1
|
Wang J, Zhou P, Zhu L, Guan H, Gou J, Liu X. Maternal protein deficiency alters primary cilia length in renal tubular and impairs kidney development in fetal rat. Front Nutr 2023; 10:1156029. [PMID: 37485393 PMCID: PMC10358357 DOI: 10.3389/fnut.2023.1156029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Intrauterine malnutrition impairs embryo kidney development and leads to kidney disease and hypertension in adulthood, yet the underlying mechanism remains unclear. Methods With a maternal protein restriction (MPR) rat model, we investigated the critical ciliogenesis factors and β-catenin pathway in FGR fetal kidneys and analyzed the impact of aberrant primary cilia on renal tubular epithelium. Results The data showed decreased nephron number and renal tubular dysgenesis in FGR fetus. FGR fetus showed deregulated expression of ciliogenesis factors including upregulation of IFT88 and downregulation of DYNLT1, accompanied with cilia elongation in renal tubular epithelial cells. Wnt7b, the key ligand for Wnt/β-catenin signaling, was downregulated and nuclear translocation of β-catenin was decreased. The proapoptotic protein was upregulated. In vitro study with HK-2 cells showed that overexpression of IFT88 lengthened the cilia, inhibited β-catenin signaling. Besides, IFT88 overexpression suppressed cell proliferation, activated autophagy, and induced cell apoptosis. Inhibition of autophagy partly restored the cilia length and cell viability. Likewise, knockdown of DYNLT1 led to cilia elongation, suppressed cell proliferation, and promoted apoptosis in HK-2 cell. However, the cilia elongation induced by DYNLT1 knockdown was not autophagy-dependent, but associated with reactive oxygen species (ROS) accumulation. Discussion We elucidated that intrauterine protein malnutrition led to deregulation of ciliogenesis factors and cilia elongation in renal tubular epithelial, inhibited β-catenin signaling, and induced cell apoptosis and ultimately, compromised kidney development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pei Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangliang Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongbo Guan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Gou
- Department of Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
3
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
4
|
González-González R, Ortiz-Sarabia G, Molina-Frechero N, Salas-Pacheco JM, Salas-Pacheco SM, Lavalle-Carrasco J, López-Verdín S, Tremillo-Maldonado O, Bologna-Molina R. Epithelial-Mesenchymal Transition Associated with Head and Neck Squamous Cell Carcinomas: A Review. Cancers (Basel) 2021; 13:cancers13123027. [PMID: 34204259 PMCID: PMC8234594 DOI: 10.3390/cancers13123027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive, recurrent, and metastatic neoplasms with a high occurrence around the world and can lead to death when not treated appropriately. Several molecules and signaling pathways are involved in the malignant conversion process. Epithelial-mesenchymal transition (EMT) has been described in HNSCCs, a major type of aggressive carcinoma. EMT describes the development of epithelial cells into mesenchymal cells, which depends on several molecular interactions and signaling pathways that facilitate mesenchymal conversion. This is related to interactions with the microenvironment of the tumor, hypoxia, growth factors, matrix metalloproteinases, and the presence of viral infections. In this review, we focus on the main molecules related to EMT, their interactions with the tumor microenvironment, plasticity phenomena, epigenetic regulation, hypoxia, inflammation, their relationship with immune cells, and the inhibition of EMT in the context of HNSCCs.
Collapse
Affiliation(s)
- Rogelio González-González
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Gamaliel Ortiz-Sarabia
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Nelly Molina-Frechero
- Xochimilco Unit, Department of Health Care, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico; (N.M.-F.); (J.L.-C.)
| | - José Manuel Salas-Pacheco
- Scientific Research Institute, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, Durango 34000, Mexico; (J.M.S.-P.); (S.M.S.-P.)
| | - Sergio Manuel Salas-Pacheco
- Scientific Research Institute, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, Durango 34000, Mexico; (J.M.S.-P.); (S.M.S.-P.)
| | - Jesús Lavalle-Carrasco
- Xochimilco Unit, Department of Health Care, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City 04960, Mexico; (N.M.-F.); (J.L.-C.)
| | - Sandra López-Verdín
- Health Science Center, Dentistry Research Institute, Universidad de Guadalajara, Guadalajara 4430, Mexico;
| | - Omar Tremillo-Maldonado
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
| | - Ronell Bologna-Molina
- Department of Research, School of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico; (R.G.-G.); (G.O.-S.); (O.T.-M.)
