1
|
Weigel Muñoz M, Cohen DJ, Da Ros VG, González SN, Rebagliati Cid A, Sulzyk V, Cuasnicu PS. Physiological and pathological aspects of epididymal sperm maturation. Mol Aspects Med 2024; 100:101321. [PMID: 39340983 DOI: 10.1016/j.mam.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
In mammals, sperm that leave the testes are nonfunctional and require a complex post-testicular maturation process to acquire their ability to recognize and fertilize the egg. The crucial maturation changes that provide sperm their fertilizing capability occur while passing through the epididymis. Due to the widespread use of assisted reproductive technologies to address male infertility, there has been a significant decrease in research focusing on the mechanisms underlying the maturation process over the past decades. Considering that up to 40% of male infertility is idiopathic and could be reflecting sperm maturation defects, the study of post-testicular sperm maturation will clearly contribute to a better understanding of the causes of male infertility and to the development of both new approaches to maturing sperm in vitro and safer male contraceptive methods. Based on this, the present review focuses on the physiopathology of the epididymis as well as on current approaches under investigation to improve research in sperm maturation and as potential therapeutic options for male infertility.
Collapse
Affiliation(s)
- Mariana Weigel Muñoz
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Débora J Cohen
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Soledad N González
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Abril Rebagliati Cid
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME). Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wen Y, Jiang N, Wang Z, Xiao Y. Versatile whey acidic protein four-disulfide core domain proteins: biology and role in diseases. Front Cell Dev Biol 2024; 12:1459129. [PMID: 39296934 PMCID: PMC11408880 DOI: 10.3389/fcell.2024.1459129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
The Whey acidic protein four-disulfide core (WFDC) protein family consists of proteins with one or more WFDC domains which are ubiquitously expressed throughout the body of human and perform a wide range of functions, including antiprotease, antibacterial, and immunomodulatory functions. Aberrant expression of WFDC proteins is associated with human diseases. However, review on the WFDC protein family is limited and insufficient. Furthermore, a systematic summary of the underlying mechanisms of WFDC protein activity is lacking. In this review, we give a summary of the structural basis and molecular function of these proteins and review the immune regulatory mechanisms and signaling pathways of WFDC proteins in the development of certain diseases. Furthermore, we discuss the diagnostic and prognostic potential of multiple WFDC proteins in the aforementioned conditions, as well as their prospective use. At last, we also discuss the progress of WFDC protein in clinical trials and put forward some research difficulties and the directions of follow-up research. Our review highlights the functional diversity and clinical significance of WFDC proteins family, while providing potential targets for drug development and innovative therapeutic strategies, this review lays the foundation and direction for future research on WFDC proteins.
Collapse
Affiliation(s)
- Yifan Wen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Nan Jiang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
4
|
Wu W, Wang J, Hu Z, Zhao Y, Wang X, Bai N, Chen L, Gao P. High WFDC3 gene expression is associated with poor prognosis and reduced immune cells infiltration in pancreatic adenocarcinoma: A study using the TCGA database and bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35595. [PMID: 37861515 PMCID: PMC10589585 DOI: 10.1097/md.0000000000035595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Whey-acidic-protein (WAP) four-disulfide core domain protein 3 (WFDC3) is one of the WAP family proteins. This protein family is associated with the development of solid tumors and affects the tumor immunological microenvironment. However, the prognostic value of WFDC3 in pancreatic adenocarcinoma (PAAD) and its effect on the tumor immune microenvironment is yet to be clarified. The Cancer Genome Atlas database and Genotype-Tissue Expression database were used to analyze the differential expression of WFDC3 between the tumor and adjacent tissues. The clinical significance of WFDC3 was analyzed in The Cancer Genome Atlas and International Cancer Genome Consortium database using WFDC3 transcripts and clinical information. In order to elucidate the underlying mechanisms, gene set enrichment analysis was conducted to determine potential activated pathways. Immune score evaluation and publicly available pharmacogenomics database [the Genomics of Drug Sensitivity in Cancer] were utilized to quantify immune cell infiltration and the effect on chemotherapeutic drug sensitivity. WFDC3 levels were higher in PAAD tissues than in normal pancreatic tissues. High levels of WFDC3 expression progressively increased as PAAD tumor stages progressed. Patients with elevated WFDC3 expression showed a poor prognosis. The gene set enrichment analysis analysis revealed that glutamate, arginine, and proline, and histidine metabolism levels were elevated in patients with a high WFDC3 expression phenotype. B, CD4+ T, and CD8+ T cell infiltration was diminished in PAAD tissues with elevated WFDC3 expression. According to pharmacogenomics, PAAD tissues with high WFDC3 expression are susceptible to gemcitabine. WFDC3 is highly expressed in PAAD, and patients with a high level of WFDC3 expression have a shorter overall survival time, indicating a poorer prognosis. High expression of WFDC3 may lead to the development of PAAD by affecting the amino acid metabolism and the tumor immunological microenvironment. WFDC3 may serve as a potential diagnostic and prognostic biomarker for PAAD patients.
Collapse
Affiliation(s)
- Wei Wu
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jiayuan Wang
- Department of Medical Oncology, Peking University Shougang Hospital, Beijing, China
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Yiguo Zhao
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Nan Bai
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Pengji Gao
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
6
|
Myers C, Hastert MC, Cornwall GA. Host defense functions of the epididymal amyloid matrix. Mol Hum Reprod 2022; 28:6823549. [PMID: 36367296 PMCID: PMC9709822 DOI: 10.1093/molehr/gaac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The epididymal lumen is an immunologically distinct environment. It maintains tolerance for the naturally antigenic spermatozoa to allow their maturation into functional cells while simultaneously defending against pathogens that can ascend the male tract and cause infertility. We previously demonstrated that a nonpathological amyloid matrix that includes several cystatin-related epididymal spermatogenic (CRES) subgroup family members is distributed throughout the mouse epididymal lumen but its function was unknown. Here, we reveal a role for the epididymal amyloid matrix in host defense and demonstrate that the CRES amyloids and CD-1 mouse epididymal amyloid matrix exhibit potent antimicrobial activity against bacterial strains that commonly cause epididymal infections in men. We show the CRES and epididymal amyloids use several defense mechanisms including bacterial trapping, disruption of bacterial membranes and promotion of unique bacterial ghost-like structures. Remarkably, these antimicrobial actions varied depending on the bacterial strain indicating CRES amyloids and the epididymal amyloids elicit strain-specific host defense responses. We also demonstrate that the CRES monomer and immature assemblies of the epididymal amyloid transitioned into advanced structures in the presence of bacteria, suggesting their amyloid-forming/shape-shifting properties allows for a rapid reaction to a pathogen and provides an inherent plasticity in their host defense response. Together, our studies reveal new mechanistic insight into how the male reproductive tract defends against pathogens. Future studies using a mouse model for human epididymitis are needed to establish the epididymal amyloid responses to pathogens in vivo. Broadly, our studies provide an example of why nature has maintained the amyloid fold throughout evolution.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Gail A Cornwall
- Correspondence address. Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; E-mail:
| |
Collapse
|
7
|
Vickram S, Rohini K, Anbarasu K, Dey N, Jeyanthi P, Thanigaivel S, Issac PK, Arockiaraj J. Semenogelin, a coagulum macromolecule monitoring factor involved in the first step of fertilization: A prospective review. Int J Biol Macromol 2022; 209:951-962. [PMID: 35447263 DOI: 10.1016/j.ijbiomac.2022.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
Human male infertility affects approximately 1/10 couples worldwide, and its prevalence is found more in developed countries. Along with sperm cells, the secretions of the prostate, seminal vesicle and epididymis plays a major role in proper fertilization. Many studies have proven the functions of seminal vesicle secretions, especially semenogelin protein, as an optimiser for fertilization. Semenogelin provides the structural components for coagulum formation after ejaculation. It binds with eppin and is found to have major functions like motility of sperm, transporting the sperm safely in the immune rich female reproductive tract until the sperm cells reach the egg intact. The capacitation process is essential for proper fertilization and semenogelin involved in mediating capacitation in time. Also, it has control of events towards the first step in the fertilization process. It is a Zn ions binding protein, and Zn ions act as a cofactor that helps in the proper motility of sperm cells. Therefore, any imbalance in protein that automatically affect sperm physiology and fertility status. This review sheds a comprehensive and critical view on the significant functions of semenogelin in fertilization. This review can open up advanced proteomics research on semenogelin towards unravelling molecular mechanisms in fertilization.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Krishnan Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Nibedita Dey
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600 062, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Silva AAS, Raimundo TRF, Mariani NAP, Kushima H, Avellar MCW, Buffone MG, Paula-Lopes FF, Moura MT, Silva EJR. Dissecting EPPIN protease inhibitor domains in sperm motility and fertilizing ability: repercussions for male contraceptive development. Mol Hum Reprod 2021; 27:gaab066. [PMID: 34792600 DOI: 10.1093/molehr/gaab066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Indexed: 11/14/2022] Open
Abstract
EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.
