1
|
Saloni, Sachan M, Rahul, Verma RS, Patel GK. SOXs: Master architects of development and versatile emulators of oncogenesis. Biochim Biophys Acta Rev Cancer 2025; 1880:189295. [PMID: 40058508 DOI: 10.1016/j.bbcan.2025.189295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Transcription factors regulate a variety of events and maintain cellular homeostasis. Several transcription factors involved in embryonic development, has been shown to be closely associated with carcinogenesis when deregulated. Sry-like high mobility group box (SOX) proteins are potential transcription factors which are evolutionarily conserved. They regulate downstream genes to determine cell fate, via various signaling pathways and cellular processes essential for tissue and organ development. Dysregulation of SOXs has been reported to promote or suppress tumorigenesis by modulating cellular reprogramming, growth, proliferation, angiogenesis, metastasis, apoptosis, immune modulation, lineage plasticity, maintenance of the stem cell pool, therapy resistance and cancer relapse. This review provides a crucial understanding of the molecular mechanism by which SOXs play multifaceted roles in embryonic development and carcinogenesis. It also highlights their potential in advancing therapeutic strategies aimed at targeting SOXs and their downstream effectors in various malignancies.
Collapse
Affiliation(s)
- Saloni
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Rahul
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Shanker Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
2
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
3
|
Chen J, Cen C, Wang M, Qin S, Liu B, Shen Z, Cui X, Hou X, Gao F, Chen M. Foxo1 directs the transdifferentiation of mouse Sertoli cells into granulosa-like cells. J Genet Genomics 2024:S1673-8527(24)00355-2. [PMID: 39681193 DOI: 10.1016/j.jgg.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Sertoli and granulosa cells, the initial differentiated somatic cells in bipotential gonads, play crucial roles in directing male and female gonad development, respectively. The transcription factor Foxo1 is involved in diverse cellular processes, and its expression in gonadal somatic cells is sex-dependent. While Foxo1 is abundantly expressed in ovarian granulosa cells, it is notably absent in testicular Sertoli cells. Nevertheless, its function in gonadal somatic cell differentiation remains elusive. In this study, we find that ectopic expression of Foxo1 in Sertoli cells leads to defects in testes development. Further study uncovers that the ectopic expression of Foxo1 induces the abundant expression of Foxl2 in Sertoli cells, along with the upregulation of other female-specific genes. In contrast, the expression of male-specific genes is reduced. Mechanistic studies indicate that Foxo1 directly binds to the promoter region of Foxl2, inducing its expression. Our findings highlight that Foxo1 serves as a key regulator for the lineage maintenance of ovarian granulosa cells. This study contributes valuable insights into understanding the regulatory mechanisms governing the lineage maintenance of gonadal somatic cells.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyue Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Qin
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272000, China
| | - Bowen Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Hou
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhang X, Wu Y, Zhang Y, Zhang J, Chu P, Chen K, Liu H, Luo Q, Fei S, Zhao J, Ou M. Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis. Biol Sex Differ 2024; 15:70. [PMID: 39244546 PMCID: PMC11380785 DOI: 10.1186/s13293-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
5
|
Ridnik M, Abberbock E, Alipov V, Lhermann SZ, Kaufman S, Lubman M, Poulat F, Gonen N. Two redundant transcription factor binding sites in a single enhancer are essential for mammalian sex determination. Nucleic Acids Res 2024; 52:5514-5528. [PMID: 38499491 PMCID: PMC11162780 DOI: 10.1093/nar/gkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Male development in mammals depends on the activity of the two SOX gene: Sry and Sox9, in the embryonic testis. As deletion of Enhancer 13 (Enh13) of the Sox9 gene results in XY male-to-female sex reversal, we explored the critical elements necessary for its function and hence, for testis and male development. Here, we demonstrate that while microdeletions of individual transcription factor binding sites (TFBS) in Enh13 lead to normal testicular development, combined microdeletions of just two SRY/SOX binding motifs can alone fully abolish Enh13 activity leading to XY male-to-female sex reversal. This suggests that for proper male development to occur, these few nucleotides of non-coding DNA must be intact. Interestingly, we show that depending on the nature of these TFBS mutations, dramatically different phenotypic outcomes can occur, providing a molecular explanation for the distinct clinical outcomes observed in patients harboring different variants in the same enhancer.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Elisheva Abberbock
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Veronica Alipov
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shelly Ziv Lhermann
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shoham Kaufman
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maor Lubman
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Francis Poulat
- Group “Development and Pathology of the Gonad”. Department of Genetics, Cell Biology and Development, Institute of Human Genetics, CNRS-University of Montpellier UMR9002, Montpellier, France
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
León NY, Le TNU, Garvie A, Wong LH, Bagheri-Fam S, Harley VR. Y chromosome damage underlies testicular abnormalities in ATR-X syndrome. iScience 2024; 27:109629. [PMID: 38616920 PMCID: PMC11015497 DOI: 10.1016/j.isci.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when Atrx was deleted in Sertoli cells (ScAtrxKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects. In control mice, Sertoli cells contain a single novel "GATA4 PML nuclear body (NB)" that contained the transcription factor GATA4, ATRX, DAXX, HP1α, and PH3 and co-localized with the Y chromosome short arm (Yp). ScAtrxKO mice contain single giant GATA4 PML-NBs with frequent DNA double-strand breaks (DSBs) in G2/M-arrested apoptotic Sertoli cells. HP1α and PH3 were absent from giant GATA4 PML-NBs indicating a failure in heterochromatin formation and chromosome condensation. Our data suggest that ATRX protects a Yp region from DNA damage, thereby preventing Sertoli cell death. We discuss Y chromosome damage/decondensation as a mechanism for testicular failure.
Collapse
Affiliation(s)
- Nayla Y. León
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Thanh Nha Uyen Le
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lee H. Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Vincent R. Harley
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
7
|
Suen HC, Ou F, Miu KK, Wang Z, Chan WY, Liao J. The single-cell chromatin landscape in gonadal cell lineage specification. BMC Genomics 2024; 25:464. [PMID: 38741085 DOI: 10.1186/s12864-024-10376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fanghong Ou
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai-Kei Miu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Yee Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Hurtado A, Mota-Gómez I, Lao M, Real FM, Jedamzick J, Burgos M, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Complete male-to-female sex reversal in XY mice lacking the miR-17~92 cluster. Nat Commun 2024; 15:3809. [PMID: 38714644 PMCID: PMC11076593 DOI: 10.1038/s41467-024-47658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024] Open
Abstract
Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.
Collapse
Grants
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P11-CVI-7291 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- grant no. 101045439, 3D-REVOLUTION EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Ministerio de Ciencia e Innovación. Agencia Estatal de Investigación. Grant No. PID2022-139302NB-I00
Collapse
Affiliation(s)
- Alicia Hurtado
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/UPO/JA, Seville, Spain
| | - Irene Mota-Gómez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Miguel Lao
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Francisca M Real
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johanna Jedamzick
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Miguel Burgos
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/UPO/JA, Seville, Spain.
| | - Rafael Jiménez
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain.
| | - Francisco J Barrionuevo
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain.
| |
Collapse
|
9
|
Ferrari MTM, Silva ESDN, Nishi MY, Batista RL, Mendonca BB, Domenice S. Testicular differentiation in 46,XX DSD: an overview of genetic causes. Front Endocrinol (Lausanne) 2024; 15:1385901. [PMID: 38721146 PMCID: PMC11076692 DOI: 10.3389/fendo.2024.1385901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 01/18/2025] Open
Abstract
In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.
