1
|
Knopf P, Pacheco-Torres J, Zizmare L, Mori N, Wildes F, Zhou B, Krishnamachary B, Mironchik Y, Kneilling M, Trautwein C, Pichler BJ, Bhujwalla ZM. Metabolic fingerprinting by nuclear magnetic resonance of hepatocellular carcinoma cells during p53 reactivation-induced senescence. NMR IN BIOMEDICINE 2024; 37:e5157. [PMID: 38589764 DOI: 10.1002/nbm.5157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jesus Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Benyuan Zhou
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Bashiri Z, Sheibak N, Amjadi F, Zandieh Z. The role of myo-inositol supplement in assisted reproductive techniques. HUM FERTIL 2023; 26:1044-1060. [PMID: 35730666 DOI: 10.1080/14647273.2022.2073273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/20/2021] [Indexed: 11/04/2022]
Abstract
Assisted reproductive techniques can help many infertile couples conceive. Therefore, there is a need for an effective method to overcome the widespread problems of infertile men and women. Oocyte and sperm quality can increase the chances of successful in vitro fertilisation. The maturation environment in which gametes are present can affect their competency for fertilisation. It is well established that myo-inositol (MI) plays a pivotal role in reproductive physiology. It participates in cell membrane formation, lipid synthesis, cell proliferation, cardiac regulation, metabolic alterations, and fertility. This molecule also acts as a direct messenger of insulin and improves glucose uptake in various reproductive tissues. Evidence suggests that MI regulates events such as gamete maturation, fertilisation, and embryo growth through intracellular Ca2 + release and various signalling pathways. In addition to the in-vivo production of MI from glucose in the reproductive organs, its synthesis by in vitro-cultured sperm and follicles has also been reported. Therefore, MI is suggested as a therapeutic approach to maintain sperm and oocyte health in men and women with reproductive disorders and individuals of reproductive age.
Collapse
Affiliation(s)
- Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility and Infertility Clinic, Hamedan, Iran
| | - Nadia Sheibak
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Osman R, Lee S, Almubarak A, Han JI, Yu IJ, Jeon Y. Antioxidant Effects of Myo-Inositol Improve the Function and Fertility of Cryopreserved Boar Semen. Antioxidants (Basel) 2023; 12:1673. [PMID: 37759976 PMCID: PMC10525680 DOI: 10.3390/antiox12091673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
During cryopreservation, sperm undergoes structural and molecular changes such as ice crystal formation, DNA fragmentation, and reactive oxygen species (ROS) production, leading to decreased sperm quality after thawing. Antioxidants play a crucial role in preventing these damages, both in vivo and in vitro. One potent antioxidant is myo-inositol, known for its protective effects on sperm against ROS. This study aimed to investigate the protective effect of myo-inositol on cryopreserved boar semen. The semen was diluted, cooled, and cryopreserved using a BF5 extender. It was then divided into five groups: control and different concentrations of myo-inositol (0.5, 1, 1.5, and 2 mg/mL). The post-thaw evaluation included assessments of motility, viability, acrosome integrity, mitochondrial membrane potential (MMP), caspase activity, gene expression, ROS levels, apoptosis, and IVF with treated semen. Results showed that myo-inositol at 0.5 mg/mL improved motility, acrosome integrity, and fertilization ability. It also reduced the expression of pro-apoptotic genes and increased SMCP expression. Lower concentrations also demonstrated improved viability and reduced apoptosis and ROS levels. In conclusion, myo-inositol treatment during cryopreservation improved sperm quality, reduced apoptosis and ROS levels, and enhanced fertility rates in boar semen.
Collapse
Affiliation(s)
- Rana Osman
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Seongju Lee
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North 11111, Sudan
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (R.O.); (S.L.); (A.A.); (I.-J.Y.)
| |
Collapse
|
5
|
Jawad A, Oh D, Choi H, Kim M, Cai L, Lee J, Hyun SH. Myo-inositol improves the viability of boar sperm during liquid storage. Front Vet Sci 2023; 10:1150984. [PMID: 37565079 PMCID: PMC10411888 DOI: 10.3389/fvets.2023.1150984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Liquid preservation of boar semen is a highly preferred method for semen preservation in pig production. However, oxidative stress is the main challenge during the liquid preservation of boar semen in a time dependent manner. Therefore, supplementation of sperm with antioxidants during storage to protect them from oxidative stress has been the focus of recent research. Myo-inositol (Myo-Ins), the most active form of inositol, which belongs to the vitamin (Vit.) (B1 group has been shown to improve semen quality) (1). This study aimed to investigate whether Myo-Ins supplementation protects boar sperm in liquid preservation against oxidative stress and determine the appropriate concentration of Myo-Ins to be used in this regard. Methods Boar sperm was diluted with a semen extender with different concentrations of Myo-Ins (2, 4, 6, and 8 mg/mL) depending on the previous studies (1, 24). Sperm motility and viability, plasma membrane and acrosome integrity, mitochondrial membrane potential (MMP), semen time survival, and gene expression were measured and analyzed on days 0, 1, 3, 5, and 7 for the different samples. Results Different concentrations of Myo-Ins exerted different protective effects on the boar sperm quality. The addition of 2 mg/mL Myo-Ins resulted in higher sperm motility and viability, plasma membrane and acrosome integrity, MMP, and effective survival time. Investigation of mRNA expression patterns via qRT-PCR suggested that the 2 mg/mL Myo-Ins sample had increased expression of antioxidative genes. Conclusion The addition of Myo-Ins to semen extender improved the boar semen quality by decreasing the effects of oxidative stress during liquid preservation at 17°C. Additionally, 2 mg/mL is the optimum inclusion concentration of Myo-Ins for semen preservation.
Collapse
Affiliation(s)
- Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
6
|
Chen Q, Shen L, Li S. Emerging role of inositol monophosphatase in cancer. Biomed Pharmacother 2023; 161:114442. [PMID: 36841024 DOI: 10.1016/j.biopha.2023.114442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Inositol monophosphatase (IMPase) is an enzyme with two homologs-IMPA1 and IMPA2-that is responsible for dephosphorylating myo-inositol monophosphate to generate myo-inositol. IMPase has been extensively studied in neuropsychiatric diseases and is regarded as a susceptibility gene. Recently, emerging evidence has implied that IMPase is linked to cancer development and progression and correlates with patient survival outcomes. Interestingly, whether it acts as a tumor-promoter or tumor-suppressor is inconsistent among different research studies. In this review, we summarize the latest findings on IMPase in cancer, focusing on exploring the underlying mechanisms for its pro- and anticancer roles. In addition, we discuss the potential methods of IMPase regulation in cancer cells and the possible approaches for IMPase intervention in clinical practice.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Iskandar H, Andersson G, Sonjaya H, Arifiantini RI, Said S, Hasbi H, Maulana T, Baharun A. Protein Identification of Seminal Plasma in Bali Bull ( Bos javanicus). Animals (Basel) 2023; 13:514. [PMID: 36766403 PMCID: PMC9913395 DOI: 10.3390/ani13030514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to identify seminal plasma proteins in Bali bull and their potential as biomarkers of fertility. Semen was collected from 10 bulls aged 5-10 years using an artificial vagina. Fresh semen was then centrifuged (3000× g for 30 min). The supernatant was put into straws and stored in liquid nitrogen. The semen plasma protein concentration was determined using the Bradford method, and the protein was characterized using 1D-SDS-PAGE. Coomassie Brilliant Blue (CBB) was used to color the gel, and the molecular weight of the protein was determined using PM2700. A total of 94 proteins were identified in the seminal plasma of Bali bulls analyzed using LC-MS/MS (liquid chromatography-mass spectrometry). Proteins spermadhesin 1 (SPADH1), C-type natriuretic peptide (NPPC), clusterin (CLU), apoliprotein A-II (APOA2), inositol-3-phosphate synthase 1 (ISYNA1), and sulfhydryl oxidase 1 (QSOX1) were identified as important for fertility in Bos javanicus. These proteins may prove to be important biomarkers of fertility in Bali bulls. These proteins are important for reproductive function, which includes spermatozoa motility, capacitation, and acrosome reactions. This study provides new information about the protein content in seminal plasma in Bali bulls. The LC-MS/MS-based proteome approach that we applied in this study obtained 94 proteins. The identification of these seminal plasma proteins of Bali bulls and their potential as fertility biomarkers may have an impact on the success of future artificial insemination (AI).
