1
|
Borş A, Borş SI, Floriștean VC. Mastitis impact on high-yielding dairy farm's reproduction and net present value. Front Vet Sci 2024; 10:1345782. [PMID: 38260189 PMCID: PMC10800613 DOI: 10.3389/fvets.2023.1345782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Poor udder health can have a negative impact on milk production and reproductive performance, which reduces the net present value (NPV) of dairy farms. The aim of this study is therefore to investigate the relationship between clinical mastitis and NPV and the financial impact of impaired reproductive function. For this purpose, 473 dairy cows were included in our study, 146 cows with clinical mastitis (CM group) and 327 clinically healthy cows (CH group) from a high-yielding dairy farm in Romania, milking approximately 780 dairy cows with an average milk production of 46 kg milk/day. We found that, in contrast to CH cows, CM cows had a significantly lower conception rate at first service (58.2% vs. 41.7%, p < 0.05), third service (45.3% vs. 30.2%, p < 0.05), and total services (49.2% vs. 36.4%, p < 0.05). However, this positive effect was not observed for the average days open, which were significantly lower in CM cows than in CH cows (112 ± 4.3 days vs. 142 ± 3.1 days, p < 0.05). The fact that the non-pregnant CH cows had higher somatic cell counts (>400,000 SCC/mL) in their milk around artificial insemination (AI) and 1 month earlier than the pregnant cows (<250,000 SCC/ml) supports the idea that poor uterine health affects the reproductive activity of high-yielding cows. However, by using the UW-DairyRepro$ decision support tool, we found that despite the impairment of reproductive function in dairy cows, the largest negative impacts on NPV are still the cost of milk loss (US$14,439.4/farm/year) and treatment costs (US$4,380/farm/year). We considered the costs associated with poor reproductive function in the CM group (US$3,577/farm/year) as an additional cost of mastitis. Finally, it appears that the impact of mastitis on reproduction is associated with a lower chance of conception than it is with a daily risk of services.
Collapse
Affiliation(s)
- Alina Borş
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, Iaşi, Romania
| | - Silviu-Ionuț Borş
- Research and Development Station for Cattle Breeding Dancu, Iaşi, Romania
| | - Viorel-Cezar Floriștean
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, Iaşi, Romania
| |
Collapse
|
2
|
Cajas D, Guajardo E, Jara-Rosales S, Nuñez C, Vargas R, Carriel V, Campos A, Milla L, Orihuela P, Godoy-Guzman C. Molecules involved in the sperm interaction in the human uterine tube: a histochemical and immunohistochemical approach. Eur J Histochem 2023; 67. [PMID: 37052420 PMCID: PMC10141343 DOI: 10.4081/ejh.2023.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.
Collapse
Affiliation(s)
- David Cajas
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Emanuel Guajardo
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH); Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago.
| | - Sergio Jara-Rosales
- Escuela de Obstetricia, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede Los Leones, Santiago; Programa de Doctorado en Enfermedades Crónicas, Universidad San Sebastián, Sede Los Leones.
| | - Claudio Nuñez
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Luis Milla
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Pedro Orihuela
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH), Santiago.
| | - Carlos Godoy-Guzman
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH); Universidad de Santiago de Chile (USACH), Escuela de Medicina, Unidad de Histología, Santiago.
| |
Collapse
|
3
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Moussa F, Mokh S, Valbonetti L, Capacchietti G, Tagaram I, Bernabò N, Barboni B. Human Immune System Diseasome Networks and Female Oviductal Microenvironment: New Horizons to be Discovered. Front Genet 2022; 12:795123. [PMID: 35154249 PMCID: PMC8829125 DOI: 10.3389/fgene.2021.795123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Human hypofertility and infertility are two worldwide conditions experiencing nowadays an alarming increase due to a complex ensemble of events. The immune system has been suggested as one of the responsible for some of the etiopathogenic mechanisms involved in these conditions. To shed some light into the strong correlation between the reproductive and immune system, as can be inferred by the several and valuable manuscripts published to date, here we built a network using a useful bioinformatic tool (DisGeNET), in which the key genes involved in the sperm-oviduct interaction were linked. This constitutes an important event related with Human fertility since this interaction, and specially the spermatozoa, represents a not-self entity immunotolerated by the female. As a result, we discovered that some proteins involved in the sperm-oviduct interaction are implicated in several immune system diseases while, at the same time, some immune system diseases could interfere by using different pathways with the reproduction process. The data presented here could be of great importance to understand the involvement of the immune system in fertility reduction in Humans, setting the basis for potential immune therapeutic tools in the near future.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Doctoral School of Science and Technology Lebanese University, Beirut, Lebanon
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beiru, Lebanon
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Soares de Carvalho JG, Tonizza de Carvalho NA, Souza DCD, Martins Júnior B, Macedo GG, Vieira LM, Sales JNDS, Ghuman SS, D'Occhio MJ, Baruselli PS. Administration of PGF 2α during the periovulatory period increased fertilization rate in superovulated buffaloes. Theriogenology 2019; 145:138-143. [PMID: 31757482 DOI: 10.1016/j.theriogenology.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to determine the recovery of embryonic structures (ova/embryos) and fertilization rate in superovulated buffaloes treated with PGF2α during the periovulatory period. On day 0 (D0), buffaloes at random stages of the estrous cycle were treated with an intravaginal progesterone device (P4; 1.0 g) and estradiol benzoate (EB, 2.0 mg i.m.). From D4 to D7, all buffaloes received i.m. FSH (200 mg total) twice-daily over 4 days in decreasing doses. On D6 and D7, the animals were given PGF2α analogue (0.53 mg i.m. sodium cloprostenol) and the P4 device was removed on D7. On D8, all buffaloes received GnRH (20 μg i.m. buserelin acetate). Buffaloes were then randomly allocated to one of three groups: control (Group C, n = 18), no further treatment; PGF2α analogue injection (Group IM-PGF; n = 18), four injections (0.53 mg i.m. sodium cloprostenol) 12 h apart, from D8 to D10; PGF2α analogue osmotic pump (Group OP-PGF; n = 18), s.c. osmotic mini-pump (2.12 mg sodium cloprostenol) from D8 to D10. The study had a crossover design (three treatments x three replicates). All animals underwent timed AI, 12 and 24 h after treatment with GnRH. Embryonic structures were recovered on D14. Ovarian ultrasonography was used on D8 and D14 to record follicular superstimulation and superovulatory responses. Blood samples were obtained on Days 7, 8, 9 and 10 to measure circulating concentrations of P4, E2 and PGFM. Data were analyzed by GLIMMIX procedure of SAS®. There was no effect (P = 0.58) of treatment on the total number of embryonic structures (Group C, 2.1 ± 0.8; Group IM-PGF, 2.1 ± 0.6; Group OP-PGF, 1.4 ± 0.4). There was also no effect (P = 0.93) of treatment on the recovery rate of embryonic structures (oocytes and embryos D14/CL D14). The fertilization rate was higher (P = 0.04) in Groups IM-PGF (84.6%) and OP-PGF (88.0%), which did not differ, than Group C (63.2%). The viable embryos rate was greater (P < 0.01) for Groups IM-PGF (82.0%) and OP-PGF (88.0%) than Group C (52.6%). There was no interaction between treatment and time and treatment effects for P4, E2 and PGFM concentrations. The findings showed that treatment with PGF2α during the periovulatory period has potential to increase fertilization rate and embryo production in superovulated buffaloes.