Collapse
Affiliation(s)
- Maria Tereza Martins Ferrari
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elinaelma Suelane do Nascimento Silva
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Yumie Nishi
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Loch Batista
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Cheng D, Lu CF, Gong F, Du J, Yuan S, Luo KL, Tan YQ, Lu GX, Lin G. A case report of a normal fertile woman with 46,XX/46,XY somatic chimerism reveals a critical role for germ cells in sex determination. Hum Reprod 2024; 39:849-855. [PMID: 38420683 DOI: 10.1093/humrep/deae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Individuals with 46,XX/XY chimerism can display a wide range of characteristics, varying from hermaphroditism to complete male or female, and can display sex chromosome chimerism in multiple tissues, including the gonads. The gonadal tissues of females contain both granulosa and germ cells. However, the specific sex chromosome composition of the granulosa and germ cells in 46,XX/XY chimeric female is currently unknown. Here, we reported a 30-year-old woman with secondary infertility who displayed a 46,XX/46,XY chimerism in the peripheral blood. FISH testing revealed varying degrees of XX/XY chimerism in multiple tissues of the female patient. Subsequently, the patient underwent preimplantation genetic testing (PGT) treatment, and 26 oocytes were retrieved. From the twenty-four biopsied mature oocytes, a total of 23 first polar bodies (PBs) and 10 second PBs were obtained. These PBs and two immature metaphase I (MI) oocytes only displayed X chromosome signals with no presence of the Y, suggesting that all oocytes in this chimeric female were of XX germ cell origin. On the other hand, granulosa cells obtained from individual follicles exhibited varied proportions of XX/XY cell types, and six follicles possessed 100% XX or XY granulosa cells. A total of 24 oocytes were successfully fertilized, and 12 developed into blastocysts, where 5 being XY and 5 were XX. Two blastocysts were transferred with one originating from an oocyte aspirated from a follicle containing 100% XY granulosa cells. This resulted in a twin pregnancy. Subsequent prenatal diagnosis confirmed normal male and female karyotypes. Ultimately, healthy boy-girl twins were delivered at full term. In summary, this 46,XX/XY chimerism with XX germ cells presented complete female, suggesting that germ cells may exert a significant influence on the sexual determination of an individual, which provide valuable insights into the intricate processes associated with sexual development and reproduction.
Collapse
Affiliation(s)
- Dehua Cheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Chang-Fu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Shimin Yuan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Ke-Li Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Guang-Xiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
11
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
12
|
Ming Z, Bagheri-Fam S, Frost ER, Ryan JM, Vining B, Harley VR. A role for TRPC3 in mammalian testis development. Front Cell Dev Biol 2024; 12:1337714. [PMID: 38425503 PMCID: PMC10902130 DOI: 10.3389/fcell.2024.1337714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
SOX9 is a key transcription factor for testis determination and development. Mutations in and around the SOX9 gene contribute to Differences/Disorders of Sex Development (DSD). However, a substantial proportion of DSD patients lack a definitive genetic diagnosis. SOX9 target genes are potentially DSD-causative genes, yet only a limited subset of these genes has been investigated during testis development. We hypothesize that SOX9 target genes play an integral role in testis development and could potentially be causative genes in DSD. In this study, we describe a novel testicular target gene of SOX9, Trpc3. Trpc3 exhibits high expression levels in the SOX9-expressing male Sertoli cells compared to female granulosa cells in mouse fetal gonads between embryonic day 11.5 (E11.5) and E13.5. In XY Sox9 knockout gonads, Trpc3 expression is markedly downregulated. Moreover, culture of E11.5 XY mouse gonads with TRPC3 inhibitor Pyr3 resulted in decreased germ cell numbers caused by reduced germ cell proliferation. Trpc3 is also expressed in endothelial cells and Pyr3-treated E11.5 XY mouse gonads showed a loss of the coelomic blood vessel due to increased apoptosis of endothelial cells. In the human testicular cell line NT2/D1, TRPC3 promotes cell proliferation and controls cell morphology, as observed by xCELLigence and HoloMonitor real-time analysis. In summary, our study suggests that SOX9 positively regulates Trpc3 in mouse testes and TRPC3 may mediate SOX9 function during Sertoli, germ and endothelial cell development.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Emily R. Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Janelle M. Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| | - Vincent R. Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Gao Y, Wu Q, Wang G, Zhang S, Ma W, Shi X, Liu H, Wu L, Tian X, Li X, Ma X. Histomorphic analysis and expression of mRNA and miRNA in embryonic gonadal differentiation in Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2024; 893:147913. [PMID: 37866663 DOI: 10.1016/j.gene.2023.147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is extensively cultured in Asia for its nutritional and medical value. Gonadal differentiation is fantastic in turtles, whereas morphologic, mRNA, and miRNA expressions were insufficient in the turtle. In this study, ovaries and testes histomorphology analysis of 14-23 stage embryos were performed, and mRNA and miRNA expression profiles were analyzed. Histomorphology analysis revealed that gonads were undifferentiated at embryonic stage 14. Ovarian morphological differentiation became evident from stage 15, which was characterized by the development of the cortical region and degeneration of the medullary region. Concurrently, testicular morphological differentiation was apparent from stage 15, marked by the development of the medullary region and degeneration of the cortical region. qRT-PCR results showed that Cyp19a1 and Foxl2 exhibited female-specific expression at stage 15 and the expression increased throughout most of the embryonic development. Dmrt1, Amh, and Sox9 displayed male-specific expression at stage 15 and tended to increase substantially at later developmental stages. The expression of miR-8356 and miR-3299 in ZZ gonads were significantly higher than that in ZW gonads at stage 15, 17 and 19, and they had the highest expression at stage 15. While the expression of miR-8085 and miR-7982 had the highest expression at stage 19. Furthermore, chromatin remodeler genes showed differential expression in female and male P. sinensis gonads. These results of master sex-differentiation genes and morphological characteristics would provide a reference for the research of sex differentiation and sex reversal in turtles. Additionally, the expression of chromatin remodeler genes indicated they might be involved in gonadal differentiation of P. sinensis.
Collapse
Affiliation(s)
- Yijie Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen 361000, China.
| | - Guiyu Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shufang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
14
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
15
|
Huang B, Fu S, Hao Y, Yeung CK, Zhang X, Li E, Xu X, Shao N, Xu RH. Developmental potency of human ES cell-derived mesenchymal stem cells revealed in mouse embryos following blastocyst injection. Cell Rep 2023; 42:113459. [PMID: 37988266 DOI: 10.1016/j.celrep.2023.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/26/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are present in almost all the tissues in the body, critical for their homeostasis and regeneration. However, the stemness of MSCs is mainly an in vitro observation, and lacking exclusive markers for endogenous MSCs makes it difficult to study the multipotency of MSCs in vivo, especially for human MSCs. To address this hurdle, we injected GFP-tagged human embryonic stem cell (hESC)-derived MSCs (EMSCs) into mouse blastocysts. EMSCs survived well and penetrated both the inner cell mass and trophectoderm, correlating to the higher anti-apoptotic capability of EMSCs than hESCs. Injected EMSCs contributed to skeletal, dermal, and extraembryonic tissues in the resultant chimera and partially rescued skeletal defects in Sox9+/- mouse fetuses. Thus, this study provides evidence for the stemness and developmental capability of human MSCs through chimerization with the mouse blastocyst, serving as a model for studying human mesenchymal and skeletal development.