Collapse
Affiliation(s)
- Hikmayani Iskandar
- Agricultural Science Study Program, Graduate School Hasanuddin University, Makassar 90245, Indonesia;
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Herry Sonjaya
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia;
| | - Syahruddin Said
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Hasbi Hasbi
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Tulus Maulana
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Abdullah Baharun
- Animal Science Program, Faculty of Agriculture, Djuanda University, Bogor 16720, Indonesia;
| |
Collapse
|
8
|
Su XB, Ko ALA, Saiardi A. Regulations of myo-inositol homeostasis: Mechanisms, implications, and perspectives. Adv Biol Regul 2023; 87:100921. [PMID: 36272917 DOI: 10.1016/j.jbior.2022.100921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Phosphorylation is the most common module of cellular signalling pathways. The dynamic nature of phosphorylation, which is conferred by the balancing acts of kinases and phosphatases, allows this modification to finely control crucial cellular events such as growth, differentiation, and cell cycle progression. Although most research to date has focussed on protein phosphorylation, non-protein phosphorylation substrates also play vital roles in signal transduction. The most well-established substrate of non-protein phosphorylation is inositol, whose phosphorylation generates many important signalling molecules such as the second messenger IP3, a key factor in calcium signalling. A fundamental question to our understanding of inositol phosphorylation is how the levels of cellular inositol are controlled. While the availability of protein phosphorylation substrates is known to be readily controlled at the levels of transcription, translation, and/or protein degradation, the regulatory mechanisms that control the uptake, synthesis, and removal of inositol are underexplored. Potentially, such mechanisms serve as an important layer of regulation of cellular signal transduction pathways. There are two ways in which mammalian cells acquire inositol. The historic use of radioactive 3H-myo-inositol revealed that inositol is promptly imported from the extracellular environment by three specific symporters SMIT1/2, and HMIT, coupling sodium or proton entry, respectively. Inositol can also be synthesized de novo from glucose-6P, thanks to the enzymatic activity of ISYNA1. Intriguingly, emerging evidence suggests that in mammalian cells, de novo myo-inositol synthesis occurs irrespective of inositol availability in the environment, prompting the question of whether the two sources of inositol go through independent metabolic pathways, thus serving distinct functions. Furthermore, the metabolic stability of myo-inositol, coupled with the uptake and endogenous synthesis, determines that there must be exit pathways to remove this extraordinary sugar from the cells to maintain its homeostasis. This essay aims to review our current knowledge of myo-inositol homeostatic metabolism, since they are critical to the signalling events played by its phosphorylated forms.
Collapse
Affiliation(s)
- Xue Bessie Su
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - An-Li Andrea Ko
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council, Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Azizi M, Cheraghi E, Soleimani Mehranjani M. Effect of Myo-inositol on sperm quality and biochemical factors in cryopreserved semen of patients with Asthenospermia. Andrologia 2022; 54:e14528. [PMID: 35841196 DOI: 10.1111/and.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/29/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, the influence of myoinositol (MYO) as an antioxidant on the inhibition of the negative impacts of cryopreservation on sperm quality in men with Asthenospermia was investigated. In this prospective study, each semen sample from 25 cases was separated into three groups: Fresh, Control (with freezing medium), Myoinositol (2 mg/ml). According to the World Health Organization criteria (WHO) (2010), total motility, progressive sperm motility, viability, normal morphology, and DNA integrity were assessed. In addition, the hypo-osmotic swelling (HOS) test and mitochondrial membrane potential (MMP) were used. Total antioxidant capacity (TAC), malondialdehyde (MDA), and antioxidant enzyme activity were determined by the ELISA method. In contrast to the fresh samples, lipid peroxidation, DNA integrity damage, DNA fragmentation, HOST, and MMP had significant enhancement in the control samples. Sperm quality was significantly decreased (p < 0.05). Mean percentage viability, normal morphology, total motility, progressive motility, and DNA integrity were significantly enhanced in the MYO group in comparison to the control group (p < 0.05). The MDA and TAC levels and DNA damage in the MYO group were significantly lower compared to the control group (p < 0.05). The findings confirm that sperm quality in patients with Asthenospermia is improved by the administration of 2 mg/ml of myoinositol together with the freezing medium after sperm cryopreservation.
Collapse
Affiliation(s)
- Maryam Azizi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| | | |
Collapse
|
10
|
Wei X, Zhu Y, Zhao X, Zhao Y, Jing Y, Liu G, Wang S, Li H, Ma Y. Transcriptome profiling of mRNAs in muscle tissue of Pinan cattle and Nanyang cattle. Gene 2022; 825:146435. [PMID: 35301069 DOI: 10.1016/j.gene.2022.146435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Mammalian muscle development is regulated by complex gene networks at the molecular level. The revelation of gene regulatory mechanisms is an important basis for the study of muscle development and molecular breeding. To analyze the excellent meat performance of Pinan cattle at the molecular level, we performed high-throughput RNA sequencing to analyze the key regulatory genes that determine the muscle quality traits in Pinan cattle (n = 3) and Nanyang cattle (n = 3). We identified 57 differentially expressed genes in muscle tissue of Pinan cattle compared to that of Nanyang cattle, including 32 upregulated and 25 downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in 'molecular function', including voltage-gated ion channel activity, calcium channel activity and calcium ion binding, and KEGG pathway analysis results revealed that adrenergic signaling in cardio myocytes, cell adhesion molecules and inositol phosphate metabolism pathway were significantly enriched. We identified the reliability of RNA-Seq data through RT-qPCR. Meanwhile, we found that GSTA3, PLCB1 and ISYNA1 genes are highly expressed in muscle tissue of Pinan cattle, and these genes play important roles in PI3K/Akt, MEK1/2-ERK and p53-ISYNA1 signaling pathway. In summary, our results suggested that these differentially expressed genes may play important roles in muscle development in Pinan cattle. However, the functions and mechanism of these significantly differential expressed genes should be investigated in future studies.
Collapse
Affiliation(s)
- Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yadi Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yujia Jing
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gege Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China; School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
11
|
Condorelli RA, Cannarella R, Crafa A, Barbagallo F, Gusmano C, Avola O, Mongioì LM, Basile L, Calogero AE, La Vignera S. Advances in non-hormonal pharmacotherapy for the treatment of male infertility: the role of inositols. Expert Opin Pharmacother 2022; 23:1081-1090. [PMID: 35348407 DOI: 10.1080/14656566.2022.2060076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Several antioxidants are available for the treatment of male infertility. Although the benefit of myo-inositol (MYO) and D-chiro-inositol (DCI) for female infertility is recognized, their role in male infertility is a matter of debate. AREAS COVERED The authors review the impact that treatment with MYO and/or DCI may have on conventional and bio-functional sperm parameters [mitochondrial membrane potential (MMP), sperm chromatin compactness, and sperm DNA fragmentation (SDF)], seminal oxidative stress (OS) and pregnancy, miscarriage, and live birth rates, and the possible mechanisms involved. Furthermore, the authors gather evidence on the effects of MYO and/or DCI on sperm function in vitro. EXPERT OPINION MYO can improve sperm count, motility, capacitation, acrosome reaction, and MMP. No data are currently available on the effects of DCI in vivo. Both MYO and DCI ameliorate sperm motility and MMP in vitro. Therefore, the use of inositols should be preferred in patients with idiopathic asthenozoospermia, especially in case of impaired sperm mitochondrial function. Due to their insulin-sensitizing action, a role for these molecules may be envisaged for the treatment of infertility caused by carbohydrate metabolism derangement.
Collapse
Affiliation(s)
- Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmelo Gusmano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Ottavia Avola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Basile
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Camargo M, Ibrahim E, Aballa TC, Cardozo KHM, Carvalho VM, Lynne CM, Brackett NL, Bertolla RP. Proteomic insight of seminal plasma in spinal cord injured men submitted to oral probenecid treatment for improved motility. J Spinal Cord Med 2021; 44:966-971. [PMID: 32043922 PMCID: PMC8725690 DOI: 10.1080/10790268.2020.1722937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To observe the seminal plasma proteomic composition in men with spinal cord injury orally treated with probenecid, in order to observe pathways associated with increased sperm motility. STUDY DESIGN Prospective study. SETTING Miami Project to Cure Paralysis - University of Miami/Miller School of Medicine. PARTICIPANTS Nine men with spinal cord injury, who agreed to participate in the study. INTERVENTION Oral treatment with probenecid - 500 mg per day for one week, then 500 mg twice daily [1000 mg total] per day for three weeks. OUTCOME MEASURES Semen analysis as per WHO 2010 guidelines, and seminal plasma proteomics analysis by LC-MS/MS. RESULTS In total, 783 proteins were identified, of which, 17 were decreased, while 6 were increased after treatment. The results suggest a new pathway that could be treated by the decrease of biglycan after probenecid treatment. CONCLUSION Oral treatment with probenecid is able to alter the seminal plasma proteome, in pathways that explain decreased innate immune response.
