1
|
Gurule S, Sustaita-Monroe J, Padmanabhan V, Cardoso R. Developmental programming of the neuroendocrine axis by steroid hormones: Insights from the sheep model of PCOS. Front Endocrinol (Lausanne) 2023; 14:1096187. [PMID: 36755919 PMCID: PMC9899912 DOI: 10.3389/fendo.2023.1096187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
The reproductive neuroendocrine system is a key target for the developmental programming effects of steroid hormones during early life. While gonadal steroids play an important role in controlling the physiological development of the neuroendocrine axis, human fetuses are susceptible to adverse programming due to exposure to endocrine disrupting chemicals with steroidal activity, inadvertent use of contraceptive pills during pregnancy, as well as from disease states that result in abnormal steroid production. Animal models provide an unparalleled resource to understand the effects of steroid hormones on the development of the neuroendocrine axis and their role on the developmental origins of health and disease. In female sheep, exposure to testosterone (T) excess during fetal development results in an array of reproductive disorders that recapitulate those seen in women with polycystic ovary syndrome (PCOS), including disrupted neuroendocrine feedback mechanisms, increased pituitary responsiveness to gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) hypersecretion, functional hyperandrogenism, multifollicular ovarian morphology, and premature reproductive failure. Similar to a large proportion of women with PCOS, these prenatally T-treated sheep also manifest insulin resistance and cardiovascular alterations, including hypertension. This review article focuses on the effects of prenatal androgens on the developmental programming of hypothalamic and pituitary alterations in the sheep model of PCOS phenotype, centering specifically on key neurons, neuropeptides, and regulatory pathways controlling GnRH and LH secretion. Insights obtained from the sheep model as well as other animal models of perinatal androgen excess can have important translational relevance to treat and prevent neuroendocrine dysfunction in women with PCOS and other fertility disorders.
Collapse
Affiliation(s)
- Sara Gurule
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | | | | | - Rodolfo Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Landers RSM, Padmanabhan V, Cardoso RC. Developmental programming: gestational testosterone excess disrupts LH secretion in the female sheep fetus. Reprod Biol Endocrinol 2020; 18:106. [PMID: 33158439 PMCID: PMC7648305 DOI: 10.1186/s12958-020-00667-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prenatal testosterone (T) excess results in reproductive and metabolic perturbations in female sheep that closely recapitulate those seen in women with polycystic ovary syndrome (PCOS). At the neuroendocrine level, prenatal T-treated sheep manifest increased pituitary sensitivity to GnRH and subsequent LH hypersecretion. In this study, we investigated the early effects of gestational T-treatment on LH secretion and pituitary function in the female sheep fetus. Additionally, because prenatal T effects can be mediated via the androgen receptor or due to changes in insulin homeostasis, prenatal co-treatment with an androgen antagonist (flutamide) or an insulin sensitizer (rosiglitazone) were tested. METHODS Pregnant sheep were treated from gestational day (GD) 30 to 90 with either: 1) vehicle (control); 2) T-propionate (~ 1.2 mg/kg); 3) T-propionate and flutamide (15 mg/kg/day); and 4) T-propionate and rosiglitazone (8 mg/day). At GD 90, LH concentrations were determined in the uterine artery (maternal) and umbilical artery (fetal), and female fetuses were euthanized. Pituitary glands were collected, weighed, and protein level of several key regulators of LH secretion was determined. RESULTS Fetal pituitary weight was significantly reduced by prenatal T-treatment. Flutamide completely prevented the reduction in pituitary weight, while rosiglitazone only partially prevented this reduction. Prenatal T markedly reduced fetal LH concentrations and flutamide co-treatment partially restored LH to control levels. Prenatal T resulted in a marked reduction in LH-β protein level, which was associated with a reduction in GnRH receptor and estrogen receptor-α levels and an increase in androgen receptor. With the exception of androgen receptor, flutamide co-treatment completely prevented these alterations in the fetal pituitary, while rosiglitazone largely failed to prevent these changes. Prenatal T-treatment did not alter the protein levels of insulin receptor-β and activation (phosphorylation) of the insulin signaling pathways. CONCLUSIONS These findings demonstrate that prenatal T-treatment results in reduced fetal LH secretion, reduced fetal pituitary weight, and altered protein levels of several regulators of gonadotropin secretion. The observations that flutamide co-treatment prevented these changes suggest that programming during fetal development likely occurs via direct androgen actions.
Collapse
Affiliation(s)
- Renata S M Landers
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA
| | | | - Rodolfo C Cardoso
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA.
| |
Collapse
|
3
|
Puttabyatappa M, Guo X, Dou J, Dumesic D, Bakulski KM, Padmanabhan V. Developmental Programming: Sheep Granulosa and Theca Cell-Specific Transcriptional Regulation by Prenatal Testosterone. Endocrinology 2020; 161:bqaa094. [PMID: 32516392 PMCID: PMC7417881 DOI: 10.1210/endocr/bqaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to polycystic ovarian syndrome women, manifest reduced cyclicity, functional hyperandrogenism, and polycystic ovary (PCO) morphology. The PCO morphology results from increased follicular recruitment and persistence of antral follicles, a consequence of reduced follicular growth and atresia, and is driven by cell-specific gene expression changes that are poorly understood. Therefore, using RNA sequencing, cell-specific transcriptional changes were assessed in laser capture microdissection isolated antral follicular granulosa and theca cells from age 21 months control and prenatal T-treated (100 mg intramuscular twice weekly from gestational day 30 to 90; term: 147 days) sheep. In controls, 3494 genes were differentially expressed between cell types with cell signaling, proliferation, extracellular matrix, immune, and tissue development genes enriched in theca; and mitochondrial, chromosomal, RNA, fatty acid, and cell cycle process genes enriched in granulosa cells. Prenatal T treatment 1) increased gene expression of transforming growth factor β receptor 1 and exosome component 9, and decreased BCL6 corepressor like 1, BCL9 like, and MAPK interacting serine/threonine kinase 2 in both cells, 2) induced differential expression of 92 genes that included increased mitochondrial, ribosome biogenesis, ribonucleoprotein, and ubiquitin, and decreased cell development and extracellular matrix-related pathways in granulosa cells, and 3) induced differential expression of 56 genes that included increased noncoding RNA processing, ribosome biogenesis, and mitochondrial matrix, and decreased transcription factor pathways in theca cells. These data indicate that follicular function is affected by genes involved in transforming growth factor signaling, extracellular matrix, mitochondria, epigenetics, and apoptosis both in a common as well as a cell-specific manner and suggest possible mechanistic pathways for prenatal T treatment-induced PCO morphology in sheep.
Collapse
Affiliation(s)
| | - Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Daniel Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
4
|
Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020; 41:bnaa010. [PMID: 32310267 PMCID: PMC7279705 DOI: 10.1210/endrev/bnaa010] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
More than 1 out of 10 women worldwide are diagnosed with polycystic ovary syndrome (PCOS), the leading cause of female reproductive and metabolic dysfunction. Despite its high prevalence, PCOS and its accompanying morbidities are likely underdiagnosed, averaging > 2 years and 3 physicians before women are diagnosed. Although it has been intensively researched, the underlying cause(s) of PCOS have yet to be defined. In order to understand PCOS pathophysiology, its developmental origins, and how to predict and prevent PCOS onset, there is an urgent need for safe and effective markers and treatments. In this review, we detail which animal models are more suitable for contributing to our understanding of the etiology and pathophysiology of PCOS. We summarize and highlight advantages and limitations of hormonal or genetic manipulation of animal models, as well as of naturally occurring PCOS-like females.
Collapse
Affiliation(s)
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Obstetrics and Gynecology, and Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Anna Benrick
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences and Education, University of Skövde, Skövde, Sweden
| | - Paolo Giacobini
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, California
| | - David H Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
5
|
Monniaux D, Genêt C, Maillard V, Jarrier P, Adriaensen H, Hennequet-Antier C, Lainé AL, Laclie C, Papillier P, Plisson-Petit F, Estienne A, Cognié J, di Clemente N, Dalbies-Tran R, Fabre S. Prenatal programming by testosterone of follicular theca cell functions in ovary. Cell Mol Life Sci 2020; 77:1177-1196. [PMID: 31327046 PMCID: PMC11105072 DOI: 10.1007/s00018-019-03230-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.