Collapse
Affiliation(s)
- Borong Huang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Siyi Fu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yanan Hao
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cheung Kwan Yeung
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xin Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiaoling Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ningyi Shao
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
16
|
Dube R, Kar SS, Jhancy M, George BT. Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility-A Systematic Review. Int J Mol Sci 2023; 25:120. [PMID: 38203291 PMCID: PMC10778982 DOI: 10.3390/ijms25010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques, women with MA having biological offspring is possible. The exact etiology of MA is unknown, although several genes and mechanisms affect the development of Müllerian ducts. Through this systematic review of the available literature, we searched for the genetic basis of MA. The aims included identification of the genes, chromosomal locations, changes responsible for MA, and fertility options, in order to offer proper management and counseling to these women with MA. A total of 85 studies were identified through searches. Most of the studies identified multiple genes at various locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be multifactorial and complex, involving multiple genes and mechanisms including various mutations and mosaicism.
Collapse
Affiliation(s)
- Rajani Dube
- Department of Obstetrics and Gynaecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Subhranshu Sekhar Kar
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Malay Jhancy
- Department of Paediatrics and Neonatology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (S.S.K.); (M.J.)
| | - Biji Thomas George
- Department of General Surgery, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
17
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
18
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
19
|
Liu JA, Tam KW, Chen YL, Feng X, Chan CWL, Lo ALH, Wu KLK, Hui MN, Wu MH, Chan KKK, Cheung MPL, Cheung CW, Shum DKY, Chan YS, Cheung M. Transplanting Human Neural Stem Cells with ≈50% Reduction of SOX9 Gene Dosage Promotes Tissue Repair and Functional Recovery from Severe Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205804. [PMID: 37296073 PMCID: PMC10369238 DOI: 10.1002/advs.202205804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/30/2023] [Indexed: 06/12/2023]
Abstract
Neural stem cells (NSCs) derived from human pluripotent stem cells (hPSCs) are considered a major cell source for reconstructing damaged neural circuitry and enabling axonal regeneration. However, the microenvironment at the site of spinal cord injury (SCI) and inadequate intrinsic factors limit the therapeutic potential of transplanted NSCs. Here, it is shown that half dose of SOX9 in hPSCs-derived NSCs (hNSCs) results in robust neuronal differentiation bias toward motor neuron lineage. The enhanced neurogenic potency is partly attributed to the reduction of glycolysis. These neurogenic and metabolic properties retain after transplantation of hNSCs with reduced SOX9 expression in a contusive SCI rat model without the need for growth factor-enriched matrices. Importantly, the grafts exhibit excellent integration properties, predominantly differentiate into motor neurons, reduce glial scar matrix accumulation to facilitate long-distance axon growth and neuronal connectivity with the host as well as dramatically improve locomotor and somatosensory function in recipient animals. These results demonstrate that hNSCs with half SOX9 gene dosage can overcome extrinsic and intrinsic barriers, representing a powerful therapeutic potential for transplantation treatments for SCI.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Neuroscience, Tat Chee Avenue, City University of Hong Kong, Hong Kong, China
| | - Kin Wai Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Long Chen
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xianglan Feng
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Christy Wing Lam Chan
- Department of Neuroscience, Tat Chee Avenue, City University of Hong Kong, Hong Kong, China
| | - Amos Lok Hang Lo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth Lap-Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Ning Hui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming-Hoi Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ken Kwok-Keung Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Zhong H, Lu W, Tang Y, Wiel C, Wei Y, Cao J, Riedlinger G, Papagiannakopoulos T, Guo JY, Bergo MO, Kang Y, Ganesan S, Sabaawy HE, Pine SR. SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity. Oncogene 2023; 42:2183-2194. [PMID: 37258742 PMCID: PMC11809655 DOI: 10.1038/s41388-023-02715-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hua Zhong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wen Lu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143-0795, USA
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gregory Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thales Papagiannakopoulos
- Perlmutter NYU Cancer Center, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hatim E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Diawara M, Arsenault A, Charette SA, Martin LJ. The transcription factors Creb1 and Cebpb regulate Sox9 promoter activity in TM4 Sertoli cells. Gene 2023; 873:147477. [PMID: 37172798 DOI: 10.1016/j.gene.2023.147477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
In Sertoli cells, the Sox9 gene is essential for testicular development and normal spermatogenesis. SOX9 is critical for postnatal Sertoli cells differentiation and proliferation in the testis. However, the molecular mechanisms that specifically regulate its expression are not entirely understood. Sox9 expression is regulated by CREB1 and CEBPB in other biological contexts such as during chondrogenesis and in rat thyroid follicular cells. We hypothesized that Sox9 promoter activity is regulated by CREB1 and CEBPB in Sertoli cells. Our results show that Sox9 expression is dependent on the activation of these transcription factors by the cAMP/PKA signaling pathway in TM4 Sertoli cells. Chromatin immunoprecipitation and promoter/reporter luciferase assays with 5' promoter deletions and site-directed mutagenesis demonstrated that CREB1 is being recruited to a DNA regulatory element at -141 bp of the Sox9 promoter region. Such regulation is dependent on the cAMP/PKA signaling pathway, resulting in phosphorylation of CREB1. Activation of Sox9 expression by CEBPB may involve its recruitment to the proximal promoter region by protein-protein interaction with CREB1. Thus, we have shown that the Sox9 promoter is being regulated by the transcription factors CREB1 and CEBPB in TM4 Sertoli cells and involve their recruitment to the proximal promoter region.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, Moncton, New-Brunswick E1A 3E9, Canada
| | - Aurélie Arsenault
- Biology Department, Université de Moncton, Moncton, New-Brunswick E1A 3E9, Canada
| | - Sabrina Ayoub Charette
- Department of Nutritional Science, Temerty Faculty of Medicine, University of Toronto, M5S 1A8; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario M5C 2T2, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New-Brunswick E1A 3E9, Canada.
| |
Collapse
|
22
|
Nomakuchi TT, Danowitz M, Stewart B, Leonard J, Izumi K, Krantz I, Kolon TF, Langdon D, Skraban C, Van Batavia J, Zackai E, Jiao K, Linn R, Alexander C, Zaontz M, Vogiatzi MG, Pyle LC. Expanding the reproductive organ phenotype of CHD7-spectrum disorder. Am J Med Genet A 2023; 191:1418-1424. [PMID: 36794641 PMCID: PMC10501305 DOI: 10.1002/ajmg.a.63148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
CHD7 disorder is a multiple congenital anomaly syndrome with a highly variable phenotypic spectrum, and includes CHARGE syndrome. Internal and external genital phenotypes frequently seen in CHD7 disorder include cryptorchidism and micropenis in males, and vaginal hypoplasia in females, both thought to be secondary to hypogonadotropic hypogonadism. Here, we report 14 deeply phenotyped individuals with known CHD7 variants (9 pathogenic/likely pathogenic and 5 VOUS) and a range of reproductive and endocrine phenotypes. Reproductive organ anomalies were observed in 8 of 14 individuals and were more commonly noted in males (7/7), most of whom presented with micropenis and/or cryptorchidism. Kallmann syndrome was commonly observed among adolescents and adults with CHD7 variants. Remarkably, one 46,XY individual presented with ambiguous genitalia, cryptorchidism with Müllerian structures including uterus, vagina and fallopian tubes, and one 46,XX female patient presented with absent vagina, uterus and ovaries. These cases expand the genital and reproductive phenotype of CHD7 disorder to include two individuals with genital/gonadal atypia (ambiguous genitalia), and one with Müllerian aplasia.
