1
|
Aime MC, Nzuzi AM, Lautenschläger T. Moniliophthora perniciosa in Angola, Africa-the First Record in the Eastern Hemisphere. PLANT DISEASE 2024; 108:1152-1156. [PMID: 38372722 DOI: 10.1094/pdis-07-23-1396-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Moniliophthora perniciosa causes a destructive disease known as witches' broom disease of cacao (WBDC). WBDC has been responsible for major reductions in production or even total abandonment of cacao plantations in most countries that it has invaded. To date, however, the disease is known only from the cacao-producing regions of South America and a few Central American and Caribbean countries. It is not known from the Eastern Hemisphere and remains a major threat should it invade West Africa or Southeast Asia, where the majority of the world's chocolate production now occurs. In 2019, a pink pigmented mushroom was found fruiting from unidentified twigs in the Serra Vamba of Angola. The specimen was identified as M. perniciosa based on morphological and molecular analyses. Although Angola is not a major cacao-producing country, the presence of the fungus in the Eastern Hemisphere could be of global concern and may indicate the need for quarantine in Angola and vigilance in neighboring countries.
Collapse
Affiliation(s)
- Mary Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | | | - Thea Lautenschläger
- Institute of Botany, TUD Dresden University of Technology, D-01217 Dresden, Germany
- Botanical Garden, Universität Hamburg, D-22609 Hamburg, Germany
| |
Collapse
|
2
|
Winters NP, Wafula EK, Knollenberg BJ, Hämälä T, Timilsena PR, Perryman M, Zhang D, Sheaffer LL, Praul CA, Ralph PE, Prewitt S, Leandro-Muñoz ME, Delgadillo-Duran DA, Altman NS, Tiffin P, Maximova SN, dePamphilis CW, Marden JH, Guiltinan MJ. A combination of conserved and diverged responses underlies Theobroma cacao's defense response to Phytophthora palmivora. BMC Biol 2024; 22:38. [PMID: 38360697 PMCID: PMC10870529 DOI: 10.1186/s12915-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
Collapse
Affiliation(s)
- Noah P Winters
- IGDP Ecology, The Pennsylvania State University, 422 Huck Life Sciences Building, University Park, PA, 16803, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Melanie Perryman
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
| | - Lena L Sheaffer
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sarah Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Siela N Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark J Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
de Novais DPS, Batista TM, Costa EA, Pirovani CP. Genomic and Pathogenicity Mechanisms of the Main Theobroma cacao L. Eukaryotic Pathogens: A Systematic Review. Microorganisms 2023; 11:1567. [PMID: 37375069 DOI: 10.3390/microorganisms11061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A set of diseases caused by fungi and oomycetes are responsible for large losses in annual world cocoa production. Managing the impact caused by these diseases is very complex because a common solution has yet to be found for different pathogens. In this context, the systematic knowledge of Theobroma cacao L. pathogens' molecular characteristics may help researchers understand the possibilities and limitations of cocoa disease management strategies. This work systematically organized and summarized the main findings of omics studies of T. cacao eukaryotic pathogens, focusing on the plant-pathogen interaction and production dynamics. Using the PRISMA protocol and a semiautomated process, we selected papers from the Scopus and Web of Science databases and collected data from the selected papers. From the initial 3169 studies, 149 were selected. The first author's affiliations were mostly from two countries, Brazil (55%) and the USA (22%). The most frequent genera were Moniliophthora (105 studies), Phytophthora (59 studies) and Ceratocystis (13 studies). The systematic review database includes papers reporting the whole-genome sequence from six cocoa pathogens and evidence of some necrosis-inducing-like proteins, which are common in T. cacao pathogen genomes. This review contributes to the knowledge about T. cacao diseases, providing an integrated discussion of T. cacao pathogens' molecular characteristics, common mechanisms of pathogenicity and how this knowledge is produced worldwide.
Collapse
Affiliation(s)
- Diogo Pereira Silva de Novais
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
- Bahia Federal Institute of Education, Science and Technology (IFBA), Porto Seguro 45810-000, BA, Brazil
| | - Thiago Mafra Batista
- Environmental Science Training Center, Federal University of Southern Bahia (UFSB), Porto Seguro 45810-000, BA, Brazil
| | - Eduardo Almeida Costa
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
4
|
Jaimes Y, Gonzalez C, Rojas J, Rivera JJ, Cilas C, Argout X. Population Structure of Moniliophthora perniciosa in the Main Cacao Producing Departments of Colombia. PLANT DISEASE 2022; 106:1492-1501. [PMID: 34879729 DOI: 10.1094/pdis-12-20-2679-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The witches' broom (Moniliophthora perniciosa) is considered as one of the main threats for cacao production and, consequently, for chocolate production worldwide. In this work, the genetic diversity and population structure of M. perniciosa were analyzed for 59 isolates collected in five departments of Colombia and using 10 microsatellite markers. Analyses revealed 35 multilocus genotypes and clonal populations structure according to linkage disequilibrium analysis. One of the objectives of this study was to determine whether populations were differentiated by geographic origin or Theobroma cacao host genotype. Analysis of molecular variance, discriminant analysis of principal components, and Bruvo genetic distance suggested that the genetic structure was driven by geographic origin and not by T. cacao genotype. The results of this study were consistent with previous findings obtained in other cocoa-producing countries. Important insights were discussed regarding the dispersal patterns of the pathogen in Colombia and the genetic change of its populations because of different environmental conditions.
