1
|
Chen Z, Li X, Sun X, Xiao S, Chen T, Ren L, Liu N. STING1-accelerated vascular smooth muscle cell senescence-associated vascular calcification in diabetes is ameliorated by oleoylethanolamide via improved mitochondrial DNA oxidative damage. Free Radic Biol Med 2024; 222:437-455. [PMID: 38889865 DOI: 10.1016/j.freeradbiomed.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Vascular calcification is a prevalent hallmark of cardiovascular risk in elderly and diabetic individuals. Senescent vascular smooth muscle cells (VSMCs) participate in calcification; however, the associated underlying mechanisms remain unknown. Aberrant activation of the cytosolic DNA sensing adaptor stimulator of interferon gene 1 (STING1) caused by cytosolic DNA, particularly that leaked from damaged mitochondria, is a catalyst for aging-related diseases. Although oleoylethanolamide (OEA) is an endogenous bioactive lipid mediator with lipid overload-associated vasoprotective effects, its benefit in diabetic vascular calcification remains uncharacterized. This study focused on the role of STING1 in mitochondrial dysfunction-mediated calcification and premature VMSC senescence in diabetes and the effects of OEA on these pathological processes. In diabetic in vivo rat/mouse aorta calcification models and an in vitro VSMC calcification model induced by Nε-carboxymethyl-lysine (CML), senescence levels, STING1 signaling activation, and mitochondrial damage markers were significantly augmented; however, these alterations were markedly alleviated by OEA, partially in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner, and similar anti-calcification and senescence effects were observed in STING1-knockout mice and STING1-knockdown VSMCs. Mechanistically, mitochondrial DNA (mtDNA) damage was aggravated by CML in a reactive oxygen species-dependent manner, followed by mtDNA leakage into the cytosol, contributing to VSMC senescence-associated calcification via STING1 pathway activation. OEA treatment significantly attenuated the aforementioned cytotoxic effects of CML by enhancing cellular antioxidant capacity through the maintenance of Nrf2 translocation to the nucleus. Collectively, targeting STING1, a newly defined VSMC senescence regulator, contributes to anti-vascular calcification effects.
Collapse
MESH Headings
- Animals
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Mice
- Cellular Senescence/drug effects
- Rats
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/genetics
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Oleic Acids/pharmacology
- Oxidative Stress/drug effects
- Male
- Endocannabinoids/metabolism
- Endocannabinoids/pharmacology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- DNA Damage/drug effects
- Mitochondria/metabolism
- Mitochondria/drug effects
- Mitochondria/pathology
- Signal Transduction/drug effects
- Humans
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Zhengdong Chen
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Xiaoxue Li
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Xuejiao Sun
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China; Nanjing First Hospital, Nanjing Medical University, Nanjing, 210000, PR China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Tian Chen
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Liqun Ren
- Department of Geriatrics, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Southeast University School of Medicine, 87 Dingjiaqiao, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Abbattista R, Feinberg NG, Snodgrass IF, Newman JW, Dandekar AM. Unveiling the "hidden quality" of the walnut pellicle: a precious source of bioactive lipids. FRONTIERS IN PLANT SCIENCE 2024; 15:1395543. [PMID: 38957599 PMCID: PMC11217525 DOI: 10.3389/fpls.2024.1395543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Tree nut consumption has been widely associated with various health benefits, with walnuts, in particular, being linked with improved cardiovascular and neurological health. These benefits have been attributed to walnuts' vast array of phenolic antioxidants and abundant polyunsaturated fatty acids. However, recent studies have revealed unexpected clinical outcomes related to walnut consumption, which cannot be explained simply with the aforementioned molecular hallmarks. With the goal of discovering potential molecular sources of these unexplained clinical outcomes, an exploratory untargeted metabolomics analysis of the isolated walnut pellicle was conducted. This analysis revealed a myriad of unusual lipids, including oxylipins and endocannabinoids. These lipid classes, which are likely present in the pellicle to enhance the seeds' defenses due to their antimicrobial properties, also have known potent bioactivities as mammalian signaling molecules and homeostatic regulators. Given the potential value of this tissue for human health, with respect to its "bioactive" lipid fraction, we sought to quantify the amounts of these compounds in pellicle-enriched waste by-products of mechanized walnut processing in California. An impressive repertoire of these compounds was revealed in these matrices, and in notably significant concentrations. This discovery establishes these low-value agriculture wastes promising candidates for valorization and translation into high-value, health-promoting products; as these molecules represent a potential explanation for the unexpected clinical outcomes of walnut consumption. This "hidden quality" of the walnut pellicle may encourage further consumption of walnuts, and walnut industries may benefit from a revaluation of abundant pellicle-enriched waste streams, leading to increased sustainability and profitability through waste upcycling.