Collapse
Affiliation(s)
- Tomoki T. Nomakuchi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Melinda Danowitz
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Blythe Stewart
- Human Genetics Unit, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jacqueline Leonard
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ian Krantz
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thomas F. Kolon
- Division of Urology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Langdon
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Cara Skraban
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jason Van Batavia
- Division of Urology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kai Jiao
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Rebecca Linn
- Division of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caitlin Alexander
- Division of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark Zaontz
- Division of Urology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria G. Vogiatzi
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Louise C. Pyle
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Rare Disease Institute and Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
23
|
Bird AD, Frost ER, Bagheri-Fam S, Croft BM, Ryan JM, Zhao L, Koopman P, Harley VR. Somatic FGFR2 is Required for Germ Cell Maintenance in the Mouse Ovary. Endocrinology 2023; 164:7036407. [PMID: 36786658 DOI: 10.1210/endocr/bqad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
During sex determination in the mouse, fibroblast growth factor 9 signals through the fibroblast growth factor receptor 2c isoform (FGFR2c) to trigger Sertoli cell and testis development from 11.5 days post coitum (dpc). In the XX gonad, the FOXL2 and WNT4/RSPO1 pathways drive granulosa cell and ovarian development. The function of FGFR2 in the developing ovary, and whether FGFR2 is required in the testis after sex determination, is not clear. In fetal mouse gonads from 12.5 dpc, FGFR2 shows sexually dimorphic expression. In XX gonads, FGFR2c is coexpressed with FOXL2 in pregranulosa cells, whereas XY gonads show FGFR2b expression in germ cells. Deletion of Fgfr2c in XX mice led to a marked decrease/absence of germ cells by 13.5 dpc in the ovary. This indicates that FGFR2c in the somatic pregranulosa cells is required for the maintenance of germ cells. Surprisingly, on the Fgfr2c-/- background, the germ cell phenotype could be rescued by ablation of Foxl2, suggesting a novel mechanism whereby FGFR2 and FOXL2 act antagonistically during germ cell development. Consistent with low/absent FGFR2 expression in the Sertoli cells of 12.5 and 13.5 dpc XY gonads, XY AMH:Cre; Fgfr2flox/flox mice showed normal testis morphology and structures during fetal development and in adulthood. Thus, FGFR2 is not essential for maintaining Sertoli cell fate after sex determination. Combined, these data show that FGFR2 is not necessary for Sertoli cell function after sex determination but does play an important role in the ovary.
Collapse
Affiliation(s)
- Anthony D Bird
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, 3010, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
| | - Emily R Frost
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Brittany M Croft
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Janelle M Ryan
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Vincent R Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
24
|
Liu BZ, Cong JJ, Su WY, Hao ZL, Sun ZH, Chang YQ. Identification and functional analysis of Dmrt1 gene and the SoxE gene in the sexual development of sea cucumber, Apostichopus japonicus. Front Genet 2023; 14:1097825. [PMID: 36741310 PMCID: PMC9894652 DOI: 10.3389/fgene.2023.1097825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Members of the Doublesex and Mab-3-related transcription factor (Dmrt) gene family handle various vital functions in several biological processes, including sex determination/differentiation and gonad development. Dmrt1 and Sox9 (SoxE in invertebrates) exhibit a very conserved interaction function during testis formation in vertebrates. However, the dynamic expression pattern and functional roles of the Dmrt gene family and SoxE have not yet been identified in any echinoderm species. Herein, five members of the Dmrt gene family (Dmrt1, 2, 3a, 3b and 5) and the ancestor SoxE gene were identified from the genome of Apostichopus japonicus. Expression studies of Dmrt family genes and SoxE in different tissues of adult males and females revealed different expression patterns of each gene. Transcription of Dmrt2, Dmrt3a and Dmrt3b was higher expressed in the tube feet and coelomocytes instead of in gonadal tissues. The expression of Dmrt1 was found to be sustained throughout spermatogenesis. Knocking-down of Dmrt1 by means of RNA interference (RNAi) led to the downregulation of SoxE and upregulation of the ovarian regulator foxl2 in the testes. This indicates that Dmrt1 may be a positive regulator of SoxE and may play a role in the development of the testes in the sea cucumber. The expression level of SoxE was higher in the ovaries than in the testes, and knocking down of SoxE by RNAi reduced SoxE and Dmrt1 expression but conversely increased the expression of foxl2 in the testes. In summary, this study indicates that Dmrt1 and SoxE are indispensable for testicular differentiation, and SoxE might play a functional role during ovary differentiation in the sea cucumber.