Collapse
Affiliation(s)
- Alan A S Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Tamiris R F Raimundo
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Hélio Kushima
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo-SP, Brazil
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabíola F Paula-Lopes
- Department of Biological Sciences, Universidade Federal de São Paulo-Campus Diadema, Diadema-SP, Brazil
| | - Marcelo T Moura
- Department of Biological Sciences, Universidade Federal de São Paulo-Campus Diadema, Diadema-SP, Brazil
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu-SP, Brazil
| |
Collapse
|
9
|
Xu J, He M, Wang W, Hou J, Chen X, Ding X, Zhang J. siRNA-mediated Eppin testicular silencing causes changes in sperm motility and calcium currents in mice. Reprod Biol 2021; 21:100485. [PMID: 33607572 DOI: 10.1016/j.repbio.2021.100485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Epididymal protease inhibitor (EPPIN) is differentially expressed in the reproductive tissues (such as testicles, outlet tubes, epididymis, vas deferens, and seminal vesicles). Its critical role in sperm function and male reproduction has shed light on EPPIN as a candidate target for male contraceptive vaccines. In this study, we endeavored to further reveal the mechanism through which EPPIN exerts its function. We created a mouse model of reduced Eppin expression by microinjecting small interfering RNA targeting Eppin expression into seminiferous tubules of mice. This mouse model was then used to explore the effects of low Eppin expression on sperm function, which was assessed by Computer Assisted Semen Analysis and patch clamp recording of T-type Ca2+ current in spermatogenic cells. We found that the sperm motility significantly declined when Eppin was downregulated. Further investigation demonstrated that Eppin downregulation significantly affected T-type Ca2+ currents and messenger RNA expression of three subtypes of T-type Ca2+ channels in spermatogenic cells. These findings indicate that low Eppin gene expression induces decreased T-type Ca2+ currents and mRNA expression, which in turn results in the reduced sperm motility.
Collapse
Affiliation(s)
- Jie Xu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Mengting He
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Wei Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jiaojiao Hou
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiaoyi Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xinliang Ding
- Department of Public Health, Wuxi Center for Disease Control and Prevention, Wuxi, China.
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Andrade AD, Almeida PGC, Mariani NAP, Freitas GA, Kushima H, Filadelpho AL, Spadella MA, Avellar MCW, Silva EJR. Lipopolysaccharide-induced epididymitis modifies the transcriptional profile of Wfdc genes in mice†. Biol Reprod 2020; 104:144-158. [PMID: 33034631 DOI: 10.1093/biolre/ioaa189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Whey-acidic protein four-disulfide core domain (WFDC) genes display putative roles in innate immunity and fertility. In mice, a locus on chromosome 2 contains 5 and 11 Wfdc genes in its centromeric and telomeric subloci, respectively. Although Wfdc genes are highly expressed in the epididymis, their contributions to epididymal function remain elusive. Here, we investigated whether Wfdc genes are regulated in response to lipopolysaccharide (LPS)-induced epididymitis, an inflammatory condition that impairs male fertility. We induced epididymitis in mice via (i) interstitial LPS injection into epididymal initial segment and (ii) intravasal LPS injection into the vas deferens towards cauda epididymis. Interstitial and intravasal LPS induced a differential upregulation of inflammatory mediators (interleukin 1 beta, interleukin 6, tumor necrosis factor, interferon gamma, and interleukin 10) in the initial segment and cauda epididymis within 72 h post-treatment. These changes were accompanied by a time-dependent endotoxin clearance from the epididymis. In the initial segment, interstitial LPS upregulated all centromeric (Slpi, Wfdc5, Wfdc12, Wfdc15a, and Wfdc15b) and five telomeric (Wfdc2, Wfdc3, Wfdc6b, Wfdc10, and Wfdc13) Wfdc transcripts at 24 and 72 h. In the cauda epididymis, intravasal LPS upregulated Wfdc5 and Wfdc2 transcripts at 24 h, followed by a downregulation of Wfdc15b and three telomeric (Wfdc6a, Wfdc11, and Wfdc16) gene transcripts at 72 h. Pharmacological inhibition of nuclear factor kappa B activation prevented LPS-induced upregulation of centromeric and telomeric Wfdc genes depending on the epididymal region. We show that LPS-induced inflammation differentially regulated the Wfdc locus in the proximal and distal epididymis, indicating region-specific roles for the Wfdc family in innate immune responses during epididymitis.
Collapse
Affiliation(s)
- Alexandre D Andrade
- Department of Biophysics and Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Priscila G C Almeida
- Department of Biophysics and Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Noemia A P Mariani
- Department of Biophysics and Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Geanne A Freitas
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Hélio Kushima
- Department of Biophysics and Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - André L Filadelpho
- Department of Structural and Functional Biology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | | | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
11
|
Robertson MJ, Kent K, Tharp N, Nozawa K, Dean L, Mathew M, Grimm SL, Yu Z, Légaré C, Fujihara Y, Ikawa M, Sullivan R, Coarfa C, Matzuk MM, Garcia TX. Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biol 2020; 18:103. [PMID: 32814578 PMCID: PMC7436996 DOI: 10.1186/s12915-020-00826-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. Results In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets. Through RT-PCR, we confirmed the reproductive tract-specific expression of 51 novel orthologous human and mouse genes without a reported mouse model. Of these, we ablated four epididymis-specific genes (Spint3, Spint4, Spint5, and Ces5a) and two testis-specific genes (Pp2d1 and Saxo1) in individual or double knockout mice generated through the CRISPR/Cas9 system. Our results validate a functional requirement for Spint4/5 and Ces5a in male mouse fertility, while demonstrating that Spint3, Pp2d1, and Saxo1 are each individually dispensable for male mouse fertility. Conclusions Our work provides a plethora of novel testis- and epididymis-specific genes and elucidates the functional requirement of several of these genes, which is essential towards understanding the etiology of male infertility and the development of male contraceptives.
Collapse
Affiliation(s)
- Matthew J Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Katarzyna Kent
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Nathan Tharp
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Kaori Nozawa
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Laura Dean
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Michelle Mathew
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Grimm
- Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Zhifeng Yu
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christine Légaré
- Department Obstetrics, Gynecology and Reproduction, Faculty Medicine, Université Laval, Quebec, QC, Canada.,Reproduction, Mother and Youth Health Division, Centre de recherche du CHU de Québec-Université Laval, 2705 boul Laurier, Quebec, QC, G1V 4G2, Canada
| | - Yoshitaka Fujihara
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Robert Sullivan
- Department Obstetrics, Gynecology and Reproduction, Faculty Medicine, Université Laval, Quebec, QC, Canada.,Reproduction, Mother and Youth Health Division, Centre de recherche du CHU de Québec-Université Laval, 2705 boul Laurier, Quebec, QC, G1V 4G2, Canada
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Martin M Matzuk
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Thomas X Garcia
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA. .,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Mariani NAP, Camara AC, Silva AAS, Raimundo TRF, Andrade JJ, Andrade AD, Rossini BC, Marino CL, Kushima H, Santos LD, Silva EJR. Epididymal protease inhibitor (EPPIN) is a protein hub for seminal vesicle-secreted protein SVS2 binding in mouse spermatozoa. Mol Cell Endocrinol 2020; 506:110754. [PMID: 32044375 DOI: 10.1016/j.mce.2020.110754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
EPPIN is a sperm-surface drug target for male contraception. Here we investigated EPPIN-interacting proteins in mouse spermatozoa. We showed that EPPIN is an androgen-dependent gene, expressed in the testis and epididymis, but also present in the vas deferens, seminal vesicle and adrenal gland. Mature spermatozoa presented EPPIN staining on the head and flagellum. Immunoprecipitation of EPPIN from spermatozoa pre-incubated with seminal vesicle fluid (SVF) followed by LC-MS/MS or Western blot revealed the co-immunoprecipitation of SVS2, SVS3A, SVS5 and SVS6. In silico and Far-Western blot approaches demonstrated that EPPIN binds SVS2 in a protein network with other SVS proteins. Immunofluorescence using spermatozoa pre-incubated with SVF or recombinant SVS2 demonstrated the co-localization of EPPIN and SVS2 both on sperm head and flagellum. Our data show that EPPIN's roles in sperm function are conserved between mouse and human, demonstrating that the mouse is a suitable experimental model for translational studies on EPPIN.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Aline C Camara
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Alan Andrew S Silva
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Tamiris R F Raimundo
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Juliana J Andrade
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Alexandre D Andrade
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Bruno C Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu-SP, Brazil; Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Celso L Marino
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu-SP, Brazil; Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Hélio Kushima
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Lucilene D Santos
- Center for the Study of Venoms of Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu-SP, Brazil; Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu-SP, Brazil
| | - Erick J R Silva
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu-SP, Brazil.
