1
|
Garcia JF, Morales-Cruz A, Cochetel N, Minio A, Figueroa-Balderas R, Rolshausen PE, Baumgartner K, Cantu D. Comparative Pangenomic Insights into the Distinct Evolution of Virulence Factors Among Grapevine Trunk Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:127-142. [PMID: 37934016 DOI: 10.1094/mpmi-09-23-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The permanent organs of grapevines (Vitis vinifera L.), like those of other woody perennials, are colonized by various unrelated pathogenic ascomycete fungi secreting cell wall-degrading enzymes and phytotoxic secondary metabolites that contribute to host damage and disease symptoms. Trunk pathogens differ in the symptoms they induce and the extent and speed of damage. Isolates of the same species often display a wide virulence range, even within the same vineyard. This study focuses on Eutypa lata, Neofusicoccum parvum, and Phaeoacremonium minimum, causal agents of Eutypa dieback, Botryosphaeria dieback, and Esca, respectively. We sequenced 50 isolates from viticulture regions worldwide and built nucleotide-level, reference-free pangenomes for each species. Through examination of genomic diversity and pangenome structure, we analyzed intraspecific conservation and variability of putative virulence factors, focusing on functions under positive selection and recent gene family dynamics of contraction and expansion. Our findings reveal contrasting distributions of putative virulence factors in the core, dispensable, and private genomes of each pangenome. For example, carbohydrate active enzymes (CAZymes) were prevalent in the core genomes of each pangenome, whereas biosynthetic gene clusters were prevalent in the dispensable genomes of E. lata and P. minimum. The dispensable fractions were also enriched in Gypsy transposable elements and virulence factors under positive selection (polyketide synthase genes in E. lata and P. minimum, glycosyltransferases in N. parvum). Our findings underscore the complexity of the genomic architecture in each species and provide insights into their adaptive strategies, enhancing our understanding of the underlying mechanisms of virulence. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, U.S.A
| | - Noé Cochetel
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Andrea Minio
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, U.S.A
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Davis, CA, U.S.A
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, U.S.A
- Genome Center, University of California, Davis, Davis, CA, U.S.A
| |
Collapse
|
2
|
Boiu-Sicuia OA, Toma RC, Diguță CF, Matei F, Cornea CP. In Vitro Evaluation of Some Endophytic Bacillus to Potentially Inhibit Grape and Grapevine Fungal Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:2553. [PMID: 37447114 DOI: 10.3390/plants12132553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Romania has a long history of grapevine culturing and winemaking. However, like any agricultural sector, viticulture faces devastating biological threats. Fungi responsible for grapevine trunk diseases (GTDs) and grape spoilage lead to considerable yield losses and a decline in grapevine quality. In the actual context, many countries, including Romania, have reoriented their approaches to minimize chemical inputs, which have been proven to be toxic and to have negative impacts on the environment, and to replace them with sustainable biocontrol strategies for the wine-growing sector. Within biocontrol strategies, Bacillus spp. is a well-known plant-protective bacteria with antifungal properties. Within this paper, six endophytic bacteria from various plant sources were studied. The bacterial strains were identified as B. pumilus, B. subtilis, and B. velezensis by sequencing their 16S rDNA region. Regardless of the in vitro test methods (using living bacterial cells, bacterial-cell-free supernatant (CFS), and volatile active compounds (VOCs)), B. velezensis strains revealed strong and broad antifungal activity against grape and grapevine fungal pathogens such as Aspergillus spp., Botrytis cinerea, Penicillium expansum, Diplodia seriata, Eutypa lata, Fusarium spp., Clonostachys rosea, Neofusicoccum parvum, and Stereum hirsutum. The functional antifungal genes encoding for difficidin, fengycin, iturins, macrolactin, and mycosubtilin were molecularly detected, which could support the proven antifungal activity of the endophytic strains. Lytic enzymes involved in fungal growth inhibition, such as chitinase, cellulase, and proteases, were also revealed to be produced by some of these bacterial strains. Various other in vitro tests, such as phosphate and phytate solubilization, phytohormone synthesis, the production of enzymes involved in the polyamine biosynthetic pathway, and pH as well as temperature tolerance tests were carried out to reveal the plant-beneficial potential of these bacterial strains. These results revealed that the B. velezensis strains, especially BAHs1, are the most suitable endophytes for grapevine biologic control, which could lead to the future development of sustainable management strategies.
Collapse
Affiliation(s)
- Oana-Alina Boiu-Sicuia
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Research-Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., District 1, 013813 Bucharest, Romania
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Călina Petruța Cornea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
3
|
Csótó A, Nagy A, Laurinyecz N, Nagy ZA, Németh C, Németh EK, Csikász-Krizsics A, Rakonczás N, Fontaine F, Fekete E, Flipphi M, Karaffa L, Sándor E. Hybrid Vitis Cultivars with American or Asian Ancestries Show Higher Tolerance towards Grapevine Trunk Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:2328. [PMID: 37375953 DOI: 10.3390/plants12122328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Grape production worldwide is increasingly threatened by grapevine trunk diseases (GTDs). No grapevine cultivar is known to be entirely resistant to GTDs, but susceptibility varies greatly. To quantify these differences, four Hungarian grape germplasm collections containing 305 different cultivars were surveyed to determine the ratios of GTDs based on symptom expression and the proportion of plant loss within all GTD symptoms. The cultivars of monophyletic Vitis vinifera L. origin were amongst the most sensitive ones, and their sensitivity was significantly (p < 0.01) higher than that of the interspecific (hybrid) cultivars assessed, which are defined by the presence of Vitis species other than V. vinifera (e.g., V. labrusca L., V. rupestris Scheele, and V. amurensis Rupr.) in their pedigree. We conclude that the ancestral diversity of grapes confers a higher degree of resilience against GTDs.
Collapse
Affiliation(s)
- András Csótó
- Institute of Plant Protection, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
- Kálmán Kerpely Doctoral School, University of Debrecen, H-4032 Debrecen, Hungary
| | - Antal Nagy
- Institute of Plant Protection, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Nóra Laurinyecz
- Institute of Plant Protection, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zóra Annamária Nagy
- Research Institute for Viticulture and Oenology Badacsony, Hungarian University of Agriculture and Life Sciences, H-8263 Badacsonytomaj, Hungary
| | - Csaba Németh
- Research Institute for Viticulture and Oenology Badacsony, Hungarian University of Agriculture and Life Sciences, H-8263 Badacsonytomaj, Hungary
| | - Erzsébet Krisztina Németh
- Research Institute for Viticulture and Oenology Kecskemét, Hungarian University of Agriculture and Life Sciences, H-6000 Kecskemét, Hungary
| | - Anna Csikász-Krizsics
- Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Hungary
| | - Nándor Rakonczás
- Institute of Horticulture, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florence Fontaine
- Unité Résistance Induite et Bioprotection des Plantes, USC INRAE 1488, URCA, Université de Reims Champagne-Ardenne, 51687 Reims, France
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Rosace MC, Legler SE, Salotti I, Rossi V. Susceptibility of pruning wounds to grapevine trunk diseases: A quantitative analysis of literature data. FRONTIERS IN PLANT SCIENCE 2023; 14:1063932. [PMID: 36909400 PMCID: PMC9996077 DOI: 10.3389/fpls.2023.1063932] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Pruning wounds are the main entry points for fungi causing grapevine trunk diseases (GTDs). Several studies identified factors influencing the temporal dynamics of wound susceptibility, which include the fungal species and inoculum dose, weather conditions, grape variety, pruning date, and so forth. Here, we conducted a quantitative analysis of literature data to synthesise outcomes across studies and to identify the factors that most affect the length of pruning wound susceptibility. METHODS We extracted data on the frequency at which the inoculated wounds showed GTD symptoms or an inoculated pathogen was reisolated following artificial inoculation at the time of pruning or in the following days. A negative exponential model was fit to these data to describe changes in wound susceptibility as a function of time since pruning, in which the rate parameter changed depending on specific factors. RESULTS AND DISCUSSION The results show that wound susceptibility is high at the time of pruning, and they remain susceptible to invasion by GTD fungi for months after pruning. Infection incidence on wounds was higher for fungi associated with Botryosphaeria dieback than those associated with Eutypa dieback or Esca complex, and wound susceptibility decreased faster for Eutypa dieback than for other GTD agents. Grapevine variety and pruning season also affected the wound susceptibility period. Sauvignon Blanc remains susceptible to GTDs longer than other varieties. We also found that the time of pruning can affect infection dynamics, especially for more susceptible varieties. The results increase our understanding of GTD epidemiology and should help growers control infections.
Collapse
Affiliation(s)
- Maria Chiara Rosace
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Irene Salotti
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
Reveglia P, Billones-Baaijens R, Savocchia S. Phytotoxic Metabolites Produced by Fungi Involved in Grapevine Trunk Diseases: Progress, Challenges, and Opportunities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3382. [PMID: 36501420 PMCID: PMC9736528 DOI: 10.3390/plants11233382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Grapevine trunk diseases (GTDs), caused by fungal pathogens, are a serious threat to vineyards worldwide, causing significant yield and economic loss. To date, curative methods are not available for GTDs, and the relationship between the pathogen and symptom expression is poorly understood. Several plant pathologists, molecular biologists, and chemists have been investigating different aspects of the pathogenicity, biochemistry, and chemical ecology of the fungal species involved in GTDs. Many studies have been conducted to investigate virulence factors, including the chemical characterization of phytotoxic metabolites (PMs) that assist fungi in invading and colonizing crops such as grapevines. Moreover, multidisciplinary studies on their role in pathogenicity, symptom development, and plant-pathogen interactions have also been carried out. The aim of the present review is to provide an illustrative overview of the biological and chemical characterization of PMs produced by fungi involved in Eutypa dieback, Esca complex, and Botryosphaeria dieback. Moreover, multidisciplinary investigations on host-pathogen interactions, including those using cutting-edge Omics techniques, will also be reviewed and discussed. Finally, challenges and opportunities in the role of PMs for reliable field diagnosis and control of GTDs in vineyards will also be explored.