Collapse
Affiliation(s)
- Mariana Camargo
- Department of Surgery, Division of Urology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo Hospital, Sao Paulo, Brazil
| | - Emad Ibrahim
- Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Teodoro C. Aballa
- Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | | | | | - Charles M. Lynne
- Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nancy L. Brackett
- Miami Project To Cure Paralysis, Miller School of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ricardo P. Bertolla
- Department of Surgery, Division of Urology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo Hospital, Sao Paulo, Brazil,Hospital São Paulo, São Paulo, Brazil,Correspondence to: Ricardo P. Bertolla Department of Surgery, Division of Urology, Universidade Federal de São Paulo (UNIFESP), Sao Paulo Hospital, R Embau, 231, 04039-060Sao Paulo, Brazil. Supplemental data for this article can be accessed on the publisher's website https://doi.org/10.1080/10790268.2020.1722937
| |
Collapse
|
13
|
Tsili AC, Sofikitis N, Astrakas L, Goussia A, Kaltsas A, Argyropoulou MI. A magnetic resonance imaging study in etiology of nonobstructive azoospermia. Andrology 2021; 10:241-253. [PMID: 34423558 DOI: 10.1111/andr.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Testicular magnetic resonance imaging parameters, including apparent diffusion coefficient, fractional anisotropy, magnetization transfer ratio, and normalized metabolite concentrations represent useful noninvasive fingerprints of nonobstructive azoospermia. Nonobstructive azoospermia etiology might correlate with the spermatogenesis status. OBJECTIVES To assess the possible association between apparent diffusion coefficient, fractional anisotropy, magnetization transfer ratio, and normalised metabolite concentrations with nonobstructive azoospermia etiology. MATERIALS AND METHODS This retrospective study included 48 consecutive men with nonobstructive azoospermia and 18 age-matched controls. All participants underwent scrotal magnetic resonance imaging. The testicular apparent diffusion coefficient, fractional anisotropy, magnetization transfer ratio, and normalized metabolite concentrations were calculated. nonobstructive azoospermia men were classified into three groups, based on etiology: group 1, idiopathic; group 2, genetic causes; and group 3, non-genetic causes. Parametric and nonparametric statistical tests were used to evaluate differences in magnetic resonance imaging parameters between nonobstructive azoospermia groups and normal testes (group 4). Regression analysis was performed to assess the most predictive magnetic resonance imaging factor of nonobstructive azoospermia etiology. RESULTS Differences in mean apparent diffusion coefficient (p < .001), fractional anisotropy (p < .001), magnetization transfer ratio (p < .001), and normalized concentrations of total choline (p = .005), glucose (p = .012), myo-inositol (p = .024), and lipids (p = .010) were observed among groups. Regression analysis failed to identify the most discriminating magnetic resonance imaging feature for nonobstructive azoospermia etiology. DISCUSSION AND CONCLUSION Apparent diffusion coefficient, fractional anisotropy, magnetization transfer ratio, and normalized concentrations of total choline, glucose, myo-inositol, and lipids are helpful in discriminating nonobstructive azoospermia etiology. Magnetic resonance imaging may provide useful, noninvasive information on the microstructural and biochemical milieu of nonobstructive azoospermia testes.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Anna Goussia
- Department of Pathology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Aris Kaltsas
- Department of Urology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
14
|
De Luca MN, Colone M, Gambioli R, Stringaro A, Unfer V. Oxidative Stress and Male Fertility: Role of Antioxidants and Inositols. Antioxidants (Basel) 2021; 10:antiox10081283. [PMID: 34439531 PMCID: PMC8389261 DOI: 10.3390/antiox10081283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Infertility is defined as a couple’s inability to conceive after at least one year of regular unprotected intercourse. This condition has become a global health problem affecting approximately 187 million couples worldwide and about half of the cases are attributable to male factors. Oxidative stress is a common reason for several conditions associated with male infertility. High levels of reactive oxygen species (ROS) impair sperm quality by decreasing motility and increasing the oxidation of DNA, of protein and of lipids. Multi-antioxidant supplementation is considered effective for male fertility parameters due to the synergistic effects of antioxidants. Most of them act by decreasing ROS concentration, thus improving sperm quality. In addition, other natural molecules, myo-inositol (MI) and d-chiro–inositol (DCI), ameliorate sperm quality. In sperm cells, MI is involved in many transduction mechanisms that regulate cytoplasmic calcium levels, capacitation and mitochondrial function. On the other hand, DCI is involved in the downregulation of steroidogenic enzyme aromatase, which produces testosterone. In this review, we analyze the processes involving oxidative stress in male fertility and the mechanisms of action of different molecules.
Collapse
Affiliation(s)
- Maria Nunzia De Luca
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Riccardo Gambioli
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Correspondence:
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy; (M.N.D.L.); (R.G.); (V.U.)
- System Biology Group Lab, 00161 Rome, Italy
| |
Collapse
|
15
|
Mahiddine FY, Kim MJ. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals (Basel) 2021; 11:1930. [PMID: 34203537 PMCID: PMC8300182 DOI: 10.3390/ani11071930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Sperm cryopreservation is a widely used assisted reproductive technology for canine species. The long-term storage of dog sperm is effective for the breeding of dogs living far apart, scheduling the time of artificial insemination that suits the female, and preventing diseases of the reproductive tract. However, spermatozoa functions are impaired during the freeze-thaw processes, which may decrease reproductive performance. Numerous attempts have been made to restore such impairments, including the use of cryoprotectants to prevent the damage caused by ice crystal formation, and supplementation of antioxidants to reduce reactive oxygen species generation due to osmotic stress during the procedure. Egg yolk derivatives, antioxidants, and, more recently, mesenchymal stem cells (MSCs) and their derivatives have been proposed in this research field. This review article will summarize the current literature available on the topic.
Collapse
Affiliation(s)
| | - Min-Jung Kim
- Department of Research and Development, Mjbiogen Corp., Gwangnaru-ro 144, Seoul 14788, Korea;
| |
Collapse
|
16
|
Bizzarri M, Logoteta P, Monastra G, Laganà AS. An innovative approach to polycystic ovary syndrome. J OBSTET GYNAECOL 2021; 42:546-556. [PMID: 34169781 DOI: 10.1080/01443615.2021.1920006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Myo-inositol and D-chiro-inositol are insulin sensitising agents. In the ovary, myo-inositol acts as second messenger of Follicle Stimulating Hormone (FSH). Both molecules were administered to Polycystic Ovary Syndrome (PCOS) women. The gynaecologist Vittorio Unfer was the first to give specific value to myo-inositol for the treatment of PCOS: this important innovation opened new ways of research to identify efficient therapies based on myo-inositol alone or with low doses of D-chiro-inositol. Significant successes were also gained using myo-inositol in treating male and female infertility. Unfer's researches allowed to identify "the D-Chiro-Inositol Paradox in the Ovary" and the best myo-inositol/D-chiro-inositol ratio (40:1) for the treatment of PCOS. Furthermore, his studies allowed to improve the inositol's efficacy using alpha-lactalbumin. As shown in this review, the main stages of Unfer's scientific career have been closely intertwined with important phases of the recent pharmacological research about the topic.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group Lab, Sapienza University of Rome, Rome, Italy
| | | | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| |
Collapse
|
17
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
18
|
Martínez-Fresneda L, Sylvester M, Shakeri F, Bunes A, Del Pozo JC, García-Vázquez FA, Neuhoff C, Tesfaye D, Schellander K, Santiago-Moreno J. Differential proteome between ejaculate and epididymal sperm represents a key factor for sperm freezability in wild small ruminants. Cryobiology 2021; 99:64-77. [PMID: 33485896 DOI: 10.1016/j.cryobiol.2021.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/23/2023]
Abstract
Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.
Collapse
Affiliation(s)
- Lucía Martínez-Fresneda
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Avda Puerta de Hierro km 5.9, 28040, Madrid, Spain; Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany; Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Bunes
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Juan C Del Pozo
- Centre for Biotechnology and Plant Genomic, Polytechnic University of Madrid-National Institute for Agricultural and Food Research and Technology (UPM-INIA), Autopista M-40 Km 38, 28223, Madrid, Spain
| | - Francisco A García-Vázquez
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, 80521, Fort Collins, CO, USA
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany
| | - Julian Santiago-Moreno
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Avda Puerta de Hierro km 5.9, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Tsili AC, Astrakas L, Sofikitis N, Argyropoulou MI. Proton MR Spectroscopy in Assessing the Biochemical Milieu of Human Testes. J Magn Reson Imaging 2020; 55:404-413. [PMID: 33128500 DOI: 10.1002/jmri.27416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Proton magnetic resonance spectroscopy (MRS), considered a connection between metabolism and anatomic and functional information provided by standard MRI, gives information on various tissue metabolites and their pathologic changes. Recently, proton MRS has been added as an adjunct tool to the multiparametric protocol of scrotal MRI, providing a new insight into the extremely complex biochemical milieu of normal and abnormal testes. This article reviews proton MR spectra of normal testes, showing age and bilateralism dependence. Disturbances of various metabolic pathways in testes of infertile men resulting in alterations of metabolite peaks are discussed. Preliminary data on proton MR spectra of testicular mass lesions are presented. LEVEL OF EVIDENCE: 5. TECHNICAL EFFICACY STAGE: 5.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, Ioannina, Greece
| | - Loukas Astrakas
- Department of Medical Physics, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, University Campus, Ioannina, Greece
| |
Collapse
|
20
|
Zhou L, Sheng W, Jia C, Shi X, Cao R, Wang G, Lin Y, Zhu F, Dong Q, Dong M. Musashi2 promotes the progression of pancreatic cancer through a novel ISYNA1-p21/ZEB-1 pathway. J Cell Mol Med 2020; 24:10560-10572. [PMID: 32779876 PMCID: PMC7521282 DOI: 10.1111/jcmm.15676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous studies found overexpression of Musashi2 (MSI2) conduced to the progression and chemoresistance of pancreatic cancer (PC) by negative regulation of Numb and wild type p53 (wtp53). Now, we further investigated the novel signalling involved with MSI2 in PC. We identified inositol‐3‐phosphate synthase 1 (ISYNA1) as a novel tumour suppressor regulated by MSI2. High MSI2 and low ISYNA1 expression were prevalently observed in 91 PC tissues. ISYNA1 expression was negatively correlated with MSI2 expression, T stage, vascular permeation and poor prognosis in PC patients. What's more, patients expressed high MSI2 and low ISYNA1 level had a significant worse prognosis. And in wtp53 Capan‐2 and SW1990 cells, ISYNA1 was downregulated by p53 silencing. ISYNA1 silencing promoted cell proliferation and cell cycle by inhibiting p21 and enhanced cell migration and invasion by upregulating ZEB‐1. However, MSI2 silencing upregulated ISYNA1 and p21 but downregulated ZEB‐1, which can be rescued by ISYNA1 silencing. Moreover, reduction of cell migration and invasion resulting from MSI2 silencing was significantly reversed by ISYNA1 silencing. In summary, MSI2 facilitates the development of PC through a novel ISYNA1‐p21/ZEB‐1 pathway, which provides new gene target therapy for PC.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - WeiWei Sheng
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Chao Jia
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Xiaoyang Shi
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Rongxian Cao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Guosen Wang
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yiheng Lin
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Fang Zhu
- Division of Cardiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Qi Dong
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Facchinetti F, Espinola MSB, Dewailly D, Ozay AC, Prapas N, Vazquez-Levin M, Wdowiak A, Unfer V. Breakthroughs in the Use of Inositols for Assisted Reproductive Treatment (ART). Trends Endocrinol Metab 2020; 31:570-579. [PMID: 32418772 DOI: 10.1016/j.tem.2020.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
It is well known that myo-inositol (MI) and D-chiro-inositol (DCI) are insulin-sensitizing agents, and MI is of proven utility in polycystic ovary syndrome (PCOS). In addition, MI plays a pivotal role in the physiology of reproduction, and has beneficial effects on the development of oocytes, spermatozoa, and embryos. By contrast, DCI has little effect on spermatozoa, but high concentrations in the ovary can negatively affect the quality of oocytes and the blastocyst. Overall, the evidence in the literature supports the beneficial effects of MI in both female and male reproduction, warranting clinical use of MI in assisted reproductive treatment (ART).