| |
Collapse
|
13
|
Kim TH, Kim HJ, Lee SH, Cheon YP, Choi D. Expressions of Semenogelin Gene in Male Syrian Hamsters according to Photoperiod. Dev Reprod 2020; 23:355-365. [PMID: 31993541 PMCID: PMC6985293 DOI: 10.12717/dr.2019.23.4.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022]
Abstract
The morphogenetically matured spermatozoa (sperm) are generated in the testes by
the spermatogenesis. They travel male reproductive tract with many substances
secreted from the accessory reproductive organs. One of the substances is the
semenogelin (SEMG) released from the seminal vesicles that is involved in the
post-testicular maturation. The expression of SEMG gene was investigated in
seminal vesicle tissues of sexually matured and regressed male Syrian hamsters
by reverse transcription polymerase chain reaction (RT-PCR). The SEMG gene was
uniquely identified in the seminal vesicles of the matured Syrian hamsters and
compared to the genes reported previously. But the expression of SEMG gene was
not observed in reproductively and completely regressed testes of Syrian
hamsters. These results indicate that the expressions of the SEMG gene are
related to the reproductive capability in the male Syrian hamsters.
Collapse
Affiliation(s)
- Tae Hong Kim
- Dept of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Hyeon Jeong Kim
- Dept of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Dept. of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Div. of Developmental Biology and Physiology, Dept. of Biotechnology, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Dept of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|
14
|
Abstract
Unplanned pregnancies are an ongoing global burden, posing health and economic risks for women, children, and families. Advances in male contraception have been historically stymied by concerning failure rates, problematic side effects, and perceived market limitations. However, increased interest in reliable and reversible options for male contraception have resulted in resurgent efforts to introduce novel contraceptives for men. Hormonal male contraception relies on exogenous androgens and progestogens that suppress gonadotropin production, thereby suppressing testicular testosterone and sperm production. In many men, effective suppression of spermatogenesis can be achieved by androgen-progestin combination therapy. Small-scale contraceptive efficacy studies in couples have demonstrated effectiveness and reversibility with male hormonal methods, but side effects related to mood, sexual desire and cholesterol remain concerning. A number of novel androgens have reached clinical testing as potential contraceptive agents; many of these have both androgenic and progestogenic action in a single, modified steroid, thereby holding promise as single-agent contraceptives. Currently, these novel steroids hold promise as both a "male pill" and long-acting injections. Among non-hormonal methods, studies of reversible vaso-occlusive methods (polymers that block transport of sperm through the vas deferens) are ongoing, but reliable reversibility and long-term safety in men have not been established. Proteins involved in sperm maturation and motility are attractive targets, but to date both specificity and biologic redundancy have been challenges for drug development. In this review, we aim to summarize landmark studies on male contraception, highlight the most recent advances and future development in this important field of public health and medicine.
Collapse
|
15
|
Male reproductive tract antimicrobial expression in the extremes of ages of rats. Gene 2019; 710:218-232. [PMID: 31158448 DOI: 10.1016/j.gene.2019.05.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 11/23/2022]
Abstract
Alterations in the global gene expression profile are considered to contribute to the various physiological and pathological changes during the course of ageing. Genes that code for the molecular components of the innate system are alter markedly as ageing occurs; and this may define the susceptibility of very young and very old individuals to reproductive tract infections. The expression pattern of genes that code for beta-defensins (effectors of innate immune response) in male reproductive tract tissues of different stages of ageing is not yet reported. Further, the induction of beta-defensins during endotoxin challenge and whether epigenetic modulators can influence the expression of these genes in different stages of ageing are not reported. We analyzed the basal mRNA levels of beta-defensins and defensin-like proteins (Sperm Associated Antigen 11 (SPAG11) family members), their induction during endotoxin challenge and modulation by epigenetic modifiers (Trichostatin A and Azacytidine) in the caput, cauda, testis, prostate and seminal vesicle of rats that represent early stage to late stages of life (20 day to 730 day old). We observed differential basal gene expression pattern in the male reproductive tract tissues and the induction by LPS was not consistent neither among the age groups not the tissues analyzed. Trichostatin A and Azacytidine also influenced antimicrobial gene expression and the pattern was not consistent in different tissues obtained from different age groups. Results of this study demonstrate that antimicrobial gene expression varies to a great extent during ageing and is strongly influenced by endotoxins and epigenetic modulators.
Collapse
|
16
|
Shan C, Li H, Zhang Y, Li Y, Chen Y, He W. Binding interactions of epididymal protease inhibitor and semenogelin-1: a homology modeling, docking and molecular dynamics simulation study. PeerJ 2019; 7:e7329. [PMID: 31404433 PMCID: PMC6686837 DOI: 10.7717/peerj.7329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/19/2019] [Indexed: 11/24/2022] Open
Abstract
Epididymal protease inhibitor (EPPIN) that is located on the sperm surface and specific to the male reproductive system is a non-hormonal contraceptive target, since the binding of EPPIN with the seminal plasma protein semenogelin-1 (SEMG1) causes a loss of sperm function. Here, we investigated the binding interactions between EPPIN and SEMG1 by homology modeling, docking and molecular dynamics simulation. Since no crystal structure was reported for EPPIN, its 3D structure was constructed by homology modeling and refined by dynamics simulation, illustrating the C-terminus domain of EPPIN could bind with its N-terminus domain through the residues 30–32 and 113–116. The binding interaction of SEMG110-8 peptide and EPPIN was investigated by Z-DOCK and dynamics simulation. After evaluating the models according to the calculated binding free energies, we demonstrated that C-terminus domain of EPPIN was important for the binding of SEMG1 via residues Tyr107, Gly112, Asn116, Gln118 and Asn122, while residue Arg32 in N-terminus domain also had contribution for their binding interaction. Additionally, the binding pocket of EPPIN was defined according to these key residues and verified by molecular docking with reported inhibitor EP055, suggesting that the pocket formed by Arg32, Asn114, Asn116, Phe117 and Asn122 could be important for the design of new ligands. This study might be helpful for the understanding of biological function of EPPIN and would encourage the discovery of non-hormonal contraceptive leads/drugs in the future.
Collapse
Affiliation(s)
- Changyu Shan
- Department of Pharmaceutical Chemistry, The Third Military Medical University, Chongqing, China
| | - Hongwei Li
- Department of Pharmaceutical Chemistry, The Third Military Medical University, Chongqing, China
| | - Yuping Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yuyan Li
- Department of Obstetrics and Gynecology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yingchun Chen
- Department of Pharmaceutical Chemistry, The Third Military Medical University, Chongqing, China
| | - Wei He
- Department of Obstetrics and Gynecology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
17
|
Abstract
Today, a vast arsenal of contraceptive methods interfering at different levels of the female reproductive axis is available. This is not the case for men for whom, until now, there is no reliable male reversible method and for whom vasectomy, condom and withdrawal are the only options available. Despite this limited supply, more than one third of all contraceptive methods used worldwide rely on the cooperation of the male partner. Besides developing hormonal approaches to stop sperm production, there may be attractive approaches that will interfere with sperm functions rather than production. Sperm functions are primarily established during post-testicular maturation, with the epididymis accounting for the majority. The purpose of this review is to present some of the promising and/or already abandoned leads that emerge from research efforts targeting the epididymis and its activities as potential means to achieve male post-meiotic contraception.