Collapse
Affiliation(s)
- Yeirme Jaimes
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación La Suiza, Rionegro, Santander 687511, Colombia
| | - Carolina Gonzalez
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Bogotá, Cundinamarca 0130, Colombia
| | - Jairo Rojas
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación La Suiza, Rionegro, Santander 687511, Colombia
| | - Jessica Johana Rivera
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación La Suiza, Rionegro, Santander 687511, Colombia
| | - Christian Cilas
- French Agricultural Research Centre for International Development (CIRAD), Deputy Director General for Research and Strategy, Université Félix Houphouët-Boigny, Cocody, 01 BP 6483 Abidjan, Côte d'Ivoire
| | - Xavier Argout
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Palmira, Palmira, Valle del Cauca 763531, Colombia
- French Agricultural Research Centre for International Development (CIRAD), UMR AGAP, Palmira 763532, Colombia
- AGAP, French Agricultural Research Centre for International Development (CIRAD), the French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Montpellier, 34398 Montpellier, France
| |
Collapse
|
5
|
Neves Dos Santos F, Magalhães DMA, Luz EDMN, Eberlin MN, Simionato AVC. Metabolite mass spectrometry profiling of cacao genotypes reveals contrasting resistances to Ceratocystis cacaofunesta phytopathogen. Electrophoresis 2021; 42:2519-2527. [PMID: 34498763 DOI: 10.1002/elps.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Ceratocystis wilt is a lethal disease of cacao, and the search for resistant genotypes may provide the best way to deal with the disease. Resistance or susceptibility behavior of some cacao genotypes when infected by Ceratocystis cacaofunesta is not yet understood. Herein, we report an LC-MS metabolomic screening analysis based on high-resolution MS to obtain comprehensive metabolic profile associated with multivariate data analysis of PLS-DA, which was effective to classify CCN-51 and TSH-1188 as resistant genotypes to C. cacaofunesta fungus, while CEPEC2002 was classified as a susceptible one. Using reversed-phase LC method, electrospray interface, and high-resolution tandem MS by the quadrupole-TOF analyzer, the typical profiles of metabolites, such as phenylpropanoids, flavonoids, lipids, alkaloids, and amino acids, were obtained. Untargeted metabolite profiles were used to construct discriminant analysis by partial least squares (PLS-DA)-derived loading plots, which placed the cacao genotypes into two major clusters related to susceptible or resistant groups. Linolenic, linoleic, oleic, stearic, arachidonic, and asiatic acids were annotated metabolites of infected, susceptible, and resistant genotypes, while methyl jasmonate, jasmonic acid, hydroxylated jasmonic acid, caffeine, and theobromine were annotated as constituents of the resistant genotypes. Trends of these typical metabolites levels revealed that CCN51 is susceptible, CEPEC2002 is moderately susceptible, and TSH1188 is resistant to C. cacaofunesta. Therefore, profiles of major metabolites as screened by LC-MS offer an efficient tool to reveal the level of resistance of cacao genotypes to C. cacaofunesta present in any farm around the world.
Collapse
Affiliation(s)
- Fábio Neves Dos Santos
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,Laboratory of Biomolecule Analysis Tiselius-LABi Tiselius, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,MackMass Laboratory for Mass Spectrometry, School of Engineering-PPGEMN, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Biomolecule Analysis Tiselius-LABi Tiselius, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil.,National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Structural and Functional Genomics of the Resistance of Cacao to Phytophthora palmivora. Pathogens 2021; 10:pathogens10080961. [PMID: 34451425 PMCID: PMC8398157 DOI: 10.3390/pathogens10080961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
Black pod disease, caused by Phytophthora spp., is one of the main diseases that attack cocoa plantations. This study validated, by association mapping, 29 SSR molecular markers flanking to QTL (Quantitative Trait Loci) associated with Phytophthora palmivora Butler (Butler) (PP) resistance, in three local ancient varieties of the Bahia (Comum, Pará, and Maranhão), varieties that have a high potential in the production of gourmet chocolate. Four SSR loci associated with resistance to PP were detected, two on chromosome 8, explaining 7.43% and 3.72% of the Phenotypic Variation (%PV), one on chromosome 2 explaining 2.71%PV and one on chromosome 3 explaining 1.93%PV. A functional domains-based annotation was carried out, in two Theobroma cacao (CRIOLLO and MATINA) reference genomes, of 20 QTL regions associated with cocoa resistance to the pathogen. It was identified 164 (genome CRIOLLO) and 160 (genome MATINA) candidate genes, hypothetically involved in the recognition and activation of responses in the interaction with the pathogen. Genomic regions rich in genes with Coiled-coils (CC), nucleotide binding sites (NBS) and Leucine-rich repeat (LRR) domains were identified on chromosomes 1, 3, 6, 8, and 10, likewise, regions rich in Receptor-like Kinase domain (RLK) and Ginkbilobin2 (GNK2) domains were identified in chromosomes 4 and 6.
