1
|
McLeod RM, Rosenkrantz TS, Fitch RH. Antenatal Magnesium Sulfate Benefits Female Preterm Infants but Results in Poor Male Outcomes. Pharmaceuticals (Basel) 2024; 17:218. [PMID: 38399433 PMCID: PMC10892166 DOI: 10.3390/ph17020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium sulfate (MagSul) is used clinically to prevent eclamptic seizures during pregnancy and as a tocolytic for preterm labor. More recently, it has been implicated as offering neural protection in utero for at-risk infants. However, evidence is mixed. Some studies found that MagSul reduced the incidence of cerebral palsy (CP) but did not improve other measures of neurologic function. Others did not find any improvement in outcomes. Inconsistencies in the literature may reflect the fact that sex effects are largely ignored, despite evidence that MagSul shows sex effects in animal models of neonatal brain injury. The current study used retrospective infant data to assess differences in developmental outcomes as a function of sex and MagSul treatment. We found that on 18-month neurodevelopmental cognitive and language measures, preterm males treated with MagSul (n = 209) had significantly worse scores than their untreated counterparts (n = 135; p < 0.05). Female preterm infants treated with MagSul (n = 220), on the other hand, showed a cognitive benefit relative to untreated females (n = 123; p < 0.05). No significant effects of MagSul were seen among females on language (p > 0.05). These results have tremendous implications for risk-benefit considerations in the ongoing use of MagSul and may explain why benefits have been hard to identify in clinical trials when sex is not considered.
Collapse
Affiliation(s)
- Ruth M. McLeod
- Department of Psychology, College of the Holy Cross, Worcester, MA 01610, USA
| | - Ted S. Rosenkrantz
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA;
| | - R. Holly Fitch
- Department of Psychological Sciences, Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
2
|
Hunter SK, Hoffman MC, D'Alessandro A, Noonan K, Wyrwa A, Freedman R, Law AJ. Male fetus susceptibility to maternal inflammation: C-reactive protein and brain development. Psychol Med 2021; 51:450-459. [PMID: 31787129 PMCID: PMC7263978 DOI: 10.1017/s0033291719003313] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Maternal inflammation in early pregnancy has been identified epidemiologically as a prenatal pathogenic factor for the offspring's later mental illness. Early newborn manifestations of the effects of maternal inflammation on human fetal brain development are largely unknown. METHODS Maternal infection, depression, obesity, and other factors associated with inflammation were assessed at 16 weeks gestation, along with maternal C-reactive protein (CRP), cytokines, and serum choline. Cerebral inhibition was assessed by inhibitory P50 sensory gating at 1 month of age, and infant behavior was assessed by maternal ratings at 3 months of age. RESULTS Maternal CRP diminished the development of cerebral inhibition in newborn males but paradoxically increased inhibition in females. Similar sex-dependent effects were seen in mothers' assessment of their infant's self-regulatory behaviors at 3 months of age. Higher maternal choline levels partly mitigated the effect of CRP in male offspring. CONCLUSIONS The male fetal-placental unit appears to be more sensitive to maternal inflammation than females. Effects are particularly marked on cerebral inhibition. Deficits in cerebral inhibition 1 month after birth, similar to those observed in several mental illnesses, including schizophrenia, indicate fetal developmental pathways that may lead to later mental illness. Deficits in early infant behavior follow. Early intervention before birth, including prenatal vitamins, folate, and choline supplements, may help prevent fetal development of pathophysiological deficits that can have life-long consequences for mental health.