Collapse
Affiliation(s)
- Júlia Gleyci Soares de Carvalho
- Department of Animal Reproduction, FMVZ-USP, São Paulo, SP, Brazil; Human Reproduction Section, Division of Urology, Department of Surgery, São Paulo Federal University, São Paulo, Brazil.
| | - Nelcio Antonio Tonizza de Carvalho
- Research and Development Unit of Registro / Diversified Animal Science Research Center / Institute of Animal Science, Registro, São Paulo, Brazil
| | - Diego Cavalcante de Souza
- Department of Animal Reproduction, FMVZ-USP, São Paulo, SP, Brazil; CATI-Rural Development Office Registro-SP, Brazil
| | - Benedicto Martins Júnior
- Research and Development Unit of Registro / Diversified Animal Science Research Center / Institute of Animal Science, Registro, São Paulo, Brazil
| | - Gustavo Guerino Macedo
- Faculty of Veterinary Medicine and Animal Science, UFMS, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - José Nelio de Sousa Sales
- Department of Animal Science, UFLA, Lavras, MG, Brazil; Department of Veterinary Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Sarvpreet Singh Ghuman
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Michael John D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, Australia
| | | |
Collapse
|
5
|
Fontes PK, Ereno RL, Peixoto AR, Carvalho RF, Scarano WR, Trinca LA, Barros CM, Castilho ACDS. Can the antral follicular count modulate the gene expression of bovine oviducts in Aberdeen Angus and Nelore heifers? PLoS One 2018; 13:e0202017. [PMID: 30157205 PMCID: PMC6114296 DOI: 10.1371/journal.pone.0202017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/26/2018] [Indexed: 01/02/2023] Open
Abstract
The number of visible ovarian antral follicles (antral follicle count—AFC) is repeatable in bovine individuals, but highly variable between animals, and with differences between Bos taurus and Bos indicus breeds. Several studies have tried to determine the correlation between AFC and increased fertility in cattle. While the impacts of AFC on embryo production, hormonal levels, and pregnancy rates have been described, the molecular effects of AFC on bovine oviducts have not yet been investigated. Here, the aim was to investigate the impact of breeds, such as Aberdeen Angus and Nelore heifer with high or low AFC, on abundance of transcripts and protein related to oviductal transport, sperm reservoir formation, monospermy control, and gamete interaction in the oviducts. In summary, the ovulation side was the major factor that affected transcript abundance on bovine oviducts. However, a discreet effect among AFC and cattle breeds was also observed. Based on this, we concluded and reinforced here that differential microenvironments between ipsilateral and contralateral oviducts have a major effect on modulating the transcripts related to oviductal transport, sperm reservoir formation, monospermy control, and gamete interaction. However, we cannot exclude that there is minimal effect of AFC or breed on regulation of some genes (such as AGTR1, ACE1, FUCA1, and VEGFA) in bovine oviducts.
Collapse
Affiliation(s)
- Patricia Kubo Fontes
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ronaldo Luis Ereno
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - André Rebello Peixoto
- Departament of Morphology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Departament of Morphology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Wellerson Rodrigo Scarano
- Departament of Morphology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Luzia Aparecida Trinca
- Departament of Biostatistic, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ciro Moraes Barros
- Departament of Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
6
|
Binelli M, Gonella-Diaza AM, Mesquita FS, Membrive CMB. Sex Steroid-Mediated Control of Oviductal Function in Cattle. BIOLOGY 2018; 7:E15. [PMID: 29393864 PMCID: PMC5872041 DOI: 10.3390/biology7010015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
Abstract
In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos.
Collapse
Affiliation(s)
- Mario Binelli
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611, USA.
| | - Angela Maria Gonella-Diaza
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Rua Duque de Caxias Norte, 255, Bairro: Jardim Elite, Pirassununga 13635-900, SP, Brazil.
| | - Fernando Silveira Mesquita
- Curso de Medicina Veterinária, Universidade Federal do Pampa, UNIPAMPA, BR 472-Km 592, Uruguaiana 97508-000, RS, Brazil.
| | - Claudia Maria Bertan Membrive
- Faculdade de Ciências Agrárias Tecnológicas-FCAT, Universidade Estadual Paulista "Júlio de Mesquita", Rodovia Comandante João Ribeiro de Barros (SP 294), Km 651, Dracena 17900-000, SP, Brazil.
| |
Collapse
|
7
|
Parada-Bustamante A, Oróstica ML, Reuquen P, Zuñiga LM, Cardenas H, Orihuela PA. The role of mating in oviduct biology. Mol Reprod Dev 2018; 83:875-883. [PMID: 27371809 DOI: 10.1002/mrd.22674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
The oviduct connects the ovary to the uterus, and is subject to changes that influence gamete transport, fertilization, and early embryo development. The ovarian steroids estradiol and progesterone are largely responsible for regulating oviduct function, although mating signals also affect the female reproductive tract, both indirectly, through sensory stimulation, and directly, through contact with seminal plasma or spermatozoa. The resulting alterations in gene and protein expression help establish a microenvironment that is appropriate for sperm storage and selection, embryo development, and gamete transport. Mating may also induce the switch from a non-genomic to a genomic pathway of estradiol-accelerated oviduct egg transport, reflecting a novel example of the functional plasticity in well-differentiated cells. This review highlights the physiological relevance of various aspects of mating to oviduct biology and reproductive success. Expanding our knowledge of the mating-associated molecular and cellular events in oviduct cells would undoubtedly facilitate new therapeutic strategies to treat infertility attributable to oviduct pathologies. Mol. Reprod. Dev. 83: 875-883, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - María L Oróstica
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Patricia Reuquen
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Lidia M Zuñiga
- Laboratorio de Biología de la Reproducción, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. .,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile.
| |
Collapse
|
8
|
Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS One 2017; 12:e0188105. [PMID: 29155854 PMCID: PMC5695823 DOI: 10.1371/journal.pone.0188105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
The oviductal microenvironment is a site for key events that involve gamete maturation, fertilization and early embryo development. Secretions into the oviductal lumen by either the lining epithelium or by transudation of plasma constituents are known to contain elements conducive for reproductive success. Although previous studies have identified some of these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid remains rudimentary with limited definition of function even in extensively studied species like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087 proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were common for both in vivo and in vitro conditions. Pathway analysis indicated different classes of proteins that included growth factors, metabolic regulators, immune modulators, enzymes, and extracellular matrix components. Functional analysis revealed mechanisms in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and early embryo development. These results point to several novel components that work together with known elements mediating functional homeostasis, and highlight the diversity of machinery associated with oviductal physiology and early events in cattle fertility.