Collapse
Affiliation(s)
- Ramona Abbattista
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Isabel F. Snodgrass
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Comella F, Lama A, Pirozzi C, Annunziata C, Piegari G, Sodano F, Melini S, Paciello O, Lago Paz F, Meli R, Mattace Raso G. Oleoylethanolamide attenuates acute-to-chronic kidney injury: in vivo and in vitro evidence of PPAR-α involvement. Biomed Pharmacother 2024; 171:116094. [PMID: 38183745 DOI: 10.1016/j.biopha.2023.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Chronic kidney disease (CKD) development after acute kidney injury (AKI) involves multiple mechanisms, including inflammation, epithelial-mesenchymal transition (EMT), and extracellular matrix deposition, leading to progressive tubulointerstitial fibrosis. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in preserving kidney function during AKI. Among endogenous lipid mediators, oleoylethanolamide (OEA), a PPAR-α agonist, has been studied for its metabolic and anti-inflammatory effects. Here, we have investigated OEA effects on folic acid (FA)-induced kidney injury in mice and the underlying mechanisms. OEA improved kidney function, normalized urine output, and reduced serum BUN, creatinine, and albuminuria. Moreover, OEA attenuated tubular epithelial injury, as shown by histological analysis, and decreased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Gene expression analysis of kidney tissue indicated that OEA limited immune cell infiltration and inflammation. Moreover, OEA significantly inhibited Wnt7b and Catnb1 gene transcription and α-smooth muscle actin expression, indicating suppression of EMT. Accordingly, OEA exhibited an anti-fibrotic effect, as shown by Masson staining and the reduced levels of transforming growth factor (TGF)-β1, fibronectin, and collagen IV. Mechanistically, the nephroprotective effect of OEA was related to PPAR-α activation since OEA failed to exert its beneficial activity in FA-insulted PPAR-α-/- mice. PPAR-α involvement was also confirmed in HK2 cells where GW6471, a PPAR-α antagonist, blunted OEA activity on the TGF-β1 signalling pathway and associated pro-inflammatory and fibrotic patterns. Our findings revealed that OEA counteracts kidney injury by controlling inflammation and fibrosis, making it an effective therapeutic tool for limiting AKI to CKD progression.
Collapse
Affiliation(s)
- Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", 80137 Naples, Italy
| | - Federica Sodano
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Stefania Melini
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", 80137 Naples, Italy
| | - Francisca Lago Paz
- University Clinic Hospital of Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples "Federico II, 80131 Naples, Italy.
| |
Collapse
|
4
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
5
|
Zhang C, Teng B, Liu H, Wu C, Wang L, Jin S. Impact of Beauveria bassiana on antioxidant enzyme activities and metabolomic profiles of Spodoptera frugiperda. J Invertebr Pathol 2023; 198:107929. [PMID: 37127135 DOI: 10.1016/j.jip.2023.107929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Spodoptera frugiperda is a pest that poses serious threat to the production of food and crops. Entopathogenic fungi, represented by Beauveria bassiana, has shown potential for S. frugiperda control. However, the mechanism of this biological control of pathogens is not fully understood, such as how antioxidant enzyme activities and metabolic profiles in S. frugiperda larvae are affected when infected by entomopathogenic fungi. This study assessed the antioxidant enzyme activities and shift in metabolomic profile in the S. frugiperda larvae infected with B.bassiana. The results indicate a pattern of initial increase and subsequent decrease in the activities of superoxide dismutase, catalase, and peroxidase in the B.bassiana-infected larvae. And the enzyme activities at 60 h of infection ended significantly lower than those of the uninfected larvae. A total of 93 differential metabolites were identified in the B.bassiana-infected larvae, of which 41 metabolites were up-regulated and 52 were down-regulated. These metabolites mainly included amino acids, nucleotides, lipids, carbohydrates, and their derivatives. Among the changed metabolites, cystathionine, L-tyrosine, L-dopa, arginine, alpha-ketoglutaric acid, D-sedoheptulose-7-phosphate and citric acid were significantly decreased in B. bassiana-infected larvae. This indicated that the fungal infection might impair the ability of S. frugiperda larvae to cope with oxidative stress, leading to a negative impact of organism fitness. Further analyses of key metabolic pathways reveal that B. bassiana infection might affect purine metabolism, arginine biosynthesis, butanoate metabolism, and phenylalanine metabolism of S. frugiperda larvae. The findings from this study will contribute to our understanding of oxidative stress on immune defense in insects, and offer fundamental support for the biological control of S. frugiperda.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China; These authors contributed equally to this work
| | - Bin Teng
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei 230031, P. R. China; These authors contributed equally to this work
| | - Huimin Liu
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenyuan Wu
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Song Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
6
|
Upadhyay VR, Roy AK, Pandita S, Raval K, Patoliya P, Ramesh V, Dewry RK, Yadav HP, Mohanty TK, Bhakat M. Optimized addition of nitric oxide compounds in semen extender improves post-thaw seminal attributes of Murrah buffaloes. Trop Anim Health Prod 2023; 55:47. [PMID: 36702975 DOI: 10.1007/s11250-023-03474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