Collapse
|
25
|
Gonen N, Eozenou C, Mitter R, Elzaiat M, Stévant I, Aviram R, Bernardo AS, Chervova A, Wankanit S, Frachon E, Commère PH, Brailly-Tabard S, Valon L, Barrio Cano L, Levayer R, Mazen I, Gobaa S, Smith JC, McElreavey K, Lovell-Badge R, Bashamboo A. In vitro cellular reprogramming to model gonad development and its disorders. SCIENCE ADVANCES 2023; 9:eabn9793. [PMID: 36598988 PMCID: PMC9812383 DOI: 10.1126/sciadv.abn9793] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023]
Abstract
During embryonic development, mutually antagonistic signaling cascades determine gonadal fate toward a testicular or ovarian identity. Errors in this process result in disorders of sex development (DSDs), characterized by discordance between chromosomal, gonadal, and anatomical sex. The absence of an appropriate, accessible in vitro system is a major obstacle in understanding mechanisms of sex-determination/DSDs. Here, we describe protocols for differentiation of mouse and human pluripotent cells toward gonadal progenitors. Transcriptomic analysis reveals that the in vitro-derived murine gonadal cells are equivalent to embryonic day 11.5 in vivo progenitors. Using similar conditions, Sertoli-like cells derived from 46,XY human induced pluripotent stem cells (hiPSCs) exhibit sustained expression of testis-specific genes, secrete anti-Müllerian hormone, migrate, and form tubular structures. Cells derived from 46,XY DSD female hiPSCs, carrying an NR5A1 variant, show aberrant gene expression and absence of tubule formation. CRISPR-Cas9-mediated variant correction rescued the phenotype. This is a robust tool to understand mechanisms of sex determination and model DSDs.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline Eozenou
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Richard Mitter
- Bioinformatics Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maëva Elzaiat
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Isabelle Stévant
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rona Aviram
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Andreia Sofia Bernardo
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Almira Chervova
- Department of Stem Cell and Developmental Biology, Institut Pasteur, Paris 75724, France
| | - Somboon Wankanit
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Emmanuel Frachon
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - Pierre-Henri Commère
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Sylvie Brailly-Tabard
- Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Molecular Genetics, Pharmacogenetics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Léo Valon
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Laura Barrio Cano
- Cytometry and Biomarkers, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, F-75015 Paris, France
| | - Romain Levayer
- Institut Pasteur, Université de Paris, CNRS UMR3738, Cell Death and Epithelial Homeostasis, F-75015 Paris, France
| | - Inas Mazen
- Genetics Department, National Research Center, Cairo, Egypt
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, F-75015 Paris, France
| | - James C. Smith
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | | | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| |
Collapse
|
26
|
Rovatsos M, Galoyan E, Spangenberg V, Vassilieva A, Kratochvíl L. XX
/
XY
sex chromosomes in a blind lizard (Dibamidae): Towards understanding the evolution of sex determination in squamates. J Evol Biol 2022; 35:1791-1796. [DOI: 10.1111/jeb.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science Charles University in Prague Praha 2 Czech Republic
| | - Eduard Galoyan
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
- Joint Russian‐Vietnamese Tropical Research and Technological Centre Hanoi Vietnam
- Zoological museum of Moscow State University Moscow State Regional University Mytishchi Russia
| | - Victor Spangenberg
- Zoological museum of Moscow State University Moscow State Regional University Mytishchi Russia
- Vavilov Institute of General Genetics Russian Academy of Sciences Moscow Russia
- Moscow State Regional University Mytishchi Russia
| | - Anna Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences Moscow Russia
- Joint Russian‐Vietnamese Tropical Research and Technological Centre Hanoi Vietnam
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science Charles University in Prague Praha 2 Czech Republic
| |
Collapse
|
27
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
28
|
Zhang L, Guo M, Liu Z, Liu R, Zheng Y, Yu T, Lv Y, Lu H, Zeng W, Zhang T, Pan C. Single-cell RNA-seq analysis of testicular somatic cell development in pigs. J Genet Genomics 2022; 49:1016-1028. [PMID: 35436608 DOI: 10.1016/j.jgg.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is the process by which diploid male germ cells propagate and differentiate into haploid flagellated spermatozoa. This highly complicated process is dependent on testicular somatic cells maturation. While the role of these somatic cells in spermatogenesis is relatively well established, knowledge about their development and maturation, particularly at the molecular level, is limited. In this study, we profiled the testicular single-cell transcriptomes of Guanzhong black pigs at the age of 7, 30, 60, 90, and 150 days. Five types of Sertoli cells, five types of Leydig cells, and four types of peritubular myoid cells were identified. Histological analysis revealed the changes in proliferation levels and marker gene expressions, and the prion-like protein gene (PRND) was identified as a novel marker for Sertoli cells. Additionally, integrated analyses of porcine and human datasets revealed similarities between human and pig testicular somatic cells. Overall, the data obtained in this study contribute to the understanding of testicular development in pigs as a model species.
Collapse
Affiliation(s)
- Lingkai Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zidong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruifang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taiyong Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhao Lu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
30
|
Ievlev V, Jensen-Cody CC, Lynch TJ, Pai AC, Park S, Shahin W, Wang K, Parekh KR, Engelhardt JF. Sox9 and Lef1 Regulate the Fate and Behavior of Airway Glandular Progenitors in Response to Injury. Stem Cells 2022; 40:778-790. [PMID: 35639980 PMCID: PMC9406614 DOI: 10.1093/stmcls/sxac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Albert C Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Soo Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
31
|
Tang Y, Ying Y, Zou C, Yan H, Wang Y, Li H, Li X, Xu Z, Lv J, Ge RS. Leydig cell function in adult male rats is disrupted by perfluorotetradecanoic acid through increasing oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1790-1802. [PMID: 35385208 DOI: 10.1002/tox.23526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/26/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is a long-chain perfluoroalkyl compound with increased applications. Its effect on Leydig cell function and its underlying mechanism remain unclear. Male Sprague-Dawley rats (60 days old) were gavaged with PFTeDA at doses of 0, 1, 5, and 10 mg/kg/day from 60 to 87 days after birth. PFTeDA significantly reduced serum testosterone levels at 1 mg/kg and higher doses, while markedly increasing serum luteinizing hormone level at 10 mg/kg and follicle-stimulating hormone at ≥1 mg/kg. PFTeDA significantly reduced the sperm number at the cauda of epididymis at ≥1 mg/kg. PFTeDA also reduced the number of CYP11A1-positive Leydig cells due to increased apoptosis shown by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. PFTeDA significantly repressed the expression of Cyp17a1 and Star and their proteins at 1-10 mg/kg, while it increased the expression of Srd5a1 and its protein (an immature Leydig cell biomarker) at 10 mg/kg. PFTeDA markedly increased testicular malondialdehyde level, while inhibiting antioxidants (SOD1, SOD2, and CAT), triggering oxidative stress, thereby further inducing BAX and CASP3 while inhibiting BCL2, which led to cell apoptosis. PFTeDA also reduced DHH level secreted by Sertoli cells, which indirectly affected Leydig cell function. PFTeDA inhibited testosterone secretion in primary Leydig cells in vitro by increasing reactive oxygen species and inducing apoptosis at 50 μM. In conclusion, PFTeDA inhibits the function of Leydig cells by inducing oxidative stress and subsequently stimulating cell apoptosis.
Collapse
Affiliation(s)
- Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoni Yan
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhangye Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
32
|
Mo JY, Yan YS, Lin ZL, Liu R, Liu XQ, Wu HY, Yu JE, Huang YT, Sheng JZ, Huang HF. Gestational diabetes mellitus suppresses fetal testis development in mice. Biol Reprod 2022; 107:148-156. [PMID: 35774031 DOI: 10.1093/biolre/ioac138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of Gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig and Sertoli cells. Pregnant mice were treated on gestational day (GD) 6.5 and 12.5 with streptozotocin (STZ, 100 mg/kg) or vehicle (sodium citrate buffer). Leydig and Sertoli cell development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of DHH in Sertoli cells of testes of male offspring. Fetal Leydig cell number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/β-Catenin signaling was activated and Gsk3β signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.
Collapse
Affiliation(s)
- Jia-Ying Mo
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Zhong-Liang Lin
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Rui Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Xuan-Qi Liu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Hai-Yan Wu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jia-En Yu
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Yu-Tong Huang
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - Jian-Zhong Sheng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| | - He-Feng Huang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang university school of medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Sreenivasan R, Gonen N, Sinclair A. SOX Genes and Their Role in Disorders of Sex Development. Sex Dev 2022; 16:80-91. [PMID: 35760052 DOI: 10.1159/000524453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
SOX genesare master regulatory genes controlling development and are fundamental to the establishment of sex determination in a multitude of organisms. The discovery of the master sex-determining gene SRY in 1990 was pivotal for the understanding of how testis development is initiated in mammals. With this discovery, an entire family of SOX factors were uncovered that play crucial roles in cell fate decisions during development. The importance of SOX genes in human reproductive development is evident from the various disorders of sex development (DSD) upon loss or overexpression of SOX gene function. Here, we review the roles that SOX genes play in gonad development and their involvement in DSD. We start with an overview of sex determination and differentiation, DSDs, and the SOX gene family and function. We then provide detailed information and discussion on SOX genes that have been implicated in DSDs, both at the gene and regulatory level. These include SRY, SOX9, SOX3, SOX8, and SOX10. This review provides insights on the crucial balance of SOX gene expression levels needed for gonad development and maintenance and how changes in these levels can lead to DSDs.