Collapse
|
7
|
The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change. J Fungi (Basel) 2021; 7:jof7030202. [PMID: 33802148 PMCID: PMC7999002 DOI: 10.3390/jof7030202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The role of fungi in cocoa crops is mainly associated with plant diseases and contamination of harvest with unwanted metabolites such as mycotoxins that can reach the final consumer. However, in recent years there has been interest in discovering other existing interactions in the environment that may be beneficial, such as antagonism, commensalism, and the production of specific enzymes, among others. Scope and approach: This review summarizes the different fungi species involved in cocoa production and the cocoa supply chain. In particular, it examines the presence of fungal species during cultivation, harvest, fermentation, drying, and storage, emphasizing the factors that possibly influence their prevalence in the different stages of production and the health risks associated with the production of mycotoxins in the light of recent literature. Key findings and conclusion: Fungi associated with the cocoa production chain have many different roles. They have evolved in a varied range of ecosystems in close association with plants and various habitats, affecting nearly all the cocoa chain steps. Reports of the isolation of 60 genera of fungi were found, of which only 19 were involved in several stages. Although endophytic fungi can help control some diseases caused by pathogenic fungi, climate change, with increased rain and temperatures, together with intensified exchanges, can favour most of these fungal infections, and the presence of highly aggressive new fungal genotypes increasing the concern of mycotoxin production. For this reason, mitigation strategies need to be determined to prevent the spread of disease-causing fungi and preserve beneficial ones.
Collapse
|
8
|
Díaz-Valderrama JR, Leiva-Espinoza ST, Aime MC. The History of Cacao and Its Diseases in the Americas. PHYTOPATHOLOGY 2020; 110:1604-1619. [PMID: 32820671 DOI: 10.1094/phyto-05-20-0178-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cacao is a commodity crop from the tropics cultivated by about 6 million smallholder farmers. The tree, Theobroma cacao, originated in the Upper Amazon where it was domesticated ca. 5450 to 5300 B.P. From this center of origin, cacao was dispersed and cultivated in Mesoamerica as early as 3800 to 3000 B.P. After the European conquest of the Americas (the 1500s), cacao cultivation intensified in several loci, primarily Mesoamerica, Trinidad, Venezuela, and Ecuador. It was during the colonial period that cacao diseases began emerging as threats to production. One early example is the collapse of the cacao industry in Trinidad in the 1720s, attributed to an unknown disease referred to as the "blast". Trinidad would resurface as a production center due to the discovery of the Trinitario genetic group, which is still widely used in breeding programs around the world. However, a resurgence of diseases like frosty pod rot during the republican period (the late 1800s and early 1900s) had profound impacts on other centers of Latin American production, especially in Venezuela and Ecuador, shifting the focus of cacao production southward, to Bahia, Brazil. Production in Bahia was, in turn, dramatically curtailed by the introduction of witches' broom disease in the late 1980s. Today, most of the world's cacao production occurs in West Africa and parts of Asia, where the primary Latin American diseases have not yet spread. In this review, we discuss the history of cacao cultivation in the Americas and how that history has been shaped by the emergence of diseases.
Collapse
Affiliation(s)
- Jorge R Díaz-Valderrama
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Santos T Leiva-Espinoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas, Perú
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
9
|
Knollenberg BJ, Li GX, Lambert JD, Maximova SN, Guiltinan MJ. Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2020; 11:617520. [PMID: 33424909 PMCID: PMC7786005 DOI: 10.3389/fpls.2020.617520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized phenylpropanoid metabolites distributed widely in the plant kingdom and are known to be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a small number of distantly related species. To explore the contribution of specialized metabolites to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed untargeted metabolomics using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 'Scavina 6' ('Sca6') were found to accumulate dramatically higher levels of clovamide and several other HCAAs compared to the susceptible 'Imperial College Selection 1' ('ICS1'). Clovamide was the most abundant metabolite in 'Sca6' leaf extracts based on MS signal, and was up to 58-fold higher in 'Sca6' than in 'ICS1'. In vitro assays demonstrated that clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance exclusively in 'Sca6' suggesting a potential functional role of these compounds. The potential to breed cacao with increased HCAAs for improved agricultural performance is discussed.
Collapse
Affiliation(s)
- Benjamin J. Knollenberg
- Plant Biology PhD Program ‐ Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guo-Xing Li
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Joshua D. Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan,
| |
Collapse
|
10
|
Rodríguez Valencia M, Davidson-Hunt I, Berkes F. Social-ecological memory and responses to biodiversity change in a Bribri Community of Costa Rica. AMBIO 2019; 48:1470-1481. [PMID: 30963464 PMCID: PMC6882959 DOI: 10.1007/s13280-019-01176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/25/2018] [Accepted: 03/14/2019] [Indexed: 05/05/2023]
Abstract
Social-ecological memory (SEM) is an analytical construct used to consider the ways by which people can draw upon biological materials and social memory to reorganize following a disturbance. Since its introduction into the literature, there have been few cases that have considered its use. We use ethnographic methods to study Bribri people's commercial crops that have been invaded by different fungal pathogens and have undergone several disturbance recovery cycles. We show how the Bribri have used social memory and ecological memory together, dynamic interactions of legacies and reservoirs, and the role of mobile links for reorganization following the impact of fungal diseases. Insights from the Bribri indicate that protection of biodiversity, management practices, and adoption of new species and varieties are all crucial. The SEM concept extends the understanding of Indigenous knowledge, to include linkages to other peoples' memory and to landscapes as reservoirs of SEM. An understanding of how people use SEM to respond to disturbances is necessary as biodiversity changes are expected to become more pronounced in the future.