Semen dilution and cryopreservation alter the homogeneity of seminal plasma, resulting in a non-physiological redox milieu and consequently poor sperm functionality. Considering the concentration-specific bimodal action of nitric oxide (NO) in the regulation of sperm functions, cryopreservation media supplemented with optimized concentrations can improve the semen attributes. The present study aimed to evaluate the effect of adding an optimized concentration of sodium nitroprusside (SNP) and N-nitro-L-arginine methyl ester (L-NAME) in an extender on in vitro semen quality. An aliquot of semen samples (n = 32) from Murrah buffalo bulls (n = 8) was divided into control (C) and treatment (T-I: SNP in extender at 1 µmol/L; T-II: L-NAME in extender at 10 µmol/L). Fresh semen quality parameters showed no significant difference at 0 h except for the structural integrity in the T-II group. Post-thaw semen quality parameters and sperm kinematics using computer-aided sperm analysis (CASA) revealed significantly higher (p < 0.05) cryoresistance in the treatment groups. Viability, acrosome integrity, and membrane integrity were significantly higher (p < 0.05) in both treatment groups; however, the results were pervasive in T-II. Lower abnormal spermatozoa were observed in both T-I and T-II. SNP supplementation led to a significant rise (p < 0.05) in NO, whereas L-NAME reduced the NO concentration in post-thawed samples, which was directly correlated with different sperm functionality and associated biomarkers viz. total antioxidant capacity (TAC) and thiobarbituric acid reactive substance (TBARS). It was concluded that the cryopreservation media supplemented with SNP and L-NAME at 1 µmol/L and 10 µmol/L, respectively, lower the cryo-damage and improve post-thaw seminal attributes.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - A K Roy
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sujata Pandita
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kathan Raval
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Priyanka Patoliya
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikram Ramesh
- Animal Reproduction and Gynaecology, ICAR-National Research Center on Mithun, Medziphema, India
| | - Raju Kr Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Hanuman P Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
7
|
Gajski G, Ravlić S, Godschalk R, Collins A, Dusinska M, Brunborg G. Application of the comet assay for the evaluation of DNA damage in mature sperm. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108398. [PMID: 34893163 DOI: 10.1016/j.mrrev.2021.108398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
DNA integrity is considered an important parameter of semen quality and is of significant value as a predictor of male fertility. Currently, there are several methods that can assess sperm DNA integrity. One such assay is the comet assay, or single-cell gel electrophoresis, which is a simple, sensitive, reliable, quick and low-cost technique that is used for measuring DNA strand breaks and repair at the level of individual cells. Although the comet assay is usually performed with somatic cells from different organs, the assay has the ability to detect genotoxicity in germ cells at different stages of spermatogenesis. Since the ability of sperm to remove DNA damage differs between the stages, interpretation of the results is dependent on the cells used. In this paper we give an overview on the use and applications of the comet assay on mature sperm and its ability to detect sperm DNA damage in both animals and humans. Overall, it can be concluded that the presence in sperm of significantly damaged DNA, assessed by the comet assay, is related to male infertility and seems to reduce live births. Although there is some evidence that sperm DNA damage also has a long-term impact on offspring's health, this aspect of DNA damage in sperm is understudied and deserves further attention. In summary, the comet assay can be applied as a useful tool to study effects of genotoxic exposures on sperm DNA integrity in animals and humans.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Zagreb, Croatia.
| | - Sanda Ravlić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Zagreb, Croatia
| | - Roger Godschalk
- Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology & Toxicology, Maastricht, the Netherlands
| | - Andrew Collins
- University of Oslo, Institute of Basic Medical Sciences, Department of Nutrition, Oslo, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research (NILU), Department of Environmental Chemistry, Health Effects Laboratory, Kjeller, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health (NIPH), Section of Molecular Toxicology, Department of Environmental Health, Oslo, Norway
| |
Collapse
|
8
|
The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. Int J Mol Sci 2021; 22:ijms22020972. [PMID: 33478092 PMCID: PMC7835826 DOI: 10.3390/ijms22020972] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is a lipid cell signaling system involved in the physiology and homeostasis of the brain and peripheral tissues. Synaptic plasticity, neuroendocrine functions, reproduction, and immune response among others all require the activity of functional ECS, with the onset of disease in case of ECS impairment. Estrogens, classically considered as female steroid hormones, regulate growth, differentiation, and many other functions in a broad range of target tissues and both sexes through the activation of nuclear and membrane estrogen receptors (ERs), which leads to genomic and non-genomic cell responses. Since ECS function overlaps or integrates with many other cell signaling systems, this review aims at updating the knowledge about the possible crosstalk between ECS and estrogen system (ES) at both central and peripheral level, with focuses on the central nervous system, reproduction, and cancer.