Collapse
Affiliation(s)
- Joël R. Drevet
- Laboratoire GReD “Génétique, Reproduction & Développement”, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne (UCA), 28-Place Henri Dunant, bâtiment CRBC, 63000 Clermont-Ferrand, France
| |
Collapse
|
18
|
Park JI, Jeon BH, Kim TH, Kim HJ, Choi D. The Expressional Pattern of Epididymal Protease Inhibitor (EPPIN) in the Male Syrian Hamsters. Dev Reprod 2018; 22:253-262. [PMID: 30324162 PMCID: PMC6182231 DOI: 10.12717/dr.2018.22.3.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
The spermatogenesis is the process by which spermatozoa are generated in the
testes. The spermatozoa travel male reproductive tract during which they meet
many substances secreted from reproductive organs. One of the substances is
epididymal protease inhibitor (EPPIN) that is involved in the post-testicular
maturation including capability of fertilizing the eggs. The expression of EPPIN
gene was investigated in various tissues of sexually mature and regressed male
Syrian hamsters by reverse transcription polymerase chain reaction (RT-PCR). The
EPPIN gene was identified in the testis and epididymis of the male Syrian
hamsters and compared to the genes reported previously. There was no expression
of EPPIN gene in reproductively and completely regressed testes of Syrian
hamster. These results suggest that the expressions of the EPPIN gene are
associated with the reproductive capability in the Syrian hamsters.
Collapse
Affiliation(s)
- Jong In Park
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Byung Hyun Jeon
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Tae Hong Kim
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Hyung June Kim
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Donchan Choi
- Dept. of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|
19
|
Inhibition of sperm motility in male macaques with EP055, a potential non-hormonal male contraceptive. PLoS One 2018; 13:e0195953. [PMID: 29672554 PMCID: PMC5908160 DOI: 10.1371/journal.pone.0195953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 11/23/2022] Open
Abstract
Men have two practical choices for contraception; the condom which has a high typical use failure rate or vasectomy. New male hormonal and non-hormonal contraceptives are under development that target either the production of sperm (spermatogenesis) or the delivery of sperm. One particular target is the sperm protein EPPIN, which is present on the surface of human spermatozoa. EP055 is a small organic compound that targets EPPIN on the surface of sperm and inhibits motility. EP055 was tested in cynomolgus (Macaca fascicularis) males to determine its plasma half-life after intravenous (i.v.) infusion of a single dose and for binding to its target tissues. Our initial study demonstrated a plasma half-life for EP055 of 10.6 minutes. In a second study examination of macaque testis, epididymis, and plasma after i.v. infusion of a single dose of compound EP055 (63.25 mg/kg) demonstrated that EP055 was detected in testis and epididymis two hours and six hours post-infusion. We initiated a trial in rhesus (Macaca mulatta) males to assess the availability of EP055 in semen and its effect on sperm motility as a measure of the drug's efficacy. Four macaques were infused with a low dose (75–80 mg/kg) followed by a recovery period and a subsequent high dose (125–130 mg/kg) of EP055. After high dose administration, sperm motility fell to approximately 20% of pretreatment levels within 6 hours post-infusion; no normal motility was observed at 30 hours post-infusion. Recovery of sperm motility was obvious by 78 hours post-infusion; with full recovery in all animals by 18 days post-infusion. EP055 has the potential to be a male contraceptive that would provide a reversible, short-lived pharmacological alternative.
Collapse
|
20
|
Bianchi L, Carnemolla C, Viviani V, Landi C, Pavone V, Luddi A, Piomboni P, Bini L. Soluble protein fraction of human seminal plasma. J Proteomics 2018; 174:85-100. [DOI: 10.1016/j.jprot.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/04/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022]
|
21
|
Suleiman S, Smith VJ, Dyrynda EA. Unusual tissue distribution of carcinin, an antibacterial crustin, in the crab, Carcinus maenas, reveals its multi-functionality. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:274-284. [PMID: 28655578 DOI: 10.1016/j.dci.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Crustins are whey acidic four-disulphide core (WFDSC) domain-containing proteins in decapods that are widely regarded as antimicrobial agents that contribute to host defence. Whilst there have been many analyses of crustin gene expression in tissues, few studies have been made of the distribution of the natural proteins. Here we report an immunostaining investigation of carcinin, a native crustin from Carcinus maenas, in the body organs. The results show that the protein is largely confined to the haemocytes with only a weak signal detected in the heart, hepatopancreas and midgut caecum where it is restricted to the outer surfaces. Importantly, carcinin was seen to be deposited by the haemocytes on these surfaces. Higher levels of staining were detected in the gonads with carcinin particularly abundant in the capsule of ovary as well as some oocytes. Conspicuous staining was further evident in the cuticle of the eyestalk peduncles. Ablation of the eyestalks resulted in a reduction of carcinin in the maturing ovary with the mature eggs rarely displaying a strong signal for the protein. Interestingly, the degree of carcinin also strongly increased in the healing peduncle, indicating that the protein may be associated with wounding, cell damage and/or tissue regeneration.
Collapse
Affiliation(s)
- Suzanne Suleiman
- Centre for Marine Biodiversity and Biotechnology, Institute of Life and Earth Sciences, Heriot Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| | - Valerie J Smith
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife, Scotland KY16 8LB, United Kingdom.
| | - Elisabeth A Dyrynda
- Centre for Marine Biodiversity and Biotechnology, Institute of Life and Earth Sciences, Heriot Watt University, Edinburgh, Scotland EH14 4AS, United Kingdom
| |
Collapse
|
22
|
Small DM, Doherty DF, Dougan CM, Weldon S, Taggart CC. The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biol Chem 2017; 398:425-440. [PMID: 27930359 DOI: 10.1515/hsz-2016-0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.
Collapse
|
23
|
Scott A, Glasgow A, Small D, Carlile S, McCrudden M, McLean D, Brown R, Doherty D, Lundy FT, Hamid UI, O'Kane CM, McAuley DF, Brodlie M, Tunney M, Elborn JS, Irwin CR, Timson DJ, Taggart CC, Weldon S. Characterisation of eppin function: expression and activity in the lung. Eur Respir J 2017; 50:50/1/1601937. [DOI: 10.1183/13993003.01937-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/29/2017] [Indexed: 11/05/2022]
Abstract
Eppin is a serine protease inhibitor expressed in male reproductive tissues.The aim of this study was to investigate the localisation and regulation of eppin expression in myeloid and epithelial cell lines, and explore its potential role as a multifunctional host defence protein.Using immunohistochemistry and Western blotting, eppin was detected in the lungs of patients with acute respiratory distress syndrome and cystic fibrosis lung disease. Expression of eppin in monocytic cells was unaffected by stimulation with Toll-like receptor agonists, cytokines and hormone receptor agonists. However, upregulated expression and secretion of eppin was observed following treatment of monocytes with epidermal growth factor. Incubation of recombinant eppin with monocytic cells resulted in significant inhibition of lipopolysaccharide-induced chemokine production. Furthermore, eppin inhibited lipopolysaccharide-induced NF-κB activation by a mechanism which involved accumulation of phosphorylated IκBα. In anin vivomodel of lung inflammation induced by lipopolysaccharide, eppin administration resulted in decreased recruitment of neutrophils to the lung with a concomitant reduction in the levels of the neutrophil chemokine macrophage inflammatory protein-2.Overall, these results suggest a role for eppin outside of the reproductive tract and that eppin may have a role in the innate immune response in the lung.
Collapse
|
24
|
Huang P, Li W, Yang Z, Zhang N, Xu Y, Bao J, Jiang D, Dong X. LYZL6, an acidic, bacteriolytic, human sperm-related protein, plays a role in fertilization. PLoS One 2017; 12:e0171452. [PMID: 28182716 PMCID: PMC5300149 DOI: 10.1371/journal.pone.0171452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 01/21/2017] [Indexed: 11/17/2022] Open
Abstract
Lysozyme-like proteins (LYZLs) belong to the c-type lysozyme/α-lactalbumin family and are selectively expressed in the mammalian male reproductive tract. Two members, human sperm lysozyme-like protein (SLLP) -1 and mouse LYZL4, have been reported to contribute to fertilization but show no bacteriolytic activity. Here, we focused on the possible contribution of LYZL6 to immunity and fertilization. In humans, LYZL6 was selectively expressed by the testis and epididymis and became concentrated on spermatozoa. Native LYZL6 isolated from sperm extracts exhibited bacteriolytic activity against Micrococcus lysodeikticus. Recombinant LYZL6 (rLYZL6) reached its peak activity at pH 5.6 and 15 mM of Na+, and could inhibit the growth of Gram-positive, but not Gram-negative bacteria. Nevertheless, the bacteriolytic activity of rLYZL6 proved to be much lower than that of human lysozyme under physiological conditions. Immunodetection with a specific antiserum localized the LYZL6 protein on the postacrosomal membrane of mature spermatozoa. Immunoneutralization of LYZL6 significantly decreased the numbers of human spermatozoa fused with zona-free hamster eggs in a dose-dependent manner in vitro. Thus, we report here for the first time that LYZL6, an acidic, bacteriolytic and human sperm-related protein, is likely important for fertilization but not for the innate immunity of the male reproductive tract.