Collapse
Affiliation(s)
- Rajini Sreenivasan
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Andrew Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Mebendazole-Induced Blood-Testis Barrier Injury in Mice Testes by Disrupting Microtubules in Addition to Triggering Programmed Cell Death. Int J Mol Sci 2022; 23:ijms23084220. [PMID: 35457043 PMCID: PMC9029725 DOI: 10.3390/ijms23084220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Mebendazole (MBZ) is a synthetic benzimidazole known for its antiparasitic properties. In recent years, growing evidence showed that MBZ was also used as an anti-tumor agent. However, whether (and to what extent) this drug treatment affected the male reproductive system was not well-understood. In this study, male C57BL/6 mice were injected with 40 mg/kg/day of MBZ. The treatment was for 3 and 7 days. Our results showed that the injected mice exhibited an abnormal spermatogenic phase with a significant decrease in sperm. We further detected microtubule disruption and transient functional destruction of the blood–testes barrier (BTB) in the MBZ-injected mice testes (BTB). Our data confirmed that MBZ suppressed the expression of the BTB junction-associated proteins and disrupted the Sertoli cells’ function in vivo. Moreover, MBZ-treated mice demonstrated an aberrant caspase-3 signalling pathway, which resulted in the apoptosis of the germ cells. Here, we present our data, indicating that MBZ impairs BTB by reducing the expression of the microtubules’ and BTB junction-associated proteins. The last leads to activating the caspase-3 pathway, which triggers extensive germ cell apoptosis.
Collapse
|
35
|
Zeng Q, Hu B, Blanco AH, Zhang W, Zhao D, Martínez P, Hong Y. Full-Length Transcriptome Sequences Provide Insight Into Hermaphroditism of Freshwater Pearl Mussel Hyriopsis schlegelii. Front Genet 2022; 13:868742. [PMID: 35401664 PMCID: PMC8987123 DOI: 10.3389/fgene.2022.868742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The freshwater mussel Hyriopsis schlegelii is a cultured bivalve in China, and the quality of the pearls produced is affected by the type of gonads. However, because of the lack of a published genome and the complexity of sex determination, research on sex reversal and development of this species is limited. In this study, Illumina RNA-seq and PacBio Isoform Sequencing (Iso-Seq) were combined to analyze the gonads of H. schlegelii. A total of 201,481 high-quality transcripts were generated. The study identified 7,922 differentially expressed genes in three comparison group (females versus males, hermaphrodites versus females, and hermaphrodites versus males). Twenty-four genes were identified as potential sex-related genes, including sox9 and wnt4 involved in sex determination, and vtg, cyp17a1 and 17β-hsd2 involved in gonadal development. We also speculated a possible pathways for the formation of hermaphroditism in H. schlegelii. The data provide a clear view of the transcriptome for H. schlegelii gonads and will be valuable in elucidating the mechanisms of gonad development.
Collapse
Affiliation(s)
- Qi Zeng
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Beijuan Hu
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang, China
| | - Andres Hortas Blanco
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Wanchang Zhang
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Paulino Martínez
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang, China
- *Correspondence: Yijiang Hong,
| |
Collapse
|
36
|
Yamazaki W, Tan SL, Taketo T. Role of the X and Y Chromosomes in the Female Germ Cell Line Development in the Mouse (Mus musculus). Sex Dev 2022:1-10. [PMID: 35235936 DOI: 10.1159/000521151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In eutherian mammals, the sex chromosome complement, XX and XY, determines sexual differentiation of gonadal primordia into testes and ovaries, which in turn direct differentiation of germ cells into haploid sperm and oocytes, respectively. When gonadal sex is reversed, however, the germ cell sex becomes discordant with the chromosomal sex. XY females in humans are infertile, while XY females in the mouse (Mus musculus) are subfertile or infertile dependent on the cause of sex reversal and the genetic background. This article reviews publications to understand how the sex chromosome complement affects the fertility of XY oocytes by comparing with XX and monosomy X (XO) oocytes. SUMMARY The results highlight 2 folds disadvantage of XY oocytes over XX oocytes: (1) the X and Y chromosomes fail to pair during the meiotic prophase I, resulting in sex chromosome aneuploidy at the first meiotic division and (2) expression of the Y-linked genes during oocyte growth affects the transcriptome landscape and renders the ooplasmic component incompetent for embryonic development. Key Message: The XX chromosome complement gives the oocyte the highest competence for embryonic development.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada.,OriginElle Fertility Clinic and Women's Health Centre, Montreal, Québec, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada.,Research Institute of McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
37
|
Savard C, Gawhary S, Boyer A, Chorfi Y. Assessment of Zearalenone-Induced Cell Survival and of Global Gene Regulation in Mouse TM4 Sertoli Cells. Toxins (Basel) 2022; 14:toxins14020098. [PMID: 35202126 PMCID: PMC8874968 DOI: 10.3390/toxins14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Zearalenone (ZEA) is a non-steroidal xenoestrogen mycotoxin produced by many Fusarium fungal species, which are common contaminants of cereal crops destined for worldwide human and animal consumption. ZEA has been reported in various male reproduction dysfonctions, including decreased fertility potential. In this report, the direct effect of ZEA on the immature Sertoli TM4 cell line was evaluated. The results show that high concentrations of ZEA increase reactive oxygen species via the activation of MAPK signaling. Transcriptome analysis was performed on the TM4 cell line treated with ZEA, and genes involved in sex differentiation (Fgfr2, Igf1, Notch1, Sox9) and extracellular matrix (ECM) formation (Ctgf, Fam20a, Fbn1, Mmp9, Postn, Sparcl1, Spp1) were identified at the center of the functional protein association network, suggesting that ZEA could be detrimental to the early steps of Sertoli cell differentiation.
Collapse
|
38
|
Windley SP, Mayère C, McGovern AE, Harvey NL, Nef S, Schwarz Q, Kumar S, Wilhelm D. Loss of NEDD4 causes complete XY gonadal sex reversal in mice. Cell Death Dis 2022; 13:75. [PMID: 35075134 PMCID: PMC8786929 DOI: 10.1038/s41419-022-04519-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
Gonadogenesis is the process wherein two morphologically distinct organs, the testis and the ovary, arise from a common precursor. In mammals, maleness is driven by the expression of Sry. SRY subsequently upregulates the related family member Sox9 which is responsible for initiating testis differentiation while repressing factors critical to ovarian development such as FOXL2 and β-catenin. Here, we report a hitherto uncharacterised role for the ubiquitin-protein ligase NEDD4 in this process. XY Nedd4-deficient mice exhibit complete male-to-female gonadal sex reversal shown by the ectopic upregulation of Foxl2 expression at the time of gonadal sex determination as well as insufficient upregulation of Sox9. This sex reversal extends to germ cells with ectopic expression of SYCP3 in XY Nedd4-/- germ cells and significantly higher Sycp3 transcripts in XY and XX Nedd4-deficient mice when compared to both XY and XX controls. Further, Nedd4-/- mice exhibit reduced gonadal precursor cell formation and gonadal size as a result of reduced proliferation within the developing gonad as well as reduced Nr5a1 expression. Together, these results establish an essential role for NEDD4 in XY gonadal sex determination and development and suggest a potential role for NEDD4 in orchestrating these cell fate decisions through the suppression of the female pathway to ensure proper testis differentiation.