- Molecular Pathology Area, School of Dentistry, Universidad de la República, Montevideo 11600, Uruguay
- Correspondence:
| |
Collapse
|
5
|
Tongpob Y, Xia S, Wyrwoll C, Mehnert A. Quantitative characterization of rodent feto-placental vasculature morphology in micro-computed tomography images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104984. [PMID: 31443859 DOI: 10.1016/j.cmpb.2019.104984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Optimal development of placental vasculature is critical for fetal growth and health outcomes. Many studies characterizing the vascular structure of the fetal side of the placenta have utilized a range of two-dimensional and three-dimensional (3D) imaging techniques including X-ray micro-computed tomography (micro-CT) following perfusion of the vasculature with a radio-opaque compound. The CT approach has been used to study feto-placental vasculature in rodents and humans. Its inherent advantage is that it reveals the 3D structure in high resolution without destroying the sample. This permits both multiple scanning of the sample and follow-up histological investigations in the same sample. Nevertheless, the applicability of the approach is hampered both by the challenging segmentation of the vasculature and a lack of straightforward methodology to quantitate the feto-placental vascular network. This paper addresses these challenges. METHODS An end-to-end methodology is presented for automatically segmenting the vasculature; obtaining a Strahler-ordered rooted-tree representation and extracting quantitative features from its nodes, segments and branches (including volume, length, tortuosity and branching angles). The methodology is demonstrated for rat and mouse placentas at the end of gestation (day 22 and day 18, respectively), perfused with Microfil® and imaged using two different micro-CT scanners. RESULTS The 3D visualizations of the resulting vascular trees clearly demonstrate differences between the branching complexity, tree span and tree depth of the mouse and rat placentas. The quantitative characterizations of these trees include not only the fundamental features that have been utilized in other studies of feto-placental vasculature but also several additional features. Boxplots of several of these-tortuosity, number of side branches, number of offspring per branch and branch volume-computed at each Strahler order are presented and interpreted. Differences and similarities between the mouse and rat casts are readily detected. CONCLUSION The proposed end-to-end methodology, and the implementation presented using a combination of Amira and Matlab, offers researchers in the field of placental vasculature characterization a straightforward and objective approach for quantifying micro-CT vascular datasets.
Collapse
Affiliation(s)
- Yutthapong Tongpob
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia; Faculty of Medical Science, Naresuan University, 99 Moo 9, Tapo, Muang, Phitsanulok 65000, Thailand.
| | - Shushan Xia
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306, N Wright St, Urbana, IL 61801, USA; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Caitlin Wyrwoll
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia.
| | - Andrew Mehnert
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia; National Imaging Facility, Western Australian Node, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
6
|
Crew RC, Mark PJ, Waddell BJ. Obesity Disrupts Rhythmic Clock Gene Expression in Maternal Adipose Tissue during Rat Pregnancy. J Biol Rhythms 2019; 33:289-301. [PMID: 29761750 DOI: 10.1177/0748730418772499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Obesity during pregnancy causes numerous maternal and fetal health complications, but the underlying mechanisms remain unclear. Adipose tissue dysfunction in obesity has previously been linked to disruption of the intrinsic adipose clock gene network that is crucial for normal metabolic function. This adipose clock also undergoes major change as part of the maternal metabolic adaptation to pregnancy, but whether this is affected by maternal obesity is unknown. Consequently, in this study we tested the hypothesis that obesity disturbs rhythmic gene expression in maternal adipose tissue across pregnancy. A rat model of maternal obesity was established by cafeteria (CAF) feeding, and adipose expression of clock genes and associated nuclear receptors ( Ppars and Pgc1α) was measured across days 15-16 and 21-22 of gestation (term = 23 days). CAF feeding suppressed the mesor and/or amplitude of adipose tissue clock genes (most notably Bmal1, Per2, and Rev-erbα) relative to chow-fed controls (CON) across both days of gestation. On day 15, the CAF diet also induced adipose Pparα, Pparδ, and Pgc1α rhythmicity but repressed that of Pparγ, while expression of Pparα, Pparδ, and Pgc1α was reduced at select time points. CAF mothers were hyperleptinemic at both stages of gestation, and at day 21 this effect was time-of-day dependent. Fetal plasma leptin exhibited clear rhythmicity, albeit with low amplitude, but interestingly these levels were unaffected by CAF feeding. Our data show that maternal obesity disrupts rhythmic expression of clock and metabolic genes in maternal adipose tissue and leads to maternal but not fetal hyperleptinemia.