Collapse
Affiliation(s)
- Peng Huang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Wenshu Li
- College of Arts and Sciences, New York University, Shanghai, People’s Republic of China
| | - Zhifang Yang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ning Zhang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Yixin Xu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Jianying Bao
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xianping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| |
Collapse
|
25
|
Wang M, Li L, Guo Q, Zhang S, Ji D, Li H. Identification and expression of a new Ly6 gene cluster in zebrafish Danio rerio, with implications of being involved in embryonic immunity. FISH & SHELLFISH IMMUNOLOGY 2016; 54:230-240. [PMID: 27071517 DOI: 10.1016/j.fsi.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Lymphocyte antigen-6 (Ly6) superfamily is a large family of proteins and characterized by precisely spaced cysteine motifs, termed the three-finger fold. To date, a large number of members of the Ly6/uPAR family were identified among many species. In this study, we first report the identification and characterization of the secreted Ly2.1-3 proteins on the chromosome 2 in zebrafish and determine the expression pattern. Ly2.1-3 all possess a conserved LU domain and adopt similar three-finger structure with human CD59, SLURP1 and other Ly6 family members. Ly2.1-3 cluster on chromosome 2 and share high homology, possibly originated from chromosomal gene duplication. Ly2.1-3 exhibit distinct expression pattern in the endoderm, they were found abundantly and specifically in the digestive tract, liver and pancreas respectively. The differential expression pattern may suggest Ly2.1-3 acquire new function during gene duplication. The expression level of Ly2.1-3 were up-regulating challenged with LPS indicated that they have a role in innate immune responses of the digestive system during endotoxin challenge in early stage.
Collapse
Affiliation(s)
- Man Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lingyi Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Quanyang Guo
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Dongrui Ji
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
26
|
Abnormal Expression of Sg I is Closely Related to Seminal Vesiculitis. Urology 2016; 88:227.e9-227.e14. [DOI: 10.1016/j.urology.2015.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 08/31/2015] [Indexed: 02/01/2023]
|
27
|
Venomics of the Australian eastern brown snake ( Pseudonaja textilis ): Detection of new venom proteins and splicing variants. Toxicon 2015; 107:252-65. [DOI: 10.1016/j.toxicon.2015.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023]
|
28
|
O'Rand MG, Silva EJR, Hamil KG. Non-hormonal male contraception: A review and development of an Eppin based contraceptive. Pharmacol Ther 2015; 157:105-11. [PMID: 26593445 DOI: 10.1016/j.pharmthera.2015.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Developing a non-hormonal male contraceptive requires identifying and characterizing an appropriate target and demonstrating its essential role in reproduction. Here we review the development of male contraceptive targets and the current therapeutic agents under consideration. In addition, the development of EPPIN as a target for contraception is reviewed. EPPIN is a well characterized surface protein on human spermatozoa that has an essential function in primate reproduction. EPPIN is discussed as an example of target development, testing in non-human primates, and the search for small organic compounds that mimic contraceptive antibodies; binding EPPIN and blocking sperm motility. Although many hurdles remain before the success of a non-hormonal male contraceptive, continued persistence should yield a marketable product.
Collapse
Affiliation(s)
- Michael G O'Rand
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Eppin Pharma Inc., Chapel Hill, NC, 27514, United States.
| | - Erick J R Silva
- Department of Pharmacology, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | | |
Collapse
|
29
|
Yan P, He W, Wu Y, Chen Z, He H, Ni B, Zhang J, Yang X, Shen Z, Fu X, Liang Z, Li J. Enhanced Suppression of Fertility Can be Achieved by Priming with FSHR and Eppin and Further Boosting with Their B-cell Epitope Peptides. Am J Reprod Immunol 2015; 74:156-68. [PMID: 25864521 DOI: 10.1111/aji.12381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/10/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Ping Yan
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Institute of Immunology, Third Military University, Chongqing, China
| | - Wei He
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military University, Chongqing, China
| | - Zhengqiong Chen
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haiyang He
- Institute of Immunology, Third Military University, Chongqing, China
| | - Bing Ni
- Institute of Immunology, Third Military University, Chongqing, China
| | - Ji Zhang
- Institute of Immunology, Third Military University, Chongqing, China
| | - Xia Yang
- Institute of Immunology, Third Military University, Chongqing, China
| | - Zigang Shen
- Institute of Immunology, Third Military University, Chongqing, China
| | - Xiaolan Fu
- Institute of Immunology, Third Military University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jintao Li
- Institute of Immunology, Third Military University, Chongqing, China
| |
Collapse
|
30
|
Stewart MJ, Stewart P, Rivera-Posada J. De novo assembly of the transcriptome ofAcanthaster plancitestes. Mol Ecol Resour 2014; 15:953-66. [DOI: 10.1111/1755-0998.12360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Michael James Stewart
- Genecology Research Centre; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
| | - Praphaporn Stewart
- Genecology Research Centre; Faculty of Science, Health, Education and Engineering; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
| | - Jairo Rivera-Posada
- ARC Centre of Excellence for Coral Reefs Studies; James Cook University; Townsville Queensland 4812 Australia
- Australian Institute of Marine Science; PMB No. 3 Townsville Queensland 4810 Australia
| |
Collapse
|
31
|
Hua L, Liu Y, Zhen S, Wan D, Cao J, Gao X. Expression and biochemical characterization of recombinant human epididymis protein 4. Protein Expr Purif 2014; 102:52-62. [PMID: 25131860 DOI: 10.1016/j.pep.2014.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023]
Abstract
Whey acidic proteins (WAP) belong to a large gene family of antibacterial peptides that perform critical immune system functions. The function of human epididymis protein 4 (HE4), a 124-amino acid long polypeptide that has two whey acidic protein four-disulfide core (WFDC) domains, is not well studied. Here, a fusion gene encoding the HE4 protein fused to an IgG1 Fc domain was constructed. The recombinant HE4 protein was expressed as a secretory protein in Pichia pastoris and mammalian HEK293-F cells and was subsequently purified. Our data suggested that the HE4 protein produced by these two expression systems bound to both gram-negative and gram-positive bacteria, but demonstrated slightly inhibitory activity towards the growth of Staphylococcus aureus. Moreover, HE4 exhibited proteinase inhibitory activity towards trypsin, elastase, matrix metallopeptidase 9, and the secretory proteinases from Bacillus subtilis. The effects of glycosylation on the biochemical characterization of HE4 were also investigated. LC-ESI-MS glycosylation analysis showed that the high-mannose glycosylated form of HE4 expressed by P. pastoris has lower biological activity when compared to its complex-glycosylated form produced from HEK293-F cells. The implications of this are discussed, which may be provide theoretical basis for its important role in the development of cancer and innate immune system.
Collapse
Affiliation(s)
- Ling Hua
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, Hubei, PR China; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Yunhui Liu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Shuai Zhen
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Deyou Wan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Jiyue Cao
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shi-zi-shan Street, Wuhan 430070, Hubei, PR China.