Collapse
Affiliation(s)
- Danielle Monniaux
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Carine Genêt
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31320, Castanet Tolosan, France
| | - Virginie Maillard
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Peggy Jarrier
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Hans Adriaensen
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Anne-Lyse Lainé
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Corinne Laclie
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascal Papillier
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Anthony Estienne
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Juliette Cognié
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Nathalie di Clemente
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - Rozenn Dalbies-Tran
- UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31320, Castanet Tolosan, France
| |
Collapse
|
6
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
7
|
Coutinho EA, Kauffman AS. The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Med Sci (Basel) 2019; 7:E84. [PMID: 31382541 PMCID: PMC6722593 DOI: 10.3390/medsci7080084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder, affecting at least 10% of women of reproductive age. PCOS is typically characterized by the presence of at least two of the three cardinal features of hyperandrogenemia (high circulating androgen levels), oligo- or anovulation, and cystic ovaries. Hyperandrogenemia increases the severity of the condition and is driven by increased luteinizing hormone (LH) pulse secretion from the pituitary. Indeed, PCOS women display both elevated mean LH levels, as well as an elevated frequency of LH pulsatile secretion. The abnormally high LH pulse frequency, reflective of a hyperactive gonadotropin-releasing hormone (GnRH) neural circuit, suggests a neuroendocrine basis to either the etiology or phenotype of PCOS. Several studies in preclinical animal models of PCOS have demonstrated alterations in GnRH neurons and their upstream afferent neuronal circuits. Some rodent PCOS models have demonstrated an increase in GnRH neuron activity that correlates with an increase in stimulatory GABAergic innervation and postsynaptic currents onto GnRH neurons. Additional studies have identified robust increases in hypothalamic levels of kisspeptin, another potent stimulator of GnRH neurons. This review outlines the different brain and neuroendocrine changes in the reproductive axis observed in PCOS animal models, discusses how they might contribute to either the etiology or adult phenotype of PCOS, and considers parallel findings in PCOS women.
Collapse
Affiliation(s)
- Eulalia A Coutinho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Akbarinejad V, Gharagozlou F, Vojgani M, Shourabi E, Makiabadi MJM. Inferior fertility and higher concentrations of anti-Müllerian hormone in dairy cows with longer anogenital distance. Domest Anim Endocrinol 2019; 68:47-53. [PMID: 30851696 DOI: 10.1016/j.domaniend.2019.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Anogenital distance (AGD), which is an indicator of prenatal androgen exposure, has been reported to have high variability and negative association with fertility in dairy cows. Prenatal exposure to androgens could influence the development of primordial follicles and size of ovarian reserve, which is related to reproduction. However, the relationship between AGD and size of ovarian reserve has not been studied. Therefore, the present study was conducted to determine the association between AGD and circulating anti-Müllerian hormone (AMH), as an indirect marker of ovarian reserve, and to evaluate serum AMH concentration and reproductive performance in dairy cows with short and long AGD. Anogenital distance was measured 28 to 32 d postpartum, and based on the median of AGD, cows were divided into 2 subsets including short (n = 43) and long (n = 43) AGD groups. Afterward, serum AMH was evaluated on the day of estrus in cows that were estrus-synchronized. Furthermore, reproductive data of dairy cows during the previous lactation period were collected from the herd database. Concentrations of serum AMH tended to be positively associated with length of AGD, and there was a tendency for higher serum AMH concentrations in the long (634.89 ± 74.52 pg/mL) than short (451.39 ± 45.92 pg/mL) AGD group (0.05 <P ≤ 0.10). There was a tendency for more days to first service, lower first service conception rate, and higher proportion of repeat breeders in long (99.95 ± 5.34 d, 30.23% and 32.56%, respectively) than short (89.07 ± 4.97 d, 48.84% and 16.28%, respectively) AGD cows (0.05 <P ≤ 0.10). Services per conception did not differ between short (2.30 ± 0.27) and long (2.93 ± 0.29) AGD cows (P > 0.05). Calving to conception interval was prolonged in long (194.30 ± 17.12 d) than short (147.14 ± 13.11 d) AGD cows (P ≤ 0.05). In conclusion, the present study revealed elevated serum AMH concentrations and poor reproductive performance in cows with longer AGD compared with cows with shorter AGD.
Collapse
Affiliation(s)
- V Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - F Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - E Shourabi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M J M Makiabadi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Puttabyatappa M, Padmanabhan V. Ovarian and Extra-Ovarian Mediators in the Development of Polycystic Ovary Syndrome. J Mol Endocrinol 2018; 61:R161-R184. [PMID: 29941488 PMCID: PMC6192837 DOI: 10.1530/jme-18-0079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women of reproductive age. The origin of PCOS is still not clear and appears to be a function of gene x environment interactions. This review addresses the current knowledge of the genetic and developmental contributions to the etiology of PCOS, the ovarian and extra-ovarian mediators of PCOS and the gaps and key challenges that need to be addressed in the diagnosis, treatment and prevention of PCOS.
Collapse
|
10
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
11
|
Maekawa F, Nagino K, Yang J, Htike NTT, Tsukahara S, Ubuka T, Tsutsui K, Kawashima T. Strain differences in intermale aggression and possible factors regulating increased aggression in Japanese quail. Gen Comp Endocrinol 2018; 256:63-70. [PMID: 28765073 DOI: 10.1016/j.ygcen.2017.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
The National Institute for Environmental Studies (NIES) of Japan established a strain of Japanese quail (Coturnix japonica) known as NIES-L by rotation breeding in a closed colony for over 35years; accordingly, the strain has highly inbred-like characteristics. Another strain called NIES-Brn has been maintained by randomized breeding in a closed colony to produce outbred-like characteristics. The current study aimed to characterize intermale aggressive behaviors in both strains and to identify possible factors regulating higher aggression in the hypothalamus, such as sex hormone and neuropeptide expression. Both strains displayed a common set of intermale aggressive behaviors that included pecking, grabbing, mounting, and cloacal contact behavior, although NIES-Brn quail showed significantly more grabbing, mounting, and cloacal contact behavior than did NIES-L quail. We examined sex hormone levels in the blood and diencephalon in both strains. Testosterone concentrations were significantly higher in the blood and diencephalon of NIES-Brn quail compared to NIES-L quail. We next examined gene expression in the hypothalamus of both strains using an Agilent gene expression microarray and real-time RT-PCR and found that gene expression of mesotocin (an oxytocin homologue) was significantly higher in the hypothalamus of NIES-Brn quail compared to NIES-L quail. Immunohistochemistry of the hypothalamus revealed that numbers of large cells (cell area>500μm2) expressing mesotocin were significantly higher in the NIES-Brn strain compared to the NIES-L strain. Taken together, our findings suggest that higher testosterone and mesotocin levels in the hypothalamus may be responsible for higher aggression in the NIES-Brn quail strain.
Collapse
Affiliation(s)
- Fumihiko Maekawa
- National Institute for Environmental Studies, Tsukuba, Japan; Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Koki Nagino
- National Institute for Environmental Studies, Tsukuba, Japan; Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Jiaxin Yang
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Nang T T Htike
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shinji Tsukahara
- National Institute for Environmental Studies, Tsukuba, Japan; Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan; Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | | |
Collapse
|
12
|
Martinez-Pinto J, Piquer B, Tiszavari M, Lara H. Neonatal exposure to estradiol valerate reprograms the rat ovary androgen receptor and anti-Müllerian hormone to a polycystic ovary phenotype. Reprod Toxicol 2018; 75:127-135. [DOI: 10.1016/j.reprotox.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
|
13
|
Scully CM, Estill CT, Amodei R, McKune A, Gribbin KP, Meaker M, Stormshak F, Roselli CE. Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior. Domest Anim Endocrinol 2018; 62:1-9. [PMID: 28843181 PMCID: PMC5705409 DOI: 10.1016/j.domaniend.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Prenatal androgens are largely responsible for growth and differentiation of the genital tract and testis and for organization of the control mechanisms regulating male reproductive physiology and behavior. The aim of the present study was to evaluate the impact of inappropriate exposure to excess testosterone (T) during the first trimester of fetal development on the reproductive function, sexual behavior, and fertility potential of rams. We found that biweekly maternal T propionate (100 mg) treatment administered from Day 30-58 of gestation significantly decreased (P < 0.05) postpubertal scrotal circumference and sperm concentration. Prenatal T exposure did not alter ejaculate volume, sperm motility and morphology or testis morphology. There was, however, a trend for more T-exposed rams than controls to be classified as unsatisfactory potential breeders during breeding soundness examinations. Postnatal serum T concentrations were not affected by prenatal T exposure, nor was the expression of key testicular genes essential for spermatogenesis and steroidogenesis. Basal serum LH did not differ between treatment groups, nor did pituitary responsiveness to GnRH. T-exposed rams, like control males, exhibited vigorous libido and were sexually attracted to estrous females. In summary, these results suggest that exposure to exogenous T during the first trimester of gestation can negatively impact spermatogenesis and compromise the reproductive fitness of rams.