Collapse
Affiliation(s)
| | - Iain Davidson-Hunt
- Natural Resources Institute, University of Manitoba, 303-70 Dysart Road, Winnipeg, MB R3T 2M6 Canada
| | - Fikret Berkes
- Natural Resources Institute, University of Manitoba, 303-70 Dysart Road, Winnipeg, MB R3T 2M6 Canada
| |
Collapse
|
11
|
Rodriguez-Medina C, Arana AC, Sounigo O, Argout X, Alvarado GA, Yockteng R. Cacao breeding in Colombia, past, present and future. BREEDING SCIENCE 2019; 69:373-382. [PMID: 31598069 PMCID: PMC6776146 DOI: 10.1270/jsbbs.19011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/24/2019] [Indexed: 06/02/2023]
Abstract
Cacao (Theobroma cacao L.) is considered a key crop in Colombian social programs aiming at alleviating rural poverty, promoting peace in post-conflict regions and, replacing crops used for illicit purposes. Colombia is thought to be part of the center of origin of cacao; several germplasm collecting expeditions have been implemented, dating back to the 1940s. Despite that history, the first breeding program based on creating, selecting, and releasing full-sib progenies made extensive use of accessions introduced from other countries as parents. A new breeding strategy was adopted in the 1990s, based on mass selection of promising trees (high-yield and disease-resistant) in farmers' fields, resulting in the selection of clones released to farmers as planting material. In 2012, a new strategy, Recurrent Selection, was adopted by the Colombian Corporation for Agricultural Research, Agrosavia, based on the development of improved populations and allowing the selection of clones at the end of each cycle of recombination. The use of molecular markers is being integrated into this program in order to assist breeders in selecting material. This review provides details about the history and perspectives of the cacao breeding program in Colombia.
Collapse
Affiliation(s)
- Caren Rodriguez-Medina
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
| | - Alvaro Caicedo Arana
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
| | - Olivier Sounigo
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
- CIRAD, UPR Bioagresseurs;
Palmira, Valle del Cauca,
Colombia
| | - Xavier Argout
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Palmira;
Diagonal a la intersección de la carrera 36 con calle 23; Palmira, Valle del Cauca,
Colombia
- CIRAD, UMR AGAP;
Palmira, Valle del Cauca,
Colombia
- Univ. Montpellier, CIRAD, INRA;
Montpellier SupAgro; Montpellier,
France
| | - Gabriel Alvarado Alvarado
- Corporación Universitaria Santa Rosa de Cabal (UNISARC);
Km 4 vía Santa Rosa de Cabal; Risaralda,
Colombia
| | - Roxana Yockteng
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia; Centro de Investigación Tibaitatá;
Km 14 vía a Mosquera; Cundinamarca,
Colombia
- Biodiversité-UMR-CNRS 7205; National Museum of Natural History;
Paris,
France
| |
Collapse
|
12
|
Chingandu N, Dongo L, Gutierrez OA, Brown JK. The Previously Unidentified, Divergent Badnavirus Species Cacao red vein-banding virus is Associated with Cacao Swollen Shoot Disease in Nigeria. PLANT DISEASE 2019; 103:1302-1308. [PMID: 30973298 DOI: 10.1094/pdis-09-18-1561-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cacao swollen shoot disease (CSSD) of Theobroma cacao was reported in Nigeria in 1944; however, no badnaviral genome sequences have been found associated with the symptomatic trees. In 2017, leaf samples (n = 18) were collected from cacao trees from Osun and Oyo, Nigeria showing foliar symptoms that included red vein-banding and shoot swelling, and variable secondary mosaic, mottling, and fern-like pattern symptoms. Abutting primers designed around previously determined 500-bp intergenic region sequences were used for polymerase chain reaction (PCR) amplification. Of the 18 samples, 9 yielded an approximately 7,000-bp, apparently genome-size product. The nine genomes were sequenced and found to encode four open reading frames, and to share 86 to 99% nucleotide identity. Pairwise analysis of the Nigerian genomes with 21 previously reported CSSD badnaviruses, at the complete genome and reverse-transcription ribonuclease H (1,230 bp) sequence levels, indicated 71 to 75 and 72 to 76% nucleotide identity, respectively. Phylogenetic analysis of the nine complete genomes indicated that the closest relatives of the divergent Nigerian isolates were previously described West African CSSD badnaviruses. Based on pairwise comparisons and phylogenetic analyses, the Nigerian CSSD isolates constitute a previously unrecognized Badnavirus sp., herein named Cacao red vein-banding virus (CRVBV). Primers designed based on the CRVBV genome sequences amplified a 1,068-bp fragment from 16 of 18 field samples tested by PCR, suggesting the possible existence of additional CRVBV variants.