Collapse
|
9
|
Otagiri S, Ohnishi S, Ohara M, Fu Q, Yamamoto K, Yamamoto K, Katsurada T, Sakamoto N. Oleoylethanolamide Ameliorates Dextran Sulfate Sodium-Induced Colitis in Rats. Front Pharmacol 2020; 11:1277. [PMID: 32922296 PMCID: PMC7457075 DOI: 10.3389/fphar.2020.01277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Oleoylethanolamide (OEA) is an endogenous fatty acid ethanolamide known for its anti-inflammatory effects and its influence on gut microbiota composition; however, the effects of OEA in inflammatory bowel disease (IBD) remain unknown. During in vitro experiments, OEA downregulated the expression of tumor necrosis factor (TNF)-α and reduced phosphorylation of inhibitor of kappa (Iκ) Bα induced by lipopolysaccharide in human embryonic kidney cells. Moreover, OEA downregulated the expression of interleukin (IL)-8 and IL-1β and inhibited the phosphorylation of IκBα and p65 induced by TNF-α in human enterocytes (Caco-2). The effect of OEA in reducing the expression of IL-8 was blocked by the peroxisome proliferator-activated receptor (PPAR)-α antagonist. During in vivo experiments on rats, colitis was induced by the oral administration of 8% dextran sulfate sodium from day 0 through day 5, and OEA (20 mg/kg) was intraperitoneally injected once a day from day 0 for 6 days. OEA administration significantly ameliorated the reduction in body weight, the increase in disease activity index score, and the shortening of colon length. In rectums, OEA administration reduced the infiltration of macrophages and neutrophils and tended to reduce the histological score and the expression of inflammatory cytokines. Administration of OEA produced significant improvement in a colitis model, possibly by inhibiting the nuclear factor kappa B signaling pathway through PPAR-α receptors. OEA could be a potential new treatment for IBD.
Collapse
Affiliation(s)
- Shinsuke Otagiri
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Qingjie Fu
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
10
|
The effect of N-stearoylethanolamine on the lipid composition of the rat testes and testosterone level during the early stages of streptozotocin-іnduced diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Zufferey F, Donzé N, Rahban R, Senn A, Stettler E, Rudaz S, Nef S, Rossier MF. Semen endocannabinoids are correlated to sperm quality in a cohort of 200 young Swiss men. Andrology 2020; 8:1126-1135. [PMID: 32167658 DOI: 10.1111/andr.12785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND A role for endocannabinoids in the male and female reproductive systems has been highlighted during the recent decades. Some of these compounds bind the cannabinoid CB1 receptor, which is abundantly expressed in the central nervous system but also present in the reproductive system, while others act as 'entourage compounds' modulators. OBJECTIVES The present study aimed at evaluating the relationship between sperm quality and endocannabinoid profiles in a cohort of 200 young Swiss men and whether the presence of specific xenobiotics could influence these profiles. MATERIALS AND METHODS Semen analysis was performed according to WHO guidelines. Endocannabinoid profiles in blood and semen, as well as bisphenol A and S in urine, were determined by LC-MSMS methods. The presence of selected drugs was tested in urine by immunological screening, and urinary tetrahydrocannabinol (THC) metabolites were quantified by GC-MS. RESULTS Anandamide concentrations in seminal fluid and oleoylethanolamide (OEA) concentrations in blood serum appeared inversely correlated with sperm motility, while semen palmytoylethanolamide (PEA) was positively linked to sperm concentration. Moreover, OEA and PEA in seminal fluid were associated with better sperm morphology. Interestingly, the concentrations of the same endocannabinoids measured in both blood and semen were not correlated, and the presence of THC metabolites in some individuals was linked to lower concentrations of endocannabinoids. CONCLUSIONS In the context of the general decline of the sperm count observed within the male population, endocannabinoids in semen constitute a class of promising biochemical markers that open new perspectives as a complement for the usual evaluation of semen quality or for the toxicological screening of individuals' exposure to putative endocrine disruptors.