Collapse
Affiliation(s)
- Rachael C Crew
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Peter J Mark
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Brendan J Waddell
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Michelsen TM, Henriksen T, Reinhold D, Powell TL, Jansson T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling. FASEB J 2018; 33:2944-2956. [PMID: 30335547 DOI: 10.1096/fj.201801193r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We sought to identify proteins secreted by the human placenta into the maternal and fetal circulations. Blood samples from the maternal radial artery and uterine vein and umbilical artery and vein were obtained during cesarean section in 35 healthy women with term pregnancy. Slow off-rate modified aptamer (SOMA) protein-binding technology was used to quantify 1310 known proteins. The uteroplacental and umbilical venoarterial concentration differences were calculated. Thirty-four proteins were significantly secreted by the placenta into the maternal circulation, including placental growth factor, growth/differentiation factor 15, and matrix metalloproteinase 12. There were 341 proteins significantly secreted by the placenta into the fetal circulation. Only 7 proteins were secreted into both the fetal and maternal circulations, suggesting a distinct directionality in placental protein release. We examined changes across gestation in the proteins found to be significantly secreted by the placenta into the maternal circulation using serial blood samples from healthy women. Among the 34 proteins secreted into the maternal circulation, 8 changed significantly across gestation. The identified profiles of secreted placental proteins will allow us to identify novel minimally invasive biomarkers for human placental function across gestation and discover previously unknown proteins secreted by the human placenta that regulate maternal physiology and fetal development.-Michelsen, T. M., Henriksen, T., Reinhold, D., Powell, T. L., Jansson, T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling.
Collapse
Affiliation(s)
- Trond M Michelsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Tore Henriksen
- Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | | | - Theresa L Powell
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Crew RC, Waddell BJ, Mark PJ. Obesity-induced changes in hepatic and placental clock gene networks in rat pregnancy†. Biol Reprod 2017; 98:75-88. [DOI: 10.1093/biolre/iox158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
|
9
|
Zmijanac Partl J, Karin V, Skrtic A, Nikuseva-Martic T, Serman A, Mlinarec J, Curkovic-Perica M, Vranic S, Serman L. Negative regulators of Wnt signaling pathway SFRP1 and SFRP3 expression in preterm and term pathologic placentas. J Matern Fetal Neonatal Med 2017; 31:2971-2979. [DOI: 10.1080/14767058.2017.1359830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Valentina Karin
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, University Hospital Merkur, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Alan Serman
- Department of Gynecology and Obstetrics, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinic of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, Zagreb, Croatia
| | - Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Semir Vranic
- Department of Pathology, Clinical Center, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Department of Gynecology and Obstetrics, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer’s disease. Int J Biochem Cell Biol 2016; 75:104-11. [DOI: 10.1016/j.biocel.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
|
11
|
Crew RC, Waddell BJ, Mark PJ. Maternal obesity induced by a 'cafeteria' diet in the rat does not increase inflammation in maternal, placental or fetal tissues in late gestation. Placenta 2016; 39:33-40. [PMID: 26992672 DOI: 10.1016/j.placenta.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/04/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Obesity during pregnancy can cause serious complications for maternal and infant health. While this has often been attributed to increased inflammation during obese pregnancy, human and animal studies exhibit variable results with respect to the inflammatory status of the mother, placenta and fetus. Cafeteria (CAF) feeding induces more inflammation than standard high-fat feeding in non-pregnant animal models. This study investigated whether maternal obesity induced by a CAF diet increases maternal, fetal or placental inflammation. METHODS Maternal obesity was established in rats by 8 weeks of pre-pregnancy CAF feeding. Maternal plasma inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, MCP1, GRO/KC, MIP-2 and TNFα) and expression of inflammatory genes (Tnfα, Il-6, Il-1β, Tlr2, Tlr4, Cox2 and Emr1) in maternal, placental and fetal tissues were measured at day 21 of gestation. RESULTS Despite CAF animals having 63% more central body fat than controls at day 21 of gestation, plasma inflammatory markers were not increased; indeed, levels of IL-6, IL-12p40 and MIP2 were reduced slightly. Similarly, inflammatory gene expression remained largely unaffected by CAF feeding, except for slight reductions to Tlr4 and Emr1 expression in CAF maternal adipose tissue, and reduced Tlr4 expression in male labyrinth zone (LZ). The junctional zone (JZ) displayed increased Il-6 expression in CAF animals when fetal sexes were combined, but no inflammatory genes were affected by the CAF diet in fetal liver. CONCLUSIONS Maternal obesity induced by a CAF diet before and during pregnancy does not increase the inflammatory status of the mother, placenta or fetus in late gestation.