| | - Xin Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
32
|
Liu B, Song Z, Xu A, Su S, Wang Z, Yin C. Is abnormal expression of semenogelin I involved with seminal vesiculitis? Med Hypotheses 2014; 82:338-40. [DOI: 10.1016/j.mehy.2013.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
33
|
Kumar S, Tomar AK, Singh S, Gill K, Dey S, Singh S, Yadav S. Heparin binding carboxypeptidase E protein exhibits antibacterial activity in human semen. Int J Biol Macromol 2014; 64:319-27. [PMID: 24365672 DOI: 10.1016/j.ijbiomac.2013.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 02/07/2023]
Abstract
Carboxypeptidase E (CPE) cleaves basic amino acid residues at the C-terminal end and involves in the biosynthesis of numerous peptide hormones and neurotransmitters. It was purified from human seminal plasma by ion exchange, heparin affinity and gel filtration chromatography followed by identification through SDS-PAGE and MALDI-TOF/MS analysis, which was further confirmed by western blotting. CPE was characterized as glycoprotein by Periodic Acid Schiff (PAS) staining and treating with deglycosylating enzyme N-glycosidase F. The interaction of CPE with heparin was illustrated by surface plasmon resonance (SPR) and in silico interaction analysis. The association constant (KA) and dissociation constant (KD) of CPE with heparin was determined by SPR and found to be 1.06 × 10(5)M and 9.46 × 10(-6)M, respectively. It was detected in human spermatozoa also by western blotting using mouse anti-CPE primary antibody. 20-100 μg/ml concentration of CPE was observed as highly effective in killing Escherichia coli by colony forming unit (CFU) assay. We suggest that CPE might act not only in the innate immunity of male reproductive tract but also regulate sperm fertilization process by interacting heparin.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sudhuman Singh
- School of Life Sciences, Jawaharlal Nehru University (JNU), New Delhi, India
| | - Kamaldeep Gill
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sarman Singh
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
34
|
Ferreira Z, Hurle B, Andrés AM, Kretzschmar WW, Mullikin JC, Cherukuri PF, Cruz P, Gonder MK, Stone AC, Tishkoff S, Swanson WJ, Green ED, Clark AG, Seixas S. Sequence diversity of Pan troglodytes subspecies and the impact of WFDC6 selective constraints in reproductive immunity. Genome Biol Evol 2013; 5:2512-23. [PMID: 24356879 PMCID: PMC3879984 DOI: 10.1093/gbe/evt198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P. t. ellioti, P. t. troglodytes, and P. t. schweinfurthii. However, few studies have pursued the effects of natural selection in shaping their response to pathogens and reproduction. Whey acidic protein (WAP) four-disulfide core domain (WFDC) genes and neighboring semenogelin (SEMG) genes encode proteins with combined roles in immunity and fertility. They display a strikingly high rate of amino acid replacement (dN/dS), indicative of adaptive pressures during primate evolution. In human populations, three signals of selection at the WFDC locus were described, possibly influencing the proteolytic profile and antimicrobial activities of the male reproductive tract. To evaluate the patterns of genomic variation and selection at the WFDC locus in chimpanzees, we sequenced 17 WFDC genes and 47 autosomal pseudogenes in 68 chimpanzees (15 P. t. troglodytes, 22 P. t. verus, and 31 P. t. ellioti). We found a clear differentiation of P. t. verus and estimated the divergence of P. t. troglodytes and P. t. ellioti subspecies in 0.173 Myr; further, at the WFDC locus we identified a signature of strong selective constraints common to the three subspecies in WFDC6—a recent paralog of the epididymal protease inhibitor EPPIN. Overall, chimpanzees and humans do not display similar footprints of selection across the WFDC locus, possibly due to different selective pressures between the two species related to immune response and reproductive biology.
Collapse
Affiliation(s)
- Zélia Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Silva EJR, Hamil KG, O’Rand MG. Interacting proteins on human spermatozoa: adaptive evolution of the binding of semenogelin I to EPPIN. PLoS One 2013; 8:e82014. [PMID: 24312623 PMCID: PMC3846889 DOI: 10.1371/journal.pone.0082014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Semenogelin I (SEMG1) is found in human semen coagulum and on the surface of spermatozoa bound to EPPIN. The physiological significance of the SEMG1/EPPIN interaction on the surface of spermatozoa is its capacity to modulate sperm progressive motility. The present study investigates the hypothesis that the interacting surface of SEMG1 and EPPIN co-evolved within the Hominoidea time scale, as a result of adaptive pressures applied by their roles in sperm protection and reproductive fitness. Our results indicate that some amino acid residues of SEMG1 and EPPIN possess a remarkable deficiency of variation among hominoid primates. We observe a distinct residue change unique to humans within the EPPIN sequence containing a SEMG1 interacting surface, namely His92. In addition, Bayes Empirical Bayes analysis for positive selection indicates that the SEMG1 Cys239 residue underwent positive selection in humans, probably as a consequence of its role in increasing the binding affinity of these interacting proteins. We confirm the critical role of Cys239 residue for SEMG1 binding to EPPIN and inhibition of sperm motility by showing that recombinant SEMG1 mutants in which Cys239 residue was changed to glycine, aspartic acid, histidine, serine or arginine have reduced capacity to interact to EPPIN and to inhibit human sperm motility in vitro. In conclusion, our results indicate that EPPIN and SEMG1 rapidly co-evolved in primates due to their critical role in the modulation of sperm motility in the semen coagulum, providing unique insights into the molecular co-evolution of sperm surface interacting proteins.
Collapse
Affiliation(s)
- Erick J. R. Silva
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Katherine G. Hamil
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael G. O’Rand
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
36
|
Li S, Jin XK, Guo XN, Yu AQ, Wu MH, Tan SJ, Zhu YT, Li WW, Wang Q. A double WAP domain-containing protein Es-DWD1 from Eriocheir sinensis exhibits antimicrobial and proteinase inhibitory activities. PLoS One 2013; 8:e73563. [PMID: 23967346 PMCID: PMC3742519 DOI: 10.1371/journal.pone.0073563] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/21/2013] [Indexed: 10/27/2022] Open
Abstract
Whey acidic proteins (WAP) belong to a large gene family of antibacterial peptides, which are critical in the host immune response against microbial invasion. The common feature of these proteins is a single WAP domain maintained by at least one four-disulfide core (4-DSC) structure rich in cysteine residues. In this study, a double WAP domain (DWD)-containing protein, Es-DWD1, was first cloned from the Chinese mitten crab (Eriocheirsinensis). The full-length Es-DWD1cDNA was 1193 bp, including a 411 bp open reading frame (ORF) encoding 136 amino acids with a signal peptide of 22 amino acids in the N-terminus. A comparison with other reported invertebrate and vertebrate sequences revealed the presence of WAP domains characteristic of WAP superfamilies. As determined by quantitative real-time RT-PCR, Es-DWD1 transcripts were ubiquitously expressed in all tissues, but it was up-regulated in hemocytes post-challenge with pathogen-associated molecular patterns (PAMPs). The mature recombinant Es-DWD1 (rEs-DWD1) protein exhibited different binding activities to bacteria and fungus. Moreover, rEs-DWD1 could exert agglutination activities against Bacillus subtilis and Pichiapastoris and demonstrated inhibitory activities against the growth of Staphylococcus aureus, Aeromonas hydrophila and P. pastoris. Furthermore, rEs-DWD1 showed a specific protease inhibitory activity in B. subtilis. Coating of rEs-DWD1 onto agarose beads enhanced encapsulation of the beads by crab hemocytes. Collectively, the results suggest that Es-DWD1 is a double WAP domain containing protein with antimicrobial and proteinase inhibitory activities, which play significant roles in the immunity of crustaceans.
Collapse
Affiliation(s)
- Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Ai-Qing Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Min-Hao Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Shang-Jian Tan
- School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
37
|
Anastasiadou M, Avdi M, Michailidis G. Expression of avian β-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection. Anim Reprod Sci 2013; 140:224-31. [PMID: 23830764 DOI: 10.1016/j.anireprosci.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022]
Abstract
The epididymis is an organ involved in the maturation, transport, and storage of sperm prior to ejaculation. As epididymis is exposed to a constant risk of inflammatory conditions that may lead to transient or permanent sterility, protection of this organ from pathogens is an essential aspect of reproductive physiology. The families of antimicrobial peptides β-defensins and the pattern-recognition receptors Toll-like (TLR) mediate innate immunity in various vertebrates including avian species. As rooster infertility is a major concern in the poultry industry, the objectives of this study were to determine the expression profile of the entire family of the avian β-defensins (AvBD) and TLR genes in the rooster epididymis, to investigate whether sexual maturation affects their epididymidal mRNA abundance and to determine the changes in their expression levels in response to Salmonella enteritidis (SE) infection in the epididymis of sexually mature roosters. RNA was extracted from the epididymis of healthy pubertal, sexually mature and aged birds, and from sexually mature SE infected birds. RT-PCR analysis revealed that 10 members of the AvBD and nine members of the TLR gene families were expressed in the epididymis. Quantitative real-time PCR analysis revealed that the epididymidal mRNA abundance of certain AvBD and TLR genes was developmentally regulated with respect to sexual maturation. SE infection resulted in a significant induction of AvBD 1, 9, 10, 12 and 14, as well as TLR 1-2, 2-1, 2-2, 4, 5 and 7 genes, in the epididymis of sexually mature roosters, compared to healthy birds of the same age. These findings provide strong evidence to suggest that the rooster epididymis is capable of initiating an inflammatory response to Salmonella, through activation of certain members of the AvBD and TLR gene families.