Collapse
Affiliation(s)
| | | | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
6
|
Muntean MD, Drăgulinescu AM, Tomoiagă LL, Comșa M, Răcoare HS, Sîrbu AD, Chedea VS. Fungal Grapevine Trunk Diseases in Romanian Vineyards in the Context of the International Situation. Pathogens 2022; 11:1006. [PMID: 36145437 PMCID: PMC9503734 DOI: 10.3390/pathogens11091006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vitis vinifera, known as the common grape vine, represents one of the most important fruit crops in the world. Romania is a wine-producing country with a rich and long tradition in viticulture. In the last decade, increasing reports of damage caused by grapevine trunk diseases (GTDs) have raised concerns in all wine producing countries. Up to now, no study was performed regarding the GTDs situation in Romania, an important grapevine grower in Europe. In this study, we aim, after a comprehensive presentation of the fungal GTDs worldwide, to review the scientific information related to these diseases in Romania in order to open a national platform in an international framework. In order to achieve this, we consulted over 500 references from different scientific databases and cited 309 of them. Our review concludes that, in Romania, there is little amount of available literature on this matter. Three out of six fungal GTDs are reported and well documented in all of the Romanian viticultural zones (except for viticultural zone 4). These are Eutypa dieback, Phomopsis dieback, and Esca disease. Of the fungal pathogens considered responsible Eutypa lata, Phomopsis viticola and Stereum hirsutum are the most studied and well documented in Romania. Management measures are quite limited, and they mostly include preventive measures to stop the GTDs spread and the removal of affected grapevines.
Collapse
Affiliation(s)
- Maria-Doinița Muntean
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Ana-Maria Drăgulinescu
- Electronics, Telecommunication and Information Technology Faculty, University Politehnica of Bucharest (UPB), 060042 Bucharest, Romania
| | | | - Maria Comșa
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Horia-Silviu Răcoare
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Alexandra Doina Sîrbu
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| |
Collapse
|
7
|
Guan P, Schmidt F, Fischer J, Riemann M, Thines E, Nick P. The fungal elicitor eutypine from Eutypa lata activates basal immunity through its phenolic side chains. HORTICULTURE RESEARCH 2022; 9:uhac120. [PMID: 35928402 PMCID: PMC9343913 DOI: 10.1093/hr/uhac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Grapevine trunk diseases (GTDs) affect grape production and reduce vineyard longevity worldwide. Since the causative fungi also occur in asymptomatic trunks, we address disease outbreak in terms of altered chemical communication between host and endophyte. Here, we identified four chemically similar secondary metabolites secreted by the GTD-associated fungus Eutypa lata to analyse their modes of action in a grapevine cell culture of Vitis rupestris, where microtubules were tagged by GFP. Treatment with the metabolite eutypine activated defence responses, evident from extracellular alkalinisation and induction of defence genes. Eutypinol, instead, eliminated microtubules, in contrast to the other three compounds. Furthermore, we evaluated the effect of four corresponding chemical analogues of these compounds, sharing the phenolic but lacking the alkyne moiety. These analogues were able to induce similar defence responses in V. rupestris cells, albeit at reduced amplitude. Since closely related moieties differing only in details of the side groups at the phenolic ring differ significantly with respect to the response of the host cell, we propose that these fungal compounds act through a specific binding site at the membrane of grapevine cells. We corroborate this specificity by combination experiments, where the eutypine and the eutypinol analogues behave competitively with respect to the elicited responses. In summary, Eutypa lata secretes compounds that elicit host defence in a specific manner by interfering with early events of immunity signalling. This supports the notion that a real understanding of GTDs has to address inter-organismic chemical communication.
Collapse
Affiliation(s)
- Pingyin Guan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Florian Schmidt
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Perez-Gonzalez G, Sebestyen D, Petit E, Jellison J, Mugnai L, Gelhaye E, Lee N, Farine S, Bertsch C, Goodell B. Oxygen Radical-Generating Metabolites Secreted by Eutypa and Esca Fungal Consortia: Understanding the Mechanisms Behind Grapevine Wood Deterioration and Pathogenesis. FRONTIERS IN PLANT SCIENCE 2022; 13:921961. [PMID: 35909746 PMCID: PMC9327790 DOI: 10.3389/fpls.2022.921961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Eutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis. Unique metabolites were isolated from the consortia fungi with some metabolites preferentially reducing iron whereas others were involved in redox cycling to generate hydrogen peroxide. Metabolite suites with different functions were produced when fungi were grown separately vs. when grown in consortia. Chelator-mediated Fenton (CMF) chemistry promoted by metabolites from these fungi allowed for the generation of highly reactive hydroxyl radicals. We hypothesize that this mechanism may be involved in pathogenicity in grapevine tissue as a causal mechanism associated with trunk wood deterioration/necrosis in these two diseases of grape.
Collapse
Affiliation(s)
| | - Dana Sebestyen
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - Elsa Petit
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| | - Jody Jellison
- Center for Agriculture, Food and the Environment, University of Massachusetts, Amherst, MA, United States
| | - Laura Mugnai
- Department of Agricultural, Food, Environmental and Forestry Science and Technology, University of Florence, Firenze, Italy
| | - Eric Gelhaye
- INRAE, IAM, Université de Lorraine, Nancy, France
| | - Norman Lee
- Chemical Instrumentation Center (CIC), Boston University, Boston, MA, United States
| | - Sibylle Farine
- Laboratoire Vigne Biotechnologies et Environnement, Université de Haute-Alsace, Colmar, France
| | - Christophe Bertsch
- Laboratoire Vigne Biotechnologies et Environnement, Université de Haute-Alsace, Colmar, France
| | - Barry Goodell
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
9
|
Onetto CA, Sosnowski MR, Van Den Heuvel S, Borneman AR. Population genomics of the grapevine pathogen Eutypa lata reveals evidence for population expansion and intraspecific differences in secondary metabolite gene clusters. PLoS Genet 2022; 18:e1010153. [PMID: 35363788 PMCID: PMC9007359 DOI: 10.1371/journal.pgen.1010153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Eutypa dieback of grapevine is an important disease caused by the generalist Ascomycete fungus Eutypa lata. Despite the relevance of this species to the global wine industry, its genomic diversity remains unknown, with only a single publicly available genome assembly. Whole-genome sequencing and comparative genomics was performed on forty Australian E. lata isolates to understand the genome evolution, adaptation, population size and structure of these isolates. Phylogenetic and linkage disequilibrium decay analyses provided evidence of extensive gene flow through sexual recombination between isolates obtained from different geographic locations and hosts. Investigation of the genetic diversity of these isolates suggested rapid population expansion, likely as a consequence of the recent growth of the Australian wine industry. Genomic regions affected by selective sweeps were shown to be enriched for genes associated with secondary metabolite clusters and included genes encoding proteins with a role in nutrient acquisition, degradation of host cell wall and metal and drug resistance, suggesting recent adaptation to both abiotic factors and potentially host genotypes. Genome synteny analysis using long-read genome assemblies showed significant intraspecific genomic plasticity with extensive chromosomal rearrangements impacting the secondary metabolite production potential of this species. Finally, k-mer based GWAS analysis identified a potential locus associated with mycelia recovery in canes of Vitis vinifera that will require further investigations. Eutypa dieback of grapevine, caused by the Ascomycete fungus Eutypa lata, is responsible for significant economic losses to the wine industry. Despite the worldwide prevalence of this pathogen, its genomic diversity remains unknown, with only a single publicly available genome assembly. This knowledge gap was addressed by performing whole-genome sequencing of 40 E. lata isolates sourced from different hosts and geographical locations around Australia. Investigation of the genetic diversity of this population showed a high degree of gene-flow and sexual recombination as well as demographic expansion. Through the inspection of signatures of selective sweeps, repeat-mediated chromosomal rearrangements, and pan-genomic elements, it was shown that this species has a highly dynamic secondary metabolite production potential that could have important implications for its pathogenicity and lifestyle. In addition, application of a k-mer based GWAS methodology, identified a potential locus associated with the growth of this species within canes of Vitis vinifera.