Collapse
Affiliation(s)
- Fanny Zufferey
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Nicolas Donzé
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Alfred Senn
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Eric Stettler
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel F Rossier
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland.,Department of Internal Medicine, Geneva University Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
12
|
Antiqueira-Santos P, dos Santos DS, Hack CRL, Flores AFC, Montes D’Oca MG, Piovesan LA, Nery LEM, Votto APS. Involvement of reactive oxygen species in the oleoylethanolamide effects and its pyrazonilic analogue in melanoma cells. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Amoako AA, Marczylo TH, Elson J, Taylor AH, Willets JM, Konje JC. Relationship between seminal plasma levels of anandamide congeners palmitoylethanolamide and oleoylethanolamide and semen quality. Fertil Steril 2014; 102:1260-7. [PMID: 25212838 DOI: 10.1016/j.fertnstert.2014.07.767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether changes in seminal plasma concentrations of the endogenous lipid signaling molecules palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) have significant effects on sperm quality. DESIGN Biochemical and physiological studies of human seminal plasma and spermatozoa. SETTING Academic tertiary care medical center. PATIENT(S) Ninety men attending an infertility clinic for semen analysis. INTERVENTION(S) Palmitoylethanolamide and OEA extracted from seminal plasma were quantified by ultra high-performance liquid chromatography (HPLC)-tandem mass spectrometry. Patient sperm from semen with normal parameters were exposed in vitro to PEA or OEA to determine effects on sperm motility, viability, and mitochondrial activity. MAIN OUTCOME MEASURE(S) The relationship between seminal plasma concentrations of PEA and OEA and sperm quality and the effect of these compounds on sperm motility, viability, and mitochondria activity in vitro. RESULT(S) Palmitoylethanolamide and OEA concentrations in seminal plasma were lower in men with asthenozoospermia and oligoasthenoteratozospermia compared with men with normal semen parameters. Palmitoylethanolamide and OEA rapidly and significantly improved sperm motility and maintained viability without affecting mitochondria activity in vitro. CONCLUSION(S) Maintenance of normal PEA and OEA tone in human seminal plasma may be necessary for the preservation of normal sperm function and male fertility. Exocannabinoids found in Cannabis, such as delta-9-tetrahydrocannabinol and cannabidiol, could compete with these endocannabinoids upsetting their finely balanced, normal functioning and resulting in male reproductive failure.
Collapse
Affiliation(s)
- Akwasi Atakora Amoako
- Endocannabinoid Research Group, Reproductive Science Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.
| | - Timothy Hywel Marczylo
- Centre for Radiation, Chemical and Environmental Hazards, Health Protection Agency, Didcot, Oxfordshire, United Kingdom
| | | | - Anthony Henry Taylor
- Endocannabinoid Research Group, Reproductive Science Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Jonathon M Willets
- Endocannabinoid Research Group, Reproductive Science Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| | - Justin Chi Konje
- Endocannabinoid Research Group, Reproductive Science Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Fidaleo M, Fracassi A, Zuorro A, Lavecchia R, Moreno S, Sartori C. Cocoa protective effects against abnormal fat storage and oxidative stress induced by a high-fat diet involve PPARα signalling activation. Food Funct 2014; 5:2931-9. [DOI: 10.1039/c4fo00616j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Endogenous cannabinoids revisited: A biochemistry perspective. Prostaglandins Other Lipid Mediat 2013; 102-103:13-30. [DOI: 10.1016/j.prostaglandins.2013.02.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
|
16
|
Aktan G, Doğru-Abbasoğlu S, Küçükgergin C, Kadıoğlu A, Ozdemirler-Erata G, Koçak-Toker N. Mystery of idiopathic male infertility: is oxidative stress an actual risk? Fertil Steril 2012; 99:1211-5. [PMID: 23254182 DOI: 10.1016/j.fertnstert.2012.11.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study the role of oxidative stress in sperm dysfunction in Turkish idiopathic infertile men. DESIGN Prospective study. SETTING Medical laboratory. PATIENT(S) Semen samples from 28 idiopathic infertile men and 14 fertile men. INTERVENTION(S) Sperm DNA fragmentation and reactive oxygen species (ROS) formation were assayed with the terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL) test and 2',7'-dichlorodihydrofluorescein, respectively. Seminal plasma protein carbonyl groups (PC), nitrotyrosine (NT), malondialdehyde (MDA), and total thiol (SH) levels and ferric reducing antioxidant power (FRAP) were determined. MAIN OUTCOME MEASURE(S) Sperm DNA fragmentation in relation to ROS formation and seminal plasma oxidative parameters. RESULT(S) The number of TUNEL-positive spermatozoa from idiopathic infertile men was higher than from fertile men, and ROS formation was increased as well in infertile males. A positive correlation was detected between TUNEL-positive cells and ROS content. Seminal plasma MDA, PC, and NT levels were elevated in idiopathic infertile males. No difference was observed in the total SH content and FRAP. Seminal plasma MDA levels correlated positively with both NT and PC levels. Positive correlations were detected between DNA fragmentation and MDA, NT, and PC of seminal plasma, and between sperm ROS content and MDA levels. CONCLUSION(S) The results of this study support the presence of oxidative stress in sperm dysfunction in Turkish idiopathic infertile men.