Collapse
Affiliation(s)
- M Anastasiadou
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
38
|
|
39
|
Preet S, Virdi JS, Rishi P. Anti-Yersinia Activity of Cryptdin-2: A Paneth Cell Peptide. NATIONAL ACADEMY SCIENCE LETTERS-INDIA 2013. [DOI: 10.1007/s40009-013-0114-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Ferreira Z, Seixas S, Andrés AM, Kretzschmar WW, Mullikin JC, Cherukuri PF, Cruz P, Swanson WJ, Clark AG, Green ED, Hurle B. Reproduction and immunity-driven natural selection in the human WFDC locus. Mol Biol Evol 2013; 30:938-50. [PMID: 23292442 DOI: 10.1093/molbev/mss329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The whey acidic protein (WAP) four-disulfide core domain (WFDC) locus located on human chromosome 20q13 spans 19 genes with WAP and/or Kunitz domains. These genes participate in antimicrobial, immune, and tissue homoeostasis activities. Neighboring SEMG genes encode seminal proteins Semenogelin 1 and 2 (SEMG1 and SEMG2). WFDC and SEMG genes have a strikingly high rate of amino acid replacement (dN/dS), indicative of responses to adaptive pressures during vertebrate evolution. To better understand the selection pressures acting on WFDC genes in human populations, we resequenced 18 genes and 54 noncoding segments in 71 European (CEU), African (YRI), and Asian (CHB + JPT) individuals. Overall, we identified 484 single-nucleotide polymorphisms (SNPs), including 65 coding variants (of which 49 are nonsynonymous differences). Using classic neutrality tests, we confirmed the signature of short-term balancing selection on WFDC8 in Europeans and a signature of positive selection spanning genes PI3, SEMG1, SEMG2, and SLPI. Associated with the latter signal, we identified an unusually homogeneous-derived 100-kb haplotype with a frequency of 88% in Asian populations. A putative candidate variant targeted by selection is Thr56Ser in SEMG1, which may alter the proteolytic profile of SEMG1 and antimicrobial activities of semen. All the well-characterized genes residing in the WDFC locus encode proteins that appear to have a role in immunity and/or fertility, two processes that are often associated with adaptive evolution. This study provides further evidence that the WFDC and SEMG loci have been under strong adaptive pressure within the short timescale of modern humans.
Collapse
Affiliation(s)
- Zélia Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Silva EJR, Patrão MTCC, Tsuruta JK, O'Rand MG, Avellar MCW. Epididymal protease inhibitor (EPPIN) is differentially expressed in the male rat reproductive tract and immunolocalized in maturing spermatozoa. Mol Reprod Dev 2012; 79:832-42. [PMID: 23070980 DOI: 10.1002/mrd.22119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/28/2012] [Indexed: 12/27/2022]
Abstract
EPPIN (epididymal protease inhibitor; SPINLW1), an antimicrobial cysteine-rich protein containing both Kunitz and whey acidic protein (WAP)-type four disulfide core protease inhibitor consensus sequences, is a target for male contraception because of its critical role in sperm motility. Here, we characterized EPPIN's expression and cellular distribution in rat tissues and its in vivo regulation by androgens in the epididymis. EPPIN (mRNA and protein) was abundantly expressed in the rat testis and epididymis; we also found that the vas deferens, seminal vesicles, and brain were novel sites of EPPIN expression. PCR studies demonstrated that in addition to Sertoli cells, spermatogenic cells expressed Eppin mRNA. EPPIN was immunolocalized in Sertoli cells and spermatogenic cells (pachytene spermatocytes and round and elongated spermatids) and in epithelial cells and spermatozoa from efferent ductules and epididymis. EPPIN staining was observed on the middle and principal pieces of the flagellum of testicular spermatozoa. Epididymal spermatozoa had more intense EPPIN staining on the flagellum, and the EPPIN staining became apparent on the head and neck regions. This suggested that the EPPIN found on maturing spermatozoa was secreted primarily by the epithelial cells of the epididymis. Surgical castration down-regulated EPPIN expression levels (mRNA and protein) in the caput and cauda epididymis, an effect reversed by testosterone replacement. Altogether, our data suggested that EPPIN expression in rats is more widespread than in humans and mice, and is androgen-dependent in the epididymis. This species could be used as an experimental model to further study EPPIN's role in male fertility.
Collapse
Affiliation(s)
- Erick J R Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, SP, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Silva EJR, Hamil KG, Richardson RT, O'Rand MG. Characterization of EPPIN's semenogelin I binding site: a contraceptive drug target. Biol Reprod 2012; 87:56. [PMID: 22699487 DOI: 10.1095/biolreprod.112.101832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Epididymal protease inhibitor (EPPIN) is found on the surface of spermatozoa and works as a central hub for a sperm surface protein complex (EPPIN protein complex [EPC]) that inhibits sperm motility on the binding of semenogelin I (SEMG1) during ejaculation. Here, we identify EPPIN's amino acids involved in the interactions within the EPC and demonstrate that EPPIN's sequence C102-P133 contains the major binding site for SEMG1. Within the same region, the sequence F117-P133 binds the EPC-associated protein lactotransferrin (LTF). We show that residues Cys102, Tyr107, and Phe117 in the EPPIN C-terminus are required for SEMG1 binding. Additionally, residues Tyr107 and Phe117 are critically involved in the interaction between EPPIN and LTF. Our findings demonstrate that EPPIN is a key player in the protein-protein interactions within the EPC. Target identification is an important step toward the development of a novel male contraceptive, and the functionality of EPPIN's residues Cys102, Tyr107, and Phe117 offers novel opportunities for contraceptive compounds that inhibit sperm motility by targeting this region of the molecule.
Collapse
Affiliation(s)
- Erick J R Silva
- The Laboratories for Reproductive Biology, Department of Cell & Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7090, USA.
| | | | | | | |
Collapse
|
43
|
Les approches épididymaires de la contraception masculine. Basic Clin Androl 2012. [DOI: 10.1007/s12610-012-0186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Résumé
L’offre en matière de moyens contraceptifs masculins est limitée et, en particulier, à ce jour il n’existe pas de contraception hormonale masculine sur le marché. L’épididyme, dans lequel les spermatozoïdes acquièrent leurs capacités fécondantes et où ils sont stockés, s’avère être un site intéressant à cibler. Cette revue vise à présenter de façon synthétique les quelques pistes prometteuses qui ont émergé ces dernières années.
Collapse
|
44
|
Muciaccia B, Pensini S, Culasso F, Padula F, Paoli D, Gandini L, Di Veroli C, Bianchini G, Stefanini M, D'Agostino A. Higher clusterin immunolabeling and sperm DNA damage levels in hypertensive men compared with controls. Hum Reprod 2012; 27:2267-76. [DOI: 10.1093/humrep/des173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
45
|
Edström Hägerwall AML, Rydengård V, Fernlund P, Mörgelin M, Baumgarten M, Cole AM, Malmsten M, Kragelund BB, Sørensen OE. β-Microseminoprotein endows post coital seminal plasma with potent candidacidal activity by a calcium- and pH-dependent mechanism. PLoS Pathog 2012; 8:e1002625. [PMID: 22496651 PMCID: PMC3320615 DOI: 10.1371/journal.ppat.1002625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/22/2012] [Indexed: 12/13/2022] Open
Abstract
The innate immune factors controlling Candida albicans are mostly unknown. Vulvovaginal candidiasis is common in women and affects approximately 70–75% of all women at least once. Despite the propensity of Candida to colonize the vagina, transmission of Candida albicans following sexual intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained factors active against C. albicans. By CFU assays, we found prominent candidacidal activity of post coital seminal plasma at both neutral and the acid vaginal pH. In contrast, normal seminal plasma did not display candidacidal activity prior to acidification. By antifungal gel overlay assay, one clearing zone corresponding to a protein band was found in both post coital and normal seminal plasma, which was subsequently identified as β-microseminoprotein. At neutral pH, the fungicidal activity of β-microseminoprotein and seminal plasma was inhibited by calcium. By NMR spectroscopy, amino acid residue E71 was shown to be critical for the calcium coordination. The acidic vaginal milieu unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The candidacidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. A homologous fragment from porcine β-microseminoprotein demonstrated calcium-dependent fungicidal activity in a CFU assay, suggesting this may be a common feature for members of the β-microseminoprotein family. By electron microscopy, β-microseminoprotein was found to cause lysis of Candida. Liposome experiments demonstrated that β-microseminoprotein was active towards ergosterol-containing liposomes that mimic fungal membranes, offering an explanation for the selectivity against fungi. These data identify β-microseminoprotein as an important innate immune factor active against C. albicans and may help explain the low sexual transmission rate of Candida. The innate immune factors controlling Candida albicans are mostly unknown. Sexual transmission of Candida during vaginal intercourse is very rare. This prompted us to investigate whether the post coital vaginal milieu contained innate immune factors active against Candida. We found potent candidacidal activity of acidic post coital seminal plasma mediated by β-microseminoprotein, while seminal plasma did not possess any fungicidal activity prior to acidification. The fungicidal effect of β-microseminoprotein was regulated by a novel calcium and pH-dependent mechanism uniquely suited for the post coital vaginal environment. At neutral pH, the fungicidal activity of β-microseminoprotein was inhibited by calcium. The acidic vaginal pH, on the other hand, unleashed the fungicidal activity by decreasing the inhibitory effect of calcium. The fungicidal activity of β-microseminoprotein was mapped to a fragment of the C-terminal domain with no structural similarity to other known proteins. Experiments with a homologous fragment from porcine β-microseminoprotein demonstrating calcium-dependent fungicidal activity suggest this to be a common feature for members of the β-microseminoprotein family. These data may help explain the low transmission rate of Candida after vaginal sexual intercourse.