Collapse
Affiliation(s)
| | - Mark R. Sosnowski
- South Australian Research and Development Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
| | | | - Anthony R. Borneman
- The Australian Wine Research Institute, Adelaide, Australia
- School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
10
|
Sebestyen D, Perez-Gonzalez G, Goodell B. Antioxidants and iron chelators inhibit oxygen radical generation in fungal cultures of plant pathogenic fungi. Fungal Biol 2022; 126:480-487. [DOI: 10.1016/j.funbio.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
|
11
|
Špetík M, Balík J, Híc P, Hakalová E, Štůsková K, Frejlichová L, Tříska J, Eichmeier A. Lignans Extract from Knotwood of Norway Spruce—A Possible New Weapon against GTDs. J Fungi (Basel) 2022; 8:jof8040357. [PMID: 35448588 PMCID: PMC9025846 DOI: 10.3390/jof8040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine trunk diseases (GTDs) pose a major threat to the wine industry worldwide. Currently, efficient biological methods or chemical compounds are not available for the treatment of infected grapevines. In the present study, we used an extract from the knotwood of spruce trees as a biological control against GTDs. Our in vitro trial was focused on the antifungal effects of the extract against the most common GTD pathogens—Cadophora luteo-olivacea, Dactylonectria torresensis, Diaporthe ampelina, Diaporthe bohemiae, Diplodia seriata, Eutypa lata, and Phaeoacremonium minimum. Our in vitro trial revealed a high antifungal effect of the extract against all tested fungi. The inhibition rates varied among the different species from 30% to 100% using 1 mg·mL−1 extract. Subsequently, the efficiency of the extract was supported by an in planta experiment. Commercial grafts of Vitis vinifera were treated with the extract and planted. The total genomic DNA of grapevines was extracted 10 days and 180 days after the treatment. The fungal microbial diversities of the treated/untreated plants were compared using high-throughput amplicon sequencing (HTAS). Treated plants showed 76.9% lower relative abundance of the genus Diaporthe and 70% lower relative abundance of the genus Phaeoacremonium 10 days after treatment. A similar scenario was observed for the genus Cadophora 180 days after treatment, where treated plants showed 76% lower relative abundance of this genus compared with untreated grapevines.
Collapse
Affiliation(s)
- Milan Špetík
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Josef Balík
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Pavel Híc
- Department of Post-Harvest Technology of Horticultural Products, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Eliška Hakalová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Kateřina Štůsková
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Lucie Frejlichová
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| | - Jan Tříska
- Global Change Research Institute CAS, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Aleš Eichmeier
- Mendeleum-Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice na Moravě, Czech Republic
| |
Collapse
|
12
|
Pouzoulet J, Yelle DJ, Theodory B, Nothnagel EA, Bol S, Rolshausen PE. Biochemical and Histological Insights into the Interaction Between the Canker Pathogen Neofusicoccum parvum and Prunus dulcis. PHYTOPATHOLOGY 2022; 112:345-354. [PMID: 34270907 DOI: 10.1094/phyto-03-21-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The number of reports associated with wood dieback caused by fungi in the Botryosphaeriaceae in numerous perennial crops worldwide has significantly increased in the past years. In this study, we investigated the interactions between the canker pathogen Neofusicoccum parvum and the almond tree host (Prunus dulcis), with an emphasis on varietal resistance and host response at the cell wall biochemical and histological levels. Plant bioassays in a shaded house showed that among the four commonly planted commercial almond cultivars ('Butte', 'Carmel', 'Monterey', and 'Nonpareil'), there was no significant varietal difference with respect to resistance to the pathogen. Gummosis was triggered only by fungal infection, not by wounding. A two-dimensional nuclear magnetic resonance and liquid chromatography determination of cell wall polymers showed that infected almond trees differed significantly in their glycosyl and lignin composition compared with healthy, noninfected trees. Response to fungal infection involved a significant increase in lignin, a decrease in glucans, and an overall enrichment in other carbohydrates with a profile similar to those observed in gums. Histological observations revealed the presence of guaiacyl-rich cell wall reinforcements. Confocal microscopy suggested that N. parvum colonized mainly the lumina of xylem vessels and parenchyma cells, and to a lesser extent the gum ducts. We discuss the relevance of these findings in the context of the compartmentalization of decay in trees model in almond and its potential involvement in the vulnerability of the host toward fungal wood canker diseases.
Collapse
Affiliation(s)
- Jerome Pouzoulet
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Daniel J Yelle
- USDA Forest Service, Forest Products Laboratory, Madison, WI 53726
| | - Bassam Theodory
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Eugene A Nothnagel
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Sebastiaan Bol
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| | - Philippe E Rolshausen
- University of California, Department of Botany and Plant Sciences, Riverside, CA 92521
| |
Collapse
|
13
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
14
|
Bettenfeld P, Cadena i Canals J, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Courty PE, Trouvelot S. The microbiota of the grapevine holobiont: A key component of plant health. J Adv Res 2021; 40:1-15. [PMID: 36100319 PMCID: PMC9481934 DOI: 10.1016/j.jare.2021.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine interacts different microbiota living around and within its tissues Addition of microbial genes to plant genome gives supplementary functions to the holobiont The composition of grapevine microbiota varies according to endogenous and exogenous factors Microbiota variations can lead to perturbations of grapevine metabolism The link between symptom emergence of dieback and microbial imbalance is currently studied
Background Grapevine is a woody, perennial plant of high economic importance worldwide. Like other plants, it lives in close association with large numbers of microorganisms. Bacteria, fungi and viruses are structured in communities, and each individual can be beneficial, neutral or harmful to the plant. In this sense, microorganisms can interact with each other and regulate plant functions (including immunity) and even provide new ones. Thus, the grapevine associated with its microbial communities constitutes a supra-organism, also called a holobiont, whose functioning is linked to established plant-microorganism interactions. Aim of review The overall health of the plant may be conditioned by the diversity and structure of microbial communities. Consequently, an optimal microbial composition will consist of a microbial balance allowing the plant to be healthy. Conversely, an imbalance of microbial populations could lead to (or be generated by) a decline of the plant. The microbiome is an active component of the host also responsive to biotic and abiotic changes; in that respect, a better understanding of the most important drivers of the composition of plant microbiomes is needed. Key scientific concepts of review This article presents the current state of the art about the grapevine microbiota and its composition according to the plant compartments and the influencing factors. We also focus on situations of imbalance, in particular during plant disease or decline. Finally, we discuss the possible interest of microbial engineering in an agrosystem such as viticulture.
Collapse
|
15
|
Karácsony Z, Knapp DG, Lengyel S, Kovács GM, Váczy KZ. The fungus Kalmusia longispora is able to cause vascular necrosis on Vitis vinifera. PLoS One 2021; 16:e0258043. [PMID: 34653213 PMCID: PMC8519466 DOI: 10.1371/journal.pone.0258043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Fungal diseases in agronomically important plants such as grapevines result in significantly reduced production, pecuniary losses, and increased use of environmentally damaging chemicals. Beside the well-known diseases, there is an increased interest in wood-colonizing fungal pathogens that infect the woody tissues of grapevines. In 2015, a traditional isolation method was performed on grapevine trunks showing symptoms of trunk diseases in Hungary. One isolate (T15142) was identified as Kalmusia longispora (formerly Dendrothyrium longisporum) according to morphological and phylogenetic analyses. To evaluate the pathogenicity of this fungus on grapevines, artificial infections were carried out under greenhouse and field conditions, including the CBS 824.84 and ex-type CBS 582.83 strains. All isolates could be re-isolated from inoculated plants; however, varying virulence was observed among them in terms of the vascular necrosis caused. The incidence and severity of this symptom seemed to be congruent with the laccase-producing capabilities of the isolates. This is the first report on the ability of Kalmusia longispora to cause symptoms on grapevines, and on its possible dependence on laccase secretion.
Collapse
Affiliation(s)
- Zoltán Karácsony
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
| | - Dániel G. Knapp
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research (ATK), Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Szabina Lengyel
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
| | - Gábor M. Kovács
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research (ATK), Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Kálmán Zoltán Váczy
- Food and Wine Research Institute, Eszterházy Károly University, Eger, Hungary
- * E-mail:
| |
Collapse
|
16
|
Labois C, Stempien E, Schneider J, Schaeffer-Reiss C, Bertsch C, Goddard ML, Chong J. Comparative Study of Secreted Proteins, Enzymatic Activities of Wood Degradation and Stilbene Metabolization in Grapevine Botryosphaeria Dieback Fungi. J Fungi (Basel) 2021; 7:568. [PMID: 34356948 PMCID: PMC8303417 DOI: 10.3390/jof7070568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023] Open
Abstract
Botryosphaeriaceae fungi are plant pathogens associated with Botryosphaeria dieback. To better understand the virulence factors of these fungi, we investigated the diversity of secreted proteins and extracellular enzyme activities involved in wood degradation and stilbene metabolization in Neofusicoccumparvum and Diplodiaseriata, which are two major fungi associated with grapevine B. dieback. Regarding the analysis of proteins secreted by the two fungi, our study revealed that N. parvum, known to be more aggressive than D. seriata, was characterized by a higher quantity and diversity of secreted proteins, especially hydrolases and oxidoreductases that are likely involved in cell wall and lignin degradation. In addition, when fungi were grown with wood powder, the extracellular laccase and Mn peroxidase enzyme activities were significantly higher in D. seriata compared to N.parvum. Importantly, our work also showed that secreted Botryosphaeriaceae proteins produced after grapevine wood addition are able to rapidly metabolize the grapevine stilbenes. Overall, a higher diversity of resveratrol and piceatannol metabolization products was found with enzymes of N. parvum compared to D. seriata. This study emphasizes the diversity of secreted virulence factors found in B. dieback fungi and suggests that some resveratrol oligomers produced in grapevine wood after pathogen attack could be formed via pathogenic fungal oxidases.
Collapse
Affiliation(s)
- Clément Labois
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
- Laboratoire d’Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, CEDEX, 68093 Mulhouse, France
| | - Elodie Stempien
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
| | - Justine Schneider
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France; (J.S.); (C.S.-R.)