Collapse
Affiliation(s)
- Nomatter Chingandu
- 1 School of Plant Sciences, The University of Arizona, Tucson 85721 U.S.A
| | - Lelia Dongo
- 2 Cocoa Research Institute of Nigeria, Ibadan, Nigeria; and
| | - Osman A Gutierrez
- 3 United States Department of Agriculture-Agricultural Research Service Subtropical Horticultural Research Station, Miami, FL 33158 U.S.A
| | - Judith K Brown
- 1 School of Plant Sciences, The University of Arizona, Tucson 85721 U.S.A
| |
Collapse
|
13
|
Santillán-Mendoza R, Fernández-Pavía SP, O'Donnell K, Ploetz RC, Ortega-Arreola R, Vázquez-Marrufo G, Benítez-Malvido J, Montero-Castro JC, Soto-Plancarte A, Rodríguez-Alvarado G. A Novel Disease of Big-Leaf Mahogany Caused by Two Fusarium Species in Mexico. PLANT DISEASE 2018; 102:1965-1972. [PMID: 30265221 DOI: 10.1094/pdis-01-18-0060-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Big-leaf mahogany (Swietenia macrophylla) is valued for its high-quality wood and use in urban landscapes in Mexico. During surveys of mango-producing areas in the central western region of Mexico, symptoms of malformation, the most important disease of mango in the area, were observed on big-leaf mahogany trees. The objectives of this research were to describe this new disease and determine its cause. Symptoms on big-leaf mahogany at four sites in Michoacán, Mexico resembled those of the vegetative phase of mango malformation, including compact, bunched growth of apical and lateral buds, with greatly shortened internodes and small leaves that curved back toward the supporting stem. Of 163 isolates that were recovered from symptomatic tissues, most were identified as Fusarium pseudocircinatum (n = 121) and F. mexicanum (n = 39) using molecular systematic data; two isolates represented unnamed phylospecies within the F. incarnatum-equiseti species complex (FIESC 20-d and FIESC 37-a) and another was in the F. solani species complex (FSSC 25-m). However, only F. mexicanum and F. pseudocircinatum induced malformation symptoms on 14-day-old seedlings of big-leaf mahogany. The results indicate that F. mexicanum and F. pseudocircinatum, previously reported in Mexico as causal agents of mango malformation disease, also affect big-leaf mahogany. This is the first report of this new disease and the first time that F. mexicanum was shown to affect a host other than mango.
Collapse
Affiliation(s)
- R Santillán-Mendoza
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Km. 9.5 Carr. Morelia-Zinapécuaro, Michoacán 58880, México
| | - S P Fernández-Pavía
- Laboratorio de Patología Vegetal, IIAF, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Km. 9.5 Carr. Morelia-Zinapécuaro, Michoacán 58880, México
| | - K O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture-Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604
| | - R C Ploetz
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, Homestead 33031-3314
| | - R Ortega-Arreola
- Campo Experimental Tecomán, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tecomán, Colima 28100, México
| | | | - J Benítez-Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Ex Hacienda de San José de la Huerta, Morelia, Michoacán 58190, Mexico
| | - J C Montero-Castro
- Facultad de Biología, UMSNH, Cd. Universitaria, Morelia, Michoacán 58060, México
| | | | | |
Collapse
|
14
|
Vanacker V, Molina A, Torres R, Calderon E, Cadilhac L. Challenges for research on global change in mainland Ecuador. NEOTROPICAL BIODIVERSITY 2018. [DOI: 10.1080/23766808.2018.1491706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Veerle Vanacker
- Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Armando Molina
- Programa para el Manejo de Agua y Suelo (PROMAS), Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador
| | - Rossana Torres
- Unidad de Investigación Ambiental, Ministerio del Ambiente de Ecuador, Quito, Ecuador
| | - Edison Calderon
- Proyecto Fortalecimiento de la Resiliencia de las Comunidades a los efectos adversos del Cambio Climático, con énfasis en Seguridad Alimentaria y Género (FORECCSA), Ministerio del Ambiente, Ministerio de Agricultura y Programa Mundial de Alimentos, Quito, Ecuador
| | - Laura Cadilhac
- Proyecto MAE/GEF/PNUD Tercera Comunicación Nacional y Primer Informe Bienal de Actualización, Ministerio del Ambiente de Ecuador, Quito, Ecuador
| |
Collapse
|
15
|
Molano EPL, Cabrera OG, Jose J, do Nascimento LC, Carazzolle MF, Teixeira PJPL, Alvarez JC, Tiburcio RA, Tokimatu Filho PM, de Lima GMA, Guido RVC, Corrêa TLR, Leme AFP, Mieczkowski P, Pereira GAG. Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC). BMC Genomics 2018; 19:58. [PMID: 29343217 PMCID: PMC5773145 DOI: 10.1186/s12864-018-4440-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.