Collapse
Affiliation(s)
- Rachael C Crew
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, 35 Stirling Hwy, Perth, Western Australia 6009, Australia
| | - Brendan J Waddell
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, 35 Stirling Hwy, Perth, Western Australia 6009, Australia
| | - Peter J Mark
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, 35 Stirling Hwy, Perth, Western Australia 6009, Australia.
| |
Collapse
|
12
|
Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties. PLoS One 2015; 10:e0127517. [PMID: 26030909 PMCID: PMC4452329 DOI: 10.1371/journal.pone.0127517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/15/2015] [Indexed: 01/06/2023] Open
Abstract
The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs). We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), in modulating epithelial to mesenchymal transition (EMT) in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ), by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin) to epithelial (E-cadherin). sFRP4 treatment elicited activation of the Wnt-Ca2+ pathway, which antagonizes the Wnt/ß-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/ß-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs.
Collapse
|
13
|
Elfayomy AK, Almasry SM. Effects of a single course versus repeated courses of antenatal corticosteroids on fetal growth, placental morphometry and the differential regulation of vascular endothelial growth factor. J Obstet Gynaecol Res 2014; 40:2135-45. [PMID: 25163747 DOI: 10.1111/jog.12466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
AIM To investigate the impact of antenatal exposure to a single course or repeated courses of dexamethasone (DEX) on neonatal anthropometrics, placental morphometry and potential effect on maternal plasma levels and placental expression of vascular endothelial growth factor (VEGF). METHODS Pregnant women between 27 and 32 weeks of gestation who delivered between 28 and 40 weeks and received a single course (n = 38) or repeated courses (n = 33) of DEX were compared to gestational age-matched controls (n = 30). Maternal blood samples were obtained, and placental biopsy was taken. Area percent of VEGF immunostaining and villous capillarization index were evaluated using image analysis. RESULTS Infants exposed to repeated courses of DEX were significantly associated with decreased birthweight, body length, head circumference and placental weight compared with controls (P = 0.011, P < 0.001, P = 0.004, P < 0.001, respectively) and with the group that received a single course of DEX (P = 0.021, P = 0.020, P = 0.049, P = 0.010, respectively). There was a significant decrease in maternal VEGF plasma levels and percentage of VEGF immunostained area after repeated courses of DEX compared with controls (P < 0.001 and P = 0.001, respectively) or a single course (P = 0.028 and P = 0.002, respectively). Notably, repeated courses of DEX impaired normal increase in villous capillarization index compared with controls or a single course (P = 0.001 and P = 0.041, respectively). CONCLUSION Repeated antenatal courses of DEX compromised fetal and placental growth compared with a single course of DEX, and these effects were potentially mediated by altered maternal plasma levels and placental expression of VEGF with consequent decrease in placental vascularization. Because of continuing uncertainties, several key messages for clinicians are provided.