Collapse
Affiliation(s)
- Sharon K Hunter
- Departments of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| | - M Camille Hoffman
- Departments of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
- Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| | - Angelo D'Alessandro
- Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| | - Kathleen Noonan
- Departments of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| | - Anna Wyrwa
- Departments of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| | - Robert Freedman
- Departments of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| | - Amanda J Law
- Departments of Psychiatry, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
- Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado80045, USA
| |
Collapse
|
3
|
Freedman R, Hunter SK, Noonan K, Wyrwa A, Christians U, Law AJ, Hoffman MC. Maternal Prenatal Depression in Pregnancies With Female and Male Fetuses and Developmental Associations With C-reactive Protein and Cortisol. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:310-320. [PMID: 33060035 DOI: 10.1016/j.bpsc.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Prenatal depression has lasting effects on development in offspring, including later mental illness risk. Maternal responses to depression include inflammation and hypothalamic-pituitary-adrenal axis stimulation. Effects on development of cerebral inhibitory neurocircuits may differ for female and male fetuses. METHODS Mothers (N = 181) were assessed periodically, beginning at 16 weeks' gestation, using the Center for Epidemiologic Studies-Depression Scale. Maternal prenatal C-reactive protein and hair cortisol and cortisone levels were determined. Cortisone was determined in neonatal hair. Development of cerebral inhibitory neurocircuits was assessed in 162 1-month-old newborns by inhibition of P50 electrophysiological responses to repeated sounds. RESULTS Maternal depression was associated with decreased newborn P50 inhibition in both sexes. Maternal C-reactive protein levels were significantly associated with depression only in pregnancies with male fetuses and with decreased newborn P50 inhibition only in male newborns. Maternal cortisol levels were significantly associated with depression only in pregnancies with female fetuses and with decreased newborn P50 inhibition only in female newborns. In pregnancies with male fetuses compared with pregnancies with female fetuses, cortisol was more robustly metabolized to cortisone, which does not activate cortisol receptors. CONCLUSIONS This study finds sex-specific associations of C-reactive protein and cortisol levels with prenatal depression in women and with decreased development of newborn P50 inhibition. Sex-based differences in maternal response to depression with inflammation or cortisol and their developmental effects may reflect evolutionary influences to promote survival in adversity. Decreased newborn P50 inhibition is associated with later childhood behavioral problems, and decreased P50 inhibition is a pathophysiological feature of several mental illnesses.
Collapse
Affiliation(s)
- Robert Freedman
- Institute for Children's Mental Disorders, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado.
| | - Sharon K Hunter
- Institute for Children's Mental Disorders, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado
| | - Kathleen Noonan
- Institute for Children's Mental Disorders, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado
| | - Anna Wyrwa
- Institute for Children's Mental Disorders, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado
| | - Uwe Christians
- Department of Psychiatry, iC42 Clinical Research and Development, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado
| | - Amanda J Law
- Institute for Children's Mental Disorders, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado; Department of Anesthesiology, Department of Cell and Developmental Biology, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado
| | - M Camille Hoffman
- Institute for Children's Mental Disorders, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado; Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver School of Medicine, Anschutz Medical Center F-546, Aurora, Colorado
| |
Collapse
|
4
|