Collapse
Affiliation(s)
- Eddy Patricia Lopez Molano
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Odalys García Cabrera
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Juliana Jose
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Marcelo Falsarella Carazzolle
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.,Centro Nacional de Processamento de Alto Desempenho, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo José Pereira Lima Teixeira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.,Present Address: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Javier Correa Alvarez
- Departamento de Ciencias Biológicas, Escuela de Ciencias, Universidad EAFIT, Medellın, Colombia
| | - Ricardo Augusto Tiburcio
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Paulo Massanari Tokimatu Filho
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Gustavo Machado Alvares de Lima
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Victório Carvalho Guido
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Gonçalo Amarante Guimarães Pereira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
16
|
McElroy MS, Navarro AJR, Mustiga G, Stack C, Gezan S, Peña G, Sarabia W, Saquicela D, Sotomayor I, Douglas GM, Migicovsky Z, Amores F, Tarqui O, Myles S, Motamayor JC. Prediction of Cacao ( Theobroma cacao) Resistance to Moniliophthora spp. Diseases via Genome-Wide Association Analysis and Genomic Selection. FRONTIERS IN PLANT SCIENCE 2018; 9:343. [PMID: 29662497 PMCID: PMC5890178 DOI: 10.3389/fpls.2018.00343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/28/2018] [Indexed: 05/21/2023]
Abstract
Cacao (Theobroma cacao) is a globally important crop, and its yield is severely restricted by disease. Two of the most damaging diseases, witches' broom disease (WBD) and frosty pod rot disease (FPRD), are caused by a pair of related fungi: Moniliophthora perniciosa and Moniliophthora roreri, respectively. Resistant cultivars are the most effective long-term strategy to address Moniliophthora diseases, but efficiently generating resistant and productive new cultivars will require robust methods for screening germplasm before field testing. Marker-assisted selection (MAS) and genomic selection (GS) provide two potential avenues for predicting the performance of new genotypes, potentially increasing the selection gain per unit time. To test the effectiveness of these two approaches, we performed a genome-wide association study (GWAS) and GS on three related populations of cacao in Ecuador genotyped with a 15K single nucleotide polymorphism (SNP) microarray for three measures of WBD infection (vegetative broom, cushion broom, and chirimoya pod), one of FPRD (monilia pod) and two productivity traits (total fresh weight of pods and % healthy pods produced). GWAS yielded several SNPs associated with disease resistance in each population, but none were significantly correlated with the same trait in other populations. Genomic selection, using one population as a training set to estimate the phenotypes of the remaining two (composed of different families), varied among traits, from a mean prediction accuracy of 0.46 (vegetative broom) to 0.15 (monilia pod), and varied between training populations. Simulations demonstrated that selecting seedlings using GWAS markers alone generates no improvement over selecting at random, but that GS improves the selection process significantly. Our results suggest that the GWAS markers discovered here are not sufficiently predictive across diverse germplasm to be useful for MAS, but that using all markers in a GS framework holds substantial promise in accelerating disease-resistance in cacao.
Collapse
Affiliation(s)
- Michel S. McElroy
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Alberto J. R. Navarro
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
| | - Guiliana Mustiga
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
| | - Conrad Stack
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
| | - Salvador Gezan
- School of Forest Resources and Conservation, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL, United States
| | - Geover Peña
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Widem Sarabia
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Diego Saquicela
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | | | - Gavin M. Douglas
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Freddy Amores
- Facultad de Ciencias Agrarias, Universidad Técnica Estatal de Quevedo, Quevedo, Ecuador
| | - Omar Tarqui
- Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Juan C. Motamayor
- MARS, Incorporated c/o United States Department of Agriculture – Agricultural Research Service, Miami, FL, United States
- *Correspondence: Juan C. Motamayor,
| |
Collapse
|
17
|
Ngo Bieng MA, Alem L, Curtet C, Tixier P. Tree spacing impacts the individual incidence of Moniliophthora roreri disease in cacao agroforests. PEST MANAGEMENT SCIENCE 2017; 73:2386-2392. [PMID: 28581254 DOI: 10.1002/ps.4635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Using conventional pesticides in crop protection has raised serious environmental concerns and there is therefore a need for integrated pest management (IPM) methods. In this paper, we found that the spacing of trees can impact disease, which could result in a reduction in pesticide applications and may act as a potential IPM method. We studied Frosty Pod Rot (FPR) in 20 cacao agroforests in Costa Rica (Upala region). RESULTS Using a generalized linear mixed model, we analyzed the impact of the neighborhood composition and distance from a studied cacao individual on its individual FPR incidence. We found that the number of cacao tree neighbors in a radius of 3.7 m and the number of fruit trees in a radius of 4.3 m had a significant negative influence on the incidence of FPR on individual cacao trees. Moreover, cacao tree neighbors had the most significant local influence compared to the neighborhood of other taller categories such as fruit or forest trees. CONCLUSION The mechanisms involved are related to the barrier effect, due to the effectiveness of the cacao tree's architecture as an efficient barrier against FPR spore dispersal. This paper provides new insights into optimization of the spatial environment around each host as an original IPM method. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marie Ange Ngo Bieng
- CIRAD, UMR SYSTEM, 30501 Turrialba, Costa Rica
- CIRAD, UMR SYSTEM, F-34398 Montpellier, France
- CATIE, 30501 Turrialba, Costa Rica
| | - Laudine Alem
- CIRAD, UMR SYSTEM, 30501 Turrialba, Costa Rica
- CIRAD, UMR SYSTEM, F-34398 Montpellier, France
- CATIE, 30501 Turrialba, Costa Rica
| | - Chloé Curtet