Collapse
Affiliation(s)
- Gülşen Aktan
- Department of Urology, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
17
|
Xie H, Sun X, Piao Y, Jegga AG, Handwerger S, Ko MSH, Dey SK. Silencing or amplification of endocannabinoid signaling in blastocysts via CB1 compromises trophoblast cell migration. J Biol Chem 2012; 287:32288-97. [PMID: 22833670 DOI: 10.1074/jbc.m112.381145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling plays key roles in multiple female reproductive events. Previous studies have shown an interesting phenomenon, that mice with either silenced or elevated endocannabinoid signaling via Cnr1 encoding CB(1) show similar defects in several pregnancy events, including preimplantation embryo development. To unravel the downstream signaling of this phenomenon, microarray studies were performed using RNAs collected from WT, Cnr1(-/-), and Faah(-/-) mouse blastocysts on day 4 of pregnancy. The results indicate that about 100 genes show unidirectional changes under either silenced or elevated anandamide signaling via CB(1). Functional enrichment analysis of the microarray data predicted that multiple biological functions and pathways are affected under aberrant endocannabinoid signaling. Among them, genes enriched in cell migration are suppressed in Cnr1(-/-) or Faah(-/-) blastocysts. Cell migration assays validated the prediction of functional enrichment analysis that cell mobility and spreading of either Cnr1(-/-) or Faah(-/-) trophoblast stem cells are compromised. Either silenced or elevated endocannabinoid signaling via CB(1) causes similar changes in downstream targets in preimplantation embryos and trophoblast stem cells. This study provides evidence that a tightly regulated endocannabinoid signaling is critical to normal preimplantation embryo development and migration of trophoblast stem cells.
Collapse
Affiliation(s)
- Huirong Xie
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
M Lewis SE, Paro R, Borriello L, Simon L, Robinson L, Dincer Z, Riedel G, Battista N, Maccarrone M. Long-term use of HU210 adversely affects spermatogenesis in rats by modulating the endocannabinoid system. ACTA ACUST UNITED AC 2012; 35:731-40. [DOI: 10.1111/j.1365-2605.2012.01259.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Lueneberg K, Domínguez G, Arias-Carrión O, Palomero-Rivero M, Millán-Aldaco D, Morán J, Drucker-Colín R, Murillo-Rodríguez E. Cellular viability effects of fatty acid amide hydrolase inhibition on cerebellar neurons. Int Arch Med 2011; 4:28. [PMID: 21854612 PMCID: PMC3171300 DOI: 10.1186/1755-7682-4-28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 01/24/2023] Open
Abstract
The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide (PEA) and cellular viability was determined by MTT test. Neurons cultured with URB597 (25, 50 or 100 nM) displayed a decrease in cellular viability. In addition, if cultured with OEA (25 nM) or PEA (100 nM), cellular death was found. These results further suggest that URB597, OEA or PEA promote cellular death.
Collapse
Affiliation(s)
- Kathia Lueneberg
- Department of Neurology, Philipps University, D-35033 Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pavón FJ, Serrano A, Romero-Cuevas M, Alonso M, Rodríguez de Fonseca F. Oleoylethanolamide: a new player in peripheral control of energy metabolism. Therapeutic implications. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ddmec.2011.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Abstract
N-acylethanolamides (NAEs) are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA), the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA) and oleylethanolamide (OEA) in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1) and type-2 (CB2) cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1), while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs). This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.
Collapse
|
22
|
Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2010; 398:2089-97. [PMID: 20835819 DOI: 10.1007/s00216-010-4103-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/14/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
Endocannabinoids including N-acylethanolamides (NAEs) are a family of lipid-related signaling molecules implicated in many physiological and disease states which elicit their activities via the cannabinoid receptors. Anandamide (N-arachidonoylethanolamine, AEA) is the most characterized endocannabinoid and has been detected in many tissues and bio-fluids including human plasma and the central nervous system. The endocannabinoid-like NAEs, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are described as entourage compounds because they illicit similar physiological effects to AEA but have little or no affinity for cannabinoid receptors. As entourage compounds, levels of these NAEs can greatly influence the efficacy of AEA yet there are few studies which measure these compounds in bio-fluids. Here we describe a rapid, highly sensitive, specific and highly reproducible ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the analysis of AEA, OEA, and PEA in human bio-fluids including plasma, serum, breast milk, and amniotic fluids. This validated method using deuterated (AEA-d(8), OEA-d(2), and PEA-d(4)) internal standards, represents an improvement over previous analyses in terms of run time (4 min), limit of detection (0.9 fmol on column for AEA and PEA and 4.4 fmol on column for OEA), precision (relative standard deviations of peak areas: 3.1% (AEA), 2.9% (OEA), and 5.4% (PEA) for 133 fmol on column) and accuracy (95.1-104.9%). The sensitivity and precision of the validated method described here suggests that this method is suitable for the analysis of AEA, OEA, and PEA in clinical samples and may be utilized for the investigation of bio-matrices containing limited amounts of NAEs.