Collapse
Affiliation(s)
- C M Scully
- Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - C T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4501, USA
| | - R Amodei
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - A McKune
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA
| | - K P Gribbin
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - M Meaker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA
| | - F Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331-4501, USA
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
14
|
Volk KM, Pogrebna VV, Roberts JA, Zachry JE, Blythe SN, Toporikova N. High-Fat, High-Sugar Diet Disrupts the Preovulatory Hormone Surge and Induces Cystic Ovaries in Cycling Female Rats. J Endocr Soc 2017; 1:1488-1505. [PMID: 29308444 PMCID: PMC5740526 DOI: 10.1210/js.2017-00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Diet-induced obesity has been associated with various metabolic and reproductive disorders, including polycystic ovary syndrome. However, the mechanisms by which obesity influences the reproductive system are still not fully known. Studies have suggested that impairments in hormone signaling are associated with the development of symptoms such as acyclicity and ovarian cysts. However, these studies have often failed to address how these hormonal changes arise and how they might contribute to the progression of reproductive diseases. In the present study, we used a high-fat, high-sugar (HFHS) diet to induce obesity in a female rodent model to determine the changes in critical reproductive hormones that might contribute to the development of irregular estrous cycling and reproductive cycle termination. The HFHS animals exhibited impaired estradiol, progesterone (P4), and luteinizing hormone (LH) surges before ovulation. The HFHS diet also resulted in altered basal levels of testosterone (T) and LH. Furthermore, alterations in the basal P4/T ratio correlated strongly with ovarian cyst formation in HFHS rats. Thus, this model provides a method to assess the underlying etiology of obesity-related reproductive dysfunction and to examine an acyclic reproductive phenotype as it develops.
Collapse
Affiliation(s)
- Katrina M. Volk
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | | | - Jackson A. Roberts
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | - Jennifer E. Zachry
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
| | - Sarah N. Blythe
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
- Department of Biology, Washington and Lee University, Lexington, Virginia 24450
| | - Natalia Toporikova
- Neuroscience Program, Washington and Lee University, Lexington, Virginia 24450
- Department of Biology, Washington and Lee University, Lexington, Virginia 24450
| |
Collapse
|
15
|
Recabarren SE, Recabarren M, Sandoval D, Carrasco A, Padmanabhan V, Rey R, Richter HG, Perez-Marin CC, Sir-Petermann T, Rojas-Garcia PP. Puberty arises with testicular alterations and defective AMH expression in rams prenatally exposed to testosterone. Domest Anim Endocrinol 2017; 61:100-107. [PMID: 28783504 DOI: 10.1016/j.domaniend.2017.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/20/2022]
Abstract
The male gonadal tissue can be a sensitive target to the reprogramming effects of testosterone (T) during prenatal development. We have demonstrated that male lambs born to dams receiving T during pregnancy-a model system to the polycystic ovary syndrome (PCOS)-show a decreased number of germ cells early in life, and when adult, a reduced amount of sperm and ejaculate volume. These findings are a key to put attention to the male offspring of women bearing PCOS, as they are exposed to increased levels of androgen during pregnancy which can reprogram their reproductive outcome. A possible origin of these defects can be a disruption in the expression of the anti-Müllerian hormone (AMH), due to its critical role in gonadal function at many postnatal stages. Therefore, we addressed the impact of prenatal T excess on the expression of AMH and factors related to its expression like AP2, SOX9, FSHR, and AR in the testicular tissue through real-time PCR during the peripubertal age. We also analyzed the testicular morphology and quantified the number of Sertoli cells and germ cells to evaluate any further defect in the testicle. Experiments were performed in rams at 24 wk of age, hence, prior puberty. The experimental animals (T-males) consisted of rams born to mothers receiving 30 mg testosterone twice a wk from Day 30 to 90 of pregnancy and then increased to 40 mg until Day 120 of pregnancy. The control males (C-males) were born to mothers receiving the vehicle of the hormone. We found a significant increase in the expression of the mRNA of AMH and SOX9, but not of the AP2, FHSR nor AR, in the T-males. Moreover, T-males showed a dramatic decrease in the number of germ cells, together with a decrease in the weight of their testicles. The findings of the present study show that before puberty, T-males are manifesting clear signs of disruption in the gonadal functions probably due to an alteration in the expression pattern of the AMH gene. The precise way by which T reprograms the expression of AMH gene remains to be established.
Collapse
Affiliation(s)
- S E Recabarren
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - M Recabarren
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - D Sandoval
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - A Carrasco
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - V Padmanabhan
- Departments of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan, USA
| | - R Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina; Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H G Richter
- Laboratory of Developmental Chronobiology (LDC), Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - C C Perez-Marin
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - T Sir-Petermann
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, Western Faculty of Medicine, University of Chile, Santiago, Chile
| | - P P Rojas-Garcia
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile.
| |
Collapse
|
16
|
Cardoso RC, Burns A, Moeller J, Skinner DC, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology 2016; 157:4641-4653. [PMID: 27792406 PMCID: PMC5133353 DOI: 10.1210/en.2016-1613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T) treatment recapitulates the reproductive and metabolic phenotypes of polycystic ovary syndrome in female sheep. At the neuroendocrine level, prenatal T treatment results in disrupted steroid feedback on gonadotropin release, increased pituitary sensitivity to GnRH, and subsequent LH hypersecretion. Because prenatal T-treated sheep manifest functional hyperandrogenism and hyperinsulinemia, gonadal steroids and/or insulin may play a role in programming and/or maintaining these neuroendocrine defects. Here, we investigated the effects of prenatal and postnatal treatments with an androgen antagonist (flutamide [F]) or an insulin sensitizer (rosiglitazone [R]) on GnRH-stimulated LH secretion in prenatal T-treated sheep. As expected, prenatal T treatment increased the pituitary responsiveness to GnRH leading to LH hypersecretion. Neither prenatal interventions nor postnatal F treatment normalized the GnRH-stimulated LH secretion. Conversely, postnatal R treatment completely normalized the GnRH-stimulated LH secretion. At the tissue level, gestational T increased pituitary LHβ, androgen receptor, and insulin receptor-β, whereas it reduced estrogen receptor (ER)α protein levels. Although postnatal F normalized pituitary androgen receptor and insulin receptor-β, it failed to prevent an increase in LHβ expression. Contrarily, postnatal R treatment restored ERα and partially normalized LHβ pituitary levels. Immunohistochemical findings confirmed changes in pituitary ERα expression to be specific to gonadotropes. In conclusion, these findings indicate that increased pituitary responsiveness to GnRH in prenatal T-treated sheep is likely a function of reduced peripheral insulin sensitivity. Moreover, results suggest that restoration of ERα levels in the pituitary may be one mechanism by which R prevents GnRH-stimulated LH hypersecretion in this sheep model of polycystic ovary syndrome-like phenotype.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Ashleigh Burns
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Jacob Moeller
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Donal C Skinner
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| | - Vasantha Padmanabhan
- Department of Pediatrics (R.C.C., A.B., J.M., V.P.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Zoology and Physiology (D.C.S.), University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
17
|
Roselli CE, Amodei R, Gribbin KP, Corder K, Stormshak F, Estill CT. Excess Testosterone Exposure Alters Hypothalamic-Pituitary-Testicular Axis Dynamics and Gene Expression in Sheep Fetuses. Endocrinology 2016; 157:4234-4245. [PMID: 27673555 PMCID: PMC5086533 DOI: 10.1210/en.2016-1411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal exposure to excess androgen may result in impaired adult fertility in a variety of mammalian species. However, little is known about what feedback mechanisms regulate gonadotropin secretion during early gestation and how they respond to excess T exposure. The objective of this study was to determine the effect of exogenous exposure to T on key genes that regulate gonadotropin and GnRH secretion in fetal male lambs as compared with female cohorts. We found that biweekly maternal testosterone propionate (100 mg) treatment administered from day 30 to day 58 of gestation acutely decreased (P < .05) serum LH concentrations and reduced the expression of gonadotropin subunit mRNA in both sexes and the levels of GnRH receptor mRNA in males. These results are consistent with enhanced negative feedback at the level of the pituitary and were accompanied by reduced mRNA levels for testicular steroidogenic enzymes, suggesting that Leydig cell function was also suppressed. The expression of kisspeptin 1 mRNA, a key regulator of GnRH neurons, was significantly greater (P < .01) in control females than in males and reduced (P < .001) in females by T exposure, indicating that hypothalamic regulation of gonadotropin secretion was also affected by androgen exposure. Although endocrine homeostasis was reestablished 2 weeks after maternal testosterone propionate treatment ceased, additional differences in the gene expression of GnRH, estrogen receptor-β, and kisspeptin receptor (G protein coupled receptor 54) emerged between the treatment cohorts. These changes suggest the normal trajectory of hypothalamic-pituitary axis development was disrupted, which may, in turn, contribute to negative effects on fertility later in life.