Collapse
Affiliation(s)
- Amr K Elfayomy
- Department of Obstetrics and Gynecology, Taibah University, Almadinah Almunawarah, Saudi Arabia; Department of Obstetrics and Gynecology, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
14
|
Cancer stem-like cells from head and neck cancers are chemosensitized by the Wnt antagonist, sFRP4, by inducing apoptosis, decreasing stemness, drug resistance and epithelial to mesenchymal transition. Cancer Gene Ther 2014; 21:381-8. [DOI: 10.1038/cgt.2014.42] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/14/2014] [Indexed: 01/07/2023]
|
15
|
Zulkafli IS, Waddell BJ, Mark PJ. Postnatal dietary omega-3 fatty acid supplementation rescues glucocorticoid-programmed adiposity, hypertension, and hyperlipidemia in male rat offspring raised on a high-fat diet. Endocrinology 2013; 154:3110-7. [PMID: 23782939 DOI: 10.1210/en.2013-1153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal glucocorticoid excess programs several adverse outcomes in adult offspring, many of which can be prevented by postnatal, dietary omega-3 (n-3) fatty acids. Here we tested 2 separate hypotheses: 1) a postnatal high-fat diet exacerbates the glucocorticoid-programmed phenotype; and 2) postnatal, dietary n-3 fatty acids rescue programmed outcomes, even in the presence of a high-fat diet challenge. Pregnant Wistar rat dams were either untreated or administered dexamethasone acetate (Dex; 0.5 μg/mL drinking water) from day 13 of pregnancy. Offspring were cross-fostered to untreated mothers and males were weaned onto a standard (Std), high-fat, low n-3 (HF), or high-fat, high n-3 (HFHn-3) diet. Prenatal Dex reduced birth weight (26%) and delayed puberty onset by 1.2 days, irrespective of postnatal diet. Prenatal Dex programmed increased blood pressure in adult offspring, an effect worsened by the postnatal HF diet. Supplementation with high n-3 fatty acids, however, prevented both the Dex and HF-induced increases in blood pressure. Prenatal Dex also programmed increased adiposity, plasma cholesterol, and plasma triglyceride levels at 6 months of age, particularly in those offspring raised on the HF diet. But again, each of these adverse outcomes was rescued by supplementation of the HF diet with n-3 fatty acids. In conclusion, the capacity of n-3 fatty acids to overcome adverse programming outcomes remains evident, even in the presence of a HF diet challenge.
Collapse
MESH Headings
- Adiposity
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Diet, High-Fat/adverse effects
- Dietary Supplements/adverse effects
- Disease Models, Animal
- Fatty Acids, Omega-3/adverse effects
- Fatty Acids, Omega-3/therapeutic use
- Female
- Fetal Development
- Glucocorticoids/blood
- Glucocorticoids/metabolism
- Hyperlipidemias/etiology
- Hyperlipidemias/immunology
- Hyperlipidemias/prevention & control
- Hypertension/etiology
- Hypertension/immunology
- Hypertension/prevention & control
- Male
- Maternal-Fetal Exchange
- Pregnancy
- Pregnancy Complications/blood
- Pregnancy Complications/immunology
- Pregnancy Complications/physiopathology
- Random Allocation
- Rats
- Rats, Wistar
- Stress, Physiological
- Stress, Psychological/blood
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Intan S Zulkafli
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | | | | |
Collapse
|
16
|
The Lipid Transfer Protein StarD7: Structure, Function, and Regulation. Int J Mol Sci 2013; 14:6170-86. [PMID: 23507753 PMCID: PMC3634439 DOI: 10.3390/ijms14036170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/17/2013] [Accepted: 02/22/2013] [Indexed: 02/06/2023] Open
Abstract
The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. The 15 well-characterized mammalian START domain-containing proteins are grouped into six subfamilies. The START domain containing 7 mRNA encodes StarD7, a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily, which was first identified as a gene overexpressed in a choriocarcinoma cell line. Recent studies show that the StarD7 protein facilitates the delivery of phosphatidylcholine to the mitochondria. This review summarizes the latest advances in StarD7 research, focusing on the structural and biochemical features, protein-lipid interactions, and mechanisms that regulate StarD7 expression. The implications of the role of StarD7 in cell proliferation, migration, and differentiation are also discussed.