Neuhaus W, Schlundt M, Fehrholz M, Ehrke A, Kunzmann S, Liebner S, Speer CP, Förster CY. Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups. PLoS One 2015; 10:e0136221. [PMID: 26274818 PMCID: PMC4537167 DOI: 10.1371/journal.pone.0136221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Antenatal steroid treatment decreases morbidity and mortality in premature infants through the maturation of lung tissue, which enables sufficient breathing performance. However, clinical and animal studies have shown that repeated doses of glucocorticoids such as dexamethasone and betamethasone lead to long-term adverse effects on brain development. Therefore, we established a mouse model for antenatal dexamethasone treatment to investigate the effects of dexamethasone on brain vessel differentiation towards the blood-brain barrier (BBB) phenotype, focusing on molecular marker analysis. The major findings were that in total brains on postnatal day (PN) 4 triple antenatal dexamethasone treatment significantly downregulated the tight junction protein claudin-5, the endothelial marker Pecam-1/CD31, the glucocorticoid receptor, the NR1 subunit of the N-methyl-D-aspartate receptor, and Abc transporters (Abcb1a, Abcg2 Abcc4). Less pronounced effects were found after single antenatal dexamethasone treatment and in PN10 samples. Comparisons of total brain samples with isolated brain endothelial cells together with the stainings for Pecam-1/CD31 and claudin-5 led to the assumption that the morphology of brain vessels is affected by antenatal dexamethasone treatment at PN4. On the mRNA level markers for angiogenesis, the sonic hedgehog and the Wnt pathway were downregulated in PN4 samples, suggesting fundamental changes in brain vascularization and/or differentiation. In conclusion, we provided a first comprehensive molecular basis for the adverse effects of multiple antenatal dexamethasone treatment on brain vessel differentiation.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
- * E-mail: (WN); (CF)
| | - Marian Schlundt
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Fehrholz
- University Children’s Hospital Wuerzburg, Wuerzburg, Germany
| | - Alexander Ehrke
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | - Stefan Liebner
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | - Carola Y. Förster
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Wuerzburg, Germany
- * E-mail: (WN); (CF)
| |
Collapse
|
5
|
Kahn RS, Sommer IE. The neurobiology and treatment of first-episode schizophrenia. Mol Psychiatry 2015; 20:84-97. [PMID: 25048005 PMCID: PMC4320288 DOI: 10.1038/mp.2014.66] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/15/2014] [Accepted: 05/12/2014] [Indexed: 12/26/2022]
Abstract
It is evident that once psychosis is present in patients with schizophrenia, the underlying biological process of the illness has already been ongoing for many years. At the time of diagnosis, patients with schizophrenia show decreased mean intracranial volume (ICV) as compared with healthy subjects. Since ICV is driven by brain growth, which reaches its maximum size at approximately 13 years of age, this finding suggests that brain development in patients with schizophrenia is stunted before that age. The smaller brain volume is expressed as decrements in both grey and white matter. After diagnosis, it is mainly the grey matter loss that progresses over time whereas white matter deficits are stable or may even improve over the course of the illness. To understand the possible causes of the brain changes in the first phase of schizophrenia, evidence from treatment studies, postmortem and neuroimaging investigations together with animal experiments needs to be incorporated. These data suggest that the pathophysiology of schizophrenia is multifactorial. Increased striatal dopamine synthesis is already evident before the time of diagnosis, starting during the at-risk mental state, and increases during the onset of frank psychosis. Cognitive impairment and negative symptoms may, in turn, result from other abnormalities, such as NMDA receptor hypofunction and low-grade inflammation of the brain. The latter two dysfunctions probably antedate increased dopamine synthesis by many years, reflecting the much earlier presence of cognitive and social dysfunction. Although correction of the hyperdopaminergic state with antipsychotic agents is generally effective in patients with a first-episode psychosis, the effects of treatments to correct NMDA receptor hypofunction or low-grade inflammation are (so far) rather modest at best. Improved efficacy of these interventions can be expected when they are applied at the onset of cognitive and social dysfunction, rather than at the onset of psychosis.