Collapse
Affiliation(s)
- Charles E Roselli
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Rebecka Amodei
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Kyle P Gribbin
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Keely Corder
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Fred Stormshak
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Charles T Estill
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| |
Collapse
|
18
|
Evans NP, Bellingham M, Robinson JE. Prenatal programming of neuroendocrine reproductive function. Theriogenology 2016; 86:340-8. [PMID: 27142489 DOI: 10.1016/j.theriogenology.2016.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/24/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
It is now well recognized that the gestational environment can have long-lasting effects not only on the life span and health span of an individual but also, through potential epigenetic changes, on future generations. This article reviews the "prenatal programming" of the neuroendocrine systems that regulate reproduction, with a specific focus on the lessons learned using ovine models. The review examines the critical roles played by steroids in normal reproductive development before considering the effects of prenatal exposure to exogenous steroid hormones including androgens and estrogens, the effects of maternal nutrition and stress during gestation, and the effects of exogenous chemicals such as alcohol and environment chemicals. In so doing, it becomes evident that, to maximize fitness, the regulation of reproduction has evolved to be responsive to many different internal and external cues and that the GnRH neurosecretory system expresses a degree of plasticity throughout life. During fetal life, however, the system is particularly sensitive to change and at this time, the GnRH neurosecretory system can be "shaped" both to achieve normal sexually differentiated function but also in ways that may adversely affect or even prevent "normal function". The exact mechanisms through which these programmed changes are brought about remain largely uncharacterized but are likely to differ depending on the factor, the timing of exposure to that factor, and the species. It would appear, however, that some afferent systems to the GnRH neurons such as kisspeptin, may be critical in this regard as it would appear to be sensitive to a wide variety of factors that can program reproductive function. Finally, it has been noted that the prenatal programming of neuroendocrine reproductive function can be associated with epigenetic changes, which would suggest that in addition to direct effects on the exposed offspring, prenatal programming could have transgenerational effects on reproductive potential.
Collapse
Affiliation(s)
- Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Michelle Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane E Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS. Best Pract Res Clin Obstet Gynaecol 2016; 37:12-24. [PMID: 27118251 DOI: 10.1016/j.bpobgyn.2016.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023]
Abstract
Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research.
Collapse
|
20
|
Padmanabhan V, Veiga-Lopez A, Herkimer C, Abi Salloum B, Moeller J, Beckett E, Sreedharan R. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep. Endocrinology 2015; 156:2678-92. [PMID: 25919188 PMCID: PMC4475717 DOI: 10.1210/en.2015-1235] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.
Collapse
Affiliation(s)
| | | | - Carol Herkimer
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Bachir Abi Salloum
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Evan Beckett
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| | - Rohit Sreedharan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
21
|
Cardoso RC, Puttabyatappa M, Padmanabhan V. Steroidogenic versus Metabolic Programming of Reproductive Neuroendocrine, Ovarian and Metabolic Dysfunctions. Neuroendocrinology 2015; 102:226-37. [PMID: 25832114 PMCID: PMC4591099 DOI: 10.1159/000381830] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/21/2015] [Indexed: 12/12/2022]
Abstract
The susceptibility of the reproductive system to early exposure to steroid hormones has become a major concern in our modern societies. Human fetuses are at risk of abnormal programming via exposure to endocrine disrupting chemicals, inadvertent use of contraceptive pills during pregnancy, as well as from excess exposure to steroids due to disease states. Animal models provide an unparalleled resource to understand the developmental origin of diseases. In female sheep, prenatal exposure to testosterone excess results in an array of adult reproductive disorders that recapitulate those seen in women with polycystic ovary syndrome (PCOS), including disrupted neuroendocrine feedback mechanisms, increased pituitary sensitivity to gonadotropin-releasing hormone, luteinizing hormone excess, functional hyperandrogenism, and multifollicular ovarian morphology culminating in early reproductive failure. Prenatal testosterone treatment also leads to fetal growth retardation, insulin resistance, and hypertension. Mounting evidence suggests that developmental exposure to an improper steroidal/metabolic environment may mediate the programming of adult disorders in prenatal testosterone-treated females, and these defects are maintained or amplified by the postnatal sex steroid and metabolic milieu. This review addresses the steroidal and metabolic contributions to the development and maintenance of the PCOS phenotype in the prenatal testosterone-treated sheep model, including the effects of prenatal and postnatal treatment with an androgen antagonist or insulin sensitizer as potential strategies to prevent/ameliorate these dysfunctions. Insights obtained from these intervention strategies on the mechanisms underlying these defects are likely to have translational relevance to human PCOS.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Pediatrics, University of Michigan, Ann Arbor, Mich., USA
| | | | | |
Collapse
|
22
|
Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol 2014; 35:494-511. [PMID: 24747343 PMCID: PMC4175187 DOI: 10.1016/j.yfrne.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/15/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy with elusive origins. A clinically heterogeneous disorder, PCOS is likely to have multiple etiologies comprised of both genetic and environmental factors. Reproductive neuroendocrine dysfunction involving increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) release, as reflected by pulsatile luteinizing hormone (LH) secretion, is an important pathophysiologic component in PCOS. Whether this defect is primary or secondary to other changes in PCOS is unclear, but it contributes significantly to ongoing reproductive dysfunction. This review highlights recent work in animal models, with a particular emphasis on the mouse, demonstrating the ability of pre- and postnatal steroidal and metabolic factors to drive changes in GnRH/LH pulsatility and GnRH neuron function consistent with the observed abnormalities in PCOS. This work has begun to elucidate how a complex interplay of ovarian, metabolic, and neuroendocrine factors culminates in this syndrome.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Developmental programming: Impact of prenatal testosterone treatment and postnatal obesity on ovarian follicular dynamics. J Dev Orig Health Dis 2014; 3:276-86. [PMID: 23766891 DOI: 10.1017/s2040174412000128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prenatal testosterone (T) excess leads to reproductive dysfunctions in sheep with obesity exaggerating such defects. Developmental studies found ovarian reserve is similar in control and prenatal T sheep at fetal day 140, with prenatal T females showing increased follicular recruitment and persistence at 10 months of age (postpubertal). This study tested if prenatal T sheep show accelerated depletion prepubertally and if depletion of ovarian reserve would explain loss of cyclicity in prenatal T females and its amplification by postnatal obesity. Stereological examinations were performed at 5 (prepubertal, control and prenatal T) and 21 months (control, prenatal T and prenatal T obese, following estrus synchronization) of age. Obesity was induced by overfeeding from weaning. At 5 months, prenatal T females had 46% less primordial follicles than controls (P < 0.01), supportive of increased follicular depletion. Depletion rate was slower and a higher percentage of growing follicles was present in 21 month than 5 month old prenatal T females (P < 0.01). Postnatal obesity did not exaggerate the impact of prenatal T on follicular recruitment indicating that compounding effects of obesity on loss of cyclicity females is not due to depletion of ovarian reserve. Assessment of follicular dynamics across several time points during the reproductive life span (this and earlier study combined) provides evidence supportive of a shift in follicular dynamics in prenatal T females from one of accelerated follicular depletion initiated prior to puberty to stockpiling of growing follicles after puberty, a time point critical in the development of the polycystic ovary syndrome phenotype.
Collapse
|
24
|
Padmanabhan V, Veiga-Lopez A. Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci 2014; 92:3199-210. [PMID: 25074449 PMCID: PMC4153374 DOI: 10.2527/jas.2014-7637] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inappropriate programming of the reproductive system by developmental exposure to excess steroid hormones is of concern. Sheep are well suited for investigating developmental origin of reproductive and metabolic disorders. The developmental time line of female sheep (approximately 5 mo gestation and approximately 7 mo to puberty) is ideal for conducting sequential studies of the progression of metabolic and/or reproductive disruption from the developmental insult to manifestation of adult consequences. Major benefits of using sheep include knowledge of established critical periods to target adult defects, a rich understanding of reproductive neuroendocrine regulation, availability of noninvasive approaches to monitor follicular dynamics, established surgical approaches to obtain hypophyseal portal blood for measurement of hypothalamic hormones, and the ability to perform studies in natural setting thereby keeping behavioral interactions intact. Of importance is the ability to chronically instrument fetus and mother for determining early endocrine perturbations. Prenatal exposure of the female to excess testosterone (T) leads to an array of adult reproductive disorders that include LH excess, functional hyperandrogenism, neuroendocrine defects, multifollicular ovarian morphology, and corpus luteum dysfunction culminating in early reproductive failure. At the neuroendocrine level, all 3 feedback systems are compromised. At the pituitary level, gonadotrope (LH secretion) sensitivity to GnRH is increased. Multifollicular ovarian morphology stems from persistence of follicles as well as enhanced follicular recruitment. These defects culminate in progressive loss of cyclicity and reduced fecundity. Prenatal T excess also leads to fetal growth retardation, an early marker of adult reproductive and metabolic diseases, insulin resistance, hypertension, and behavioral deficits. Collectively, the reproductive and metabolic deficits of prenatal T-treated sheep provide proof of concept for the developmental origin of fertility and metabolic disorders. Studies with the environmental endocrine disruptor bisphenol A (BPA) show that reproductive disruptions found in prenatal BPA-treated sheep are similar to those seen in prenatal T-treated sheep. The ubiquitous exposure to endocrine disrupting compounds with steroidogenic potential via the environment and food sources calls for studies addressing the impact of developmental exposure to environmental steroid mimics on reproductive function.