Collapse
Affiliation(s)
- Fabio Facchinetti
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Didier Dewailly
- Faculty of Medicine, University of Lille, and Institut National de la Santé et de la Recherche Médicale (INSERM) Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | - Ali Cenk Ozay
- Near East University, Faculty of Medicine, Department of Obstetrics and Gynecology, and Research Center of Experimental Health Sciences, Nicosia, Cyprus
| | - Nikos Prapas
- Third Department of OB-GYNAE, Aristotle University of Thessaloniki, and IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | - Mónica Vazquez-Levin
- National Council of Scientific and Technical Research, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, Poland
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| | | |
Collapse
|
22
|
In vivo biochemical investigation of spermatogenic status: 1H-MR spectroscopy of testes with nonobstructive azoospermia. Eur Radiol 2020; 30:4284-4294. [PMID: 32232788 DOI: 10.1007/s00330-020-06767-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the biochemical milieu in testes with nonobstructive azoospermia (NOA) by using proton MR spectroscopy (1H-MRS) in detecting differences in testicular metabolites between histological stages of NOA and in assessing the possible presence of spermatozoa before microdissection testicular sperm extraction (mTESE). METHODS Forty-nine NOA men and fifty age-matched controls were included in this prospective study. A single-voxel point-resolved spectroscopy sequence with TR/TE (2000/25 ms) was used. NOA testes were classified using the higher Johnsen score (hJS) (group 1, hJS ≥ 8; and group 2, hJS < 8). Nonparametric statistical tests were used to assess differences in normalized metabolite concentrations, defined as ratios of the metabolite concentrations versus creatine concentration between (a) NOA and controls, (b) NOA groups, and (c) NOA with positive and negative sperm retrieval. RESULTS Normalized concentrations of total choline (median 0.396 vs 1.09 mmol/kg, p = 0.002), myo-inositol (median 1.985 vs 3.19 mmol/kg, p = 0.002), and total lipids and macromolecules (TLM) resonating at 0.9 ppm (median 0.962 vs 2.43 mmol/kg, p = 0.024), 1.3 ppm (median 4.88 vs 10.7 mmol/kg, p = 0.043), and 2.0 ppm (median 2.33 vs 5.96 mmol/kg, p = 0.007) were reduced in NOA testes compared with controls. Decreased concentrations of TLM 2.0 (median 3.755 vs 0.436 mmol/kg, p = 0.043) were found in group 2 compared with group 1. Increased normalized concentrations of glutamate were observed in NOA testes with failed sperm retrieval (median 0.321 vs 0.000 mmol/kg, p = 0.028). CONCLUSIONS 1H-MRS provides metabolic information about the testis in NOA patients and assesses spermatogenic status before mTESE. KEY POINTS • NOA testes differed from age-matched controls, in terms of reduced normalized concentrations of tChol, mI, and lipids. • TLM 2.0 peaks were found useful in the identification of NOA testes with the presence of foci of advanced spermatogenesis up to the haploid gamete stage. • Glu proved a reliable metabolic signature of spermatogenesis in NOA population by assessing the possible presence of sperm after mTESE.
Collapse
|
23
|
Murgia F, Corda V, Serrenti M, Usai V, Santoru ML, Hurt KJ, Passaretti M, Monni MC, Atzori L, Monni G. Seminal Fluid Metabolomic Markers of Oligozoospermic Infertility in Humans. Metabolites 2020; 10:metabo10020064. [PMID: 32053951 PMCID: PMC7074256 DOI: 10.3390/metabo10020064] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Infertility affects 12–15% of couples worldwide, and male factors are the cause of nearly half of all cases. Studying seminal fluid composition could lead to additional diagnostic accuracy and a better understanding of the pathophysiology of male factor infertility. Metabolomics offers a new opportunity to evaluate biomarkers and better understand pathological mechanisms. The aim of the study was to identify new markers or therapeutic targets to improve outcomes in male factor or idiopathic infertility patients. Semen samples were obtained from 29 men with a normal spermogram test, and from 18 oligozoospermic men. Samples were processed and analyzed by Nuclear Magnetic Resonance spectroscopy and, subsequently, multivariate and univariate statistical analyses. Receiving Operator Curves (ROC) and Spearman correlations were also performed. An Orthogonal Partial Least Square Discriminant Analysis supervised multivariate model was devised to compare the groups. The levels of fructose, myo-inositol, aspartate and choline were altered. Moreover, Spearman Correlation associated fructose, aspartate and myo-inositol with the total amount of spermatozoa, total motile spermatozoa, % of immotility and % of “in situ” spermatozoic motility respectively. NMR-based metabolomics allowed the identification of a specific metabolic fingerprint of the seminal fluids of patients affected by oligozoospermia.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09121 Cagliari, Italy; (F.M.); (M.L.S.); (M.P.); (L.A.)
| | - Valentina Corda
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao”, 09121 Cagliari, Italy; (V.C.); (M.S.); (V.U.); (M.C.M.)
| | - Marianna Serrenti
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao”, 09121 Cagliari, Italy; (V.C.); (M.S.); (V.U.); (M.C.M.)
| | - Valeria Usai
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao”, 09121 Cagliari, Italy; (V.C.); (M.S.); (V.U.); (M.C.M.)
| | - Maria Laura Santoru
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09121 Cagliari, Italy; (F.M.); (M.L.S.); (M.P.); (L.A.)
| | - K. Joseph Hurt
- Divisions of Maternal Fetal Medicine and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Mauro Passaretti
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09121 Cagliari, Italy; (F.M.); (M.L.S.); (M.P.); (L.A.)
| | - Maria Carla Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao”, 09121 Cagliari, Italy; (V.C.); (M.S.); (V.U.); (M.C.M.)
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09121 Cagliari, Italy; (F.M.); (M.L.S.); (M.P.); (L.A.)
| | - Giovanni Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao”, 09121 Cagliari, Italy; (V.C.); (M.S.); (V.U.); (M.C.M.)
- Correspondence:
| |
Collapse
|
24
|
Gonzalez-Uarquin F, Rodehutscord M, Huber K. Myo-inositol: its metabolism and potential implications for poultry nutrition-a review. Poult Sci 2019; 99:893-905. [PMID: 32036985 PMCID: PMC7587644 DOI: 10.1016/j.psj.2019.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Myo-inositol (MI) has gained relevance in physiology research during the last decade. As a constituent of animal cells, MI was proven to be crucial in several metabolic and regulatory processes. Myo-inositol is involved in lipid signaling, osmolarity, glucose, and insulin metabolism. In humans and rodents, dietary MI was assessed to be important for health so that MI supplementation appeared to be a valuable alternative for treatment of several diseases as well as for improvements in metabolic performance. In poultry, there is a lack of evidence not only related to specific species-linked metabolic processes but also about the effects of dietary MI on performance and health. This review intends to provide information about the meaning of dietary MI in animal metabolism as well as to discuss potential implications of dietary MI in poultry health and performance with the aim to identify open questions in poultry research.