Collapse
Affiliation(s)
- R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - I E Sommer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Jiang W, Yu Q, Gong M, Chen L, Wen EY, Bi Y, Zhang Y, Shi Y, Qu P, Liu YX, Wei XP, Chen J, Li TY. Vitamin A deficiency impairs postnatal cognitive function via inhibition of neuronal calcium excitability in hippocampus. J Neurochem 2012; 121:932-43. [PMID: 22352986 DOI: 10.1111/j.1471-4159.2012.07697.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Jiang
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang X, Chen K, Chen J, Liu YX, Qu P, Li TY. Effect of marginal vitamin A deficiency during pregnancy on retinoic acid receptors and N-methyl-D-aspartate receptor expression in the offspring of rats. J Nutr Biochem 2011; 22:1112-20. [PMID: 21292463 DOI: 10.1016/j.jnutbio.2010.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/01/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
Abstract
This study examined whether pregnancy-related marginal vitamin A deficiency (MVAD) influences postnatal development of retinoic acid receptors (RARs) and N-methyl-D-aspartate (NMDA) receptor subunit 1 (NR1) in hippocampus of rat pups. Sixteen female rats were randomized equally into control and MVAD groups. Dams and pups were fed with either a normal control diet or one deficient in vitamin A. Eight female pups in each group were killed at 1 day, 2 weeks, 4 weeks and 8 weeks after birth, respectively. Serum retinol levels were monitored. The messenger RNA (mRNA) and protein expressions and subcellular localization of RARα, RARβ and NR1 in postnatal hippocampus were detected. At 1 day, 2 weeks and 8 weeks after birth, serum retinol levels in the MVAD group were significantly lower than those in the control group. Results of Morris water maze test at 7 weeks of age showed that spatial learning and memory in the MVAD group were affected. Vitamin A deficiency resulted in decreased mRNA levels of RARα, RARβ and NR1 (P<.05). The protein level of RARα and NR1 in the MVAD group was lower than that of the control group (P<.05). There was no significant difference in RARβ between the groups (P>.05). A mass of RARα and NR1 colocalized in hippocampal cell cytoplasm on postnatal day 1. Our data suggested that vitamin A deficiency in pregnancy may affect the postnatal expression of RARα and NR1, affecting learning and memory function in the hippocampus and synaptic plasticity of the calcium signaling pathway.
Collapse
Affiliation(s)
- Xuan Zhang
- Child Health Care, Children's Hospital, Chongqing Medical University, Chongqing 400014, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Knutson N, Wood CE. Interaction of PGHS-2 and glutamatergic mechanisms controlling the ovine fetal hypothalamus-pituitary-adrenal axis. Am J Physiol Regul Integr Comp Physiol 2010; 299:R365-70. [PMID: 20445154 DOI: 10.1152/ajpregu.00163.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandins, generated within the fetal brain, are integral components of the mechanism controlling the fetal hypothalamus-pituitary-adrenal (HPA) axis. Previous studies in this laboratory demonstrated that prostaglandin G/H synthase isozyme 2 (PGHS-2) inhibition reduces the fetal HPA axis response to cerebral hypoperfusion, blocks the preparturient rise in fetal plasma ACTH concentration, and delays parturition. We also discovered that blockade of N-methyl-d-aspartate (NMDA) receptors reduces the fetal ACTH response to cerebral hypoperfusion. The present study was designed to test the hypothesis that PGHS-2 action and the downstream effect of HPA axis stimulation are stimulated by NMDA-mediated glutamatergic neurotransmission. Chronically catheterized late-gestation fetal sheep (n = 8) were injected with NMDA (1 mg iv). All responded with increases in fetal plasma ACTH and cortisol concentrations. Pretreatment with resveratrol (100 mg iv, n = 5), a specific inhibitor of PGHS-1, did not alter the magnitude of the HPA axis response to NMDA. Pretreatment with nimesulide (10 mg iv, n = 6), a specific inhibitor of PGHS-2, significantly reduced the HPA axis response to NMDA. To further explore this interaction, we injected NMDA in six chronically catheterized fetal sheep that were chronically infused with nimesulide (n = 6) at a rate of 1 mg/day into the lateral cerebral ventricle for 5-7 days. In this group, there was no significant ACTH response to NMDA. Finally, we tested whether the HPA axis response to prostaglandin E(2) (PGE(2)) is mediated by NMDA receptors. Seven chronically catheterized late-gestation fetal sheep were injected with 100 ng of PGE(2), which significantly increased fetal plasma ACTH and cortisol concentrations. Pretreatment with ketamine (10 mg iv), an NMDA antagonist, did not alter the ACTH or cortisol response to PGE(2). We conclude that generation of prostanoids via the action of PGHS-2 in the fetal brain augments the fetal HPA axis response to NMDA-mediated glutamatergic stimulation.