Collapse
Affiliation(s)
- V Padmanabhan
- Departments of Pediatrics Obstetrics and Gynecology Molecular and Integrative Physiology Environmental Health Sciences, The University of Michigan, Ann Arbor 48108
| | | |
Collapse
|
25
|
Pohl A, Cassidy S, Auyeung B, Baron-Cohen S. Uncovering steroidopathy in women with autism: a latent class analysis. Mol Autism 2014; 5:27. [PMID: 24717046 PMCID: PMC4022124 DOI: 10.1186/2040-2392-5-27] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 03/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Prenatal exposure to increased androgens has been implicated in both polycystic ovary syndrome (PCOS) and autism spectrum conditions (ASC), suggesting that PCOS may be increased among women with ASC. One study suggested elevated steroidopathic symptoms (‘steroidopathy’) in women with ASC. As the symptoms are not independent, we conducted a latent class analysis (LCA). The objectives of the current study are: (1) to test if these findings replicate in a larger sample; and (2) to use LCA to uncover affected clusters of women with ASC. Methods We tested two groups of women, screened using the Autism Spectrum Quotient - Group 1: n = 415 women with ASC (mean age 36.39 ± 11.98 years); and Group 2: n = 415 controls (mean age 39.96 ± 11.92 years). All participants completed the Testosterone-related Medical Questionnaire online. A multiple-group LCA was used to identify differences in latent class structure between women with ASC and controls. Results There were significant differences in frequency of steroid-related conditions and symptoms between women with ASC and controls. A two-class semi-constrained model best fit the data. Based on response patterns, we identified the classes as ‘Typical’ and ‘Steroidopathic’. The prevalence of the ‘Steroidopathic’ class was significantly increased within the ASC group (ΔG2 = 15, df =1, P = 0.0001). In particular, we confirmed higher frequencies of epilepsy, amenorrhea, dysmenorrhea, severe acne, gender dysphoria, and transsexualism, and differences in sexual preference in women with ASC. Conclusions Women with ASC are at increased risk for symptoms and conditions linked to steroids. LCA revealed this steroidopathy despite the apparent underdiagnosis of PCOS.
Collapse
Affiliation(s)
- Alexa Pohl
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK
| | - Sarah Cassidy
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; Department of Psychology and Behavioural Sciences, Coventry University, James Starley Building, Cox Street, Coventry CV1 5LW, UK
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9 AD, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; CLASS Clinic, Cambridgeshire and Peterborough Mental Health Foundation NHS Trust, The Chitra Sethia Autism Centre, The Gatehouse, Fulborn Hospital, Fulborn, Cambridge CB21 5EF, UK
| |
Collapse
|
26
|
Zambrano E, Guzmán C, Rodríguez-González GL, Durand-Carbajal M, Nathanielsz PW. Fetal programming of sexual development and reproductive function. Mol Cell Endocrinol 2014; 382:538-549. [PMID: 24045010 DOI: 10.1016/j.mce.2013.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 11/15/2022]
Abstract
The recent growth of interest in developmental programming of physiological systems has generally focused on the cardiovascular system (especially hypertension) and predisposition to metabolic dysfunction (mainly obesity and diabetes). However, it is now clear that the full range of altered offspring phenotypes includes impaired reproductive function. In rats, sheep and nonhuman primates, reproductive capacity is altered by challenges experienced during critical periods of development. This review will examine available experimental evidence across commonly studied experimental species for developmental programming of female and male reproductive function throughout an individual's life-course. It is necessary to consider events that occur during fetal development, early neonatal life and prior to and during puberty, during active reproductive life and aging as reproductive performance declines.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México.
| | - Carolina Guzmán
- HIPAM, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM)/Hospital General de México, México
| | - Guadalupe L Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Marta Durand-Carbajal
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México
| | - Peter W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics, University of Texas Health Sciences Center San Antonio, TX, United States
| |
Collapse
|
27
|
Veiga-Lopez A, Wurst AK, Steckler TL, Ye W, Padmanabhan V. Developmental programming: postnatal estradiol amplifies ovarian follicular defects induced by fetal exposure to excess testosterone and dihydrotestosterone in sheep. Reprod Sci 2013; 21:444-55. [PMID: 24077439 DOI: 10.1177/1933719113503412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Excess of prenatal testosterone (T) induces reproductive defects including follicular persistence. Comparative studies with T and dihydrotestosterone (DHT) have suggested that follicular persistence is programmed via estrogenic actions of T. This study addresses the androgenic and estrogenic contributions in programming follicular persistence. Because humans are exposed to estrogenic environmental steroids from various sources throughout their life span and postnatal insults may also induce organizational and/or activational changes, we tested whether continuous postnatal exposure to estradiol (E) will amplify effects of prenatal steroids on ovarian function. Pregnant sheep were treated with T, DHT, E, or ED (E and DHT) from days 30 to 90 of gestation. Postnatally, a subset of the vehicle (C), T, and DHT females received an E implant. Transrectal ultrasonography was performed in the first breeding season during a synchronized cycle to monitor ovarian follicular dynamics. As expected, number of ≥8 mm follicles was higher in the T versus C group. Postnatal E reduced the number of 4 to 8 mm follicles in the DHT group. Percentage of females bearing luteinized follicles and the number of luteinized follicles differed among prenatal groups. Postnatal E increased the incidence of subluteal cycles in the prenatal T-treated females. Findings from this study confirm previous findings of divergences in programming effects of prenatal androgens and estrogens. They also indicate that some aspects of follicular dynamics are subject to postnatal modulation as well as support the existence of an extended organizational period or the need for a second insult to uncover the previously programmed event.
Collapse
Affiliation(s)
- A Veiga-Lopez
- 1Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
28
|
Johansson J, Stener-Victorin E. Polycystic ovary syndrome: effect and mechanisms of acupuncture for ovulation induction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:762615. [PMID: 24073009 PMCID: PMC3773899 DOI: 10.1155/2013/762615] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/23/2013] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS), the most common endocrine disorder among women of reproductive age, is characterized by the coexistence of hyperandrogenism, ovulatory dysfunction, and polycystic ovaries (PCO). PCOS also represents the largest part of female oligoovulatory infertility, and the management of ovulatory and menstrual dysfunction, comprises a third of the high costs of PCOS treatment. Current pharmacological and surgical treatments for reproductive symptoms are effective, however, associated with negative side effects, such as cardiovascular complications and multiple pregnancies. For menstrual irregularities and ovulation induction in women with PCOS, acupuncture has indicated beneficial effects. This review will focus on the results from randomized controlled acupuncture trials for regulation of menstrual dysfunction and for inducing ovulation in women with PCOS although there are uncontrolled trials with nonetheless interesting results. Animal experimental studies will be further discussed when they can provide a more mechanistic explanatory view.
Collapse
Affiliation(s)
- Julia Johansson
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 434, 405 30 Gothenburg, Sweden
| | - Elisabet Stener-Victorin
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 434, 405 30 Gothenburg, Sweden
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
29
|
Padmanabhan V, Veiga-Lopez A. Animal models of the polycystic ovary syndrome phenotype. Steroids 2013; 78:734-40. [PMID: 23701728 PMCID: PMC3700672 DOI: 10.1016/j.steroids.2013.05.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 02/04/2023]
Abstract
The etiology of the polycystic ovary syndrome (PCOS) remains unclear, despite its high prevalence among infertility disorders in women of reproductive age. Although there is evidence for a genetic component of the disorder, other causes, such as prenatal insults are considered among the potential factors that may contribute to the development of the syndrome. Over the past few decades, several animal models have been developed in an attempt to understand the potential contribution of exposure to excess steroids on the development of this syndrome. The current review summarizes the phenotypes of current animal models exposed to excess steroid during the prenatal and early postnatal period and how they compare with the phenotype seen in women with PCOS.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Professor, Departments of Pediatrics, Obstetrics and Gynecology, Molecular and Integrative Physiology, and Environmental Health Sciences, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1138, Phone: 734.647.0276 FAX: 734.615.5441
| | - Almudena Veiga-Lopez
- Research Investigator, Department of Pediatrics, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1135, Phone: 734.615.8607 FAX: 734.615.5441
| |
Collapse
|
30
|
Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol 2013; 373:8-20. [PMID: 23084976 PMCID: PMC3568226 DOI: 10.1016/j.mce.2012.10.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 07/23/2012] [Accepted: 10/05/2012] [Indexed: 01/10/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a fertility disorder affecting 5-7% of reproductive-aged women. Women with PCOS manifest both reproductive and metabolic defects. Several animal models have evolved, which implicate excess steroid exposure during fetal life in the development of the PCOS phenotype. This review addresses the fetal and adult reproductive and metabolic consequences of prenatal steroid excess in sheep and the translational relevance of these findings to PCOS. By comparing findings in various breeds of sheep, the review targets the role of genetic susceptibility to fetal insults. Disruptions induced by prenatal testosterone excess are evident at both the reproductive and metabolic level with each influencing the other thus creating a self-perpetuating vicious cycle. The review highlights the need for identifying a common mediator of the dysfunctions at the reproductive and metabolic levels and developing prevention and treatment interventions targeting all sites of disruption in unison for achieving optimal success.