Collapse
|
23
|
Hansen HS. Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain. Exp Neurol 2010; 224:48-55. [PMID: 20353771 DOI: 10.1016/j.expneurol.2010.03.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Acylethanolamides are formed in the brain "on demand" from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and several other quantitative minor species including anandamide (= arachidonoylethanolamide). PEA and OEA can activate several different receptors and inhibit some ion channels, e.g., PPARalpha, vanilloid receptor, K(+) channels (Kv4.3, Kv1.5), and OEA can activate GPR119 and inhibit ceramidases. Targets for SEA are less clear, but it has some cannabimimetic actions in rats in vivo. All acylethanolamides accumulate during neuronal injury, and injected OEA has neuroprotective effects, and PEA has anti-inflammatory effects as studied in the peripheral system. Several of the pharmacological effects seem to be mediated via activation of PPARalpha. Recently, injected OEA has been found to consolidate memories in rats. Inhibitors of the acylethanolamide-degrading enzyme FAAH can increase levels of all acylethanolamides including annandamide, and some of the pharmacological effects caused by these inhibitors may be explained by increased cerebral levels of OEA and PEA, e.g., suppression of nicotine-induced activation of dopamine neurons. Furthermore, through activation of PPARalpha, OEA and PEA may stimulate neurosteroid synthesis, thereby modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting to emerge.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology & Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Cobellis G, Ricci G, Cacciola G, Orlando P, Petrosino S, Cascio MG, Bisogno T, De Petrocellis L, Chioccarelli T, Altucci L, Fasano S, Meccariello R, Pierantoni R, Ledent C, Di Marzo V. A Gradient of 2-Arachidonoylglycerol Regulates Mouse Epididymal Sperm Cell Start-Up1. Biol Reprod 2010; 82:451-8. [DOI: 10.1095/biolreprod.109.079210] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
25
|
Hanus LO. Pharmacological and therapeutic secrets of plant and brain (endo)cannabinoids. Med Res Rev 2009; 29:213-71. [PMID: 18777572 DOI: 10.1002/med.20135] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Research on the chemistry and pharmacology of cannabinoids and endocannabinoids has reached enormous proportions, with approximately 15,000 articles on Cannabis sativa L. and cannabinoids and over 2,000 articles on endocannabinoids. The present review deals with the history of the Cannabis sativa L. plant, its uses, constituent compounds and their biogeneses, and similarity to compounds from Radula spp. In addition, details of the pharmacology of natural cannabinoids, as well as synthetic agonists and antagonists are presented. Finally, details regarding the pioneering isolation of the endocannabinoid anandamide, as well as the pharmacology and potential therapeutic uses of endocannabinoid congeners are presented.
Collapse
Affiliation(s)
- Lumír Ondrej Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
26
|
Aviello G, Matias I, Capasso R, Petrosino S, Borrelli F, Orlando P, Romano B, Capasso F, Di Marzo V, Izzo AA. Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying in control and overweight mice. J Mol Med (Berl) 2008; 86:413-22. [PMID: 18278475 DOI: 10.1007/s00109-008-0305-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022]
Abstract
Gastric emptying regulates food intake. Oleoylethanolamide (OEA), an endogenous acylethanolamide chemically related to the endocannabinoid anandamide, inhibits food intake, but its effect on gastric emptying is unknown. Here, we investigated the effect and the role of OEA on gastric emptying in mice fed either a standard (STD) or a high-fat diet (HFD) for 14 weeks. Gastric emptying was reduced by OEA, but not by its saturated analog, palmitoylethanolamide. The effect of OEA was unaffected by rimonabant (cannabinoid CB1 receptor antagonist), SR144528 (cannabinoid CB2 receptor antagonist), 5'-iodoresiniferatoxin (transient receptor potential vanilloid type 1 antagonist), or MK886 (peroxisome proliferator-activated receptor-alpha) antagonist. Compared to STD mice, HFD mice showed delayed gastric emptying and higher levels of gastric OEA. HFD-induced increase in OEA levels was accompanied by increased expression of the OEA-synthesizing enzyme N-acyl-phosphatidylethanolamine-selective phospholipase D and decreased expression of the OEA-degrading enzyme fatty acid amide hydrolase. These results might suggest that elevation of gastric OEA could possibly contribute to the delayed gastric emptying observed in HFD-fed animals. HFD regulates OEA levels in the stomach through an increase of its biosynthesis and a decrease of its enzymatic degradation. The inhibitory effect of OEA on gastric emptying here observed might underlie part of the anorexic effects of this compound previously reported.