Collapse
Affiliation(s)
- Nathan Knutson
- Departments of Pediatrics and Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610-0274, USA
| | | |
Collapse
|
9
|
Smith CC, Vedder LC, McMahon LL. Estradiol and the relationship between dendritic spines, NR2B containing NMDA receptors, and the magnitude of long-term potentiation at hippocampal CA3-CA1 synapses. Psychoneuroendocrinology 2009; 34 Suppl 1:S130-42. [PMID: 19596521 PMCID: PMC2796081 DOI: 10.1016/j.psyneuen.2009.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Accepted: 06/04/2009] [Indexed: 11/24/2022]
Abstract
When circulating estrogen levels decline as a natural consequence of menopause and aging in women, there is an increased incidence of deficits in working memory. In many cases, these deficits are rescued by estrogen replacement therapy. These clinical data therefore highlight the importance of defining the biological pathways linking estrogen to the cellular substrates of learning and memory. It has been known for nearly two decades that estrogen enhances dendritic spine density on apical dendrites of CA1 pyramidal cells in hippocampus, a brain region required for learning. Interestingly, at synapses between CA3-CA1 pyramidal cells, estrogen has also been shown to enhance synaptic NMDA receptor current and the magnitude of long-term potentiation, a cellular correlate of learning and memory. Given that synapse density, NMDAR function, and long-term potentiation at CA3-CA1 synapses in hippocampus are associated with normal learning, it is likely that modulation of these parameters by estrogen facilitates the improvement in learning observed in rats, primates and humans following estrogen replacement. To facilitate the design of clinical strategies to potentially prevent or reverse the age-related decline in learning and memory during menopause, the relationship between the estrogen-induced morphological and functional changes in hippocampus must be defined and the role these changes play in facilitating learning must be elucidated. The aim of this report is to provide a summary of the proposed mechanisms by which this hormone increases synaptic function and in doing so, it briefly addresses potential mechanisms contributing to the estrogen-induced increase in synaptic morphology and plasticity, as well as important future directions.
Collapse
|
10
|
Schober ME, McKnight RA, Yu X, Callaway CW, Ke X, Lane RH. Intrauterine growth restriction due to uteroplacental insufficiency decreased white matter and altered NMDAR subunit composition in juvenile rat hippocampi. Am J Physiol Regul Integr Comp Physiol 2009; 296:R681-92. [DOI: 10.1152/ajpregu.90396.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uteroplacental insufficiency (UPI), the major cause of intrauterine growth restriction (IUGR) in developed nations, predisposes to learning impairment. The underlying mechanism is unknown. Neuronal N-methyl-d-aspartate receptors (NMDARs) are critical for synaptogenesis and learning throughout life. We hypothesized that UPI-induced IUGR alters rat hippocampal NMDAR NR2A/NR2B subunit ratio and/or NR1 mRNA isoform expression and synaptic density at day 21 (P21). To test this hypothesis, IUGR was induced by bilateral uterine artery ligation of the late-gestation Sprague-Dawley dam. At P21, hippocampal NMDAR subunit mRNA and protein were measured, as were levels of synaptophysin. Neuronal, synaptic, and glial density in CA1, CA3, and dentate gyrus (DG) was assessed by immunofluorescence. IUGR increased NR1 mRNA isoform NR1-3a and 1-3b expression in both sexes. In P21 males, IUGR increased protein levels of NR1 C2′ and decreased NR1 C2, NR2A, and the NR2A-to-NR2B ratio, whereas in females, IUGR increased NR2B protein. In males, IUGR was associated with decreased myelin basic protein-to-neuronal nuclei ratio in CA1, CA3, and DG. We conclude that IUGR has sex-specific effects and that neither neuronal loss nor decreased synaptic density appears to account for the changes in NMDAR subunits. Rather, it is possible that synaptic NMDAR subunit composition is altered. Our results suggest that apparent recovery in the IUGR hippocampus may be associated with synaptic hyperexcitability. We speculate that the NMDAR plays an important role in IUGR-associated cognitive impairment.