Collapse
Affiliation(s)
- Vasantha Padmanabhan
- Professor, Departments of Pediatrics, Obstetrics and Gynecology, and Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1138, Phone: 734.647.0276, FAX: 734.615.5441
| | - Almudena Veiga-Lopez
- Research Investigator, Department of Pediatrics, The University of Michigan, Ann Arbor, MI, 300 North Ingalls, Room 1135, Phone: 734.615.8607, FAX: 734.615.5441
| |
Collapse
|
31
|
Recabarren MP, Rojas-Garcia PP, Einspanier R, Padmanabhan V, Sir-Petermann T, Recabarren SE. Pituitary and testis responsiveness of young male sheep exposed to testosterone excess during fetal development. Reproduction 2013; 145:567-76. [PMID: 23579187 DOI: 10.1530/rep-13-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prenatal exposure to excess testosterone induces reproductive disturbances in both female and male sheep. In females, it alters the hypothalamus-pituitary-ovarian axis. In males, prenatal testosterone excess reduces sperm count and motility. Focusing on males, this study tested whether pituitary LH responsiveness to GNRH is increased in prenatal testosterone-exposed males and whether testicular function is compromised in the testosterone-exposed males. Control males (n=6) and males born to ewes exposed to twice weekly injections of 30 mg testosterone propionate from days 30 to 90 and of 40 mg testosterone propionate from days 90 to 120 of gestation (n=6) were studied at 20 and 30 weeks of age. Pituitary and testicular responsiveness was tested by administering a GNRH analog (leuprolide acetate). To complement the analyses, the mRNA expression of LH receptor (LHR) and that of steroidogenic enzymes were determined in testicular tissue. Basal LH and testosterone concentrations were higher in the testosterone-exposed-males. While LH response to the GNRH analog was higher in the testosterone-exposed males than in the control males, testosterone responses did not differ between the treatment groups. The testosterone:LH ratio was higher in the control males than in the testosterone-exposed males of 30 weeks of age, suggestive of reduced Leydig cell sensitivity to LH in the testosterone-exposed males. The expression of LHR mRNA was lower in the testosterone-exposed males, but the mRNA expression of steroidogenic enzymes did not differ between the groups. These findings indicate that prenatal testosterone excess has opposing effects at the pituitary and testicular levels, namely increased pituitary sensitivity to GNRH at the level of pituitary and decreased sensitivity of the testes to LH.
Collapse
Affiliation(s)
- Mónica P Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán CP 3812120, Chile
| | | | | | | | | | | |
Collapse
|
32
|
Developmental programming: impact of prenatal exposure to bisphenol-A and methoxychlor on steroid feedbacks in sheep. Toxicol Appl Pharmacol 2013; 268:300-8. [PMID: 23454450 DOI: 10.1016/j.taap.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/03/2013] [Accepted: 02/06/2013] [Indexed: 01/26/2023]
Abstract
Bisphenol-A (BPA), a polymer used in plastics manufacturing, and methoxychlor (MXC), a pesticide, are endocrine disrupting compounds with estrogenic and anti-androgenic properties. Prenatal BPA or MXC treatment induces reproductive defects in sheep with BPA causing prepubertal luteinizing hormone (LH) hypersecretion and dampening of periovulatory LH surges and MXC lengthening follicular phase and delaying the LH surge. In this study, we addressed the underlying neuroendocrine defects by testing the following hypotheses: 1) prenatal BPA, but not MXC reduces sensitivity to estradiol and progesterone negative feedback, 2) prenatal BPA, but not MXC increases pituitary responsiveness to gonadotropin releasing hormone (GnRH), and 3) prenatal BPA dampens LH surge response to estradiol positive feedback challenge while prenatal MXC delays the timing of the LH surge. Pregnant sheep were treated with either 1) 5mg/kg/day BPA (produces approximately twice the level found in human circulation, n=8), 2) 5mg/kg/day MXC (the lowest observed effect level stated in the EPA National Toxicology Program's Report; n=6), or 3) vehicle (cotton seed oil: C: n=6) from days 30 to 90 of gestation. Female offspring of these ewes were ovariectomized at 21months of age and tested for progesterone negative, estradiol negative, estradiol positive feedback sensitivities and pituitary responsiveness to GnRH. Results revealed that sensitivity to all 3 feedbacks as well as pituitary responsiveness to GnRH were not altered by either of the prenatal treatments. These findings suggest that the postpubertal reproductive defects seen in these animals may have stemmed from ovarian defects and the steroidal signals emanating from them.
Collapse
|
33
|
Witham EA, Meadows JD, Shojaei S, Kauffman AS, Mellon PL. Prenatal exposure to low levels of androgen accelerates female puberty onset and reproductive senescence in mice. Endocrinology 2012; 153:4522-32. [PMID: 22778229 PMCID: PMC3423623 DOI: 10.1210/en.2012-1283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex steroid hormone production and feedback mechanisms are critical components of the hypothalamic-pituitary-gonadal (HPG) axis and regulate fetal development, puberty, fertility, and menopause. In female mammals, developmental exposure to excess androgens alters the development of the HPG axis and has pathophysiological effects on adult reproductive function. This study presents an in-depth reproductive analysis of a murine model of prenatal androgenization (PNA) in which females are exposed to a low dose of dihydrotestosterone during late prenatal development on embryonic d 16.5-18.5. We determined that PNA females had advanced pubertal onset and a delay in the time to first litter, compared with vehicle-treated controls. The PNA mice also had elevated testosterone, irregular estrous cyclicity, and advanced reproductive senescence. To assess the importance of the window of androgen exposure, dihydrotestosterone was administered to a separate cohort of female mice on postnatal d 21-23 [prepubertal androgenization (PPA)]. PPA significantly advanced the timing of pubertal onset, as observed by age of the vaginal opening, yet had no effects on testosterone or estrous cycling in adulthood. The absence of kisspeptin receptor in Kiss1r-null mice did not change the acceleration of puberty by the PNA and PPA paradigms, indicating that kisspeptin signaling is not required for androgens to advance puberty. Thus, prenatal, but not prepubertal, exposure to low levels of androgens disrupts normal reproductive function throughout life from puberty to reproductive senescence.
Collapse
Affiliation(s)
- Emily A Witham
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
34
|
Abi Salloum B, Herkimer C, Lee JS, Veiga-Lopez A, Padmanabhan V. Developmental programming: prenatal and postnatal contribution of androgens and insulin in the reprogramming of estradiol positive feedback disruptions in prenatal testosterone-treated sheep. Endocrinology 2012; 153:2813-22. [PMID: 22454153 PMCID: PMC3359592 DOI: 10.1210/en.2011-2074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prenatal testosterone (T) excess compromises the estradiol (E(2)) positive feedback. This study tested the hypothesis that antagonizing androgen action or improving insulin sensitivity prenatally would prevent positive feedback disruptions from developing, whereas postnatal intervention with androgen antagonist or insulin sensitizer would ameliorate the severity of disruptions in prenatal T-treated females. The E(2) positive feedback response was tested at 16 wk of age in the following groups of animals: 1) control, 2) prenatal T, 3) prenatal T plus the androgen antagonist, flutamide, 4) prenatal T plus insulin sensitizer, rosiglitazone, 5) prenatal T and postnatal androgen antagonist, and 6) prenatal T and postnatal insulin sensitizer (n = 7-21 animals/group). Prenatal T treatment involved the administration of T propionate (100 mg, im) twice weekly from d 30 to 90 of gestation. Prenatal interventions involved daily sc administration of androgen antagonist (15 mg/kg) or oral administration of insulin sensitizer (8 mg) for the same duration. Postnatal treatments began at 8 wk of age and involved daily oral administration of androgen antagonist (15 mg/kg) or insulin sensitizer (0.11 mg/kg). None of the prenatal/postnatal interventions increased number of animals responding or prevented the time delay in LH surge response to the E(2) positive feedback challenge. In contrast, the postnatal treatment with androgen antagonist or insulin sensitizer increased total LH released in response to E(2) positive feedback challenge, compared with the T animals. Overall, these interventional studies indicate that timing and magnitude of the LH surge are programmed by different neuroendocrine mechanisms with postnatal androgens and insulin determining the size and prenatal estrogen likely the timing of the LH surge.
Collapse
Affiliation(s)
- Bachir Abi Salloum
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Robinson JE, Hastie PM, Shah A, Smith A, Evans NP. Developmental programming: prenatal androgen exposure alters the gonadotroph population of the ovine pituitary gland. J Neuroendocrinol 2012; 24:434-42. [PMID: 22129152 DOI: 10.1111/j.1365-2826.2011.02264.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In utero exposure of the female foetus to androgens during development disrupts the reproductive axis and results in hypersecretion of luteinising hormone (LH) (but not follicle-stimulating hormone) in postnatal life. Abnormalities in the neural circuits controlling hypothalamic gonadotrophin-releasing hormone have been documented; however, androgens could also programme abnormalities in the pituitary gland. Ovine foetuses were exposed to either testosterone propionate or the non-aromatisable androgen dihydro-testosterone from days 30-90 of gestation (term 147 days) and the effects on the functional morphology of the pituitary were determined. Exogenous testosterone propionate exposure resulted in pituitary glands in adult male and female sheep that were 40% heavier than controls. Because this effect was not observed in the dihydro-testosterone-exposed animals, these actions are mediated via the oestrogen receptor (ER). No significant differences were apparent in 90- or 140-day foetuses. There was no difference between control and androgen-exposed animals in the density of LHβ or ERα immunoreactive cells in the pituitary although the density of follicle-stimulating hormone-β immunoreactive cells was lower in the testosterone-treated animals. The percentage of cells co-localising LHβ and ERα was lower in the testosterone-treated ewes and this may, in part, explain a reduced ability to respond to steroid feedback. Thus, enlargement of the pituitary gland, coupled with a reduced sensitivity to oestrogen negative-feedback, may contribute to the hyper-secretion of LH observed in animals that have been exposed to excess androgens during foetal life.