Collapse
Affiliation(s)
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
25
|
Ghasemi A, Amjadi F, Masoumeh Ghazi Mirsaeed S, Mohammad Beigi R, Ghasemi S, Moradi Y, Tahereh Ghazi Mirsaeed S. The effect of Myo-inositol on sperm parameters and pregnancy rate in oligoasthenospermic men treated with IUI: A randomized clinical trial. Int J Reprod Biomed 2019; 17:749-756. [PMID: 31807723 PMCID: PMC6844281 DOI: 10.18502/ijrm.v17i10.5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
Background In about 40% of the couples, the cause of infertility problems is attributed to men because of low sperm production and disturbed motility of sperm. Pieces of evidence show that Myo-inositol has a potential role for the treatment of sperm morphology and male fertility. Objective This study aimed to determine the effect of Myo-inositol on the sperm parameters and fertility rate in patients with oligoasthenospermia treated by intrauterine insemination (IUI). Materials and Methods This study was a randomized clinical trial conducted on 37 patients with oligoasthenospermia treated by IUI during 2016-2017. In this study, the patients were randomly divided into two groups of oligoasthenospermia treated with (Case group) and without Myo-inositol (Control group). The case group received 0.5 ml of Myo-inositol with a concentration of 2 mg/ml and incubated at 37°C incubator for 2 hr, but the control group had no interventions. Results The results of this study showed that although there was no significant difference in sperm parameters including sperm motility and concentration before processing with Myo-inositol in the case group, but there was a significant increase in sperm motility during the treatment with Myo-inositol. The therapeutic effect of this method was confirmed on induction of pregnancy in 18% of the treated patients, in such a way that was about twice greater than those who did not receive the drug. Conclusion According to the results of this study, the use of Myo-inositol is efficient enough to change sperm parameters to increase the chance of fertility.
Collapse
Affiliation(s)
- Afsane Ghasemi
- Shahid Akbar Abadi Hospital Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemehsadat Amjadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Masoumeh Ghazi Mirsaeed
- Shahid Akbar Abadi Hospital Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Robabeh Mohammad Beigi
- Shahid Akbar Abadi Hospital Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Samaneh Ghasemi
- Shahid Akbar Abadi Hospital Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yousef Moradi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Tahereh Ghazi Mirsaeed
- Shahid Akbar Abadi Hospital Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
26
|
Qamar AY, Fang X, Kim MJ, Cho J. Myoinositol Supplementation of Freezing Medium Improves the Quality-Related Parameters of Dog Sperm. Animals (Basel) 2019; 9:ani9121038. [PMID: 31783679 PMCID: PMC6940725 DOI: 10.3390/ani9121038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/28/2023] Open
Abstract
Simple Summary The generation of free radical reactive oxygen species during freeze–thaw procedures is one of the major factors affecting the function and survival of sperm. Myoinositol is the most important natural form of inositol produced in the human body. Researchers have attempted to exploit the antioxidant nature of myoinositol to treat human infertility issues via the improvement of sperm quality traits and fertilization rates. We investigated the potential role of myoinositol neutralizing free radicals produced during the cryopreservation of dog semen. Myoinositol supplementation in the freezing medium resulted in improved quality-related parameters of dog semen including percentage motility, viability, plasma membrane integrity, and chromatin integrity. Improvement in post-thaw semen quality was confirmed by the expression of genes related to apoptosis, nuclear integrity, and reactive oxygen species generation. Abstract Oxidative stress during freeze–thaw procedures results in reduced semen fertility. A decrease in free radical levels can improve the post-thaw sperm quality. We examined the effects of myoinositol supplementation in freezing medium on the structure and function of cryopreserved dog sperm. Pooled ejaculates were diluted with buffer without or with myoinositol (1 or 2 mg/mL). Analysis of fresh semen revealed that the optimal concentration of myoinositol was 1 mg/mL, and this concentration was used in further experiments. Post-thaw semen quality in the myoinositol-supplemented group was superior (p < 0.05) compared with that in the control group in terms of motility (57.9 ± 0.4% vs. 47.8 ± 0.2%), sperm viability (57.5 ± 0.5% vs. 44.6 ± 0.6%), intact plasma membrane (56.6 ± 0.4% vs. 46.2 ± 0.6%), and acrosome membrane (59.3 ± 0.5% vs. 51.8 ± 0.5%). In addition, sperm in the myoinositol-supplemented group showed a significantly lower expression of pro-apoptotic (BAX) and mitochondrial reactive oxygen species (ROS) modulator (ROMO1) genes but higher expression of anti-apoptotic (BCL2), and protamine-related (PRM2 and PRM3) genes compared with that in the control group. Therefore, myoinositol supplementation before freezing can protect against oxidative stress and improve post-thaw dog sperm quality.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.Y.Q.); (X.F.)
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xung Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.Y.Q.); (X.F.)
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Correspondence: (M.J.K.); (J.C.); Tel.: +82-2-880-1180 (M.J.K.); +82-42-821-6788 (J.C.); Fax: +82-2-873-1269 (M.J.K.); +82-42-821-8903 (J.C.)
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.Y.Q.); (X.F.)
- Correspondence: (M.J.K.); (J.C.); Tel.: +82-2-880-1180 (M.J.K.); +82-42-821-6788 (J.C.); Fax: +82-2-873-1269 (M.J.K.); +82-42-821-8903 (J.C.)
| |
Collapse
|
27
|
Vazquez-Levin M, Verón G. Myo‐inositol in health and disease: its impact on semen parameters and male fertility. Andrology 2019; 8:277-298. [DOI: 10.1111/andr.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M.H. Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| | - G.L. Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
28
|
Bezerra Espinola MS, Aragona C. New perspectives on male fertility evaluation: Innovative approach for the qualitative analysis of spermatozoa. Andrologia 2019; 52:e13378. [PMID: 31691338 DOI: 10.1111/and.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/21/2019] [Accepted: 07/06/2019] [Indexed: 11/30/2022] Open
Abstract
The identification of idiopathic infertility cases, actually, is impossible. Among new functional tests, developed to improve the male fertility diagnosis, the evaluation of spermatic myo-inositol (MI) level, known as Andrositol® test (AT), is one of the most interesting, considering its weak economic burden and ease of use. The aim of this study was to evaluate the predictive power of AT and its potential use for a preliminary evaluation of semen samples. To evaluate the predictive power of AT, 87 sperm samples were analysed in comparison with spermiogram and sperm chromatin dispersion (SCD) Test, the gold standard analyses for male fertility evaluation. The application of AT resulted very useful for a preliminary sample evaluation, predicting the absence of DNA fragmentation in case of Low Responder samples precisely, and the presence of DNA fragmentation in case of medium or High Responder samples with abnormal morphology, predicting SCD results with a probability of 80% for Medium Responder sample and of 96.7% for High Responder sample. Considering the predictive power of this method, we could imagine, as preliminary qualitative analysis, its application before SCD test, deepening sperm analysis, improving the daily activities of laboratory operators and maintaining a good reliability of sperm evaluation.
Collapse
Affiliation(s)
| | - Cesare Aragona
- System Biology Group Lab (SBGLab), University of Rome, Alma Res Fertility Center, Rome, Italy
| |
Collapse
|
29
|
Suliman Y, Becker F, Wimmers K. Implication of transcriptome profiling of spermatozoa for stallion fertility. Reprod Fertil Dev 2019. [PMID: 29534788 DOI: 10.1071/rd17188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Poor fertility of breeding stallions is a recognised problem in the equine industry. The aim of the present study was to detect molecular pathways using two groups of stallions that differed in pregnancy rates as well as in the proportion of normal and motile spermatozoa. RNA was isolated from spermatozoa of each stallion and microarray data were analysed to obtain a list of genes for which transcript abundance differed between the groups (P ≤0.05, fold change ≥1.2). In all, there were 437 differentially expressed (DE) genes between the two groups (P ≤ 0.05, fold change ≥1.2). Next, the DE genes were analysed using Database for Annotation, Visualisation, and Integrated Discovery (DAVID). Finally, ingenuity pathways analysis (IPA) was used to identify top biological functions and significant canonical pathways associated with the DE genes. Analysis using the DAVID database showed significant enrichment in the gene ontology (GO) term 'RNA binding' (P=0.05) and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway cytokine-cytokine receptor interaction (P=0.02). Furthermore, IPA analysis showed interconnected biological functions and canonical pathways involved in the regulation of spermatogenesis and male fertility. In addition, significantly enriched metabolic pathways were identified. In conclusion, the present study has identified, for the first time, molecular processes in stallion spermatozoa that could be associated with stallion fertility.