Collapse
|
9
|
Danesh Mesgaran S, Gärtner MA, Wagener K, Drillich M, Ehling-Schulz M, Einspanier R, Gabler C. Different inflammatory responses of bovine oviductal epithelial cells in vitro to bacterial species with distinct pathogenicity characteristics and passage number. Theriogenology 2017; 106:237-246. [PMID: 29096271 DOI: 10.1016/j.theriogenology.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
The bovine oviduct provides the site for fertilization and early embryonic development. Modifications to this physiological environment, for instance the presence of pathogenic bacterial species, could diminish reproductive success at early stages of pregnancy. The aim of this study was to elucidate the inflammatory responses of bovine oviductal epithelial cells (BOEC) to a pathogenic bacterial species (Trueperella pyogenes) and a potentially pathogenic bacterium (Bacillus pumilus). BOEC from four healthy animals were isolated, cultured in passage 0 (P0) and passaged until P3. Trypan blue staining determined BOEC viability during 24 h co-culture with different multiplicities of infection (MOI) of T. pyogenes (MOI 0.01, 0.05, 0.1 and 1) or B. pumilus (MOI 1 and 10). BOEC remained viable when co-cultured with T. pyogenes at MOI 0.01 and with B. pumilus at MOI 1 and 10. Extracted total RNA from control and bacteria co-cultured samples was subjected to reverse transcription-quantitative polymerase chain reaction (RTq-PCR) to determine mRNA expression of various studied genes. The rate of release of interleukin 8 (IL8) and prostaglandin E2 (PGE2) from BOEC was measured by ELISA after 24 h co-culture with bacteria. RT-qPCR of various selected pro-inflammatory factors revealed similar mRNA expression of pro-inflammatory factors in BOEC co-cultured with T. pyogenes and in the controls. Higher mRNA expression of IL 1A, -1B, tumor necrosis factor alpha and CXC ligand (CXCL) 1/2, -3, -5 and IL8 and PG synthesis enzymes in BOEC co-cultured with B. pumilus was observed. In the presence of B. pumilus a higher amount of IL8 and PGE2 was released from BOEC than from controls. The viability and pro-inflammatory response of P3 BOEC incubated with bacteria was lower than in P0 BOEC. These findings illustrate the pathogenicity of T. pyogenes towards BOEC in detail and the potential role of B. pumilus in generating inflammation in oviductal cells. Culturing conditions influenced the pro-inflammatory responses of BOEC towards bacteria. Therefore, researchers conducting epithelial-bacterial in vitro co-culture should not underestimate the effects of these parameters.
Collapse
Affiliation(s)
- S Danesh Mesgaran
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - M A Gärtner
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Ehling-Schulz
- Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - R Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - C Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Pinto-Bravo P, Galvão A, Rebordão MR, Amaral A, Ramilo D, Silva E, Szóstek-Mioduchowska A, Alexandre-Pires G, Roberto da Costa R, Skarzynski DJ, Ferreira-Dias G. Ovarian steroids, oxytocin, and tumor necrosis factor modulate equine oviduct function. Domest Anim Endocrinol 2017; 61:84-99. [PMID: 28753494 DOI: 10.1016/j.domaniend.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/05/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023]
Abstract
The oviduct plays important roles in the early reproductive process. The aim of this study was to evaluate gene transcription and protein expression of progesterone receptor (PGR), estrogen receptors 1 (ESR1) and 2 (ESR2); oxytocin receptor (OXTR); prostaglandin F2α synthase (AKR1C3), and prostaglandin E2 synthase (Ptges) in mare oviduct in different estrous cycle stages. Estradiol (E2), progesterone (P4), oxytocin (OXT), and tumor necrosis factor α (TNF) effect on in vitro PGE2 and prostaglandin F2α (PGF2α) secretion by equine oviduct explants or by oviductal epithelial cells (OECs) were also assessed. During the breeding season, oviduct tissue was obtained post mortem from cyclic mares. Protein of ESR1, ESR2, PGR, AKR1C3, and Ptges was present in OECs, whereas OXTR was shown in oviduct stroma. In follicular phase, protein expression of ESR1, ESR2, PGR, and OXTR increased in oviduct explants (P < 0.05), whereas no estrous cycle effect was noted for AKR1C3 or Ptges. In follicular phase, mRNA transcription was upregulated for Pgr but downregulated for Oxtr, Ptges, and Akr1c3 (P < 0.05). Nevertheless, Esr1 and Esr2 mRNA levels did not change with the estrous cycle. In the ampulla, Esr1, Esr2, and Oxtr mRNA transcription increased, but not for Pgr or Ptges. In contrast, Akr1c3 mRNA level was upregulated in the infundibulum (P < 0.05). In follicular phase, E2, P4, and OXT downregulated PGE2 production by OEC (P < 0.05), but no difference was observed in mid-luteal phase. Explants production of PGE2 rose when treated with OXT in follicular phase; with TNF or OXT in early luteal phase; or with TNF, OXT, or P4 in mid-luteal phase. PGF2α production by OEC was downregulated by all treatments in follicular phase but upregulated in mid-luteal phase (P < 0.05). Oviduct explants PGF2α production was stimulated by TNF or OXT in all estrous cycle phases. In conclusion, this work has shown that ESR1, ESR2, OXTR, Ptges, and AKRLC3 gene transcription and/or translation is estrous cycle dependent and varies with oviduct portion (infundibulum vs ampulla) and cell type. Ovarian steroid hormones, OXT and TNF stimulation of PGF2α and/or PGE2 production is also estrous cycle dependent and varies in the different portions of mare oviduct. Differential transcription level and protein localization in various portions of the oviduct throughout the estrous cycle, as well as PG production, suggest coordinated physiologic actions and mechanisms of steroid hormones, OXT, and TNF in the equine oviduct.
Collapse
Affiliation(s)
- P Pinto-Bravo
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal; Coimbra School of Agriculture, Coimbra, Portugal
| | - A Galvão
- Coimbra School of Agriculture, Coimbra, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - M R Rebordão
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal; Coimbra School of Agriculture, Coimbra, Portugal
| | - A Amaral
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - D Ramilo
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | - E Silva
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - G Alexandre-Pires
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal
| | | | - D J Skarzynski
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - G Ferreira-Dias
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Portugal.
| |
Collapse
|
11
|
Kowsar R, Marey MA, Shimizu T, Miyamoto A. Short communication: Urea induces T helper 2 (Th2) type environment at transcriptional level and prostaglandin E2 secretion in bovine oviduct epithelial cells in culture. J Dairy Sci 2016; 99:5844-5850. [PMID: 27132094 DOI: 10.3168/jds.2016-10874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/24/2016] [Indexed: 12/30/2022]
Abstract
Excess dietary protein intake in early lactation dairy cows resulting in blood urea nitrogen of greater than 19 to 20mg/dL is associated with decreased fertility. Little is known about the local interference of urea in the normal immunological environment of the oviduct that provides optimal conditions for early reproductive events. A bovine oviduct epithelial cell (BOEC) culture was used to determine how urea influences immune environment. The BOEC monolayer was supplemented with low (20mg/dL) and high (40mg/dL) concentrations of urea together with ovarian steroids, estradiol (1ng/mL) and progesterone (1ng/mL), and LH (10ng/mL) at concentrations observed during the preovulatory period. The urea values used in this study were equivalent to 9.3 and 18.7mg/dL of blood urea nitrogen, which are typically common in lactating dairy cows with low or high protein intake, respectively. Stimulation of BOEC with 40mg/dL of urea induced gene expression of IL10 and IL4, epithelial-derived T helper type 2-driving (anti-inflammatory) cytokines as well as mPGES-1 expression and prostaglandin E2 (PGE2) secretion. However, urea concentrations of both 20 and 40mg/dL failed to alter the expression of IL1B and TNFA, Th1-driving cytokines, and the gene expression of TLR4. However, a concentration of 40mg/dL of urea stimulated α 1-acid glycoprotein expression, an acute phase protein. Data from this in vitro study suggest that urea, at least in part, contributes to influence the expression of some immune-related genes toward T helper type 2 type and prostaglandin E2 secretion, leading to disruption in local environment for fertilization and early embryonic development.