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, Université de Strasbourg, CNRS, UMR7178, 25 Rue Becquerel, 67087 Strasbourg, France; (J.S.); (C.S.-R.)
| | - Christophe Bertsch
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
| | - Mary-Lorène Goddard
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
- Laboratoire d’Innovation Moléculaire et Applications, Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, CEDEX, 68093 Mulhouse, France
| | - Julie Chong
- Laboratoire Vigne, Biotechnologies et Environnement (LVBE, UPR 3991), Université de Haute Alsace, 68000 Colmar, France; (C.L.); (E.S.); (C.B.)
| |
Collapse
|
17
|
Chacón-Vozmediano JL, Gramaje D, León M, Armengol J, Moral J, Izquierdo-Cañas PM, Martínez-Gascueña J. Cultivar Susceptibility to Natural Infections Caused by Fungal Grapevine Trunk Pathogens in La Mancha Designation of Origin (Spain). PLANTS 2021; 10:plants10061171. [PMID: 34207542 PMCID: PMC8228040 DOI: 10.3390/plants10061171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Grapevine trunk diseases (GTDs) are one of the main biotic stress factors affecting this crop. The use of tolerant grapevine cultivars would be an interesting and sustainable alternative strategy to control GTDs. To date, most studies about cultivar susceptibility have been conducted under controlled conditions, and little information is available about tolerance to natural infections caused by GTD fungi. The objectives of this study were: (i) to identify tolerant cultivars to GTD fungi within a Spanish germplasm collection, based on external symptoms observed in the vineyard; and (ii) to characterize the pathogenic mycoflora associated with symptomatic vines. For this purpose, a grapevine germplasm collection including 22 white and 25 red cultivars was monitored along three growing seasons, and their susceptibility for esca foliar symptoms was assessed. Fungi were identified by using morphological and molecular methods. Cultivars such as, 'Monastrell', 'Graciano', 'Cabernet Franc', 'Cabernet Sauvignon', 'Syrah', 'Moscatel de Alejandría', 'Sauvignon Blanc', and 'Airén' displayed high susceptibility to GTDs, whereas others such as 'Petit Verdot', 'Pinot Noir', 'Chardonnay', and 'Riesling' were considered as tolerant. The prevalent fungal species isolated from symptomatic vines were Phaeomoniella chlamydospora (27.9% of the fungal isolates), Cryptovalsa ampelina (24.6%), and Dothiorella sarmentorum (21.3%).
Collapse
Affiliation(s)
- Juan L. Chacón-Vozmediano
- Institute for Agri-food and Forestry Research and Development of Castilla-La Mancha (IRIAF), Tomelloso, 13700 Ciudad Real, Spain; (P.M.I.-C.); (J.M.-G.)
- Correspondence:
| | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, 26007 Logroño, Spain;
| | - Maela León
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, 46022 Valencia, Spain; (M.L.); (J.A.)
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, 46022 Valencia, Spain; (M.L.); (J.A.)
| | - Juan Moral
- Department of Agronomy, María de Maeztu Unit of Excellence, Campus of Rabanales, University of Córdoba, 14071 Córdoba, Spain;
| | - Pedro M. Izquierdo-Cañas
- Institute for Agri-food and Forestry Research and Development of Castilla-La Mancha (IRIAF), Tomelloso, 13700 Ciudad Real, Spain; (P.M.I.-C.); (J.M.-G.)
| | - Jesús Martínez-Gascueña
- Institute for Agri-food and Forestry Research and Development of Castilla-La Mancha (IRIAF), Tomelloso, 13700 Ciudad Real, Spain; (P.M.I.-C.); (J.M.-G.)
| |
Collapse
|
18
|
Reveglia P, Billones-Baaijens R, Millera Niem J, Masi M, Cimmino A, Evidente A, Savocchia S. Production of Phytotoxic Metabolites by Botryosphaeriaceae in Naturally Infected and Artificially Inoculated Grapevines. PLANTS (BASEL, SWITZERLAND) 2021; 10:802. [PMID: 33921820 PMCID: PMC8073839 DOI: 10.3390/plants10040802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71121 Foggia, Italy
| | - Regina Billones-Baaijens
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
| | - Jennifer Millera Niem
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
- UPLB Museum of Natural History, University of the Philippines—Los Baños, College, Laguna 4031, Philippines
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
| |
Collapse
|
19
|
Ingel B, Reyes C, Massonnet M, Boudreau B, Sun Y, Sun Q, McElrone AJ, Cantu D, Roper MC. Xylella fastidiosa causes transcriptional shifts that precede tylose formation and starch depletion in xylem. MOLECULAR PLANT PATHOLOGY 2021; 22:175-188. [PMID: 33216451 PMCID: PMC7814960 DOI: 10.1111/mpp.13016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 05/06/2023]
Abstract
Pierce's disease (PD) in grapevine (Vitis vinifera) is caused by the bacterial pathogen Xylella fastidiosa. X. fastidiosa is limited to the xylem tissue and following infection induces extensive plant-derived xylem blockages, primarily in the form of tyloses. Tylose-mediated vessel occlusions are a hallmark of PD, particularly in susceptible V. vinifera. We temporally monitored tylose development over the course of the disease to link symptom severity to the level of tylose occlusion and the presence/absence of the bacterial pathogen at fine-scale resolution. The majority of vessels containing tyloses were devoid of bacterial cells, indicating that direct, localized perception of X. fastidiosa was not a primary cause of tylose formation. In addition, we used X-ray computed microtomography and machine-learning to determine that X. fastidiosa induces significant starch depletion in xylem ray parenchyma cells. This suggests that a signalling mechanism emanating from the vessels colonized by bacteria enables a systemic response to X. fastidiosa infection. To understand the transcriptional changes underlying these phenotypes, we integrated global transcriptomics into the phenotypes we tracked over the disease spectrum. Differential gene expression analysis revealed that considerable transcriptomic reprogramming occurred during early PD before symptom appearance. Specifically, we determined that many genes associated with tylose formation (ethylene signalling and cell wall biogenesis) and drought stress were up-regulated during both Phase I and Phase II of PD. On the contrary, several genes related to photosynthesis and carbon fixation were down-regulated during both phases. These responses correlate with significant starch depletion observed in ray cells and tylose synthesis in vessels.
Collapse
Affiliation(s)
- Brian Ingel
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
- Present address:
Department of Plant PathologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Clarissa Reyes
- United States Department of AgricultureAgricultural Research ServiceDavisCaliforniaUSA
| | - Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Bailey Boudreau
- Department of BiologyUniversity of WisconsinStevens PointWisconsinUSA
| | - Yuling Sun
- Wellesley CollegeWellesleyMassachusettsUSA
| | - Qiang Sun
- Department of BiologyUniversity of WisconsinStevens PointWisconsinUSA
| | - Andrew J. McElrone
- United States Department of AgricultureAgricultural Research ServiceDavisCaliforniaUSA
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - M. Caroline Roper
- Department of Microbiology and Plant PathologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
20
|
Eutypella parasitica and Other Frequently Isolated Fungi in Wood of Dead Branches of Young Sycamore Maple (Acer pseudoplatanus) in Slovenia. FORESTS 2020. [DOI: 10.3390/f11040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eutypella parasitica R.W. Davidson and R.C. Lorenz is the causative agent of Eutypella canker of maple, a destructive disease of maples in Europe and North America. The fungus E. parasitica infects the trunk through a branch stub or bark wound. Because the fungal community may have an impact on infection and colonization by E. parasitica, the composition of fungi colonizing wood of dead branches of sycamore maple (Acer pseudoplatanus L.) was investigated in five sampling sites in Slovenia. Forty samples from each sampling site were collected between the November 2017 and March 2018 period. Isolations were made from the wood in the outer part of dead branches and from discoloured wood in the trunk that originated from a dead branch. Pure cultures were divided into morphotypes, and one representative culture per morphotype was selected for further molecular identification. From a total of 2700 cultured subsamples, 1744 fungal cultures were obtained, which were grouped into 212 morphotypes. The investigated samples were colonized by a broad spectrum of fungi. The most frequently isolated species were Eutypa maura (Fr.) Sacc., Eutypa sp. Tul. and C. Tul., Fusarium avenaceum (Fr.) Sacc., Neocucurbitaria acerina Wanas., Camporesi, E.B.G. Jones and K.D. Hyde and E. parasitica. In this study, we distinguished species diversity and the fungal community. There were no significant differences in the diversity of fungal species between the five sampling sites, and branch thickness did not prove to be a statistically significant factor in fungal species diversity. Nevertheless, relatively low Jaccard similarity index values suggested possible differences in the fungal communities from different sampling sites. This was confirmed by an analysis of similarities, which showed that the isolated fungal community distinctly differed between the five sampling sites and between the different isolation sources. Eutypella parasitica was isolated from all five investigated sampling sites, although Eutypella cankers were observed in only three sampling sites, indicating the possibility of asymptomatic infection.