- CIRAD, UMR SYSTEM, 30501 Turrialba, Costa Rica
- CIRAD, UMR SYSTEM, F-34398 Montpellier, France
- CATIE, 30501 Turrialba, Costa Rica
| | - Philippe Tixier
- CATIE, 30501 Turrialba, Costa Rica
- CIRAD, UPR GECO, F-34398 Montpellier, France
| |
Collapse
|
18
|
Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles. Anal Bioanal Chem 2016; 409:1765-1777. [PMID: 28028594 DOI: 10.1007/s00216-016-0133-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/30/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Phytopathogens are the main disease agents that promote attack of cocoa plantations in all tropical countries. The similarity of the symptoms caused by different phytopathogens makes the reliable identification of the diverse species a challenge. Correct identification is important in the monitoring and management of these pests. Here we show that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis is able to rapidly and reliably differentiate cocoa phytopathogens, namely Moniliophthora perniciosa, Phytophthora palmivora, P. capsici, P. citrophthora, P. heveae, Ceratocystis cacaofunesta, C. paradoxa, and C. fimbriata. MALDI-MS reveals unique peptide/protein and lipid profiles which differentiate these phytopathogens at the level of genus, species, and single strain coming from different hosts or cocoa tissues collected in several plantations/places. This fast methodology based on molecular biomarkers is also shown to be sufficiently reproducible and selective and therefore seems to offer a suitable tool to guide the correct application of sanitary defense approaches for infected cocoa plantations. International trading of cocoa plants and products could also be efficiently monitored by MALDI-MS. It could, for instance, prevent the entry of new phytopathogens into a country, e.g., as in the case of Moniliophthora roreri fungus that is present in all cocoa plantations of countries bordering Brazil, but that has not yet attacked Brazilian plantations. Graphical Abstract Secure identification of phytopathogens attacking cocoa plantations has been demonstrated via typical chemical profiles provided by mass spectrometric screening.
Collapse
|
19
|
Abstract
The tropics produce a range of fruit from tree crops that cannot be grown in colder climates. Bananas, mangos, several nuts, spices, coffee, and cacao are widely traded and much sought after around the world. However, the sustainable production of these tropical tree fruit crops faces significant challenges. Among these, losses due to pests and diseases play a large part in reducing yields, quality, and profitability. Using bananas and cacao as key examples, we outline some of the reasons fungal and oomycete diseases cause such significant losses to tropical tree crops. Cultivation of monocultures derived from limited genetic diversity, environmental conditions conducive for disease development, high levels of disease incidence and severity, a lack of disease resistance in planting materials, shortages of labor, and inadequate infrastructure and investment pose significant challenges, especially for smallholder producers. The expansion of travel and trade has given rise to emerging infectious plant diseases that add further insecurity and pressure. We conclude that holistic actions are needed on multiple fronts to address the growing problem of disease in tropical fruit tree crops.
Collapse
Affiliation(s)
- André Drenth
- Centre for Plant Science, University of Queensland, Brisbane, QLD 4072, Australia;
| | - David I Guest
- Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
20
|
Fister AS, Mejia LC, Zhang Y, Herre EA, Maximova SN, Guiltinan MJ. Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization. BMC Genomics 2016; 17:363. [PMID: 27189060 PMCID: PMC4869279 DOI: 10.1186/s12864-016-2693-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/05/2016] [Indexed: 01/14/2023] Open
Abstract
Background The pathogenesis-related (PR) group of proteins are operationally defined as polypeptides that increase in concentration in plant tissues upon contact with a pathogen. To date, 17 classes of highly divergent proteins have been described that act through multiple mechanisms of pathogen resistance. Characterizing these families in cacao, an economically important tree crop, and comparing the families to those in other species, is an important step in understanding cacao’s immune response. Results Using publically available resources, all members of the 17 recognized pathogenesis-related gene families in the genome of Theobroma cacao were identified and annotated resulting in a set of ~350 members in both published cacao genomes. Approximately 50 % of these genes are organized in tandem arrays scattered throughout the genome. This feature was observed in five additional plant taxa (three dicots and two monocots), suggesting that tandem duplication has played an important role in the evolution of the PR genes in higher plants. Expression profiling captured the dynamics and complexity of PR genes expression at basal levels and after induction by two cacao pathogens (the oomycete, Phytophthora palmivora, and the fungus, Colletotrichum theobromicola), identifying specific genes within families that are more responsive to pathogen challenge. Subsequent qRT-PCR validated the induction of several PR-1, PR-3, PR-4, and PR-10 family members, with greater than 1000 fold induction detected for specific genes. Conclusions We describe candidate genes that are likely to be involved in cacao’s defense against Phytophthora and Colletotrichum infection and could be potentially useful for marker-assisted selection for breeding of disease resistant cacao varieties. The data presented here, along with existing cacao—omics resources, will enable targeted functional genetic screening of defense genes likely to play critical functions in cacao’s defense against its pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2693-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew S Fister
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA
| | - Luis C Mejia
- Institute for Scientific Research and High Technology Services (INDICASAT-AIP), Panama City, Panama.,Smithsonian Tropical Research Institute (STRI), Unit 9100, Box 0948, Balboa, Ancon, DPO AA 34002-9998, Panama
| | - Yufan Zhang
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute (STRI), Unit 9100, Box 0948, Balboa, Ancon, DPO AA 34002-9998, Panama
| | - Siela N Maximova
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA.,The Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA
| | - Mark J Guiltinan
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA. .,The Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA.