Collapse
Affiliation(s)
- R Kowsar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - M A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt 22511
| | - T Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - A Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
12
|
Reuquén P, Oróstica ML, Rojas I, Díaz P, Parada-Bustamante A, Orihuela PA. Estradiol increases IP3 by a nongenomic mechanism in the smooth muscle cells from the rat oviduct. Reproduction 2015; 150:331-41. [PMID: 26159830 DOI: 10.1530/rep-15-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022]
Abstract
Estradiol (E2) accelerates egg transport by a nongenomic action, requiring activation of estrogen receptor (ER) and successive cAMP and IP3 production in the rat oviduct. Furthermore, E2 increases IP3 production in primary cultures of oviductal smooth muscle cells. As smooth muscle cells are the mechanical effectors for the accelerated oocyte transport induced by E2 in the oviduct, herein we determined the mechanism by which E2 increases IP3 in these cells. Inhibition of protein synthesis by Actinomycin D did not affect the E2-induced IP3 increase, although this was blocked by the ER antagonist ICI182780 and the inhibitor of phospholipase C (PLC) ET-18-OCH3. Immunoelectron microscopy for ESR1 or ESR2 showed that these receptors were associated with the plasma membrane, indicating compatible localization with E2 nongenomic actions in the smooth muscle cells. Furthermore, ESR1 but not ESR2 agonist mimicked the effect of E2 on the IP3 level. Finally, E2 stimulated the activity of a protein associated with the contractile tone, calcium/calmodulin-dependent protein kinase II (CaMKII), in the smooth muscle cells. We conclude that E2 increases IP3 by a nongenomic action operated by ESR1 and that involves the activation of PLC in the smooth muscle cells of the rat oviduct. This E2 effect is associated with CaMKII activation in the smooth muscle cells, suggesting that IP3 and CaMKII are involved in the contractile activity necessary to accelerate oviductal egg transport.
Collapse
Affiliation(s)
- Patricia Reuquén
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - María L Oróstica
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Israel Rojas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Patricia Díaz
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Alexis Parada-Bustamante
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| |
Collapse
|
13
|
Wijayagunawardane MPB, Hambruch N, Haeger JD, Pfarrer C. Effect of epidermal growth factor (EGF) on the phosphorylation of mitogen-activated protein kinase (MAPK) in the bovine oviduct in vitro: Alteration by heat stress. J Reprod Dev 2015; 61:383-9. [PMID: 26050642 PMCID: PMC4623143 DOI: 10.1262/jrd.2014-061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) has been shown to be involved in control of the oviductal microenvironment. To elucidate the potential mechanisms responsible for the detrimental effect of heat stress and to identify the relation with the endocrine status, the effects of EGF on the level of phosphorylated mitogen-activated-protein kinase (MAPK) and proliferation of bovine oviductal epithelial cells (OECs) exposed to different cyclic ovarian steroidal environments (luteal phase (LP), follicular phase (FP) and postovulatory phase (PO)) and temperatures (mild heat stress (40 C) and severe heat stress (43 C)) were investigated. Western blot was performed to evaluate phosphorylated MAPK, while proliferation was analyzed by MTT assay. Stimulation of OECs with EGF alone or with EGF in the PO and FP environments significantly increased the amount of phosphorylated MAPK, with MAPK 44 phosphorylation being highest during exposure to PO conditions. These effects were not observed in the
LP. Heat treatment completely blocked effects of EGF on phosphorylated MAPK. Additionally, severe heat stress led to a significantly lower basal level of phosphorylated MAPK. PD98059 (MAPK inhibitor) completely abolished EGF-stimulated MAPK phosphorylation and OECs proliferation. Overall the results indicate that EGF has the potential to increase the amount of phosphorylated MAPK in OECs and therefore could be involved in regulation of the bovine oviductal microenvironment. However, these regulatory mechanisms may be compromised in the presence of heat stress (high ambient temperature), leading to low fertility rates and impaired embryo survival.
Collapse
|
14
|
Fontes P, Castilho A, Razza E, Ereno R, Satrapa R, Barros C. Prostaglandin receptors (EP2 and EP4) and angiotensin receptor (AGTR2) mRNA expression increases in the oviducts of Nelore cows submitted to ovarian superstimulation. Anim Reprod Sci 2014; 151:112-8. [DOI: 10.1016/j.anireprosci.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022]
|
15
|
Isobe N, Iwamoto C, Kubota H, Yoshimura Y. Relationship between the somatic cell count in milk and reproductive function in peripartum dairy cows. J Reprod Dev 2014; 60:433-7. [PMID: 25196356 PMCID: PMC4284317 DOI: 10.1262/jrd.2014-065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to examine the effect of the somatic cell count (SCC) in milk on reproductive performance, such as pregnancy status in the prepartum period and ovarian function in the postpartum period, in dairy cows. Blood samples were collected every week from one month prepartum to parturition in order to measure the concentrations of 13,14-dihydro-15-keto-PGF2α (PGFM), estrone sulfate (E1S) and progesterone. Milk samples were collected three times per week in both the prepartum (for one month before the dry period) and postpartum periods (for 3 months immediately after parturition) to measure the SCC. Progesterone was also determined in the whole milk of postpartum cows to define the day of the first ovulation. In the prepartum period, the maximum SCC negatively correlated with the pregnancy period (r = –0.77), but not the calf birth weight. Positive and negative correlations were observed between the average SCC and PGFM or progesterone
concentrations in plasma, respectively (r = 0.84 or –0.92, respectively), at 39 weeks of pregnancy. In the postpartum period, a correlation was observed between the day of the first ovulation and both the average and maximum SCC (r = –0.74 and –0.75, respectively), whereas days open was not related to the SCC. These results suggest that a high SCC in the prepartum period may advance parturition by increasing PGF2α and decreasing progesterone and that the first ovulation in the postpartum period was affected by a high SCC.
Collapse
Affiliation(s)
- Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|
16
|
Yamamoto Y, Kobayashi Y, Okuda K. Purified culture systems for bovine oviductal stromal cells. J Reprod Dev 2013; 60:73-7. [PMID: 24096613 PMCID: PMC3963300 DOI: 10.1262/jrd.2013-061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Isolated stromal cells from the ampullary and isthmic parts of bovine oviductal tissues
were cultured in monolayer and spheroid (cell aggregate) systems. Prostaglandin F2α (PGF)
plays a crucial role in oviductal contraction and is produced by oviductal epithelial
cells in cattle. Since stromal cells of many organs produce PGF, PGF production by bovine
oviductal stromal cells was investigated. After PGF synthesis was confirmed, the utility
of isolation and culture methods for oviductal stromal cells was evaluated by PGF
production in the present study. The homogeneity of the cells was > 99%. PGF production
of the cells was increased by tumor necrosis factor-α. The stromal cells aggregated and
formed a spheroid by the treatments with several reagents. PGF production was higher in
the spheroid culture than in the monolayer culture. The isolation and culture methods
described here will facilitate studies of the physiological function of bovine oviductal
stromal cells.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | | |
Collapse
|
17
|
Oróstica ML, Zuñiga LM, Utz D, Parada-Bustamante A, Velásquez LA, Cardenas H, Orihuela PA. Tumour necrosis factor-α is the signal induced by mating to shutdown a 2-methoxyestradiol nongenomic action necessary to accelerate oviductal egg transport in the rat. Reproduction 2013; 145:109-17. [DOI: 10.1530/rep-12-0389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mating shut down a 2-methoxyestradiol (2ME) nongenomic action necessary to accelerate egg transport in the rat oviduct. Herein, we investigated whether tumour necrosis factor-α (TNF-α) participates in this mating effect. In unmated and mated rats, we determined the concentration of TNF-α in the oviductal fluid and the level of the mRNA for Tnf-a (Tnf) and their receptors Tnfrsf1a and Tnfrsf1b in the oviduct tissues. The distribution of the TNFRSF1A and TNFRSF1B proteins in the oviduct of unmated and mated was also assessed. Finally, we examined whether 2ME accelerates oviductal egg transport in unmated rats that were previously treated with a rat recombinant TNF-α alone or concomitant with a selective inhibitor of the NF-κB activity. Mating increased TNF-α in the oviductal fluid, but Tnf transcript was not detected in the oviduct. The mRNA for TNF-α receptors as well as their distribution was not affected by mating, although they were mainly localized in the endosalpinx. Administration of TNF-α into the oviduct of unmated rats prevented the effect of 2ME on egg transport. However, the NF-κB activity inhibitor did not revert this effect of TNF-α. These results indicate that mating increased TNF-α in the oviductal fluid, although this not associated with changes in the expression and localization of TNF-α receptors in the oviductal cells. Furthermore, TNF-α mimicked the effect of mating on the 2ME-induced egg transport acceleration, independently of the activation of NF-κB in the oviduct. We concluded that TNF-α is the signal induced by mating to shut down a 2ME nongenomic action in the rat oviduct.