Collapse
|
11
|
Kapoor A, Petropoulos S, Matthews SG. Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. ACTA ACUST UNITED AC 2007; 57:586-95. [PMID: 17716742 DOI: 10.1016/j.brainresrev.2007.06.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/15/2007] [Accepted: 06/16/2007] [Indexed: 11/23/2022]
Abstract
Reduced fetal growth has been closely associated with an increased risk for the development of chronic disease in later life. Accumulating evidence indicates that fetal exposure to excess glucocorticoids represents a critical mechanism underlying this association. Approximately 7% of pregnant women are at risk of preterm delivery and these women are routinely treated with synthetic glucocorticoids (sGC) between 24 and 34 of weeks gestation to improve neonatal outcome. Animal studies have demonstrated that maternally administered sGC crosses the placenta, affecting fetal hypothalamic-pituitary-adrenal (HPA) development, resulting in changes in HPA axis function that persist throughout life. These changes appear to be modulated at the level of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in the brain and pituitary. As the HPA axis interacts with many other physiological pathways, the changes in endocrine function are also sex-specific and age-dependent. Alterations in behavior, particularly locomotion, in animals exposed to sGC in utero have also been demonstrated. Consistent with the finding in animal models, emerging human data are indicating attention deficit-hyperactivity disorder (ADHD)-like symptoms in children exposed to repeated courses of sGC in utero. This behavioral phenotype is likely linked to alterations in dopamine (DA) signaling, suggesting that sGC are able to permanently modify or 'program' this system. Finally, it is emerging that changes in HPA axis function and behavior following antenatal exposure to sGC are transgenerational and likely involve epigenetic mechanisms. A comprehensive understanding of the acute and long-term impact of sGC exposure in utero is necessary to begin to develop recommendations and treatment options for pregnant women at risk of preterm delivery.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
12
|
Setiawan E, Jackson MF, MacDonald JF, Matthews SG. Effects of repeated prenatal glucocorticoid exposure on long-term potentiation in the juvenile guinea-pig hippocampus. J Physiol 2007; 581:1033-42. [PMID: 17412773 PMCID: PMC2170854 DOI: 10.1113/jphysiol.2006.127381] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synthetic glucocorticoids (sGCs) are routinely used to treat women at risk of preterm labour to promote fetal lung maturation. There is now strong evidence that exposure to excess glucocorticoid during periods of rapid brain development has permanent consequences for endocrine function and behaviour in the offspring. Prenatal exposure to sGC alters the expression of N-methyl-D-aspartate receptor (NMDA-R) subunits in the fetal and neonatal hippocampus. Given the integral role of the NMDA-R in synaptic plasticity, we hypothesized that prenatal sGC exposure will have effects on hippocampal long-term potentiation (LTP) after birth. Further, this may occur in either the presence or absence of elevated cortisol concentrations, in vitro. Pregnant guinea-pigs were injected with betamethasone (Beta, 1 mg kg(-1)) or vehicle on gestational days (gd) 40, 41, 50, 51, 60 and 61 (term approximately 70 days), a regimen comparable to that given to pregnant women. On postnatal day 21, LTP was examined at Schaffer collateral synapses in the CA1 region of hippocampal slices prepared from juvenile animals exposed to betamethasone or vehicle, in utero. Subsequently, the acute glucocorticoid receptor (GR)- and mineralocorticoid receptor (MR)-dependent effects of cortisol (0.1-10 microM; bath applied 30 min before LTP induction) were examined. There was no effect of prenatal sGC treatment on LTP under basal conditions. The application of 10 microM cortisol depressed excitatory synaptic transmission in all treatment groups regardless of sex. Similarly, LTP was depressed by 10 microM cortisol in all groups, with the exception of Beta-exposed females, in which LTP was unaltered. Hippocampal MR and GR protein levels were increased in Beta-exposed females, but not in any other prenatal treatment group. This study reveals sex-specific effects of prenatal exposure to sGC on LTP in the presence of elevated cortisol, a situation that would occur in vivo during stress.