Collapse
|
17
|
Zhang Z, Zhang L, Zhang L, Jia L, Wang P, Gao Y. Association of Wnt2 and sFRP4 expression in the third trimester placenta in women with severe preeclampsia. Reprod Sci 2013; 20:981-9. [PMID: 23322712 DOI: 10.1177/1933719112472740] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The Wnt signaling pathway is a conserved pathway and plays a crucial role in regulating trophoblast functions. Abnormal expression of the Wnt pathway may result in the dysfunction of the trophoblast that can contribute to the pathogenesis of preeclampsia (PE). However, published data regarding the association between Wnt pathway and PE in human pregnancy is rare. OBJECTIVE The aims of this study were to investigate the expression pattern of Wnt2 and secreted frizzled-related protein 4 (sFRP4) in the third trimester human placenta and to evaluate the relationship between changes in placental Wnt2 and sFRP4 expression and severe PE. METHODS The expression of Wnt2 and sFRP4 in normal and severe PE placentas was examined using immunohistochemistry (IHC), real-time polymerase chain reaction, and Western blot. RESULTS Compared to the controls, the relative expression of Wnt2 messenger RNA was remarkably downregulated in the PE placentas, while there was no significant difference in sFRP4 between the 2 groups. The IHC indicated that Wnt2 and sFRP4 were expressed predominantly in the villous syncytiotrophoblast and the extravillous trophoblast, whereas Wnt2 in the control group showed higher staining intensity than in the PE group, and sFRP4 in the PE group had a higher staining intensity than in the control group. Furthermore, the results of the Western blots were consistent with the IHC. CONCLUSIONS The Wnt signaling pathway was detected in human third trimester placentas, and the decreased placental expression of Wnt2 and increased placental expression of sFRP4 may be associated with the pathogenesis of severe PE.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Zhengzhou, Henan, China.
| | | | | | | | | | | |
Collapse
|
18
|
Waddell B, Wharfe M, Crew R, Mark P. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta 2012; 33:533-9. [DOI: 10.1016/j.placenta.2012.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/22/2012] [Indexed: 12/19/2022]
|
19
|
Strakovsky RS, Pan YX. A decrease in DKK1, a WNT inhibitor, contributes to placental lipid accumulation in an obesity-prone rat model. Biol Reprod 2012; 86:81. [PMID: 22133691 DOI: 10.1095/biolreprod.111.094482] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Placenta, as the sole transport mechanism between mother and fetus, links the maternal physical state and the immediate as well as lifelong outcomes of the offspring. The present study examined the consequences of maternal obesity on placental lipid accumulation and metabolism. Pregnant obesity-prone (OP) and obesity-resistant (OR) rat strains were fed a control diet throughout gestation. Placentas were collected on Gestational Day 21 for mRNA and oxidative stress analysis, and frozen placental sections were analyzed for fat accumulation as well as beta-catenin and Dickkopf homolog 1 (Xenopus laevis) (DKK1) localization. JEG3 trophoblast cells were cultured in vitro to determine the relationship between DKK1 and lipid accumulation. Maternal plasma and placental nonesterified fatty acids and triglycerides (TG) were elevated in OP dams. Placental Dkk1 mRNA content was 4-fold lower in OP placentas, and a significant increase was noted in beta-catenin accumulation as well as in mRNA content of fat transport and TG synthesis genes, including Ppard (peroxisome proliferator-activated receptor delta), Slc27a1 (fatty acid transport protein 1; also known as Fatp1), Cd36 (cluster of differentiation 36; also known as fatty acid translocation [Fat]), Lipin1, and Lipin3. Significant lipid accumulation was found within the decidual zones in OP, but not OR, placentas, and thickness of the decidual and junctional zones was significantly smaller in OP than in OR placentas. Overexpression of DKK1 in JEG3 cells decreased lipid accumulation and mRNA content of PPARD, SLC27A1, CD36, LIPIN1, and LIPIN3. Our results demonstrate that DKK1 is regulating certain aspects of placental lipid metabolism through the WNT signaling pathway.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Soares MJ, Chakraborty D, Karim Rumi MA, Konno T, Renaud SJ. Rat placentation: an experimental model for investigating the hemochorial maternal-fetal interface. Placenta 2012; 33:233-43. [PMID: 22284666 DOI: 10.1016/j.placenta.2011.11.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
Abstract
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research.