Collapse
Affiliation(s)
| | - Victoria Rydengård
- Division of Dermatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Per Fernlund
- Division of Clinical Chemistry, Department of Laboratory Medicine Malmö, Lund University, Malmö, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Maria Baumgarten
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Alexander M. Cole
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | | | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole E. Sørensen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
46
|
The tammar wallaby: a model system to examine domain-specific delivery of milk protein bioactives. Semin Cell Dev Biol 2012; 23:547-56. [PMID: 22498725 DOI: 10.1016/j.semcdb.2012.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/23/2022]
Abstract
The role of milk extends beyond simply providing nutrition to the suckled young. Milk has a comprehensive role in programming and regulating growth and development of the suckled young, and provides a number of potential autocrine factors so that the mammary gland functions appropriately during the lactation cycle. This central role of milk is best studied in animal models such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Consequently, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland since inappropriate timing of these signalling events may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. Milk proteins play a significant role in these processes by providing timely presentation of signalling molecules and antibacterial protection for the young and the mammary gland at times when there is increased susceptibility to infection. This review describes studies exploiting the unique reproductive strategy of the tammar wallaby to investigate the role of several proteins secreted at specific times during the lactation cycle and that are correlated with potential roles in the young and mammary gland. Interestingly, alternative splicing of some milk protein genes has been utilised by the mammary gland to deliver domain-specific functions at specific times during lactation.
Collapse
|
47
|
Rajesh A, Yenugu S. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster. PLoS One 2012; 7:e32633. [PMID: 22479333 PMCID: PMC3316536 DOI: 10.1371/journal.pone.0032633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/31/2022] Open
Abstract
The cysteine rich prostate and testis expressed (Pate) proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old), expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
- * E-mail:
| |
Collapse
|
48
|
Reddy KVR, Sukanya D, Patgaonkar MS, Selvaakumar C. Effect of Rabbit Epididymal Antimicrobial Peptide, REHbβP, on LPS-Induced Proinflammatory Cytokine Responses in Human Vaginal Cells In Vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:782019. [PMID: 22505946 PMCID: PMC3312295 DOI: 10.1155/2012/782019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/18/2011] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMP's) protect epithelial surfaces including epididymis against pathogens and play a key role in orchestrating various defensive responses. Recently, we have identified one such AMP, rabbit epididymal hemoglobin-β subuit (REHbβP) from the epididymal fluid of rabbit, Oryctologus cuniculus. The demonstration of a protective role of REHbβP in epididymal epithelial cells (EPEC's) led us to investigate: (1) the identification of LPS interactive domain in REHbβP, and (2) whether the REHbβP of rabbit origin mediates vaginal cellular immune responses of another species (human). HeLa-S3, human vaginal epithelial cells (hVECs) were exposed to LPS or the LPS-stimulated cells treated with REHbβP or neutral peptide, nREHbβP. Effect of LPS and cytokines (IL-6 and IL-1α) and chemokines (IL-8, MCP-1) levels was determined in the culture supernatants. In response to the LPS, hVECs synthesized these mediators and the levels were significantly higher than controls. This enhancing effect was ameliorated when the LPS-induced hVECs were treated with REHbβP. Similar results were obtained on NF-κB protein and hBD-1 mRNA expression. Confocal microscopy studies revealed that REHbβP attenuated the LPS-induced internalization of E. coli by macrophages. The chemotaxis studies performed using Boyden chamber Transwell assay, which showed elevated migration of U937 cells when the supernatants of LPS-induced hVECs were used, and the effect was inhibited by REHbβP. REHbβP was found to be localized on the acrosome of rabbit spermatozoa, suggesting its role in sperm protection beside sperm function. In conclusion, REHbβP may have the potential to develop as a therapeutic agent for reproductive tract infections (RTI's).
Collapse
Affiliation(s)
- K. V. R. Reddy
- Division of Molecular Immunology, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - D. Sukanya
- Division of Molecular Immunology, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - M. S. Patgaonkar
- Division of Molecular Immunology, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research (ICMR), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - C. Selvaakumar
- Department of Biotechnology and Bioinformatics, Padmashree Dr. D.Y. Patil University, CBD Belapur, Navi Mumbai 400 614, India
| |
Collapse
|
49
|
Watt AP, Sharp JA, Lefevre C, Nicholas KR. WFDC2 is differentially expressed in the mammary gland of the tammar wallaby and provides immune protection to the mammary gland and the developing pouch young. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:584-590. [PMID: 22024352 DOI: 10.1016/j.dci.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/13/2011] [Accepted: 10/02/2011] [Indexed: 05/31/2023]
Abstract
WAP four disulfide core domain 2 (WFDC2) is a four disulfide core (4-DSC) protein secreted in the milk of the tammar wallaby. It is comprised of two 4-DSC domains assigned domain III at the NH2-terminal end and domain II at the COOH-terminal end. The WFDC2 gene was expressed only during pregnancy, early lactation, towards the end of lactation and involution. The WFDC2 protein showed antibacterial activity against Staphylococcus aureus, Salmonella enterica and Pseudomonas aeruginosa and this activity resided with domain II. There was no antibacterial activity detected against Enterococcus faecalis. The observed expression pattern of tammar WFDC2 and its antibacterial activity suggests a role to either reduce mastitis in the mammary gland caused by S. aureus or to protect the gut of the young at a time when it is not immune-competent. The latter effect could be achieved without disturbing the balance of commensal gut flora such as E. faecalis.
Collapse
Affiliation(s)
- Ashalyn P Watt
- Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | | | | | | |
Collapse
|
50
|
O'Rand MG, Widgren EE. Loss of calcium in human spermatozoa via EPPIN, the semenogelin receptor. Biol Reprod 2012; 86:55. [PMID: 22075473 DOI: 10.1095/biolreprod.111.094227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The development of a new male contraceptive requires a transition from animal model to human and an understanding of the mechanisms involved in the target's inhibition of human spermatozoan fertility. We now report that semenogelin (SEMG1) and anti-EPPIN antibodies to a defined target site of 21 amino acids on the C terminal of EPPIN cause the loss of intracellular calcium, as measured by Fluo-4. The loss of intracellular calcium explains our previous observations of an initial loss of progressive motility and eventually the complete loss of motility when spermatozoa are treated with SEMG1 or anti-EPPIN antibodies. Thimerosal can rescue the effects of SEMG1 on motility, implying that internal stores of calcium are not depleted. Additionally, SEMG1 treatment of spermatozoa decreases the intracellular pH, and motility can be rescued by ammonium chloride. The results of this study demonstrate that EPPIN controls sperm motility in the ejaculate by binding SEMG1, resulting in the loss of calcium, most likely through a disturbance of internal pH and an inhibition of uptake mechanisms. However, the exact steps through which the EPPIN-SEMG1 complex exerts its effect on internal calcium levels are unknown. Anti-EPPIN antibodies can substitute for SEMG1, and, therefore, small-molecular weight compounds that mimic anti-EPPIN binding should be able to substitute for SEMG1, providing the basis for a nonantibody, nonhormonal male contraceptive.
Collapse
Affiliation(s)
- Michael G O'Rand
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, USA.
| | | |
Collapse
|