Collapse
Affiliation(s)
- J E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
36
|
Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly AS, Duncan WC. Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology 2012; 153:450-61. [PMID: 22087026 DOI: 10.1210/en.2011-1607] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the hallmarks of polycystic ovary syndrome (PCOS) is increased ovarian androgen secretion that contributes to the ovarian, hormonal, and metabolic features of this condition. Thecal cells from women with PCOS have an enhanced capacity for androgen synthesis. To investigate whether this propensity is a potential cause, rather than a consequence, of PCOS, we used an ovine prenatal androgenization model of PCOS and assessed ewes at 11 months of age. Pregnant Scottish Greyface ewes were administered 100 mg testosterone propionate (TP) or vehicle control twice weekly from d 62 to 102 of gestation, and female offspring (TP = 9, control = 5) were studied. Prenatal TP exposure did not alter ovarian morphology or cyclicity, or plasma androgen, estrogen, and gonadotropin concentrations, at this stage. However, follicle function was reprogrammed in vivo with increased proportions of estrogenic follicles (P < 0.05) in the TP-exposed cohort. Furthermore, in vitro the thecal cells of follicles (>4 mm) secreted more LH-stimulated androstenedione after prenatal androgenization (P < 0.05), associated with increased basal expression of thecal StAR (P < 0.01), CYP11A (P < 0.05), HSD3B1 (P < 0.01), CYP17 (P < 0.05), and LHR (P < 0.05). This provides the first evidence of increased thecal androgenic capacity in the absence of a PCOS phenotype, suggesting a thecal defect induced during fetal life.
Collapse
Affiliation(s)
- Kirsten Hogg
- Medical Research Council, Centre for Reproductive Health, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4SA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Sotomayor-Zárate R, Tiszavari M, Cruz G, Lara HE. Neonatal exposure to single doses of estradiol or testosterone programs ovarian follicular development–modified hypothalamic neurotransmitters and causes polycystic ovary during adulthood in the rat. Fertil Steril 2011; 96:1490-6. [DOI: 10.1016/j.fertnstert.2011.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 11/27/2022]
|
38
|
GnRH--a missing link between testosterone concentrations in yolk and plasma and its intergenerational effects. PLoS One 2011; 6:e22675. [PMID: 21829476 PMCID: PMC3145665 DOI: 10.1371/journal.pone.0022675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/30/2011] [Indexed: 12/02/2022] Open
Abstract
Despite the strong interest in hormone-mediated maternal effects two key questions concerning their mechanisms are as yet unanswered: First, whether the deposition of hormones in the egg yolk is coupled with the levels of these hormones in the maternal circulation, and second, whether epigenetic changes as induced by embryonic exposure to maternal yolk hormones impinge on yolk hormone deposition at adulthood. We investigated the responsiveness to gonadotropin-releasing hormone (GnRH) in female canaries whose embryonic exposure to yolk testosterone had been manipulated. This enabled us to study to what extent GnRH interlinks testosterone concentrations in female circulation and egg yolk as well as the intergenerational potential of hormone-mediated maternal effects. As expected, canary females responded to GnRH with a rise in plasma testosterone. The GnRH-responsiveness was positively correlated with the yolk testosterone content. Factors stimulating the release of GnRH will, therefore, lead to an increase of testosterone in both plasma and egg, posing a potential constraint on the yolk hormone deposition due to testosterone related trade-offs within the laying female. Exposure to elevated yolk testosterone levels as embryo reduced the GnRH-responsiveness in adulthood, potentially limiting environmental influences on yolk testosterone deposition, but the concentrations of yolk testosterone itself were not affected.
Collapse
|
39
|
Padmanabhan V, Veiga-Lopez A. Developmental origin of reproductive and metabolic dysfunctions: androgenic versus estrogenic reprogramming. Semin Reprod Med 2011; 29:173-86. [PMID: 21710394 DOI: 10.1055/s-0031-1275519] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common fertility disorders, affecting several million women worldwide. Women with PCOS manifest neuroendocrine, ovarian, and metabolic defects. A large number of animal models have evolved to understand the etiology of PCOS. These models provide support for the contributing role of excess steroids during development in programming the PCOS phenotype. However, considerable phenotypic variability is evident across animal models, depending on the quality of the steroid administered and the perinatal time of treatment relative to the developmental trajectory of the fetus/offspring. This review focuses on the reproductive and metabolic phenotypes of the various PCOS animal models that have evolved in the last decade to delineate the relative roles of androgens and estrogens in relation to the timing of exposure in programming the various dysfunctions that are part and parcel of the PCOS phenotype. Furthermore, the review addresses the contributory role of the postnatal metabolic environment in exaggerating the severity of the phenotype, the translational relevance of the various animal models to PCOS, and areas for future research.
Collapse
|
40
|
Nada SE, Thompson RC, Padmanabhan V. Developmental programming: differential effects of prenatal testosterone excess on insulin target tissues. Endocrinology 2010; 151:5165-73. [PMID: 20843997 PMCID: PMC2954716 DOI: 10.1210/en.2010-0666] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/10/2010] [Indexed: 02/01/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the leading cause of infertility in reproductive-aged women with the majority manifesting insulin resistance. To delineate the causes of insulin resistance in women with PCOS, we determined changes in the mRNA expression of insulin receptor (IR) isoforms and members of its signaling pathway in tissues of adult control (n = 7) and prenatal testosterone (T)-treated (n = 6) sheep (100 mg/kg twice a week from d 30-90 of gestation), the reproductive/metabolic characteristics of which are similar to women with PCOS. Findings revealed that prenatal T excess reduced (P < 0.05) expression of IR-B isoform (only isoform detected), insulin receptor substrate-2 (IRS-2), protein kinase B (AKt), peroxisome proliferator-activated receptor-γ (PPARγ), hormone-sensitive lipase (HSL), and mammalian target of rapamycin (mTOR) but increased expression of rapamycin-insensitive companion of mTOR (rictor), and eukaryotic initiation factor 4E (eIF4E) in the liver. Prenatal T excess increased (P < 0.05) the IR-A to IR-B isoform ratio and expression of IRS-1, glycogen synthase kinase-3α and -β (GSK-3α and -β), and rictor while reducing ERK1 in muscle. In the adipose tissue, prenatal T excess increased the expression of IRS-2, phosphatidylinositol 3-kinase (PI3K), PPARγ, and mTOR mRNAs. These findings provide evidence that prenatal T excess modulates in a tissue-specific manner the expression levels of several genes involved in mediating insulin action. These changes are consistent with the hypothesis that prenatal T excess disrupts the insulin sensitivity of peripheral tissues, with liver and muscle being insulin resistant and adipose tissue insulin sensitive.