Collapse
|
18
|
Restuccia DF, Hynx D, Hemmings BA. Loss of PKBβ/Akt2 predisposes mice to ovarian cyst formation and increases the severity of polycystic ovary formation in vivo. Dis Model Mech 2012; 5:403-11. [PMID: 22275470 PMCID: PMC3339834 DOI: 10.1242/dmm.008136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ovarian cysts affect women of all ages and decrease fertility. In particular, polycystic ovarian syndrome (PCOS), in which multiple follicular cysts develop, affects 5–10% of women of reproductive age and can result in infertility. Current non-invasive treatments for PCOS can resolve cysts and restore fertility, but unresponsive patients must undergo severe ovarian wedge resection and resort to in vitro fertilization. PCOS is related to the deregulation of leutinizing hormone (LH) signaling at various levels of the hypothalamic-pituitary-ovarian axis and resultant hyperproduction of androgens. Because insulin resistance and compensatory hyperinsulinemia are observed in 50–70% of individuals with PCOS, deregulated insulin signaling in the ovary is considered an important factor in the disease. Here we report that aged mice specifically lacking the PKBβ (also known as Akt2) isoform that is crucial for insulin signaling develop increased testosterone levels and ovarian cysts, both of which are also observed in insulin-resistant PCOS patients. Young PKBβ knockout mice were used to model PCOS by treatment with LH and exhibited a cyst area that was threefold greater than in controls, but without hyperinsulinemia. Thus, loss of PKBβ might predispose mice to ovarian cysts independently of hyperactive insulin signaling. Targeted therapeutic augmentation of specific PKBβ signaling could therefore provide a new avenue for the treatment and management of ovarian cysts.
Collapse
Affiliation(s)
- David F Restuccia
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | | | |
Collapse
|
19
|
Yoo JG, Hur CG, Park MR, Park JY, Hwang KC, Kim JH, Kim JH, Cho SK. Electrical activation enhances pre-implantation embryo development following sperm injection into in vitro matured pig oocytes. J Vet Med Sci 2011; 74:429-34. [PMID: 22123305 DOI: 10.1292/jvms.11-0073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to evaluate the effect of electrical stimulation (EST) on pronuclear formation, chromosomal constitution, and developmental capability among in vitro matured pig oocytes following intracytoplasmic sperm injection (ICSI). After ICSI, the oocytes were randomly distributed and cultured into 3 groups: the EST activated ICSI group, non-activation ICSI group, and in vitro fertilization (IVF) group. The proportion of oocytes in which 2 pronuclei were formed in ICSI groups was significantly higher in the former groups than in the IVF group (96.2 and 93.5 vs. 64.5%, respectively, P<0.05). The cleavage rate was significantly higher in EST activated ICSI group (78.6%) than in the IVF and non-activated ICSI groups (51.8 and 46.0%, respectively, P<0.05), as was the proportion of oocytes that developed to the blastocyst stage at day 7 (18.9 vs. 11.6 and 9.1%, respectively, P<0.05). Diploid blastocysts were observed in 52.4, 63.0, and 65.2% of oocytes in the IVF, activated, and non-activated ICSI groups, respectively. Eight out of 23 gilts (34.8%) were confirmed to be pregnant in activated ICSI groups, but none of these pregnancies were carried to term. These results show that oocyte activation after ICSI is effective in elevating the cleavage rate and blastocyst development, while ensuring normal chromosome composition. Further research is needed to determine the pregnancy maintenance requirements for ICSI-embryos in pigs.
Collapse
Affiliation(s)
- Jae-Gyu Yoo
- Division of Animal Science, National Institute of Animal Science, Rural Development Administration, Suwon, Gyeonggi 441-706, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Szóstek AZ, Siemieniuch MJ, Deptula K, Woclawek-Potocka I, Majewska M, Okuda K, Skarzynski DJ. Ovarian steroids modulate tumor necrosis factor-α and nitric oxide-regulated prostaglandin secretion by cultured bovine oviductal epithelial cells. Domest Anim Endocrinol 2011; 41:14-23. [PMID: 21420267 DOI: 10.1016/j.domaniend.2011.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/20/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
Abstract
Ovarian steroids assure an optimum environment for the final maturation of oocytes, gamete transport, fertilization, and early embryonic development. The aim of experiment 1 was to examine the influence of ovarian steroids on tumor necrosis factor-α (TNF-α)- or nitric oxide (NO)-regulated prostaglandin (PG), and nitrite/nitrate (NO₂/NO₃) secretion by cultured bovine oviductal epithelial cells (BOECs). BOECs were pretreated with 17β-estradiol (E₂; 10⁻⁹ M) and/or progesterone (P₄; 10⁻⁷ M) for 24 h. For the next 24 h, BOECs were treated with TNF-α (10 ng/mL) or spermine nitric oxide complex (NONOate; 10⁻⁵ M). Prostaglandin F(2α) and PGE₂ secretion was measured in medium by ELISA. The pretreatment of cells with P₄ (progesterone), E₂ (17 β-estradiol), or E₂/P₄ augmented TNF-α-induced PGF(2α) and PGE₂ secretion (P < 0.01). The pretreatment of cells with E₂ or E₂/P₄ increased NONOate-induced PGF(2α) and PGE₂ secretion (P < 0.01). TNF-α induced NO₂/NO₃ production by BOECs. The pretreatment of cells with E₂ augmented only TNF-α-induced NO₂/NO₃ production (P < 0.05). The aim of experiment 2 was to examine the influence of TNF-α, NO, and ovarian steroids on the protein content of enzymes specifically involved in PG and NO production, PG synthases, and NO synthases (NOSs). BOECs were treated with TNF-α (10 ng/mL) or NONOate (10⁻⁵ M). TNF-α increased the protein content of PGG/H synthase, PGF synthase, and PGE synthase (P < 0.05) and endothelial and inducible NOSs (P < 0.05). Nitric oxide increased the protein content of PGF synthase, PGE synthase, endothelial NOS, and inducible NOS (P < 0.05). These results show possible linkage between TNF-α and NO, modulated by ovarian steroids, in the regulation of PG synthesis by BOECs that may be important for triggering the process of oviductal contractions.