Collapse
Affiliation(s)
- Elaine Setiawan
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
13
|
Iqbal U, Brien JF, Kapoor A, Matthews SG, Reynolds JN. Chronic prenatal ethanol exposure increases glucocorticoid-induced glutamate release in the hippocampus of the near-term foetal guinea pig. J Neuroendocrinol 2006; 18:826-34. [PMID: 17026532 DOI: 10.1111/j.1365-2826.2006.01479.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exposure to high cortisol concentration can injure the developing brain, possibly via an excitotoxic mechanism involving glutamate (Glu). The present study tested the hypothesis that chronic prenatal ethanol exposure (CPEE) activates the foetal hypothalamic-pituitary-adrenal axis to produce high cortisol exposure in the foetal compartment and alters sensitivity to glucocorticoid-induced Glu release in the foetal hippocampus. Pregnant guinea pigs received daily oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding from gestational day (GD) 2 until GD 63 (term, approximately GD 68) at which time they were euthanised, 1 h after their final treatment. Adrenocorticotrophic hormone (ACTH) and cortisol concentrations were determined in foetal plasma. Basal and electrically stimulated Glu and gamma-aminobutyric acid (GABA) efflux in the presence or absence of dexamethasone (DEX), a selective glucocorticoid-receptor agonist, were determined ex vivo in foetal hippocampal slices. Glucocorticoid receptor (GR), mineralocorticoid receptor (MR) and N-methyl-D-aspartate (NMDA) receptor NR1 subunit mRNA expression were determined in situ in the hippocampus and dentate gyrus. In the near-term foetus, CPEE increased foetal plasma ACTH and cortisol concentrations. Electrically stimulated glutamate, but not GABA, release was increased in CPEE foetal hippocampal slices. Low DEX concentration (0.3 microM) decreased stimulated glutamate, but not GABA, release in both CPEE and control foetal hippocampal slices. High DEX concentration (3.0 microM) increased basal release of Glu, but not GABA, in CPEE foetal hippocampal slices. GR, but not MR, mRNA expression was elevated in the hippocampus and dentate gyrus, whereas NR1 mRNA expression was increased in the CA1 and CA3 fields of the foetal hippocampus. These data demonstrate that CPEE increases high glucocorticoid concentration-induced Glu release in the foetal hippocampus, presumably as a consequence of increased GR expression. These effects of CPEE, coupled with increased glutamate release and increased NMDA receptor expression, may predispose the near-term foetal hippocampus to GR and Glu-NMDA receptor-mediated neurodevelopmental toxicity.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Animals
- Central Nervous System Depressants/toxicity
- Electric Stimulation
- Ethanol/toxicity
- Female
- Fetus/drug effects
- Fetus/metabolism
- Glucocorticoids/metabolism
- Glutamic Acid/drug effects
- Glutamic Acid/metabolism
- Guinea Pigs
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hydrocortisone/blood
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Maternal-Fetal Exchange
- Neurotoxins/toxicity
- Organ Culture Techniques
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/metabolism
- Pregnancy
- RNA, Messenger/analysis
- Random Allocation
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Statistics, Nonparametric
- Toxicity Tests, Chronic
Collapse
Affiliation(s)
- U Iqbal
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Owen D, Matthews SG. Repeated maternal glucocorticoid treatment affects activity and hippocampal NMDA receptor expression in juvenile guinea pigs. J Physiol 2006; 578:249-57. [PMID: 17068098 PMCID: PMC2075130 DOI: 10.1113/jphysiol.2006.122887] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The behavioural consequences of prenatal glucocorticoid exposure are not well understood, though emerging studies in humans indicate hyperactivity and altered cognitive development can occur. Further, recent reports indicate that N-methyl-d-aspartate receptors (NMDARs) may mediate the development of postnatal stress behaviours. We hypothesized that prenatal betamethasone (Beta) administration would alter behaviour and the expression of hippocampal NMDAR subunits NR1, NR2A and NR2B in juvenile guinea pig offspring. We found that repeated maternal Beta (1 mg kg(-1)) treatment on gestational days (gd) 40/41, 50/51 and 60/61 (term approximately 70 days) had no significant effect on birthweight or early growth. However, Beta produced sex-specific effects on open-field activity and hippocampal NMDAR subunit expression compared with controls. Female Beta offspring exhibited significantly increased locomotor activity while there was no effect in Beta males. Beta males exhibited a tendency for decreased anxiety-like behaviour. With respect to NMDAR subunit expression, Beta-exposed females exhibited significantly reduced NR1 mRNA in CA1/2 and CA3 subfields of the hippocampus; there were no effects in Beta males. In conclusion, repeated maternal treatment with Beta, in a similar regimen to that administered to pregnant women at risk of delivering preterm, has profound consequences on behaviour and development of crucial neurotransmitter systems in postnatal life.