Collapse
Affiliation(s)
- Yara Suliman
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhem-Stahl-Allee 2, Germany
| | - Frank Becker
- Institute for Reproductive Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhem-Stahl-Allee 2, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology Dummerstorf, D-18196 Dummerstorf, Wilhelm-Stahl-Allee 2, Germany
| |
Collapse
|
30
|
Supplementation of sperm freezing medium with myoinositol improve human sperm parameters and protects it against DNA fragmentation and apoptosis. Cell Tissue Bank 2019; 20:77-86. [DOI: 10.1007/s10561-018-9731-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
|
31
|
Rafikov R, McBride ML, Zemskova M, Kurdyukov S, McClain N, Niihori M, Langlais PR, Rafikova O. Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L428-L444. [PMID: 30604625 DOI: 10.1152/ajplung.00393.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Matthew L McBride
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Marina Zemskova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Sergey Kurdyukov
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Nolan McClain
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Maki Niihori
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| | - Olga Rafikova
- Division of Endocrinology, Department of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
32
|
Britten JL, Malik M, Lewis TD, Catherino WH. Ulipristal Acetate Mediates Decreased Proteoglycan Expression Through Regulation of Nuclear Factor of Activated T-Cells (NFAT5). Reprod Sci 2018; 26:184-197. [PMID: 30567472 DOI: 10.1177/1933719118816836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear factor of activated T-cells (NFAT5) is a tissue specific, osmoadaptive transcription factor essential for the control of hydration homeostasis in mammalian cells. Nuclear factor of activated T-cells regulates osmolyte transporters aldo-keto reductase family 1 member B1 (AKR1B1) and solute carrier family 5 member 3 (SLC5A3) to maintain fluid equilibrium in cells. The osmotic potential of the extracellular matrix of leiomyomas is attributed to the role of proteoglycans. In leiomyoma cells, NFAT5 is overexpressed compared to myometrial cells. The selective progesterone receptor modulator, ulipristal acetate, has been reported to decrease the size of leiomyomas in clinical trials. When treated with ulipristal acetate, both patient leiomyoma tissue and leiomyoma cells grown in 3-dimensional cultures show a decrease in the expression of NFAT5 protein, solute transporters AKR1B1 and SLC5A3, and results in an associated decline in the expression of proteoglycans, versican, aggrecan, and brevican. In summary, ulipristal acetate induces changes in leiomyoma cell osmoregulation which result in a decrease in proteoglycan expression.
Collapse
Affiliation(s)
- Joy L Britten
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Minnie Malik
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Terrence D Lewis
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,2 Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - William H Catherino
- 1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,2 Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
33
|
Quantitative Proton Spectroscopy of the Testes at 3 T: Toward a Noninvasive Biomarker of Spermatogenesis. Invest Radiol 2018; 53:87-95. [PMID: 28877046 DOI: 10.1097/rli.0000000000000414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The aim of this study was to compare testicular metabolite concentrations between fertile control subjects and infertile men. MATERIALS AND METHODS Single voxel proton magnetic resonance spectroscopy (H-MRS) was performed in the testes with and without water suppression at 3 T in 9 fertile control subjects and 9 infertile patients (8 with azoospermia and 1 with oligospermia). In controls only, the T1 and T2 values of water and metabolites were also measured. Absolute metabolite concentrations were calculated using the unsuppressed water signal as a reference and correcting for the relative T1 and T2 weighting of the water and metabolite signals. RESULTS Testicular T1 values of water, total choline, and total creatine were 2028 ± 125 milliseconds, 1164 ± 105 milliseconds, and 1421 ± 314 milliseconds, respectively (mean ± standard deviation). T2 values were 154 ± 11 milliseconds, 342 ± 53 milliseconds, and 285 ± 167 milliseconds, respectively. Total choline concentration was lower in patients (mean, 1.5 mmol/L; range, 0.9-2.1 mmol/L) than controls (mean, 4.4 mmol/L; range, 3.2-5.7 mmol/L; P = 4 × 10). Total creatine concentration was likewise reduced in patients (mean, 1.1 mmol/L; range, undetectable -2.7 mmol/L) compared with controls (mean, 3.6 mmol/L; range, 2.5-4.7 mmol/L; P = 1.6 × 10). The myo-inositol signal normalized to the water reference was also lower in patients than controls (P = 4 × 10). CONCLUSIONS Testicular metabolite concentrations, measured by proton spectroscopy at 3 T, may be valuable as noninvasive biomarkers of spermatogenesis.
Collapse
|
34
|
Saleh R, Assaf H, Abd El Maged WM, Elsuity M, Fawzy M. Increased cryo-survival rate in ejaculated human sperm from infertile men following pre-freeze in vitro myo-inositol supplementation. Clin Exp Reprod Med 2018; 45:177-182. [PMID: 30538948 PMCID: PMC6277674 DOI: 10.5653/cerm.2018.45.4.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the effects of in vitro myo-inositol (Myo-Ins) supplementation of cryopreserved human semen on the cryo-survival rate (CSR). Methods Semen samples were obtained from 41 infertile men. Following routine semen analysis, each sample was divided into two equal aliquots (0.5 mL each). One aliquot was treated with 1 mg of Myo-Ins dissolved in 10 µL of sperm preparation medium. The second aliquot was treated with 10 µL of the same medium (control). Both aliquots were incubated for 20 minutes prior to freezing to slow the freezing process. The frozen samples were examined for post-thaw percentages of total motility (TM), progressive motility (PM), and the CSR, defined as the percentage of post-thaw TM divided by the percentage of pre-freeze TM and multiplied in 100. The results were expressed as median and interquartile range (25th and 75th percentiles). Results The pre-freeze TM (50% [30%–50%]) and PM (35% [20%–35%]) were significantly higher than the post-thaw TM and PM in the Myo-Ins group (15% [10%–35%] and 10% [5%–20%]; p<0.001 and p<0.001, respectively) and the control group (10% [6%–30%] and 5% [3%–15%]; p<0.001 and p<0.001, respectively). The CSR of the 41 semen aliquots supplemented with Myo-Ins (40% [25%–70%]) was significantly higher than that of the control samples (30% [13%–58%], p=0.041). The CSR of the 26 abnormal semen samples that were supplemented with Myo-Ins (38% [20%–50%]) was significantly higher than that of the control samples (23% [12%–30%], p=0.031). Conclusion In vitro Myo-Ins supplementation of ejaculated human sperm from infertile men resulted in a significant increase in the CSR in samples with abnormal pre-freeze sperm parameters.
Collapse
Affiliation(s)
- Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt.,Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Hanan Assaf
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Wafaa M Abd El Maged
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed Elsuity
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | |
Collapse
|
35
|
Disruption of INOS, a Gene Encoding myo-Inositol Phosphate Synthase, Causes Male Sterility in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2018; 8:2913-2922. [PMID: 29991509 PMCID: PMC6118315 DOI: 10.1534/g3.118.200403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inositol is a precursor for the phospholipid membrane component phosphatidylinositol (PI), involved in signal transduction pathways, endoplasmic reticulum stress, and osmoregulation. Alterations of inositol metabolism have been implicated in human reproductive issues, the therapeutic effects of drugs used to treat epilepsy and bipolar disorder, spinal cord defects, and diseases including diabetes and Alzheimer’s. The sole known inositol synthetic enzyme is myo-inositol synthase (MIPS), and the homolog in Drosophilia melanogaster is encoded by the Inos gene. Three identical deletion strains (inosΔDF/CyO) were constructed, confirmed by PCR and sequencing, and homozygotes (inosΔDF/inosΔDF) were shown to lack the transcript encoding the MIPS enzyme. Without inositol, homozygous inosΔDF deletion fertilized eggs develop only to the first-instar larval stage. When transferred as pupae to food without inositol, however, inosΔDF homozygotes die significantly sooner than wild-type flies. Even with dietary inositol the homozygous inosΔDF males are sterile. An inos allele, with a P-element inserted into the first intron, fails to complement this male sterile phenotype. An additional copy of the Inos gene inserted into another chromosome rescues all the phenotypes. These genetic and phenotypic analyses establish D. melanogaster as an excellent model organism in which to examine the role of inositol synthesis in development and reproduction.
Collapse
|
36
|
Artini PG, Casarosa E, Carletti E, Monteleone P, Di Noia A, Di Berardino OM. In vitro effect of myo-inositol on sperm motility in normal and oligoasthenospermia patients undergoing in vitro fertilization. Gynecol Endocrinol 2017; 33:109-112. [PMID: 27908215 DOI: 10.1080/09513590.2016.1254179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
It is a known fact that abnormal seminal liquid specimens contain abnormal amounts of oxygen free radicals and reactive oxygen species (ROS), and that the use of antioxidant molecules both in vivo and in vitro leads to improvement of semen quality in terms of motility, reduction in DNA damage, with obvious consequences on the fertilization potential. Myo-inositol has been observed to have anti-oxidant properties and be present in much greater concentrations specifically in seminal liquid than in the blood. Moreover, there seems to be a direct relationship between myo-inositol and mitochondrial membrane potential (MMP) and sperm motility. Studies performed in vivo have demonstrated that a dietary supplementation with myo-inositol in men undergoing assisted reproduction techniques may improve sperm quality and motility in oligoasthenospermia (OAT) patients. In the following study we utilized myo-inositol in vitro to verify its effect on semen quality in both normal and OAT patients undergoing in vitro fertilization (IVF) with respect to standard sperm medium. In vitro incubation of seminal liquid carried out using myo-inositol (Andrositol-Lab, Lo.Li. Pharma-Roma, Italy) at a concentration of 15 μl/ml improved progressive motility in both normospermia and OAT subjects. In our opinion, myo-inositol may prove to be a useful strategy to improve sperm preparation for clinical use in IVF.