Collapse
Affiliation(s)
- M J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
21
|
Rena V, Flores-Martín J, Angeletti S, Panzetta-Dutari GM, Genti-Raimondi S. StarD7 gene expression in trophoblast cells: contribution of SF-1 and Wnt-beta-catenin signaling. Mol Endocrinol 2011; 25:1364-75. [PMID: 21622533 DOI: 10.1210/me.2010-0503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Steroidogenic acute regulatory protein-related lipid transfer domain containing 7 (StarD7) is a poorly characterized member of the steroidogenic acute regulatory protein-related lipid transfer proteins, up-regulated in JEG-3 cells, involved in intracellular transport and metabolism of lipids. Previous studies dealing with the mechanisms underlying the human StarD7 gene expression led us to define the cis-acting regulatory sequences in the StarD7 promoter using as a model JEG-3 cells. These include a functional T cell-specific transcription factor 4 (TCF4) site involved in Wnt-β-catenin signaling. To understand these mechanisms in more depth, we examined the steroidogenic factor 1 (SF-1) contribution to StarD7 expression. Cotransfection experiments in JEG-3 cells point out that the StarD7 promoter is activated by SF-1, and this effect is increased by forskolin. EMSA using JEG-3 nuclear proteins demonstrated that SF-1 binds to the StarD7 promoter. Additionally, chromatin immunoprecipitation analysis indicated that SF-1 and β-catenin are bound in vivo to the StarD7 promoter. Reporter gene assays in combination with mutations in the SF-1 and TCF4 binding sites revealed that the StarD7 promoter is synergistically activated by SF-1 and β-catenin and that the TCF4 binding site (-614/-608) plays an important role in this activation. SF-1 amino acid mutations involved in the physical interaction with β-catenin abolished this activation; thus demonstrating that the contact between the two proteins is necessary for an efficient StarD7 transcriptional induction. Finally, these data suggest that β-catenin could function as a bridge between SF-1 and TCF4 forming a ternary complex, which would stimulate StarD7 expression. The SF-1 and β-catenin pathway convergence on StarD7 expression may have important implications in the phospholipid uptake and transport, contributing to the normal trophoblast development.
Collapse
Affiliation(s)
- Viviana Rena
- Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica-Centro de Investigaciones en Bioquímica Clínica e Inmunología, X5000HUA Córdoba, Argentina
| | | | | | | | | |
Collapse
|
22
|
Rena V, Angeletti S, Panzetta-Dutari G, Genti-Raimondi S. Activation of beta-catenin signalling increases StarD7 gene expression in JEG-3 cells. Placenta 2009; 30:876-83. [PMID: 19679347 DOI: 10.1016/j.placenta.2009.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/23/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
StarD7 gene encodes a protein that belongs to the StAR-related lipid transfer proteins involved in intracellular transport and metabolism of lipids. It has been previously documented that StarD7 has a wide-spread mRNA expression in trophoblastic tissues and several tumour cell lines with highest levels in both choriocarcinoma JEG-3 and JAR cells, hepatocellular carcinoma HepG2, and colorectal adenocarcinoma HT-29 cells. To understand the molecular mechanisms that regulate the expression of the human StarD7 gene, we have cloned and characterized the 5'-flanking region of the gene. Transient transfections of several 5'deleted StarD7-promoter-firefly luciferase constructs into JEG-3 cells indicated that the -312/+157 region contains the gene minimal promoter. In addition, sequence analysis of a 1.6kb gene fragment revealed the presence of a TATA-less promoter as well as multiple regulatory motifs, including one regulatory element corresponding to the T-cell factor 4 (TCF4) binding site. Inhibition of glycogen synthase kinase-3beta (GSK3beta), a component of Wnt/beta-catenin signalling, increased both StarD7 mRNA and protein expression as well as its promoter activity. Co-transfection experiments in JEG-3 cell line revealed that the StarD7 promoter is activated by TCF4 transcription factor and by its beta-catenin coactivator. Moreover, site-directed mutagenesis of the TCF4 site located -614/-608bp relative to the transcription start site markedly diminished StarD7 promoter activity. Chromatin immunoprecipitation analysis demonstrated that beta-catenin and TCF4 are bound in vivo to the StarD7 gene promoter in JEG-3 cells treated with lithium chloride. Collectively, these studies show that beta-catenin and TCF4 activate the human StarD7 gene interacting with its promoter region through Wnt/beta-catenin signalling.