Collapse
Affiliation(s)
- Dawn Owen
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
15
|
Smith CC, McMahon LL. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J Neurosci 2006; 26:8517-22. [PMID: 16914677 PMCID: PMC6674362 DOI: 10.1523/jneurosci.5279-05.2006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Estradiol, through activation of genomic estrogen receptors, induces changes in synaptic morphology and function in hippocampus, a brain region important for memory acquisition. Specifically, this hormone increases CA1 pyramidal cell dendritic spine density, NMDA receptor (NMDAR)-mediated transmission, and the magnitude of long-term potentiation (LTP) at CA3-CA1 synapses. We recently reported that the estradiol-induced increase in LTP magnitude occurs only when there is a simultaneous increase in the fractional contribution of NMDAR-mediated transmission relative to AMPA receptor transmission, suggesting a direct role for the increase in NMDAR transmission to the heightened LTP magnitude. Estradiol has been shown to increase expression of the NMDAR subunit NR2B, but whether this translates into an increase in function of NR2B-containing receptors remains to be determined. Here we show that not only is the estradiol-induced increase in NMDAR transmission mediated by NR2B-containing receptors, but blocking these receptors using RO25-6981 [R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol] (0.5 microM), an NR2B selective antagonist, prevents the estradiol-induced increase in LTP magnitude. Thus, our data show a causal link between the estradiol-induced increase in transmission mediated by NR2B-containing NMDARs and the increase in LTP magnitude.
Collapse
|
16
|
Owen D, Andrews MH, Matthews SG. RETRACTED: Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour. Neurosci Biobehav Rev 2005; 29:209-26. [PMID: 15811494 DOI: 10.1016/j.neubiorev.2004.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The fetus may be exposed to increased endogenous glucocorticoid or synthetic glucocorticoid in late gestation. Approximately 7% of pregnant women in Europe and North America are treated with synthetic glucocorticoid to promote lung maturation in fetuses at risk of preterm delivery. Very little is known about the mechanisms by which synthetic glucocorticoid or prenatal stress influence neurodevelopment in the human, or whether specific time windows of increased sensitivity exist. Glucocorticoids are essential for many aspects of normal brain development, but exposure of the fetal brain to excess glucocorticoid can have life-long effects on neuroendocrine function and behaviour. Both endogenous glucocorticoid and synthetic glucocorticoid exposure have a number of rapid effects in the fetal brain, including modification of neurotransmitter systems and transcriptional machinery. Such fetal exposure permanently alters hypothalamo-pituitary-adrenal (HPA) function in prepubertal, postpubertal and aging offspring, in a sex-dependent manner. Prenatal glucocorticoid manipulation also leads to modification of behaviour, brain and organ morphology, as well as altered regulation of other endocrine systems. Permanent changes in endocrine function will impact on health, since elevated cumulative exposure to endogenous glucocorticoid is linked to the premature onset of pathologies associated with aging.
Collapse
Affiliation(s)
- Dawn Owen
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ont., Canada M5S 1A8
| | | | | |
Collapse
|