Collapse
Affiliation(s)
- Simon P Windley
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland
| | - Alice E McGovern
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211, Geneva, Switzerland
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, 5001, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
39
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:2223-2235. [DOI: 10.1093/hmg/ddac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
|
40
|
Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev 2022; 16:112-125. [PMID: 34515237 PMCID: PMC8885888 DOI: 10.1159/000518272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.
Collapse
Affiliation(s)
- David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark W. Murphy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
41
|
Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, Levasseur A, Wilmouth J, Pointud JC, Faucz FR, Kamilaris C, Lopez AG, Guillou F, Swain A, Vainio SJ, Tauveron I, Val P, Lefebvre H, Stratakis CA, Martinez A, Lefrançois-Martinez AM. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest 2021; 131:146910. [PMID: 34850745 DOI: 10.1172/jci146910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.
Collapse
Affiliation(s)
- Cyril Djari
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Amandine Septier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Ingrid Plotton
- UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Hospices Civils de Lyon, Bron, France
| | - Nathanaëlle Montanier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Dufour
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Adrien Levasseur
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - James Wilmouth
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Crystal Kamilaris
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine-Guy Lopez
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Igor Tauveron
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Val
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine Martinez
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | |
Collapse
|
42
|
Dupont S, Capel B. The Chromatin State during Gonadal Sex Determination. Sex Dev 2021; 15:308-316. [PMID: 34753132 DOI: 10.1159/000520007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
At embryonic day (E) 10.5, prior to gonadal sex determination, XX and XY gonads are bipotential and able to differentiate into either a testis or an ovary. At this point, they are transcriptionally and morphologically indistinguishable. Sex determination begins around E11.5 in the mouse when the supporting cell lineage commits to either Sertoli or granulosa cell fate. Testis-specific factors such as SRY and SOX9 drive differentiation of bipotential-supporting cells into the Sertoli cell pathway, whereas ovary-specific factors like WNT4 and FOXL2 guide differentiation into granulosa cells. It is known that these 2 pathways are mutually antagonistic, and repression of the alternative fate is critical for maintenance of the testis or ovary programs. While we understand much about the transcription factor networks guiding the process of sex determination, it is only more recently that we have begun to understand how this process is epigenetically controlled. Studies in the past decade have demonstrated the importance of the chromatin state for gene expression and cell fate commitment, with histone modifications and DNA accessibility having a direct role in gene regulation. It is now clear that the chromatin state during sex determination is dynamic and likely critical for the establishment and/or maintenance of the transcriptional programs. Prior to sex determination, supporting cells have similar chromatin structure and histone modification profiles, reflecting the bipotential nature of these cells. After differentiation to Sertoli or granulosa cells, the chromatin state acquires sex-specific profiles. The proteins that regulate the deposition of histone modifications or the opening of compact chromatin likely play an important role in Sertoli and granulosa cell fate commitment and gonad development. Here, we describe studies profiling the chromatin state during gonadal sex determination and one example in which depletion of Cbx2, a member of the Polycomb Repressive Complex 1 (PRC1), causes male-to-female sex reversal due to a failure to repress the ovarian pathway.
Collapse
Affiliation(s)
- Shannon Dupont
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA,
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
43
|
Migale R, Neumann M, Lovell-Badge R. Long-Range Regulation of Key Sex Determination Genes. Sex Dev 2021; 15:360-380. [PMID: 34753143 DOI: 10.1159/000519891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022] Open
Abstract
The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, SOX9 and FOXL2, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.
Collapse
|
44
|
Ridnik M, Schoenfelder S, Gonen N. Cis-Regulatory Control of Mammalian Sex Determination. Sex Dev 2021; 15:317-334. [PMID: 34710870 PMCID: PMC8743899 DOI: 10.1159/000519244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.
Collapse
Affiliation(s)
- Meshi Ridnik
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Stefan Schoenfelder
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
45
|
Graniel JV, Bisht K, Friedman A, White J, Perkey E, Vanderbeck A, Moroz A, Carrington LJ, Brandstadter JD, Allen F, Shami AN, Thomas P, Crayton A, Manzor M, Mychalowych A, Chase J, Hammoud SS, Keegan CE, Maillard I, Nandakumar J. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci Alliance 2021; 5:5/1/e202101208. [PMID: 34645668 PMCID: PMC8548261 DOI: 10.26508/lsa.202101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
A TPP1 mutation known to cause telomere shortening and bone marrow failure in humans recapitulates telomere loss but results in severe germline defects in mice without impacting murine hematopoiesis. Telomerase extends chromosome ends in somatic and germline stem cells to ensure continued proliferation. Mutations in genes critical for telomerase function result in telomeropathies such as dyskeratosis congenita, frequently resulting in spontaneous bone marrow failure. A dyskeratosis congenita mutation in TPP1 (K170∆) that specifically compromises telomerase recruitment to telomeres is a valuable tool to evaluate telomerase-dependent telomere length maintenance in mice. We used CRISPR-Cas9 to generate a mouse knocked in for the equivalent of the TPP1 K170∆ mutation (TPP1 K82∆) and investigated both its hematopoietic and germline compartments in unprecedented detail. TPP1 K82∆ caused progressive telomere erosion with increasing generation number but did not induce steady-state hematopoietic defects. Strikingly, K82∆ caused mouse infertility, consistent with gross morphological defects in the testis and sperm, the appearance of dysfunctional seminiferous tubules, and a decrease in germ cells. Intriguingly, both TPP1 K82∆ mice and previously characterized telomerase knockout mice show no spontaneous bone marrow failure but rather succumb to infertility at steady-state. We speculate that telomere length maintenance contributes differently to the evolutionary fitness of humans and mice.