Collapse
Affiliation(s)
- A Z Szóstek
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-747, Poland
| | | | | | | | | | | | | |
Collapse
|
21
|
Reslan OM, Khalil RA. Molecular and vascular targets in the pathogenesis and management of the hypertension associated with preeclampsia. Cardiovasc Hematol Agents Med Chem 2011; 8:204-26. [PMID: 20923405 DOI: 10.2174/187152510792481234] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/14/2010] [Indexed: 02/05/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes and vasodilation of the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Preeclampsia (PE) is one of the foremost complications of pregnancy and a major cause of maternal and fetal mortality. The pathophysiological mechanisms of PE have been elusive, but some parts of the puzzle have begun to unravel. Genetic factors such as leptin gene polymorphism, environmental and dietary factors such as Ca(2+) and vitamin D deficiency, and co-morbidities such as obesity and diabetes may increase the susceptibility of pregnant women to develop PE. An altered maternal immune response may also play a role in the development of PE. Although the pathophysiology of PE is unclear, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduced uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia. Placental ischemia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic factors, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II (AngII) receptor. These bioactive factors could cause vascular endotheliosis and consequent increase in vascular resistance and blood pressure, as well as glomerular endotheliosis with consequent proteinuria. The PE-associated vascular endotheliosis could be manifested as decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin-1, AngII and thromboxane A₂. PE could also involve enhanced mechanisms of vascular smooth muscle contraction including intracellular Ca(2+), and Ca(2+) sensitization pathways such as protein kinase C and Rho-kinase. PE-associated changes in the extracellular matrix composition and matrix metalloproteinases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Some of these biologically active factors and vascular mediators have been proposed as biomarkers for early prediction or diagnosis of PE, and as potential targets for prevention or treatment of the disease.
Collapse
Affiliation(s)
- Ossama M Reslan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Gabler C, Fischer C, Drillich M, Einspanier R, Heuwieser W. Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum. Reprod Biol Endocrinol 2010; 8:152. [PMID: 21176181 PMCID: PMC3016299 DOI: 10.1186/1477-7827-8-152] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/22/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Inflammatory processes and infections of the uterine wall must be accepted as a physiological event in dairy cows after calving. This might result in clinical or subclinical endometritis which is assumed to impair reproductive performance in the current lactation. Several cytokines and acute phase proteins have been discussed as local and systemic mediators of these inflammatory processes. The aim of the present study was to investigate the endometrial mRNA expression of the chemokine CXC ligand 5 (CXCL5), interleukin 1β (IL1B), IL6, IL8, tumour necrosis factor alpha (TNF), prostaglandin-endoperoxide synthase 2 (PTGS2) and haptoglobin (HP) in the postpartum period. METHODS Endometrial samples were obtained from primiparous cows (n = 5) on days 10, 17, 24, 31, 38 and 45 postpartum (pp) using the cytobrush technique. Cytological smears were prepared from cytobrush samples to determine the proportion of polymorphonuclear neutrophils (PMN). Total RNA was extracted from endometrial samples, and real-time RT-PCR was performed. RESULTS A time-dependent mRNA expression of the investigated factors was found for the course of the postpartum period. In detail, a significantly higher expression of these factors was observed on day 17 pp compared to day 31 pp. Furthermore, the proportion of PMN peaked between days 10-24 pp and decreased thereafter to low percentages (< 5%) on day 31 pp and thereafter. In addition, CXCL5, IL1B, IL8 and HP mRNA expression correlated significantly with the proportion of PMN (P < 0.05). A significantly higher CXCL5, IL1B, IL6, IL8, PTGS2 and TNF mRNA content was observed in samples from cows with an inflamed endometrium compared with samples from cows with a healthy endometrium (P < 0.05). CONCLUSIONS These results show that inflammatory cytokines and acute phase proteins are expressed in the bovine endometrium in a time-related manner during the postpartum period, with a significant expression peak on day 17 pp as a possible mucosal immune response in the uterus. The evaluation of the expression patterns of such candidate genes may reveal more information than only determining the percentage of PMN to judge the severity of an inflammation.
Collapse
Affiliation(s)
- Christoph Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Claudia Fischer
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Marc Drillich
- Clinic for Animal Reproduction, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany
- Clinic for Ruminants, Section for Herd Health Management, Vetmeduni Vienna, Veterinärplatz 1, 1020 Wien, Austria
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Wolfgang Heuwieser
- Clinic for Animal Reproduction, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany
| |
Collapse
|
23
|
Fischer C, Drillich M, Odau S, Heuwieser W, Einspanier R, Gabler C. Selected pro-inflammatory factor transcripts in bovine endometrial epithelial cells are regulated during the oestrous cycle and elevated in case of subclinical or clinical endometritis. Reprod Fertil Dev 2010; 22:818-29. [PMID: 20450834 DOI: 10.1071/rd09120] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 11/03/2009] [Indexed: 11/23/2022] Open
Abstract
Endometrial cells take part in embryo-maternal communication, as well as supporting the immune system in defending against invading pathogens. The aim of the present study was to examine the mRNA expression of factors that have been suggested to be involved in both events in the bovine endometrial epithelium, namely bovine granulocyte chemotactic protein 2 (CXCL5), interleukin-1 beta (IL1B), IL6, IL8, tumour necrosis factor (TNF), cyclooxygenase 2 (PTGS2) and haptoglobin (HP). Samples were collected in vivo from cows on Days 21-27 postpartum by the cytobrush method to evaluate the correlation between inflammatory factors and uterine health (cows with signs of clinical or subclinical endometritis and healthy cows). Bovine uteri were collected at the abattoir to investigate oestrous cycle-dependent mRNA expression patterns. Real-time reverse transcription-polymerase chain reaction revealed that the expression of CXCL5, IL1B, IL8 and TNF mRNA was significantly higher in cows with subclinical or clinical endometritis compared with healthy cows. The expression of CXCL5, IL1B and IL8 mRNA was increased around ovulation compared with the luteal phase. There was no indication of either oestrous cycle-dependent expression or a correlation with uterine health for IL6, PTGS2 and HP transcripts. These results suggest that CXCL5, IL1B, IL8 and TNF may represent potential marker genes for the detection of cows with subclinical endometritis and for monitoring new therapeutic approaches.
Collapse
Affiliation(s)
- Claudia Fischer
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Sheppard SJ, Khalil RA. Risk factors and mediators of the vascular dysfunction associated with hypertension in pregnancy. Cardiovasc Hematol Disord Drug Targets 2010; 10:33-52. [PMID: 20041838 DOI: 10.2174/187152910790780096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 12/24/2009] [Indexed: 01/24/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes and vasodilation in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Hypertension in pregnancy (HTN-Preg) and preeclampsia (PE) are major complications and life-threatening conditions to both the mother and fetus. PE is precipitated by various genetic, dietary and environmental factors. Although the initiating events of PE are unclear, inadequate invasion of cytotrophoblasts into the uterine artery is thought to reduce uteroplacental perfusion pressure and lead to placental ischemia/hypoxia. Placental hypoxia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II receptor. These bioactive factors affect the production/activity of various vascular mediators in the endothelium, smooth muscle and extracellular matrix, leading to severe vasoconstriction and HTN. As an endothelial cell disorder, PE is associated with decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin, angiotensin II and thromboxane A(2). PE also involves enhanced mechanisms of vascular smooth muscle contraction including intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Changes in extracellular matrix composition and matrix metalloproteases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Characterization of the predisposing risk factors, the biologically active factors, and the vascular mediators associated with PE holds the promise for early detection, and should help design specific genetic and pharmacological tools for the management of the vascular dysfunction associated with HTN-Preg.