| |
Collapse
|
21
|
Badrie N, Bekele F, Sikora E, Sikora M. Cocoa agronomy, quality, nutritional, and health aspects. Crit Rev Food Sci Nutr 2016; 55:620-59. [PMID: 24915358 DOI: 10.1080/10408398.2012.669428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The history of cocoa and chocolate including the birth and the expansion of the chocolate industry was described. Recent developments in the industry and cocoa economy were briefly depicted. An overview of the classification of cacao as well as studies on phenotypic and genetic diversity was presented. Cocoa agronomic practices including traditional and modern propagation techniques were reviewed. Nutrition-related health benefits derived from cocoa consumption were listed and widely reviewed. The specific action of cocoa antioxidants was compared to those of teas and wines. Effects of adding milk to chocolate and chocolate drinks versus bioavailability of cocoa polyphenols were discussed. Finally, flavor, sensory, microbiological, and toxicological aspects of cocoa consumption were presented.
Collapse
Affiliation(s)
- Neela Badrie
- a Faculty of Food and Agriculture, Department of Food Production , The University of the West Indies , St. Augustine , Republic of Trinidad and Tobago
| | | | | | | |
Collapse
|
22
|
Andres C, Comoé H, Beerli A, Schneider M, Rist S, Jacobi J. Cocoa in Monoculture and Dynamic Agroforestry. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-26777-7_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
|
24
|
Expression of Designed Antimicrobial Peptides in Theobroma cacao L. Trees Reduces Leaf Necrosis Caused by Phytophthora spp. ACTA ACUST UNITED AC 2012. [DOI: 10.1021/bk-2012-1095.ch018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
25
|
Wielgoss A, Clough Y, Fiala B, Rumede A, Tscharntke T. A minor pest reduces yield losses by a major pest: plant-mediated herbivore interactions in Indonesian cacao. J Appl Ecol 2012. [DOI: 10.1111/j.1365-2664.2012.02122.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Shi Z, Maximova SN, Liu Y, Verica J, Guiltinan MJ. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:248. [PMID: 21078185 PMCID: PMC3095330 DOI: 10.1186/1471-2229-10-248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/15/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND The Arabidopsis thaliana NPR1 gene encodes a transcription coactivator (NPR1) that plays a major role in the mechanisms regulating plant defense response. After pathogen infection and in response to salicylic acid (SA) accumulation, NPR1 translocates from the cytoplasm into the nucleus where it interacts with other transcription factors resulting in increased expression of over 2000 plant defense genes contributing to a pathogen resistance response. RESULTS A putative Theobroma cacao NPR1 cDNA was isolated by RT-PCR using degenerate primers based on homologous sequences from Brassica, Arabidopsis and Carica papaya. The cDNA was used to isolate a genomic clone from Theobroma cacao containing a putative TcNPR1 gene. DNA sequencing revealed the presence of a 4.5 kb coding region containing three introns and encoding a polypeptide of 591 amino acids. The predicted TcNPR1 protein shares 55% identity and 78% similarity to Arabidopsis NPR1, and contains each of the highly conserved functional domains indicative of this class of transcription factors (BTB/POZ and ankyrin repeat protein-protein interaction domains and a nuclear localization sequence (NLS)). To functionally define the TcNPR1 gene, we transferred TcNPR1 into an Arabidopsis npr1 mutant that is highly susceptible to infection by the plant pathogen Pseudomonas syringae pv. tomato DC3000. Driven by the constitutive CaMV35S promoter, the cacao TcNPR1 gene partially complemented the npr1 mutation in transgenic Arabidopsis plants, resulting in 100 fold less bacterial growth in a leaf infection assay. Upon induction with SA, TcNPR1 was shown to translocate into the nucleus of leaf and root cells in a manner identical to Arabidopsis NPR1. Cacao NPR1 was also capable of participating in SA-JA signaling crosstalk, as evidenced by the suppression of JA responsive gene expression in TcNPR1 overexpressing transgenic plants. CONCLUSION Our data indicate that the TcNPR1 is a functional ortholog of Arabidopsis NPR1, and is likely to play a major role in defense response in cacao. This fundamental knowledge can contribute to breeding of disease resistant cacao varieties through the application of molecular markers or the use of transgenic strategies.
Collapse
Affiliation(s)
- Zi Shi
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Liu
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph Verica
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|