Collapse
Affiliation(s)
- Jacqueline V Graniel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kamlesh Bisht
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Oncology Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Ann Friedman
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - James White
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Eric Perkey
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alina Moroz
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adrienne Niederriter Shami
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Aniela Crayton
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Mariel Manzor
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Jennifer Chase
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA .,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Luo H, Li X, Tian GG, Li D, Hou C, Ding X, Hou L, Lyu Q, Yang Y, Cooney AJ, Xie W, Xiong J, Wang H, Zhao X, Wu J. Offspring production of ovarian organoids derived from spermatogonial stem cells by defined factors with chromatin reorganization. J Adv Res 2021; 33:81-98. [PMID: 34603780 PMCID: PMC8463929 DOI: 10.1016/j.jare.2021.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Fate determination of germline stem cells remains poorly understood at the chromatin structure level. Objectives Our research hopes to develop successful offspring production of ovarian organoids derived from spermatogonial stem cells (SSCs) by defined factors. Methods The offspring production from oocytes transdifferentiated from mouse SSCs with tracking of transplanted SSCs in vivo, single cell whole exome sequencing, and in 3D cell culture reconstitution of the process of oogenesis derived from SSCs. The defined factors were screened with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into induced germline stem cells (iGSCs) using high throughput chromosome conformation. Results We demonstrate successful production of offspring from oocytes transdifferentiated from mouse spermatogonial stem cells (SSCs). Furthermore, we demonstrate direct induction of germline stem cells (iGSCs) differentiated into functional oocytes by transduction of H19, Stella, and Zfp57 and inactivation of Plzf in SSCs after screening with ovarian organoids. We uncovered extensive chromatin reorganization during SSC conversion into iGSCs, which was highly similar to female germline stem cells. We observed that although topologically associating domains were stable during SSC conversion, chromatin interactions changed in a striking manner, altering 35% of inactive and active chromosomal compartments throughout the genome. Conclusion We demonstrate successful offspring production of ovarian organoids derived from SSCs by defined factors with chromatin reorganization. These findings have important implications in various areas including mammalian gametogenesis, genetic and epigenetic reprogramming, biotechnology, and medicine.
Collapse
Affiliation(s)
- Huacheng Luo
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Geng G Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Changliang Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xinbao Ding
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Lin Hou
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Qifeng Lyu
- Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University Schoolof Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunze Yang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Austin J Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenhai Xie
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ji Xiong
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hu Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao TongUniversity, Shanghai 200240, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
47
|
Okashita N, Tachibana M. Transcriptional Regulation of the Y-Linked Mammalian Testis-Determining Gene SRY. Sex Dev 2021; 15:351-359. [PMID: 34583357 DOI: 10.1159/000519217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Mammalian male sex differentiation is triggered during embryogenesis by the activation of the Y-linked testis-determining gene SRY. Since insufficient or delayed expression of SRY results in XY gonadal sex reversal, accurate regulation of SRY is critical for male development in XY animals. In humans, dysregulation of SRY may cause disorders of sex development. Mouse Sry is the most intensively studied mammalian model of sex determination. Sry expression is controlled in a spatially and temporally stringent manner. Several transcription factors play a key role in sex determination as trans-acting factors for Sry expression. In addition, recent studies have shown that several epigenetic modifications of Sry are involved in sex determination as cis-acting factors for Sry expression. Herein, we review the current understanding of transcription factor- and epigenetic modifier-mediated regulation of SRY/Sry expression.
Collapse
Affiliation(s)
- Naoki Okashita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Tachibana
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
48
|
Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. Int J Mol Sci 2021; 22:ijms221810046. [PMID: 34576208 PMCID: PMC8471392 DOI: 10.3390/ijms221810046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate β-catenin-a factor essential for ovarian development. We show that oestrogen can activate β-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.
Collapse
|
49
|
Bird AD, Croft BM, Harada M, Tang L, Zhao L, Ming Z, Bagheri-Fam S, Koopman P, Wang Z, Akita K, Harley VR. Ovotesticular disorders of sex development in FGF9 mouse models of human synostosis syndromes. Hum Mol Genet 2021; 29:2148-2161. [PMID: 32452519 DOI: 10.1093/hmg/ddaa100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
In mice, male sex determination depends on FGF9 signalling via FGFR2c in the bipotential gonads to maintain the expression of the key testis gene SOX9. In humans, however, while FGFR2 mutations have been linked to 46,XY disorders of sex development (DSD), the role of FGF9 is unresolved. The only reported pathogenic mutations in human FGF9, FGF9S99N and FGF9R62G, are dominant and result in craniosynostosis (fusion of cranial sutures) or multiple synostoses (fusion of limb joints). Whether these synostosis-causing FGF9 mutations impact upon gonadal development and DSD etiology has not been explored. We therefore examined embryonic gonads in the well-characterized Fgf9 missense mouse mutants, Fgf9S99N and Fgf9N143T, which phenocopy the skeletal defects of FGF9S99N and FGF9R62G variants, respectively. XY Fgf9S99N/S99N and XY Fgf9N143T/N143T fetal mouse gonads showed severely disorganized testis cords and partial XY sex reversal at 12.5 days post coitum (dpc), suggesting loss of FGF9 function. By 15.5 dpc, testis development in both mutants had partly recovered. Mitotic analysis in vivo and in vitro suggested that the testicular phenotypes in these mutants arise in part through reduced proliferation of the gonadal supporting cells. These data raise the possibility that human FGF9 mutations causative for dominant skeletal conditions can also lead to loss of FGF9 function in the developing testis, at least in mice. Our data suggest that, in humans, testis development is largely tolerant of deleterious FGF9 mutations which lead to skeletal defects, thus offering an explanation as to why XY DSDs are rare in patients with pathogenic FGF9 variants.
Collapse
Affiliation(s)
- Anthony D Bird
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Brittany M Croft
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenhua Ming
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stefan Bagheri-Fam
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, P.R. China
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
50
|
Rode K, Langeheine M, Seeger B, Brehm R. Connexin43 in Germ Cells Seems to Be Dispensable for Murine Spermatogenesis. Int J Mol Sci 2021; 22:ijms22157924. [PMID: 34360693 PMCID: PMC8348783 DOI: 10.3390/ijms22157924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Testicular Connexin43 (Cx43) connects adjacent Sertoli cells (SC) and SC to germ cells (GC) in the seminiferous epithelium and plays a crucial role in spermatogenesis. However, the distinction whether this results from impaired inter-SC communication or between GC and SC is not possible, so far. Thus, the question arises, whether a GC-specific Cx43 KO has similar effects on spermatogenesis as it is general or SC-specific KO. Using the Cre/loxP recombinase system, two conditional KO mouse lines lacking Cx43 in premeiotic (pGCCx43KO) or meiotic GC (mGCCx43KO) were generated. It was demonstrated by qRT-PCR that Cx43 mRNA was significantly decreased in adult pGCCx43KO mice, while it was also reduced in mGCCx43KO mice, yet not statistically significant. Body and testis weights, testicular histology, tubular diameter, numbers of intratubular cells and Cx43 protein synthesis and localization did not show any significant differences in semi-quantitative Western blot analysis and immunohistochemistry comparing adult male KO and WT mice of both mouse lines. Male KO mice were fertile. These results indicate that Cx43 in spermatogonia/spermatids does not seem to be essential for successful termination of spermatogenesis and fertility as it is known for Cx43 in somatic SC, but SC-GC communication might rather occur via heterotypic GJ channels.
Collapse
Affiliation(s)
- Kristina Rode
- Institute of Anatomy, University of Veterinary Medicine Foundation, 30173 Hanover, Germany; (K.R.); (M.L.)
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Foundation, 30173 Hanover, Germany; (K.R.); (M.L.)
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Foundation, 30173 Hanover, Germany;
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Foundation, 30173 Hanover, Germany; (K.R.); (M.L.)
- Correspondence: ; Tel.: +49-511-8457215
| |
Collapse
|