Collapse
Affiliation(s)
- Stephanie J Sheppard
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Van Soom A, Vandaele L, Peelman L, Goossens K, Fazeli A. Modeling the interaction of gametes and embryos with the maternal genital tract: From in vivo to in silico. Theriogenology 2010; 73:828-37. [DOI: 10.1016/j.theriogenology.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/11/2009] [Indexed: 12/18/2022]
|
26
|
Tanbe AF, Khalil RA. Circulating and Vascular Bioactive Factors during Hypertension in Pregnancy. ACTA ACUST UNITED AC 2010; 6:60-75. [PMID: 20419111 DOI: 10.2174/157340710790711737] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with significant vascular remodeling in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. The pregnancy-associated vascular changes are largely due to alterations in the amount/activity of vascular mediators released from the endothelium, vascular smooth muscle and extracellular matrix. The endothelium releases vasodilator substances such as nitric oxide, prostacyclin and hyperpolarizing factor as well as vasoconstrictor factors such as endothelin, angiotensin II and thromboxane A(2). Vascular smooth muscle contraction is mediated by intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Extracellular matrix and vascular remodeling are regulated by matrix metalloproteases. Hypertension in pregnancy and preeclampsia are major complications and life threatening conditions to both the mother and fetus, precipitated by various genetic, dietary and environmental factors. The initiating mechanism of preeclampsia and hypertension in pregnancy is unclear; however, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduction in the uteroplacental perfusion pressure and placental ischemia/hypoxia. This placental hypoxic state is thought to induce the release of several circulating bioactive factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and vascular receptor antibodies. Increases in the plasma levels and vascular content of these factors during pregnancy could cause an imbalance in the vascular mediators released from the endothelium, smooth muscle and extracellular matrix, and lead to severe vasoconstriction and hypertension. This review will discuss the interactions between the various circulating bioactive factors and the vascular mediators released during hypertension in pregnancy, and provide an insight into the current and future approaches in the management of preeclampsia.
Collapse
Affiliation(s)
- Alain F Tanbe
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
27
|
Wijayagunawardane MPB, Kodithuwakku SP, DE Silva NT, Miyamoto A. Angiotensin II secretion by the bovine oviduct is stimulated by luteinizing hormone and ovarian steroids. J Reprod Dev 2009; 55:570-5. [PMID: 19602849 DOI: 10.1262/jrd.20071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiotensin II (Ang II), a vasoactive peptide, is secreted by the bovine oviduct and is involved in modulation of local oviductal contraction. Ang II biosynthesis and release during the normal estrous cycle and the effects of luteinizing hormone (LH) and ovarian steroids on biosynthesis and secretion of Ang II were investigated. During the preovulatory period, increases in mRNA expression for Angiotensin converting enzyme 1 (ACE-1) and release of Ang II peptide were detected. Microdialysis of oviductal segments in vitro showed that LH alone significantly increased Ang II release, and combined infusion of LH+E(2)+P(4) caused an increase in Ang II release. In cultured oviductal epithelial cells, LH increased Ang II release and ACE-1 mRNA expression, and E(2)+P(4) enhanced stimulatory effect of LH on Ang II release and ACE-1 mRNA expression. Thus, it can be concluded that the oviductal Ang II system is upregulated by LH and ovarian steroids during the periovulatory period and may enhance local oviductal contraction. These events could stimulate transport of gametes to the fertilization site.
Collapse
|
28
|
Siemieniuch MJ, Woclawek-Potocka I, Deptula K, Okuda K, Skarzynski DJ. Effects of tumor necrosis factor-alpha and nitric oxide on prostaglandins secretion by the bovine oviduct differ in the isthmus and ampulla and depend on the phase of the estrous cycle. Exp Biol Med (Maywood) 2009; 234:1056-66. [PMID: 19596830 DOI: 10.3181/0901-rm-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To determine the possible roles of tumor necrosis factor-alpha (TNFalpha) and nitric oxide (NO) in the bovine oviduct, ampulla and isthmus collected during the estrous cycle were exposed for 18 h to TNFalpha, NO donor (NONOate), NO synthase inhibitors (L-NOARG, L-NAME and AMT) and oxytocin (OT) as a positive control. Prostaglandins (PGs) and NO(2)/NO(3) in conditioned media were measured. TNFalpha stimulated PGF(2alpha) secretion on Day 0 (onset of estrus = Day 0) and Days 2-3, in both the ampulla and isthmus, but on Days 18-20 only in ampulla. TNFalpha increased PGE(2) secretion in both fragments in each phase. NONOate did not affect PGF(2alpha) secretion on Days 18-20, whereas this NO donor stimulated PGF(2alpha) secretion in both fragments on Day 0 and Days 2-3. TNFalpha increased NO(2)/NO(3) production in every examined phase in the ampulla and on Days 2-3 in the isthmus. L-NAME lowered NO(2)/NO(3) production regardless of phase or fragment. L-NOARG and AMT lowered NO(2)/NO(3) production in both fragments on Day 0 and Days 2-3. The possible role of TNFalpha, NO or PGs on the oviductal contractility during the early-luteal phase was also examined. Neither TNFalpha nor NONOate influenced contractility in either fragment. Although PGF(2alpha) stimulated the contraction in both fragments, PGE(2) decreased it. When taken together, TNFalpha seems to play some role as a modulator of PGF(2alpha) and PGE(2) production and for transferring the embryo from the oviduct to the uterus by stimulating NO production in the bovine oviduct.
Collapse
Affiliation(s)
- Marta J Siemieniuch
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
29
|
Kodithuwakku SP, Miyamoto A, Wijayagunawardane MPB. Spermatozoa stimulate prostaglandin synthesis and secretion in bovine oviductal epithelial cells. Reproduction 2007; 133:1087-94. [PMID: 17636163 DOI: 10.1530/rep-06-0201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dynamic action of oviductal secretory compounds on spermatozoa function is well documented. In contrast, the effect of spermatozoa on oviductal function remains poorly characterized. Previously, our lab and others have shown that prostaglandin (PG), together with other vasoactive peptides, plays major roles in oviductal contractions and sperm transport. We therefore examined the effect of spermatozoa on the production of PG by cow oviductal epithelial cells (OEC). A bovine spermatozoa–OEC co-culture system was utilized for this purpose. OECs in the second passage were co-cultured for 0, 1, 3, 6, 12, and 24 h with six doses of motile, killed, or truncated spermatozoa heads (control; without spermatozoa, 102–106spermatozoa/ml medium). The levels of PGE2and PGF2αin the medium were measured using enzyme immunoassays. Messenger RNA expression of cyclooxygenase-2, PGF synthase (PGFS), and PGE synthase (PGES) was investigated using real-time RT-PCR. The results indicated that motile spermatozoa increased the secretion of PG by OEC as well as cellular expression of mRNA for cyclooxygenase, PGES, and PGFS in a dose- and time-dependent manner. A maximum three- to fivefold increased secretion of PG was observed with a dose of 105spermatozoa/ml after a 12-h co-incubation. Neither killed spermatozoa nor truncated spermatozoa heads stimulated oviductal biosynthesis and secretion of PG at any dose or time point observed. The results provide the first evidence that live spermatozoa in the oviduct up-regulate the local PG system, and thereby, enhance oviductal contractions. Thus, spermatozoa may bear a role in accelerating their own transport into the fertilization site.