Collapse
|
21
|
Cardot C, Mappa G, La Camera S, Gaillard C, Vriet C, Lecomte P, Ferrari G, Coutos-Thévenot P. Comparison of the Molecular Responses of Tolerant, Susceptible and Highly Susceptible Grapevine Cultivars During Interaction With the Pathogenic Fungus Eutypa lata. FRONTIERS IN PLANT SCIENCE 2019; 10:991. [PMID: 31428114 PMCID: PMC6690011 DOI: 10.3389/fpls.2019.00991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 05/02/2023]
Abstract
Eutypa lata is the causal agent of eutypa dieback, one of the most destructive grapevine trunk disease that causes severe economic losses in vineyards worldwide. This fungus causes brown sectorial necrosis in wood which affect the vegetative growth. Despite intense research efforts made in the past years, no cure currently exists for this disease. Host responses to eutypa dieback are difficult to address because E. lata is a wood pathogen that causes foliar symptoms several years after infection. With the aim to classify the level of susceptibility of grapevine cultivars to the foliar symptoms caused by E. lata, artificial inoculations of Merlot, Cabernet Sauvignon, and Ugni Blanc were conducted over 3 years. Merlot was the most tolerant cultivar, whereas Ugni Blanc and Cabernet Sauvignon exhibited higher and differential levels of susceptibility. We took advantage of their contrasting phenotypes to explore their defense responses, including the activation of pathogenesis-related (PR) genes, oxylipin and phenylpropanoid pathways and the accumulation of stilbenes. These analyses were carried out using the millicell system that enables the molecular dialogue between E. lata mycelium and grapevine leaves to take place without physical contact. Merlot responded to E. lata by inducing the expression of a large number of defense-related genes. On the contrary, Ugni Blanc failed to activate such defense responses despite being able to perceive the fungus. To gain insight into the role of carbon partitioning in E. lata infected grapevine, we monitored the expression of plant genes involved in sugar transport and cleavage, and measured invertase activities. Our results evidence a coordinated up-regulation of VvHT5 and VvcwINV genes, and a stimulation of the cell wall invertase activity in leaves of Merlot elicited by E. lata, but not in Ugni Blanc. Altogether, this study indicates that the degree of cultivar susceptibility is associated with the activation of host defense responses, including extracellular sucrolytic machinery and hexose uptake during the grapevine/E. lata interaction. Given the role of these activities in governing carbon allocation through the plant, we postulate that the availability of sugar resources for either the host or the fungus is crucial for the outcome of the interaction.
Collapse
Affiliation(s)
- Chloé Cardot
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
- INRA, UMR 1065 SAVE (Santé et Agroécologie du Vignoble), Université de Bordeaux, Villenave d’Ornon, France
- BNIC (Bureau National Interprofessionnel du Cognac – Station Viticole), Cognac, France
| | - Gaetan Mappa
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Sylvain La Camera
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Cécile Gaillard
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Cécile Vriet
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| | - Pascal Lecomte
- INRA, UMR 1065 SAVE (Santé et Agroécologie du Vignoble), Université de Bordeaux, Villenave d’Ornon, France
| | - Gérald Ferrari
- BNIC (Bureau National Interprofessionnel du Cognac – Station Viticole), Cognac, France
| | - Pierre Coutos-Thévenot
- SEVE, Laboratoire Sucres & Echanges Végétaux-Environnement, UMR EBI, CNRS 7267, Université de Poitiers, Poitiers, France
| |
Collapse
|
22
|
Songy A, Fernandez O, Clément C, Larignon P, Fontaine F. Grapevine trunk diseases under thermal and water stresses. PLANTA 2019; 249:1655-1679. [PMID: 30805725 DOI: 10.1007/s00425-019-03111-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Heat and water stresses, individually or combined, affect both the plant (development, physiology, and production) and the pathogens (growth, morphology, dissemination, distribution, and virulence). The grapevine response to combined abiotic and biotic stresses is complex and cannot be inferred from the response to each single stress. Several factors might impact the response and the recovery of the grapevine, such as the intensity, duration, and timing of the stresses. In the heat/water stress-GTDs-grapevine interaction, the nature of the pathogens, and the host, i.e., the nature of the rootstock, the cultivar and the clone, has a great importance. This review highlights the lack of studies investigating the response to combined stresses, in particular molecular studies, and the misreading of the relationship between rootstock and scion in the relationship GTDs/abiotic stresses. Grapevine trunk diseases (GTDs) are one of the biggest threats to vineyard sustainability in the next 30 years. Although many treatments and practices are used to manage GTDs, there has been an increase in the prevalence of these diseases due to several factors such as vineyard intensification, aging vineyards, or nursery practices. The ban of efficient treatments, i.e., sodium arsenite, carbendazim, and benomyl, in the early 2000s may be partly responsible for the fast spread of these diseases. However, GTD-associated fungi can act as endophytes for several years on, or inside the vine until the appearance of the first symptoms. This prompted several researchers to hypothesise that abiotic conditions, especially thermal and water stresses, were involved in the initiation of GTD symptoms. Unfortunately, the frequency of these abiotic conditions occurring is likely to increase according to the recent consensus scenario of climate change, especially in wine-growing areas. In this article, following a review on the impact of combined thermal and water stresses on grapevine physiology, we will examine (1) how this combination of stresses might influence the lifestyle of GTD pathogens, (2) learnings from grapevine field experiments and modelling aiming at studying biotic and abiotic stresses, and (3) what mechanistic concepts can be used to explain how these stresses might affect the grapevine plant status.
Collapse
Affiliation(s)
- A Songy
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - O Fernandez
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - C Clément
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - P Larignon
- Institut Français de la Vigne et du Vin Pôle Rhône-Méditerranée, France, 7 avenue Cazeaux, 30230, Rodilhan, France
| | - F Fontaine
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France.
| |
Collapse
|
23
|
Masi M, Cimmino A, Reveglia P, Mugnai L, Surico G, Evidente A. Advances on Fungal Phytotoxins and Their Role in Grapevine Trunk Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5948-5958. [PMID: 29630361 DOI: 10.1021/acs.jafc.8b00773] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Grapevines are produced worldwide with important impact on local economies. Several biotic stresses induce serious diseases of grapevine, which severely affect the quantity and quality of production. One of the most important problems of vineyards worldwide is the high incidence of grapevine trunk diseases (GTD) induced by fungi belonging to several genera. Environmentally friendly methods for GTD control are being studied. This perspective offers an advanced overview on the fungal phytotoxins involved in GTD and their eventual role in the development of disease symptoms.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Pierluigi Reveglia
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4 , 80126 Napoli , Italy
| | - Laura Mugnai
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Sezione di Patologia Vegetale ed Entomologia , Università di Firenze , Piazzale delle Cascine 28 , 50144 Firenze , Italy
| | - Giuseppe Surico
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Sezione di Patologia Vegetale ed Entomologia , Università di Firenze , Piazzale delle Cascine 28 , 50144 Firenze , Italy
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche , Università di Napoli Federico II , Complesso Universitario Monte Sant'Angelo, Via Cintia 4 , 80126 Napoli , Italy
| |
Collapse
|
24
|
Morales‐Cruz A, Allenbeck G, Figueroa‐Balderas R, Ashworth VE, Lawrence DP, Travadon R, Smith RJ, Baumgartner K, Rolshausen PE, Cantu D. Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk disease complex. MOLECULAR PLANT PATHOLOGY 2018; 19:490-503. [PMID: 28218463 PMCID: PMC6638111 DOI: 10.1111/mpp.12544] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development, especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e. metatranscriptomics) approach that could monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for the mapping and quantification of DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition, as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs.
Collapse
Affiliation(s)
- Abraham Morales‐Cruz
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | - Gabrielle Allenbeck
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | | | - Vanessa E. Ashworth
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCA92521USA
| | - Daniel P. Lawrence
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Renaud Travadon
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Rhonda J. Smith
- University of California Cooperative Extension, Sonoma CountySanta RosaCA95403USA
| | - Kendra Baumgartner
- United States Department of Agriculture ‐ Agricultural Research ServiceCrops Pathology and Genetics Research UnitDavisCA95616USA
| | - Philippe E. Rolshausen
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCA92521USA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| |
Collapse
|
25
|
Gramaje D, Úrbez-Torres JR, Sosnowski MR. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. PLANT DISEASE 2018; 102:12-39. [PMID: 30673457 DOI: 10.1094/pdis-04-17-0512-fe] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fungal trunk diseases are some of the most destructive diseases of grapevine in all grape growing areas of the world. Management of GTDs has been intensively studied for decades with some great advances made in our understanding of the causal pathogens, their epidemiology, impact, and control. However, due to the breadth and complexity of the problem, no single effective control measure has been developed. Management of GTD must be holistic and integrated, with an interdisciplinary approach conducted in both nurseries and vineyards that integrates plant pathology, agronomy, viticulture, microbiology, epidemiology, biochemistry, physiology, and genetics. In this review, we identify a number of areas of future prospect for effective management of GTDs worldwide, which, if addressed, will provide a positive outlook on the longevity of vineyards in the future.
Collapse
Affiliation(s)
- David Gramaje
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas - Universidad de la Rioja - Gobierno de la Rioja, Logroño 26007, Spain
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Science and Technology Branch, Summerland, British Columbia V0H1Z0, Canada
| | - Mark R Sosnowski
- South Australian Research and Development Institute, GPO Box 397, Adelaide SA 5001, Australia; and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
26
|
Massonnet M, Morales‐Cruz A, Figueroa‐Balderas R, Lawrence DP, Baumgartner K, Cantu D. Condition-dependent co-regulation of genomic clusters of virulence factors in the grapevine trunk pathogen Neofusicoccum parvum. MOLECULAR PLANT PATHOLOGY 2018; 19:21-34. [PMID: 27608421 PMCID: PMC6637977 DOI: 10.1111/mpp.12491] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 05/24/2023]
Abstract
The ascomycete Neofusicoccum parvum, one of the causal agents of Botryosphaeria dieback, is a destructive wood-infecting fungus and a serious threat to grape production worldwide. The capability to colonize woody tissue, combined with the secretion of phytotoxic compounds, is thought to underlie its pathogenicity and virulence. Here, we describe the repertoire of virulence factors and their transcriptional dynamics as the fungus feeds on different substrates and colonizes the woody stem. We assembled and annotated a highly contiguous genome using single-molecule real-time DNA sequencing. Transcriptome profiling by RNA sequencing determined the genome-wide patterns of expression of virulence factors both in vitro (potato dextrose agar or medium amended with grape wood as substrate) and in planta. Pairwise statistical testing of differential expression, followed by co-expression network analysis, revealed that physically clustered genes coding for putative virulence functions were induced depending on the substrate or stage of plant infection. Co-expressed gene clusters were significantly enriched not only in genes associated with secondary metabolism, but also in those associated with cell wall degradation, suggesting that dynamic co-regulation of transcriptional networks contributes to multiple aspects of N. parvum virulence. In most of the co-expressed clusters, all genes shared at least a common motif in their promoter region, indicative of co-regulation by the same transcription factor. Co-expression analysis also identified chromatin regulators with correlated expression with inducible clusters of virulence factors, suggesting a complex, multi-layered regulation of the virulence repertoire of N. parvum.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | - Abraham Morales‐Cruz
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | | | - Daniel P. Lawrence
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Kendra Baumgartner
- US Department of Agriculture ‐ Agricultural Research ServiceCrops Pathology and Genetics Research UnitDavisCA95616USA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| |
Collapse
|
27
|
Stempien E, Goddard ML, Wilhelm K, Tarnus C, Bertsch C, Chong J. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization. PLoS One 2017; 12:e0188766. [PMID: 29261692 PMCID: PMC5737891 DOI: 10.1371/journal.pone.0188766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host.