Collapse
Affiliation(s)
- P G Artini
- a Department of Clinical and Experimental Medicine , Division of Obstetrics and Gynecology Oncology, University of Pisa , Pisa , Italy and
| | - E Casarosa
- a Department of Clinical and Experimental Medicine , Division of Obstetrics and Gynecology Oncology, University of Pisa , Pisa , Italy and
| | - E Carletti
- a Department of Clinical and Experimental Medicine , Division of Obstetrics and Gynecology Oncology, University of Pisa , Pisa , Italy and
| | - P Monteleone
- b Division of Obstetrics and Gynecology , Ospedale San Francesco , Barga , Lucca , Italy
| | - A Di Noia
- a Department of Clinical and Experimental Medicine , Division of Obstetrics and Gynecology Oncology, University of Pisa , Pisa , Italy and
| | - O M Di Berardino
- a Department of Clinical and Experimental Medicine , Division of Obstetrics and Gynecology Oncology, University of Pisa , Pisa , Italy and
| |
Collapse
|
37
|
Simi G, Genazzani AR, Obino MER, Papini F, Pinelli S, Cela V, Artini PG. Inositol and In Vitro Fertilization with Embryo Transfer. Int J Endocrinol 2017; 2017:5469409. [PMID: 28348586 PMCID: PMC5350329 DOI: 10.1155/2017/5469409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
Recently, studies on inositol supplementation during in vitro fertilization program (IVF) have gained particular importance due to the effect of this molecule on reducing insulin resistance improving ovarian function, oocyte quality, and embryo and pregnancy rates and reducing gonadotropin amount during stimulation. Inositol and its isoforms, especially myoinositol (MYO), are often used as prestimulation therapy in infertile patients undergoing IVF cycle. Inositol supplementation started three months before ovarian stimulation, resulting in significant improvements in hormonal responses, reducing the amount of FSH necessary for optimal follicle development and serum levels of 17beta-estradiol measured the day of hCG injection. As shown by growing number of trials, MYO supplementation improves oocyte quality by reducing the number of degenerated and immature oocytes, in this way increasing the quality of embryos produced. Inositol can also improve the quality of sperm parameters in those patients affected by oligoasthenoteratozoospermia.
Collapse
Affiliation(s)
- G. Simi
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A. R. Genazzani
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - M. E. R. Obino
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F. Papini
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S. Pinelli
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - V. Cela
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - P. G. Artini
- Division of Obstetrics and Gynecology Oncology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *P. G. Artini:
| |
Collapse
|
38
|
Panula S, Reda A, Stukenborg JB, Ramathal C, Sukhwani M, Albalushi H, Edsgärd D, Nakamura M, Söder O, Orwig KE, Yamanaka S, Reijo Pera RA, Hovatta O. Over Expression of NANOS3 and DAZL in Human Embryonic Stem Cells. PLoS One 2016; 11:e0165268. [PMID: 27768780 PMCID: PMC5074499 DOI: 10.1371/journal.pone.0165268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/05/2022] Open
Abstract
The mechanisms underlying human germ cell development are largely unknown, partly due to the scarcity of primordial germ cells and the inaccessibility of the human germline to genetic analysis. Human embryonic stem cells can differentiate to germ cells in vitro and can be genetically modified to study the genetic requirements for germ cell development. Here, we studied NANOS3 and DAZL, which have critical roles in germ cell development in several species, via their over expression in human embryonic stem cells using global transcriptional analysis, in vitro germ cell differentiation, and in vivo germ cell formation assay by xenotransplantation. We found that NANOS3 over expression prolonged pluripotency and delayed differentiation. In addition, we observed a possible connection of NANOS3 with inhibition of apoptosis. For DAZL, our results suggest a post-transcriptional regulation mechanism in hES cells. In addition, we found that DAZL suppressed the translation of OCT4, and affected the transcription of several genes associated with germ cells, cell cycle arrest, and cell migration. Furthermore, DAZL over expressed cells formed spermatogonia-like colonies in a rare instance upon xenotransplantation. These data can be used to further elucidate the role of NANOS3 and DAZL in germ cell development both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarita Panula
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
| | - Ahmed Reda
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Cyril Ramathal
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
| | - Meena Sukhwani
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Halima Albalushi
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Sultan Qaboos University, College of Medicine and Health Sciences, Muscat, Oman
| | - Daniel Edsgärd
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michiko Nakamura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Olle Söder
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Kyle E. Orwig
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA, 15213, United States of America
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, 94158, United States of America
| | - Renee A. Reijo Pera
- Department of Genetics and Department of Obstetrics and Gynecology, Institute for Stem Cell Biology and Regenerative Medicine, Center for Reproductive and Stem Cell Biology, Stanford University, Stanford, CA, 94305, United States of America
- Department of Cell Biology and Neurosciences and Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, United States of America
| | - Outi Hovatta
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, SE-141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
39
|
KOGUCHI TOMOYUKI, TANIKAWA CHIZU, MORI JINICHI, KOJIMA YOSHIYUKI, MATSUDA KOICHI. Regulation of myo-inositol biosynthesis by p53-ISYNA1 pathway. Int J Oncol 2016; 48:2415-24. [DOI: 10.3892/ijo.2016.3456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 11/05/2022] Open
|
40
|
Gulino FA, Leonardi E, Marilli I, Musmeci G, Vitale SG, Leanza V, Palumbo MA. Effect of treatment with myo-inositol on semen parameters of patients undergoing an IVF cycle: in vivo study. Gynecol Endocrinol 2016; 32:65-8. [PMID: 26361940 DOI: 10.3109/09513590.2015.1080680] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Myo-inositol (MI) is a precursor for the synthesis of phosphatidylinositol polyphosphates (PIPs). The aim of the study is to evaluate the effect of its administration on semen parameters of male patients undergoing an in vitro fertilization cycles. METHODS In vivo study. Samples were semen of 62 patients divided into three different groups: healthy fertile patients (Group A); patients with oligoasthenospermia (OA) (Group B); control group (CTR). The collected samples were analyzed by optic microscopy in order to evaluate semen's volume, spermatozoa's number and motility before and after density-gradient separation method. These parameters were evaluated before and after administration of 4000 mg/die of MI and 400 µg of folic acid for 2 months. The results were analyzed statistically with Student's t-test. RESULTS After treatment there was a significant increase of basal and after density-gradient separation method spermatozoa concentration in Group B, and a significant increase of spermatozoa count after density-gradient separation method in Group A. The motility values were higher in healthy men than patients with OA before treatment, but there was no improvement in both groups after treatment. CONCLUSIONS Exogenous administration of MI significantly improves semen's parameters both in patients with OA and in normal fertile men.
Collapse
Affiliation(s)
- Ferdinando Antonio Gulino
- a Division of Obstetrics and Gynaecology, Department of Surgery , Center of Physiopathology of Human Reproduction, S. Bambino Hospital, University of Catania , Catania , Italy and
| | - Emanuela Leonardi
- a Division of Obstetrics and Gynaecology, Department of Surgery , Center of Physiopathology of Human Reproduction, S. Bambino Hospital, University of Catania , Catania , Italy and
| | - Ilaria Marilli
- a Division of Obstetrics and Gynaecology, Department of Surgery , Center of Physiopathology of Human Reproduction, S. Bambino Hospital, University of Catania , Catania , Italy and
| | - Giulia Musmeci
- b Department of Experimental and Clinical Pharmacology , University of Catania , Catania , Italy
| | - Salvatore Giovanni Vitale
- a Division of Obstetrics and Gynaecology, Department of Surgery , Center of Physiopathology of Human Reproduction, S. Bambino Hospital, University of Catania , Catania , Italy and
| | - Vito Leanza
- a Division of Obstetrics and Gynaecology, Department of Surgery , Center of Physiopathology of Human Reproduction, S. Bambino Hospital, University of Catania , Catania , Italy and
| | - Marco Antonio Palumbo
- a Division of Obstetrics and Gynaecology, Department of Surgery , Center of Physiopathology of Human Reproduction, S. Bambino Hospital, University of Catania , Catania , Italy and
| |
Collapse
|
41
|
MR Spectra of Normal Adult Testes and Variations with Age: Preliminary Observations. Eur Radiol 2015; 26:2261-7. [PMID: 26474986 DOI: 10.1007/s00330-015-4055-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim was to determine the proton MR (1H-MR) spectra of normal adult testes and variations with age. METHODS Forty-one MR spectra of normal testes, including 16 testes from men aged 20-39 years (group I) and 25 testes from men aged 40-69 years (group II), were analyzed. A single-voxel point-resolved spectroscopy sequence (PRESS), with TR/TE: 2000/25 ms was used. The volume of interest was placed to include the majority of normal testicular parenchyma. Association between normalized metabolite concentrations, defined as ratios of the calculated metabolite concentrations relative to creatine concentration, and age was assessed. RESULTS Quantified metabolites of the spectra were choline (Cho), creatine (Cr), myo-inositol (mI), scyllo-inositol, taurine, lactate, GLx compound, glucose, lipids, and macromolecules resonating at 0.9 ppm (LM09), around 20 ppm (LM20), and at 13 ppm (LM13). Most prominent peaks were Cho, Cr, mI, and lipids. A weak negative correlation between mI and age (P = 0.015) was observed. Higher normalized concentrations of Cho (P = 0.03), mI (P = 0.08), and LM13 (P = 0.05) were found in group I than in group II. CONCLUSIONS 1H-MR spectra of a normal adult testis showed several metabolite peaks. A decrease of levels of Cho, mI, and LM13 was observed with advancing age. KEY POINTS • Single-voxel PRESS MRS of a normal testis is feasible. • 1H-MR spectra of a normal testis showed several metabolite peaks. • Most prominent peaks were Cho, Cr, mI, and lipids. • A decrease of Cho, mI, and LM13 was seen with advancing age.
