genotypes (MLGs) and P. × alni populations dominated by MLG Pxa-1. The genetic structure of P. × alni populations in the Czech Republic, Hungary and Sweden seemed to reflect the physical isolation of river systems. Most rare P. × alni MLGs showed a loss of heterozygosity (LOH) at one or a few microsatellite loci compared with other MLGs. This LOH may allow a stabilization within the P. × alni genome or a rapid adaptation to stress situations. Alternatively, alleles may be lost because of random genetic drift in small, isolated populations, with no effect on fitness of P. × alni. Additional studies would be necessary to confirm these patterns of population diversification and to better understand the factors driving it.
Collapse
Affiliation(s)
- Goda Mizeriene
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
- Institute of Botany at The Lithuanian State Research Institute Nature Research Centre, Žaliųjų Ežerų Str. 49, LT-08406 Vilnius, Lithuania
| | - Karel Cerny
- The Silva Tarouca Research Institute for Landscape and Ornamental Gardening (RILOG), Květnové náměstí 391, Průhonice 252 43, The Czech Republic
| | - Vladimir Zyka
- The Silva Tarouca Research Institute for Landscape and Ornamental Gardening (RILOG), Květnové náměstí 391, Průhonice 252 43, The Czech Republic
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó Str. 15, H-1022 Budapest, Hungary
| | - Zoltán Árpád Nagy
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Jonas Oliva
- Department Crop and Forest Sciences, University of Lleida, Alcalde Rovira Roure 191, 25198, Lleida, Spain
- Joint Research Unit CTFC-Agrotecnio, Alcalde Rovira Roure 191 Lleida, 25198, Spain
| | - Miguel Angel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Tamara Corcobado
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Jorge Martín-García
- Department of Biology, CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
- Department of Plant Production and Forest Resources, University of Valladolid, Avenida de Madrid 44, 34071 Palencia, Spain
| | - Simone Prospero
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
50
|
Panstruga R, Moscou MJ. What is the Molecular Basis of Nonhost Resistance? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1253-1264. [PMID: 32808862 DOI: 10.1094/mpmi-06-20-0161-cr] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that "nonhost resistance" is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term "nonhost genes" is misleading and should be avoided. Depending on the plant-pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term "nonhost resistance" should be used more cautiously in the light of a holistic view of plant immunity.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, 52056 Aachen, Germany
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom
| |
Collapse
|