Collapse
Affiliation(s)
- Elodie Stempien
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
| | - Mary-Lorène Goddard
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
- Université de Haute-Alsace, Laboratoire de Chimie Organique et Bioorganique, Mulhouse, France
| | - Kim Wilhelm
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
- Université de Haute-Alsace, Laboratoire de Chimie Organique et Bioorganique, Mulhouse, France
| | - Céline Tarnus
- Université de Haute-Alsace, Laboratoire de Chimie Organique et Bioorganique, Mulhouse, France
| | - Christophe Bertsch
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
| | - Julie Chong
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
| |
Collapse
|
28
|
Pouzoulet J, Scudiero E, Schiavon M, Rolshausen PE. Xylem Vessel Diameter Affects the Compartmentalization of the Vascular Pathogen Phaeomoniella chlamydospora in Grapevine. FRONTIERS IN PLANT SCIENCE 2017; 8:1442. [PMID: 28871268 PMCID: PMC5566965 DOI: 10.3389/fpls.2017.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/03/2017] [Indexed: 05/23/2023]
Abstract
Fungal wilt diseases are a threat to global food safety. Previous studies in perennial crops showed that xylem vessel diameter affects disease susceptibility. We tested the hypothesis that xylem vessel diameter impacts occlusion processes and pathogen compartmentalization in Vitis vinifera L. We studied the interaction between four grape commercial cultivars with the vascular wilt pathogen Phaeomoniella chlamydospora. We used qPCR and wood necrotic lesion length to measure fungal colonization coupled with histological studies to assess differences in xylem morphology, pathogen compartmentalization, and fungal colonization strategy. We provided evidence that grape cultivar with wide xylem vessel diameter showed increased susceptibility to P. chlamydospora. The host response to pathogen included vessel occlusion with tyloses and gels, deposition of non-structural phenolic compounds and suberin in vessel walls and depletion of starch in parenchyma cells. Pathogen compartmentalization was less efficient in wide xylem vessels than in narrow diameter vessels. Large vessels displayed higher number of tyloses and gel pockets, which provided substrate for P. chlamydospora growth and routes to escape occluded vessels. We discuss in which capacity xylem vessel diameter is a key determinant of the compartmentalization process and in turn grape cultivar resistance to disease caused by P. chlamydospora.
Collapse
Affiliation(s)
- Jérôme Pouzoulet
- Department of Botany and Plant Sciences, University of California, Riverside, RiversideCA, United States
| | - Elia Scudiero
- United States Salinity Laboratory, United States Department of Agriculture–Agricultural Research Service, RiversideCA, United States
| | - Marco Schiavon
- Department of Botany and Plant Sciences, University of California, Riverside, RiversideCA, United States
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, RiversideCA, United States
| |
Collapse
|
29
|
Massonnet M, Figueroa-Balderas R, Galarneau ERA, Miki S, Lawrence DP, Sun Q, Wallis CM, Baumgartner K, Cantu D. Neofusicoccum parvum Colonization of the Grapevine Woody Stem Triggers Asynchronous Host Responses at the Site of Infection and in the Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:1117. [PMID: 28702038 PMCID: PMC5487829 DOI: 10.3389/fpls.2017.01117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/09/2017] [Indexed: 05/09/2023]
Abstract
Grapevine trunk diseases cause important economic losses in vineyards worldwide. Neofusicoccum parvum, one of the most aggressive causal agents of the trunk disease Botryosphaeria dieback, colonizes cells and tissues of the grapevine wood, leading to the formation of an internal canker. Symptoms then extend to distal shoots, with wilting of leaves and bud mortality. Our aim was to characterize the transcriptional dynamics of grapevine genes in the woody stem and in the leaves during Neofusicoccum parvum colonization. Genome-wide transcriptional profiling at seven distinct time points (0, 3, and 24 hours; 2, 6, 8, and 12 weeks) showed that both stems and leaves undergo extensive transcriptomic reprogramming in response to infection of the stem. While most intense transcriptional responses were detected in the stems at 24 hours, strong responses were not detected in the leaves until the next sampling point at 2 weeks post-inoculation. Network co-expression analysis identified modules of co-expressed genes common to both organs and showed most of these genes were asynchronously modulated. The temporal shift between stem vs. leaf responses affected transcriptional modulation of genes involved in both signal perception and transduction, as well as downstream biological processes, including oxidative stress, cell wall rearrangement and cell death. Promoter analysis of the genes asynchronously modulated in stem and leaves during N. parvum colonization suggests that the temporal shift of transcriptional reprogramming between the two organs might be due to asynchronous co-regulation by common transcriptional regulators. Topology analysis of stem and leaf co-expression networks pointed to specific transcription factor-encoding genes, including WRKY and MYB, which may be associated with the observed transcriptional responses in the two organs.
Collapse
Affiliation(s)
- Mélanie Massonnet
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| | - Erin R. A. Galarneau
- Department of Plant Pathology, University of California, DavisDavis, CA, United States
| | - Shiho Miki
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
- Department of Agriculture and Forest Science, Faculty of Life and Environmental Science, Shimane UniversityMatsue, Japan
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, DavisDavis, CA, United States
| | - Qiang Sun
- Department of Biology, University of WisconsinStevens Point, WI, United States
| | - Christopher M. Wallis
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences CenterParlier, CA, United States
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research UnitDavis, CA, United States
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, United States
| |
Collapse
|
30
|
Mutawila C, Stander C, Halleen F, Vivier MA, Mostert L. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes. PROTOPLASMA 2017; 254:863-879. [PMID: 27352313 DOI: 10.1007/s00709-016-0997-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/13/2016] [Indexed: 05/07/2023]
Abstract
Cell suspension cultures of Vitis vinifera cv. Dauphine berries were used to study the response to the vascular pathogen, Eutypa lata, in comparison with a biological control agent, Trichoderma atroviride, that was previously shown to be effective in pruning wound protection. The expression of genes coding for enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins was profiled over a 48-h period using quantitative reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a hypersensitive-like response that lead to a decrease in cell viability. Similar genes were triggered by both the pathogen and biocontrol agent, but the timing patterns and magnitude of expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi caused upregulation of phenylalanine ammonia-lyase (PAL), 4-coumaroyl Co-A ligase (CCo-A) and stilbene synthase (STS), and a downregulation of chalcone synthase (CHS) genes. The pathogen filtrate caused a biphasic pattern in the upregulation of PAL and STS genes which was not observed in cells treated with filtrates of the biocontrol agent. Analytical assays showed significantly higher total phenolic content and chitinolytic enzyme activity in the cell cultures treated with the T. atroviride filtrate compared to the pathogen filtrate. These results corresponded well to the higher expression of PAL and chitinase class IV genes. The response of the cell cultures to T. atroviride filtrate provides support for the notion that the wound protection by the biocontrol agent at least partially relies on the induction of grapevine resistance mechanisms.
Collapse
Affiliation(s)
- C Mutawila
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C Stander
- Institute of Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - F Halleen
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbji, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - M A Vivier
- Institute of Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - L Mostert
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
31
|
|
32
|
Paolinelli-Alfonso M, Villalobos-Escobedo JM, Rolshausen P, Herrera-Estrella A, Galindo-Sánchez C, López-Hernández JF, Hernandez-Martinez R. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics 2016; 17:615. [PMID: 27514986 PMCID: PMC4981995 DOI: 10.1186/s12864-016-2952-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lasiodiplodia theobromae is a fungus of the Botryosphaeriaceae that causes grapevine vascular disease, especially in regions with hot climates. Fungi in this group often remain latent within their host and become virulent under abiotic stress. Transcriptional regulation analysis of L. theobromae exposed to heat stress (HS) was first carried out in vitro in the presence of grapevine wood (GW) to identify potential pathogenicity genes that were later evaluated for in planta expression. RESULTS A total of 19,860 de novo assembled transcripts were obtained, forty-nine per cent of which showed homology to the Botryosphaeriaceae fungi, Neofusicoccum parvum or Macrophomina phaseolina. Three hundred ninety-nine have homology with genes involved in pathogenic processes and several belonged to expanded gene families in others fungal grapevine vascular pathogens. Gene expression analysis showed changes in fungal metabolism of phenolic compounds; where genes encoding for enzymes, with the ability to degrade salicylic acid (SA) and plant phenylpropanoid precursors, were up-regulated during in vitro HS response, in the presence of GW. These results suggest that the fungal L-tyrosine catabolism pathway could help the fungus to remove phenylpropanoid precursors thereby evading the host defense response. The in planta up-regulation of salicylate hydroxylase, intradiol ring cleavage dioxygenase and fumarylacetoacetase encoding genes, further supported this hypothesis. Those genes were even more up-regulated in HS-stressed plants, suggesting that fungus takes advantage of the increased phenylpropanoid precursors produced under stress. Pectate lyase was up-regulated while a putative amylase was down-regulated in planta, this could be associated with an intercellular growth strategy during the first stages of colonization. CONCLUSIONS L. theobromae transcriptome was established and validated. Its usefulness was demonstrated through the identification of genes expressed during the infection process. Our results support the hypothesis that heat stress facilitates fungal colonization, because of the fungus ability to use the phenylpropanoid precursors and SA, both compounds known to control host defense.