Collapse
Affiliation(s)
- Gabriella Aviello
- Endocannabinoid Research Group, Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baumgartner A, Cemeli E, Anderson D. The comet assay in male reproductive toxicology. Cell Biol Toxicol 2007; 25:81-98. [PMID: 17972149 DOI: 10.1007/s10565-007-9041-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/03/2007] [Indexed: 01/23/2023]
Abstract
Due to our lifestyle and the environment we live in, we are constantly confronted with genotoxic or potentially genotoxic compounds. These toxins can cause DNA damage to our cells, leading to an increase in mutations. Sometimes such mutations could give rise to cancer in somatic cells. However, when germ cells are affected, then the damage could also have an effect on the next and successive generations. A rapid, sensitive and reliable method to detect DNA damage and assess the integrity of the genome within single cells is that of the comet or single-cell gel electrophoresis assay. The present communication gives an overview of the use of the comet assay utilising sperm or testicular cells in reproductive toxicology. This includes consideration of damage assessed by protocol modification, cryopreservation vs the use of fresh sperm, viability and statistics. It further focuses on in vivo and in vitro comet assay studies with sperm and a comparison of this assay with other assays measuring germ cell genotoxicity. As most of the de novo structural aberrations occur in sperm and spermatogenesis is functional from puberty to old age, whereas female germ cells are more complicated to obtain, the examination of male germ cells seems to be an easier and logical choice for research and testing in reproductive toxicology. In addition, the importance of such an assay for the paternal impact of genetic damage in offspring is undisputed. As there is a growing interest in the evaluation of genotoxins in male germ cells, the comet assay allows in vitro and in vivo assessments of various environmental and lifestyle genotoxins to be reliably determined.
Collapse
Affiliation(s)
- A Baumgartner
- Division of Biomedical Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Lumír O Hanus
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, 12065, Hebrew University, Jerusalem 91120,
| |
Collapse
|
29
|
Current World Literature. Curr Opin Obstet Gynecol 2007; 19:289-96. [PMID: 17495648 DOI: 10.1097/gco.0b013e3281fc29db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Bátkai S, Rajesh M, Mukhopadhyay P, Haskó G, Liaudet L, Cravatt BF, Csiszár A, Ungvári Z, Pacher P. Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol 2007; 293:H909-18. [PMID: 17434980 PMCID: PMC2225473 DOI: 10.1152/ajpheart.00373.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have uncovered important cross talk between inflammation, generation of reactive oxygen and nitrogen species, and lipid metabolism in the pathogenesis of cardiovascular aging. Inhibition of the endocannabinoid anandamide metabolizing enzyme, the fatty acid amide hydrolase (FAAH), is emerging as a promising novel approach for the treatment of various inflammatory disorders. In this study, we have investigated the age-associated decline of cardiac function and changes in inflammatory gene expression, nitrative stress, and apoptosis in FAAH knockout (FAAH(-/-)) mice and their wild-type (FAAH(+/+)) littermates. Additionally, we have explored the effects of anandamide on TNF-alpha-induced ICAM-1 and VCAM-1 expression and monocyte-endothelial adhesion in human coronary artery endothelial cells (HCAECs). There was no difference in the cardiac function (measured by the pressure-volume conductance catheter system) between 2- to 3-mo-old (young) FAAH(-/-) and FAAH(+/+) mice. In contrast, the aging-associated decline in cardiac function and increased myocardial gene expression of TNF-alpha, gp91phox, matrix metalloproteinase (MMP)-2, MMP-9, caspase-3 and caspase-9, myocardial inducible nitric oxide synthase protein expression, nitrotyrosine formation, poly (ADP-ribose)polymerase cleavage and caspase-3/9 activity, observed in 28- to 31-mo-old (aging) FAAH(+/+) mice, were largely attenuated in knockouts. There was no difference in the myocardial cannabinoid CB(1) and CB(2) receptor gene expression between young and aging FAAH(-/-) and FAAH(+/+) mice. Anandamide dose dependently attenuated the TNF-alpha-induced ICAM-1 and VCAM-1 expression, NF-kappaB activation in HCAECs, and the adhesion of monocytes to HCAECs in a CB(1)- and CB(2)-dependent manner. These findings suggest that pharmacological inhibition of FAAH may represent a novel protective strategy against chronic inflammation, oxidative/nitrative stress, and apoptosis associated with cardiovascular aging and atherosclerosis.
Collapse
Affiliation(s)
- Sándor Bátkai
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, 5625 Fishers Ln., MSC-9413, Bethesda, MD 20892-9413, USA
| | | | | | | | | | | | | | | | | |
Collapse
|