Collapse
|
30
|
Wijayagunawardane MPB, Kodithuwakku SP, Yamamoto D, Miyamoto A. Vascular endothelial growth factor system in the cow oviduct: A possible involvement in the regulation of oviductal motility and embryo transport. Mol Reprod Dev 2005; 72:511-20. [PMID: 16155957 DOI: 10.1002/mrd.20379] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a potent angiogenic and permeability enhancing factor, which shows the highest activity in the oviduct during the periovulatory period of the estrous cycle in cattle. It has also been shown that the contraction activity of oviduct is highest during the periovulatory period. The present study therefore focused on the possible involvement of VEGF in the regulation of biosynthesis and secretion of contraction-relaxation-related substances in the cow oviduct. Possible autonomous VEGF system in the oviduct as well as its endocrine control was also studied. Bovine oviductal epithelial cells (BOEC) in the second passage were cultured with VEGF (1 ng/ml) alone or with luteinizing hormone (LH; 10 ng/ml), estradiol 17-beta (E2; 1 ng/ml), and/or progesterone (P4; 1 ng/ml). The levels of prostaglandins (PGs), endothelin-1 (ET-1), and angiotensin II (Ang II) in the medium were measured using second antibody enzymeimmunoassay (EIA). The mRNA expressions for cycloxygenase-2 (Cox-2), prostaglandin F synthase (PGFS), prostaglandin E synthase (PGES), prepro-ET-1, endothelin converting enzyme-1 (Ece-1), angiotensin converting enzyme-1 (Ace-1), VEGF and its receptors were investigated using real-time RT-PCR. The results indicate that, (1) VEGF dose-dependently stimulated the release of prostaglandin E2 (PGE2), prostaglandin F2alpha (PGF2alpha), and ET-1, but not Ang II. VEGF and VEGF with LH, E2, and P4 upregulated mRNA expression for biosynthesis cascade of PG, ET-1 as well as their release. However, only the combination of VEGF with LH, E2, and P4 upregulated mRNA for Ace-1 and Ang II release, but not VEGF alone. (2) Treatments of LH, with E2 and/or P4 increased the mRNA expression for VEGF, Flk-1 and Flt-1, and (3) VEGF itself downregulated the expression of mRNA for VEGF, and LH, E2, and P4 enhanced this downregulatory effect. The results of the present study provide the first evidence that (1) VEGF directly stimulates the biosynthesis and release of PGE2, PGF2alpha, and ET-1 in the bovine oviduct, (2) LH stimulates the oviductal VEGF system, and (3) VEGF downregulates the oviductal VEGF system and this downregulation was further intensified in the presence of LH. The data suggest that the preovulatory LH-surge, together with increasing E2 secretion from the Graffian follicle and basal P4 levels from the regressing corpus luteum (CL), upregulates the oviductal VEGF system, inducing the maximum oviductal production of contraction-relaxation-related substances for active oviduct contraction and rapid transport of gametes to the fertilization site. However, the oviductal VEGF elevation caused by the LH-surge, appears to downregulate the oviductal VEGF system immediately after ovulation thereby may contribute to suppress oviductal contraction to secure slow transport of the embryo to the uterus at the optimal time.
Collapse
|
31
|
Woclawek-Potocka I, Okuda K, Acosta TJ, Korzekwa A, Pilawski W, Skarzynski DJ. Phytoestrogen metabolites are much more active than phytoestrogens themselves in increasing prostaglandin F(2alpha) synthesis via prostaglanin F(2alpha) synthase-like 2 stimulation in bovine endometrium. Prostaglandins Other Lipid Mediat 2005; 78:202-17. [PMID: 16303617 DOI: 10.1016/j.prostaglandins.2005.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 08/12/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
Phytoestrogens have recently been suggested to be the cause of infertility by stimulating luteolytic prostaglandin (PG) F(2alpha) secretion from endometrium in cattle. The purpose of this study was to examine the enzymatic and molecular mechanisms involved in the preferential induction of PGF(2alpha) synthesis by phytoestrogens, and whether phytoestrogens influence endometrial cell viability. Cultured bovine endometrial epithelial and stromal cells were exposed to phytoestrogens (daidzein and genistein) and their metabolites (equol and p-ethyl phenol) for 24h. Prostaglandin F(2alpha) and PGE2 were stimulated by phytoestrogens in both stromal and epithelial cells, with a preference for PGF(2alpha) synthesis in epithelial cells (P<0.001). Although RT-PCR and Western Blot analyses did not reveal the influence of phytoestrogens on either gene expression or protein level of cyclooxygenase-2 (COX-2) and PGE2 synthase (PGES) in stromal and epithelial cells (P>0.05), the stimulative effects of equol and p-ethyl phenol on PGF(2alpha) synthase-like 2 (PGFSL2) gene expression and protein level were observed only in epithelial cells (P<0.05). The same compounds did not affect PGFSL2 gene expression and protein in stromal cells (P>0.05). Exposure to phytoestrogens and their metabolites decreased cell viability in both stromal and epithelial cells. Stromal cell viability decreased to 50% of the control and was more evident than that in epithelial cells (P<0.001). The overall results suggest that infertility in cattle, caused by phytoestrogen-dependent preferential stimulation of luteolytic PGF(2alpha) synthesis, is caused by increasing PGFSL2 in epithelial cells, and by decreasing stromal cell viability, which are the main source of luteotropic PGE2 production.
Collapse
Affiliation(s)
- I Woclawek-Potocka
- Department of Reproductive Immunology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | | | | | | | | | | |
Collapse
|
32
|
Nozaki H, Wijayagunawardane MPB, Kodituwakku SP, Yoshida T, Nakamura T, Arai I, Urashima T, Miyamoto A. N-acetylglucosaminyltransferase I activity of bovine oviduct epithelial cells: stimulation by luteinizing hormone, vascular endothelial growth factor and tumor necrosis factor alpha. J Reprod Dev 2005; 51:229-34. [PMID: 15699581 DOI: 10.1262/jrd.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acetylglucosaminyltransferase I (GnT I; EC 2.4.1.101), which catalyzes the first step in the conversion of oligomannose to complex or hybrid N-glycans of glycoproteins, was found in media cultured with bovine oviduct epithelial cells (BOEC) obtained from non-pregnant cows during the follicular phase. Combined treatment with specific hormones increased GnT I release from BOEC. Luteinizing hormone (LH; 10 ng/ml) alone slightly, but together with 17beta-estradiol (E2; 1 ng/ml), synergistically increased GnT I activity. Vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF) alpha, which have been shown to have their highest activities in the bovine oviduct during the periovulatory period, also increased in GnT I activity. This study provides the first evidence of an increase of GnT I release from BOEC in vitro, and shows that endocrine as well as local factors such as LH, VEGF and TNFalpha increase this activity. The results suggest that GnT I activity in the bovine oviduct may contribute to the induction of glycosylation and thereby contributing to the provision of the optimal microenvironment for fertilization and early development of the embryos.
Collapse
Affiliation(s)
- Hirofumi Nozaki
- Department of Agricultural and Life Science, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|