Collapse
Affiliation(s)
- Marcos Paolinelli-Alfonso
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences,University of California Riverside, Riverside, 92521 CA USA
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Clara Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| | - José Fabricio López-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Rufina Hernandez-Martinez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| |
Collapse
|
33
|
Morales-Cruz A, Amrine KCH, Blanco-Ulate B, Lawrence DP, Travadon R, Rolshausen PE, Baumgartner K, Cantu D. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genomics 2015; 16:469. [PMID: 26084502 PMCID: PMC4472170 DOI: 10.1186/s12864-015-1624-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trunk diseases threaten the longevity and productivity of grapevines in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to their unique disease symptoms. We recently released the draft sequences of Eutypa lata, Neofusicoccum parvum and Togninia minima, causal agents of Eutypa dieback, Botryosphaeria dieback and Esca, respectively. In this work, we first expanded genomic resources to three important trunk pathogens, Diaporthe ampelina, Diplodia seriata, and Phaeomoniella chlamydospora, causal agents of Phomopsis dieback, Botryosphaeria dieback, and Esca, respectively. Then we integrated all currently-available information into a genome-wide comparative study to identify gene families potentially associated with host colonization and disease development. RESULTS The integration of RNA-seq, comparative and ab initio approaches improved the protein-coding gene prediction in T. minima, whereas shotgun sequencing yielded nearly complete genome drafts of Dia. ampelina, Dip. seriata, and P. chlamydospora. The predicted proteomes of all sequenced trunk pathogens were annotated with a focus on functions likely associated with pathogenesis and virulence, namely (i) wood degradation, (ii) nutrient uptake, and (iii) toxin production. Specific patterns of gene family expansion were described using Computational Analysis of gene Family Evolution, which revealed lineage-specific evolution of distinct mechanisms of virulence, such as specific cell wall oxidative functions and secondary metabolic pathways in N. parvum, Dia. ampelina, and E. lata. Phylogenetically-informed principal component analysis revealed more similar repertoires of expanded functions among species that cause similar symptoms, which in some cases did not reflect phylogenetic relationships, thereby suggesting patterns of convergent evolution. CONCLUSIONS This study describes the repertoires of putative virulence functions in the genomes of ubiquitous grapevine trunk pathogens. Gene families with significantly faster rates of gene gain can now provide a basis for further studies of in planta gene expression, diversity by genome re-sequencing, and targeted reverse genetic approaches. The functional validation of potential virulence factors will lead to a more comprehensive understanding of the mechanisms of pathogenesis and virulence, which ultimately will enable the development of accurate diagnostic tools and effective disease management.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| | - Katherine C H Amrine
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| | - Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| | - Renaud Travadon
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616, USA.
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA.
| | - Kendra Baumgartner
- United States Department of Agriculture - Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA, 95616, USA.
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Czemmel S, Galarneau ER, Travadon R, McElrone AJ, Cramer GR, Baumgartner K. Genes expressed in grapevine leaves reveal latent wood infection by the fungal pathogen Neofusicoccum parvum. PLoS One 2015; 10:e0121828. [PMID: 25798871 PMCID: PMC4370485 DOI: 10.1371/journal.pone.0121828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Some pathogenic species of the Botryosphaeriaceae have a latent phase, colonizing woody tissues while perennial hosts show no apparent symptoms until conditions for disease development become favorable. Detection of these pathogens is often limited to the later pathogenic phase. The latent phase is poorly characterized, despite the need for non-destructive detection tools and effective quarantine strategies, which would benefit from identification of host-based markers in leaves. Neofusicoccum parvum infects the wood of grapevines and other horticultural crops, killing the fruit-bearing shoots. We used light microscopy and high-resolution computed tomography (HRCT) to examine the spatio-temporal relationship between pathogen colonization and anatomical changes in stem sections. To identify differentially-expressed grape genes, leaves from inoculated and non-inoculated plants were examined using RNA-Seq. The latent phase occurred between 0 and 1.5 months post-inoculation (MPI), during which time the pathogen did not spread significantly beyond the inoculation site nor were there differences in lesion lengths between inoculated and non-inoculated plants. The pathogenic phase occurred between 1.5 and 2 MPI, when recovery beyond the inoculation site increased and lesion lengths of inoculated plants tripled. By 2 MPI, inoculated plants also had decreased starch content in xylem fibers and rays, and increased levels of gel-occluded xylem vessels, the latter of which HRCT revealed at a higher frequency than microscopy. RNA-Seq and screening of 21 grape expression datasets identified 20 candidate genes that were transcriptionally-activated by infection during the latent phase, and confirmed that the four best candidates (galactinol synthase, abscisic acid-induced wheat plasma membrane polypeptide-19 ortholog, embryonic cell protein 63, BURP domain-containing protein) were not affected by a range of common foliar and wood pathogens or abiotic stresses. Assuming such host responses are consistent among cultivars, and do not cross react with other trunk/foliar pathogens, these grape genes may serve as host-based markers of the latent phase of N. parvum infection.
Collapse
Affiliation(s)
- Stefan Czemmel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Erin R. Galarneau
- United States Department of Agriculture-Agricultural Research Service, Davis, California, United States of America
| | - Renaud Travadon
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Andrew J. McElrone
- United States Department of Agriculture-Agricultural Research Service, Davis, California, United States of America
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Davis, California, United States of America
| |
Collapse
|
35
|
Travadon R, Baumgartner K. Molecular Polymorphism and Phenotypic Diversity in the Eutypa Dieback Pathogen Eutypa lata. PHYTOPATHOLOGY 2015; 105:255-264. [PMID: 25084304 DOI: 10.1094/phyto-04-14-0117-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pathogen adaptation to different hosts can lead to specialization and, when coupled with reproductive isolation, genome-wide differentiation and ecological speciation. We tested the hypothesis of host specialization among California populations of Eutypa lata (causal fungus of Eutypa dieback of grapevine and apricot), which is reported from >90 species. Genetic analyses of nine microsatellite loci in 182 isolates from three hosts (grapevine, apricot, and willow) at three locations were complemented by cross-inoculations on cultivated hosts grapevine and apricot to reveal patterns of host specialization. The cultivated hosts are likely more important sources of inoculum than the wild host willow, based on our findings of higher pathogen prevalence and allelic richness in grapevine and apricot. High levels of gene flow among all three hosts and locations, and no grouping by clustering analyses, suggest neither host nor geographic differentiation. Cross-inoculations revealed diversified phenotypes harboring various performance levels in grapevine and apricot, with no apparent correlation with their host of origin. Such phenotypic diversity may enable this pathogen to persist and reproduce as a generalist. Regular genetic reshuffling through sexual recombination, frequent immigration among hosts, and the lack of habitat choice in this passively dispersed fungus may prevent fixation of alleles controlling host specialization.
Collapse
|
36
|
Pouzoulet J, Pivovaroff AL, Santiago LS, Rolshausen PE. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. FRONTIERS IN PLANT SCIENCE 2014; 5:253. [PMID: 24971084 PMCID: PMC4054811 DOI: 10.3389/fpls.2014.00253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 05/17/2014] [Indexed: 05/20/2023]
Abstract
This review illuminates key findings in our understanding of grapevine xylem resistance to fungal vascular wilt diseases. Grapevine (Vitis spp.) vascular diseases such as esca, botryosphaeria dieback, and eutypa dieback, are caused by a set of taxonomically unrelated ascomycete fungi. Fungal colonization of the vascular system leads to a decline of the plant host because of a loss of the xylem function and subsequent decrease in hydraulic conductivity. Fungal vascular pathogens use different colonization strategies to invade and kill their host. Vitis vinifera cultivars display different levels of tolerance toward vascular diseases caused by fungi, but the plant defense mechanisms underlying those observations have not been completely elucidated. In this review, we establish a parallel between two vascular diseases, grapevine esca disease and Dutch elm disease, and argue that the former should be viewed as a vascular wilt disease. Plant genotypes exhibit differences in xylem morphology and resistance to fungal pathogens causing vascular wilt diseases. We provide evidence that the susceptibility of three commercial V. vinifera cultivars to esca disease is correlated to large vessel diameter. Additionally, we explore how xylem morphological traits related to water transport are influenced by abiotic factors, and how these might impact host tolerance of vascular wilt fungi. Finally, we explore the utility of this concept for predicting which V. vinifera cultivars are most vulnerable of fungal vascular wilt diseases and propose new strategies for disease management.