Collapse
Affiliation(s)
- V Rena
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, Argentina
| | | | | | | |
Collapse
|
23
|
Abstract
Secreted frizzled-related protein 4 (sFRP4) blocks the Wnt signalling pathway by competitively binding Wnt ligands (frizzled receptors). This pathway is important during development and oncogenesis. It is, however, complex with a large number of interacting proteins, isoforms and receptors. The Wnt signalling pathway has a role in human placental development and implantation, particularly in the trophoblast. Humans and macaque monkeys exhibit a similar remodelling of the decidual spiral arteries. The expression of sFRP4 in human and macaque placentas at different gestational ages have been examined with immunohistochemistry, in-situ hybridization, real-time polymerase chain reaction, and western blotting. This study demonstrates that sFRP4 is expressed predominantly in the villous syncytiotrophoblast and the invasive intermediate cytotrophoblast, and in the amnion. These observational studies suggest that sFRP4 has a role in placental development and implantation, and may be an important factor in the development of the decidual fibrinoid zone, and in trophoblast apoptosis and a band of apoptosis in the underlying decidua deep into the trophoblast.
Collapse
|
24
|
Novakovic B, Rakyan V, Ng HK, Manuelpillai U, Dewi C, Wong NC, Morley R, Down T, Beck S, Craig JM, Saffery R. Specific tumour-associated methylation in normal human term placenta and first-trimester cytotrophoblasts. Mol Hum Reprod 2008; 14:547-54. [PMID: 18708652 DOI: 10.1093/molehr/gan046] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human placentation displays many similarities with tumourigenesis, including rapid cell division, migration and invasion, overlapping gene expression profiles and escape from immune detection. Recent data have identified promoter methylation in the Ras association factor and adenomatous polyposis coli tumour suppressor genes as part of this process. However, the extent of tumour-associated methylation in the placenta remains unclear. Using whole genome methylation data as a starting point, we have examined this phenomenon in placental tissue. We found no evidence for methylation of the majority of common tumour suppressor genes in term placentas, but identified methylation in several genes previously described in some human tumours. Notably, promoter methylation of four independent negative regulators of Wnt signalling has now been identified in human placental tissue and purified trophoblasts. Methylation is present in baboon, but not in mouse placentas. This supports a role for elevated Wnt signalling in primate trophoblast invasiveness and placentation. Examination of invasive choriocarcinoma cell lines revealed altered methylation patterns consistent with a role of methylation change in gestational trophoblastic disease. This distinct pattern of tumour-associated methylation implicates a coordinated series of epigenetic silencing events, similar to those associated with some tumours, in the distinct features of normal human placental invasion and function.
Collapse
Affiliation(s)
- B Novakovic
- Developmental Epigenetics Research, Murdoch Children's Research Institute, Royal Children's Hospital, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Michael AE, Papageorghiou AT. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum Reprod Update 2008; 14:497-517. [DOI: 10.1093/humupd/dmn021] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
26
|
Clement TM, Anway MD, Uzumcu M, Skinner MK. Regulation of the gonadal transcriptome during sex determination and testis morphogenesis: comparative candidate genes. Reproduction 2007; 134:455-72. [PMID: 17709564 PMCID: PMC8260008 DOI: 10.1530/rep-06-0341] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gene expression profiles during sex determination and gonadal differentiation were investigated to identify new potential regulatory factors. Embryonic day 13 (E13), E14, and E16 rat testes and ovaries were used for microarray analysis, as well as E13 testis organ cultures that undergo testis morphogenesis and develop seminiferous cords in vitro. A list of 109 genes resulted from a selective analysis for genes present in male gonadal development and with a 1.5-fold change in expression between E13 and E16. Characterization of these 109 genes potentially important for testis development revealed that cytoskeletal-associated proteins, extracellular matrix factors, and signaling factors were highly represented. Throughout the developmental period (E13-E16), sex-enriched transcripts were more prevalent in the male with 34 of the 109 genes having testis-enriched expression during sex determination. In ovaries, the total number of transcripts with a 1.5-fold change in expression between E13 and E16 was similar to the testis, but none of those genes were both ovary enriched and regulated during the developmental period. Genes conserved in sex determination were identified by comparing changing transcripts in the rat analysis herein, to transcripts altered in previously published mouse studies of gonadal sex determination. A comparison of changing mouse and rat transcripts identified 43 genes with species conservation in sex determination and testis development. Profiles of gene expression during E13-E16 rat testis and ovary development are presented and candidate genes for involvement in sex determination and testis differentiation are identified. Analysis of cellular pathways did not reveal any specific pathways involving multiple candidate genes. However, the genes and gene network identified influence numerous cellular processes with cellular differentiation, proliferation, focal contact, RNA localization, and development being predominant.
Collapse
Affiliation(s)
- Tracy M Clement
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|