Collapse
|
42
|
Bevilacqua A, Carlomagno G, Gerli S, Montanino Oliva M, Devroey P, Lanzone A, Soulange C, Facchinetti F, Carlo Di Renzo G, Bizzarri M, Hod M, Cavalli P, D'Anna R, Benvenga S, Chiu TT, Kamenov ZA. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology--assisted reproduction technology. Gynecol Endocrinol 2015; 31:441-6. [PMID: 26036719 DOI: 10.3109/09513590.2015.1006616] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A substantial body of research on mammalian gametogenesis and human reproduction has recently investigated the effect of myo-inositol (MyoIns) on oocyte and sperm cell quality, due to its possible application to medically assisted reproduction. With a growing number of both clinical and basic research papers, the meaning of several observations now needs to be interpreted under a solid and rigorous physiological framework. The 2013 Florence International Consensus Conference on Myo- and D-chiro-inositol in obstetrics and gynecology has answered a number of research questions concerning the use of the two stereoisomers in assisted reproductive technologies. Available clinical trials and studies on the physiological and pharmacological effects of these molecules have been surveyed. Specifically, the physiological involvement of MyoIns in oocyte maturation and sperm cell functions has been discussed, providing an answer to the following questions: (1) Are inositols physiologically involved in oocyte maturation? (2) Are inositols involved in the physiology of spermatozoa function? (3) Is treatment with inositols helpful within assisted reproduction technology cycles? (4) Are there any differences in clinical efficacy between MyoIns and D-chiro-inositol? The conclusions of this Conference, drawn depending on expert panel opinions and shared with all the participants, are summarized in this review paper.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Psychology, Sapienza University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Andronic J, Shirakashi R, Pickel SU, Westerling KM, Klein T, Holm T, Sauer M, Sukhorukov VL. Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy. PLoS One 2015; 10:e0119990. [PMID: 25756525 PMCID: PMC4355067 DOI: 10.1371/journal.pone.0119990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200–275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100–125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200–2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80–800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.
Collapse
Affiliation(s)
- Joseph Andronic
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Simone U. Pickel
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Katherine M. Westerling
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Thorge Holm
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
| | - Vladimir L. Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Biozentrum, Am Hubland, Würzburg, Germany
- * E-mail:
| |
Collapse
|
44
|
Redina OE, Smolenskaya SE, Abramova TO, Ivanova LN, Markel AL. Differential transcriptional activity of kidney genes in hypertensive ISIAH and normotensive WAG rats. Clin Exp Hypertens 2014; 37:249-59. [PMID: 25285356 DOI: 10.3109/10641963.2014.954711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transcriptional activity of the kidney genes was compared in hypertensive ISIAH and normotensive WAG rats using the oligonucleotide microarray technique. Most of differentially expressed genes were downregulated in ISIAH kidney both in renal cortex and medulla. According to functional annotation the kidney function in ISIAH rats is based on altered expression of many genes working in stress-related mode. The alterations in gene expression are likely related to both pathophysiological and compensatory mechanisms. The further studies of genes differentially expressed in ISIAH and WAG kidney will help to reveal new hypertensive genes and mechanisms specific for stress-induced arterial hypertension.
Collapse
Affiliation(s)
- Olga Evgenievna Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences , Novosibirsk , Russian Federation
| | | | | | | | | |
Collapse
|
45
|
Differential Spermatozoal Protein Expression Profiles in Men With Varicocele Compared to Control Subjects: Upregulation of Heat Shock Proteins 70 and 90 in Varicocele. Urology 2013; 81:1379.e1-8. [DOI: 10.1016/j.urology.2013.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/24/2022]
|
46
|
Condorelli RA, La Vignera S, Bellanca S, Vicari E, Calogero AE. Myoinositol: Does It Improve Sperm Mitochondrial Function and Sperm Motility? Urology 2012; 79:1290-5. [DOI: 10.1016/j.urology.2012.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|
47
|
Contribution of myo-inositol and melatonin to human reproduction. Eur J Obstet Gynecol Reprod Biol 2011; 159:267-72. [DOI: 10.1016/j.ejogrb.2011.07.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/12/2011] [Accepted: 07/11/2011] [Indexed: 02/03/2023]
|
48
|
Abstract
The blood-testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a 'gatekeeper' to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs 'in' and/or 'out' via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from 'harmful' environmental toxicants and xenobiotics and/or from 'therapeutic' substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps.
Collapse
Affiliation(s)
- Linlin Su
- The Mary M Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | |
Collapse
|
49
|
Li J, Liu F, Liu X, Liu J, Zhu P, Wan F, Jin S, Wang W, Li N, Liu J, Wang H. Mapping of the human testicular proteome and its relationship with that of the epididymis and spermatozoa. Mol Cell Proteomics 2010; 10:M110.004630. [PMID: 21178120 DOI: 10.1074/mcp.m110.004630] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The testis produces male gametes in the germinal epithelium through the development of spermatogonia and spermatocytes into spermatids and immature spermatozoa with the support of Sertoli cells. The flow of spermatozoa into the epididymis is aided by testicular secretions. In the epididymal lumen, spermatozoa and testicular secretions combine with epididymal secretions that promote sperm maturation and storage. We refer to the combined secretions in the epididymis as the sperm-milieu. With two-dimensional-PAGE matrix-assisted laser desorption ionization time-of-flight MS analysis of healthy testes from fertile accident victims, 725 unique proteins were identified from 1920 two-dimensional-gel spots, and a corresponding antibody library was established. This revealed the presence of 240 proteins in the sperm-milieu by Western blotting and the localization of 167 proteins in mature spermatozoa by ICC. These proteins, and those from the epididymal proteome (Li et al. 2010), form the proteomes of the sperm-milieu and the spermatozoa, comprising 525 and 319 proteins, respectively. Individual mapping of the 319 sperm-located proteins to various testicular cell types by immunohistochemistry suggested that 47% were intrinsic sperm proteins (from their presence in spermatids) and 23% were extrinsic sperm proteins, originating from the epididymis and acquired during maturation (from their absence from the germinal epithelium and presence in the epididymal tissue and sperm-milieu). Whereas 408 of 525 proteins in the sperm-milieu proteome were previously identified as abundant epididymal proteins, the remaining 22%, detected by the use of new testicular antibodies, were more likely to be minor proteins common to the testicular proteome, rather than proteins of testicular origin added to spermatozoa during maturation in the epididymis. The characterization of the sperm-milieu proteome and testicular mapping of the sperm-located proteins presented here provide the molecular basis for further studies on the production and maturation of spermatozoa. This could be the basis of development of diagnostic markers and therapeutic targets for infertility or targets for male contraception.
Collapse
Affiliation(s)
- JianYuan Li
- Shandong Research Centre for Stem Cell Engineering, Yu Huang Ding Hospital and Yan Tai University, Yantai, Shandong Province, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Knockout mice in understanding the mechanism of action of lithium. Biochem Soc Trans 2009; 37:1121-5. [PMID: 19754464 DOI: 10.1042/bst0371121] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lithium inhibits IMPase (inositol monophosphatase) activity, as well as inositol transporter function. To determine whether one or more of these mechanisms might underlie lithium's behavioural effects, we studied Impa1 (encoding IMPase) and Smit1 (sodium-myo-inositol transporter 1)-knockout mice. In brains of adult homozygous Impa1-knockout mice, IMPase activity was found to be decreased; however, inositol levels were not found to be altered. Behavioural analysis indicated decreased immobility in the forced-swim test as well as a strongly increased sensitivity to pilocarpine-induced seizures. These are behaviours robustly induced by lithium. In homozygous Smit1-knockout mice, free inositol levels were decreased in the frontal cortex and hippocampus. These animals behave like lithium-treated animals in the model of pilocarpine seizures and in the Porsolt forced-swim test model of depression. In contrast with O'Brien et al. [O'Brien, Harper, Jove, Woodgett, Maretto, Piccolo and Klein (2004) J. Neurosci. 24, 6791-6798], we could not confirm that heterozygous Gsk3b (glycogen synthase kinase 3beta)-knockout mice exhibit decreased immobility in the Porsolt forced-swim test or decreased amphetamine-induced hyperactivity in a manner mimicking lithium's behavioural effects. These data support the role of inositol-related processes rather than GSK3beta in the mechanism of the therapeutic action of lithium.
Collapse
|