Collapse
|
37
|
Rolshausen PE, Baumgartner K, Travadon R, Fujiyoshi P, Pouzoulet J, Wilcox WF. Identification of Eutypa spp. Causing Eutypa Dieback of Grapevine in Eastern North America. PLANT DISEASE 2014; 98:483-491. [PMID: 30708722 DOI: 10.1094/pdis-08-13-0883-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Eutypa dieback of grapevine is caused by Eutypa lata in production areas with Mediterranean climates in California, Australasia, Europe, and South Africa. Eutypa dieback has also been described in the colder, eastern North American vineyards where cultivars adapted from native Vitis spp. (e.g., Vitis × labruscana 'Concord') are primarily grown. However, the causal agents associated with the diseases in this region have not been conclusively identified. Examination of 48 vineyards showing symptoms of dieback in the northeastern United States (Connecticut, Massachusetts, Michigan, New York, Ohio, and Rhode Island) and Ontario, Canada revealed that vineyards were mainly infected by Eutypa spp. other than E. lata. Multigene phylogenies (internal transcribed spacer ribosomal DNA, β-tubulin, and RNA polymerase II) of isolates recovered from these vineyards indicated that Eutypa dieback is caused primarily by an undescribed Eutypa sp. and E. laevata. Eutypa sp. was recovered from 56% of the vineyards examined, whereas E. laevata and E. lata were less far common (17 and 6%, respectively). Fruiting body morphology and spore dimensions supported phylogenetic separation of the three taxa. Pathogenicity tests conducted on Vitis vinifera 'Chardonnay' in the greenhouse and in the field verified that all three species were able to cause wood canker and to infect pruning wounds, respectively.
Collapse
Affiliation(s)
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Davis, CA 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis 95616
| | | | - Jérome Pouzoulet
- Department of Botany and Plant Sciences, University of California, Riverside
| | - Wayne F Wilcox
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
38
|
Travadon R, Rolshausen PE, Gubler WD, Cadle-Davidson L, Baumgartner K. Susceptibility of Cultivated and Wild Vitis spp. to Wood Infection by Fungal Trunk Pathogens. PLANT DISEASE 2013; 97:1529-1536. [PMID: 30716856 DOI: 10.1094/pdis-05-13-0525-re] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cultivars of European grapevine, Vitis vinifera, show varying levels of susceptibility to Eutypa dieback and Esca, in terms of foliar symptoms. However, little is known regarding cultivar susceptibility of their woody tissues to canker formation. Accordingly, we evaluated the relative susceptibility of V. vinifera cultivars ('Cabernet Franc', 'Cabernet Sauvignon', 'Chardonnay', 'Merlot', 'Riesling', 'Petite Syrah', and 'Thompson Seedless') and species or interspecific hybrids of North American Vitis (Vitis hybrid 'Concord', V. arizonica 'b42-26', V. rupestris × V. cinerea 'Ill547-1', and Fennell 6 [V. aestivalis] × Malaga [V. vinifera] 'DVIT0166') to canker formation by seven trunk pathogens (Neofusicoccum parvum, Lasiodiplodia theobromae, Phaeomoniella chlamydospora, Togninia minima, Phomopsis viticola, Eutypa lata, and an undescribed Eutypa sp.). Susceptibility was based on the length of wood discoloration (LWD) in the woody stems of rooted plants in duplicate greenhouse experiments. Cultivars of V. vinifera and Concord did not vary significantly in susceptibility to N. parvum or L. theobromae (LWD of 21 to 88 mm at 14 weeks post inoculation; P > 0.16), suggesting that they are similarly susceptible to Botryosphaeria dieback. The table-grape Thompson Seedless was most susceptible to P. viticola (mean LWD of 61 mm at 11 months post inoculation; P < 0.0001). V. vinifera cultivars and Concord showed similar susceptibility to the Esca pathogens, Phaeomoniella chlamydospora and T. minima. Susceptibility to E. lata was greatest in V. arizonica b42-26 (mean LWD of 96 mm at 11 months post inoculation; P < 0.03). In fact, all four American Vitis spp. were more susceptible to Eutypa dieback than the V. vinifera cultivars. Our findings suggest that no one cultivar is likely to provide resistance to the range of trunk pathogens but that certain cultivars may be promising candidates for commercially relevant host resistance in grape-production systems where the dominant cultivars are very susceptible.
Collapse
Affiliation(s)
- Renaud Travadon
- Department of Plant Pathology, University of California, Davis 95616
| | | | - Walter D Gubler
- Department of Plant Pathology, University of California, Davis
| | - Lance Cadle-Davidson
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Grape Genetics Research Unit, Geneva, NY 14456
| | | |
Collapse
|
39
|
Block KL, Rolshausen PE, Cantu D. In search of solutions to grapevine trunk diseases through "crowd-sourced" science. FRONTIERS IN PLANT SCIENCE 2013; 4:394. [PMID: 24106495 PMCID: PMC3788621 DOI: 10.3389/fpls.2013.00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Karen L. Block
- Department of Viticulture and Enology, University of California DavisCA, USA
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California DavisCA, USA
| |
Collapse
|
40
|
Blanco-Ulate B, Rolshausen PE, Cantu D. Draft Genome Sequence of the Grapevine Dieback Fungus Eutypa lata UCR-EL1. GENOME ANNOUNCEMENTS 2013; 1:e00228-13. [PMID: 23723393 PMCID: PMC3668001 DOI: 10.1128/genomea.00228-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023]
Abstract
The vascular pathogen Eutypa lata, which causes Eutypa dieback in grapevines, is a major threat to grape production worldwide. Here, we present the first draft genome sequence of E. lata (UCR-EL1). The computational prediction and annotation of the protein-coding genes of UCR-EL1 provide an initial inventory of its potential virulence factors.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California—Davis, Davis, California, USA
- Department of Plant Sciences, University of California—Davis, Davis, California, USA
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California—Riverside, Riverside, California, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California—Davis, Davis, California, USA
| |
Collapse
|
41
|
Trouillas FP, Gubler WD. Host range, biological variation, and phylogenetic diversity of Eutypa lata in California. PHYTOPATHOLOGY 2010; 100:1048-1056. [PMID: 20839940 DOI: 10.1094/phyto-02-10-0040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objectives of this study were to investigate the host range of Eutypa lata in the major grape-growing regions in California and to analyze the phenotypic variation and phylogenetic diversity of E. lata isolates. Perithecia of E. lata were found on grapevines, in apricot, almond, cherry, apple, and pear tree orchards, and on ornamentals (oleander) and native plant species (California buckeye, big leaf maple, and willow). Multigene phylogenies of ribosomal DNA internal transcribed spacer, β-tubulin, and RPB2 genes confirmed the identity of E. lata recovered from the various host plants but also revealed sequence differences among isolates. The intraspecific phylogenetic diversity of E. lata did not correspond to geography or source of isolation, and intraspecific groups were not consistent across the different DNA phylogenies. Significant phenotypic variation also was detected among E. lata isolates, including ascospore and conidium length as well as level of aggressiveness on grapevines. Pathogenicity studies proved that all isolates were infectious to grapevine, suggesting that the native vegetation surrounding vineyards can serve as inoculum sources that may constitute an important element in the epidemiology of Eutypa dieback in grapevines.
Collapse
Affiliation(s)
- F P Trouillas
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
42
|
Camps C, Kappel C, Lecomte P, Léon C, Gomès E, Coutos-Thévenot P, Delrot S. A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1719-37. [PMID: 20190040 PMCID: PMC2852663 DOI: 10.1093/jxb/erq040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/24/2010] [Accepted: 02/02/2010] [Indexed: 05/04/2023]
Abstract
Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback; and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays comprising 14,500 probes were used to compare, under three experimental conditions (in vitro, in the greenhouse, and in the vineyard), foliar material of infected symptomatic plants (S(+)R(+)), infected asymptomatic plants (S(-)R(+)), and healthy plants (S(-)R(-)). These plants were characterized by symptom notation after natural (vineyard) or experimental (in vitro and greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative real-time PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (Erysiphe necator, Plasmopara viticola, and Botrytis cinerea). (i) Five functional categories of genes, that is those involved in metabolism, defence reactions, interaction with the environment, transport, and transcription, were up-regulated in S(+)R(+) plants compared with S(-)R(-) plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also up-regulated after infection by powdery mildew, downy mildew, and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and the polypeptide fraction secreted by Eutypa.
Collapse
Affiliation(s)
- Céline Camps
- Institute of Vine and Wine Sciences, UMR 1287 Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Christian Kappel
- Institute of Vine and Wine Sciences, UMR 1287 Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Pascal Lecomte
- Institute of Vine and Wine Sciences, UMR Santé Végétale, INRA-ENITA, BP81-33883 Villenave d'Ornon, France
| | - Céline Léon
- Institute of Vine and Wine Sciences, UMR 1287 Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Eric Gomès
- Institute of Vine and Wine Sciences, UMR 1287 Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | | | - Serge Delrot
- Institute of Vine and Wine Sciences, UMR 1287 Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| |
Collapse
|
43
|
Baumgartner K, Bergemann SE, Fujiyoshi P, Rolshausen PE, Gubler WD. Microsatellite markers for the grapevine pathogen, Eutypa lata. Mol Ecol Resour 2008; 9:222-4. [PMID: 21564609 DOI: 10.1111/j.1755-0998.2008.02405.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We isolated and characterized nine polymorphic microsatellite markers for Eutypa lata, a fungal pathogen responsible for Eutypa dieback of grapevine, in populations from two California vineyards (24 isolates per vineyard). Allele frequency ranged from two to 11 alleles per locus and haploid gene diversity ranged from 0.33 to 0.83. All samples comprised unique haplotypes. Our results suggest that there is sufficient allelic polymorphism to estimate fine-scale spatial structure, and to identify possible sources of inoculum from habitats outside of vineyards.
Collapse
Affiliation(s)
- K Baumgartner
- USDA-ARS, 363 Hutchison Hall Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA Middle Tennessee State University, Biology Department, PO Box 60, Murfreesboro, TN 37132, USA, Department of Plant Science, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|