Collapse
Affiliation(s)
- Shadia E Nada
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109-5404, USA
| | | | | |
Collapse
|
41
|
Veiga-Lopez A, Lee JS, Padmanabhan V. Developmental programming: insulin sensitizer treatment improves reproductive function in prenatal testosterone-treated female sheep. Endocrinology 2010; 151:4007-17. [PMID: 20555028 PMCID: PMC2940534 DOI: 10.1210/en.2010-0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/14/2010] [Indexed: 01/16/2023]
Abstract
Prenatal testosterone (T) excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested the hypothesis that insulin resistance contributes toward severity of reproductive disruptions in prenatally T-treated females. Pregnant sheep were injected im with 100 mg of T-propionate semiweekly from d 30-90 of gestation. Immediately after the first breeding season, a subset of controls and prenatal T-treated (TR) sheep were administered an insulin sensitizer (rosiglitazone; 8 mg/d) orally for 8 months. Untreated control and prenatal T-treated females (T group) were studied in parallel. Biochemical analyses revealed rosiglitazone to be safe for use in sheep. Glucose tolerance tests performed before and after the insulin sensitizer treatment found that insulin sensitizer decreased cumulative insulin, cumulative insulin/glucose ratio, and insulin area under the curve by about 50% and increased the insulin sensitivity index by about 70% in the TR compared with the T group. Twenty percent of TR females showed a reduced number of cycles in the second relative to first breeding season as opposed to 80% of T group females showing such deterioration. Insulin sensitizer treatment also decreased the number of aberrant cycles (>/=18 d) during the second breeding season in the TR group relative to the first as opposed to the T group females showing an increase in the second breeding season relative to the first. These findings provide evidence that insulin sensitizer treatment prevents further deterioration of the reproductive axis in prenatal T-treated sheep, a finding of translational relevance to women with polycystic ovary syndrome.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics and Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404, USA
| | | | | |
Collapse
|
42
|
Padmanabhan V, Sarma HN, Savabieasfahani M, Steckler TL, Veiga-Lopez A. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators. INTERNATIONAL JOURNAL OF ANDROLOGY 2010; 33:394-404. [PMID: 20070410 PMCID: PMC3970726 DOI: 10.1111/j.1365-2605.2009.01024.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inappropriate programming of developing organ systems by exposure to excess native or environmental steroids, particularly the contamination of our environment and our food sources with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major concern. Studies with native steroids have found that in utero exposure of sheep to excess testosterone, an oestrogen precursor, results in low birth weight offspring and leads to an array of adult reproductive/metabolic deficits manifested as cycle defects, functional hyperandrogenism, neuroendocrine/ovarian defects, insulin resistance and hypertension. Furthermore, the severity of reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely facilitated via aromatization to oestradiol. Similarly, exposure to environmental steroid imposters such as bisphenol A (BPA) and methoxychlor (MXC) from days 30 to 90 of gestation had long-term but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/mL BPA, culminated in low birth weight offspring. These female offspring were hypergonadotropic during early postnatal life and characterized by severely dampened preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels, which approximated twice the highest levels found in human maternal circulation of industrialized nations. These findings provide evidence in support of developmental origin of adult reproductive and metabolic diseases and highlight the risk posed by exposure to environmental endocrine disrupting chemicals.
Collapse
Affiliation(s)
- V Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, The University of Michigan, Ann Arbor, MI48109, USA.
| | | | | | | | | |
Collapse
|
43
|
Gardner DS, Ozanne SE, Sinclair KD. Effect of the early-life nutritional environment on fecundity and fertility of mammals. Philos Trans R Soc Lond B Biol Sci 2010; 364:3419-27. [PMID: 19833652 PMCID: PMC2781843 DOI: 10.1098/rstb.2009.0121] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The early-life developmental environment is instrumental in shaping our overall adult health and well-being. Early-life diet and endocrine exposure may independently, or in concert with our genetic constitution, induce a pathophysiological process that amplifies with age and leads to premature morbidity and mortality. Recently, this has become known as ‘programming’ but is akin to ‘maternal effects’ described for many years in the biological sciences and is defined as any influence that acts during critical developmental windows to induce long-term changes in the organisms' phenotype. To date, such delayed maternal effects have largely been characterized in terms of susceptibility to cardiovascular or metabolic disease. Here, we review evidence from experimental animal species, non-human primates and man for an effect of the early-life nutritional environment on adult fecundity and fertility. In addition, using a database of pedigree sheep, we also specifically test the hypothesis that being born small for gestational age with or without post-natal growth acceleration directly programmes fertility. We conclude that there is a lack of compelling evidence to suggest pre-natal undernutrition may directly reduce adult fecundity and fertility, but may exert some effects secondarily via an increased incidence of ‘metabolic syndrome’. Possible effects of being born relatively large on subsequent fecundity and fertility warrant further investigation.
Collapse
Affiliation(s)
- D S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RA, UK.
| | | | | |
Collapse
|
44
|
Bibliography. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:328-37. [PMID: 19564733 DOI: 10.1097/med.0b013e32832eb365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Ford SP, Zhang L, Zhu M, Miller MM, Smith DT, Hess BW, Moss GE, Nathanielsz PW, Nijland MJ. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences. Am J Physiol Regul Integr Comp Physiol 2009; 297:R835-43. [PMID: 19605766 DOI: 10.1152/ajpregu.00072.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.
Collapse
Affiliation(s)
- Stephen P Ford
- Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Jackson LM, Timmer KM, Foster DL. Organizational actions of postnatal estradiol in female sheep treated prenatally with testosterone: programming of prepubertal neuroendocrine function and the onset of puberty. Endocrinology 2009; 150:2317-24. [PMID: 19131574 PMCID: PMC2671902 DOI: 10.1210/en.2008-1307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T) exposure defeminizes reproductive neuroendocrine function in female sheep, although the LH surge dysfunctions are initially less severe in gonadally intact females than in females subject to neonatal ovariectomy and estradiol (E) replacement. Because prepubertal ovarian production of E differs quantitatively and qualitatively from chronic E replacement, we tested the hypothesis that postnatal E exacerbates the consequences of prenatal T on the positive, but not the negative, steroid feedback controls of GnRH secretion. Our approach was to characterize prepubertal sensitivity to E negative feedback, the onset and maintenance of progestagenic cycles, and the LH surge response in ovary intact, prenatally untreated (control), and T-treated (T) sheep that were exposed postnatally to only endogenous E, or exposed to excess E by s.c. implant. Sensitivity to E negative feedback was reduced in T females, but excess postnatal E did not further increase LH pulse frequency. Excess E prevented ovarian cycles in several control females, and increased cycle irregularity in T females. However, the LH surge mechanism was functional in all control females (regardless of postnatal E exposure) and in some T females without excess E, but nonfunctional in T females with excess E. These findings suggest that postnatal E does not program increased resistance to E negative feedback, but excess postnatal E does disrupt other mechanisms required for ovarian cyclicity. We conclude that in this precocial species, prenatal steroids are sufficient to program controls of tonic LH secretion, but the LH surge mechanism is susceptible to further programming by postnatal E.
Collapse
Affiliation(s)
- Leslie M Jackson
- Reproductive Sciences Program, Department of Pediatrics, University of Michigan, 300 North Ingalls, Room 1111, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
48
|
Veiga-Lopez A, Astapova OI, Aizenberg EF, Lee JS, Padmanabhan V. Developmental programming: contribution of prenatal androgen and estrogen to estradiol feedback systems and periovulatory hormonal dynamics in sheep. Biol Reprod 2009; 80:718-725. [PMID: 19122183 PMCID: PMC2804826 DOI: 10.1095/biolreprod.108.074781] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/05/2008] [Accepted: 12/29/2008] [Indexed: 11/04/2023] Open
Abstract
Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Olga I. Astapova
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Esther F. Aizenberg
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - James S. Lee
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Smith P, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programming: differential effects of prenatal testosterone and dihydrotestosterone on follicular recruitment, depletion of follicular reserve, and ovarian morphology in sheep. Biol Reprod 2008; 80:726-36. [PMID: 19092114 DOI: 10.1095/biolreprod.108.072801] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Prenatal testosterone excess programs an array of adult reproductive disorders including luteinizing hormone excess, functional hyperandrogenism, neuroendocrine defects, polycystic ovarian morphology, and corpus luteum dysfunction, culminating in early reproductive failure. Polycystic ovarian morphology originates from enhanced follicular recruitment and follicular persistence. We tested to determine whether prenatal testosterone treatment, by its androgenic actions, enhances follicular recruitment, causes early depletion of follicular reserve, and disrupts the ovarian architecture. Pregnant sheep were given twice-weekly injections of testosterone or dihydrotestosterone (DHT), a nonaromatizable androgen, from Days 30 to 90 of gestation. Ovaries were obtained from Day-90 and Day-140 fetuses, and from 10-mo-old females during a synchronized follicular phase (n = 5-9 per treatment). Stereological techniques were used to quantify changes in ovarian follicle/germ cell populations. Results revealed no differences in numbers of oocytes and follicles between the three groups on Fetal Day 90. Greater numbers of early growing follicles were found in prenatal testosterone- and DHT-treated fetuses on Day 140. Increased numbers of growing follicles and reduced numbers of primordial follicles were found in 10-mo-old, prenatal testosterone-treated females, but not in those treated with DHT. Antral follicles of prenatal testosterone-treated females, but not those treated with DHT, manifested several abnormalities, which included the appearance of hemorrhagic and luteinized follicles and abnormal early antrum formation. Both treatment groups showed morphological differences in the rete ovarii. These findings suggest that increased follicular recruitment and morphologic changes in the rete ovarii of prenatal testosterone-treated females are facilitated by androgenic programming, but that postpubertal follicular growth, antral follicular disruptions, and follicular depletion largely occur through estrogenic programming.
Collapse
Affiliation(s)
- Peter Smith
- AgResearch Wallaceville, Upper Hutt, New Zealand
| | | | | | | |
Collapse
|
50
|
Steckler TL, Lee JS, Ye W, Inskeep EK, Padmanabhan V. Developmental programming: exogenous gonadotropin treatment rescues ovulatory function but does not completely normalize ovarian function in sheep treated prenatally with testosterone. Biol Reprod 2008; 79:686-95. [PMID: 18524978 PMCID: PMC2844495 DOI: 10.1095/biolreprod.108.068643] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/01/2008] [Accepted: 05/13/2008] [Indexed: 11/01/2022] Open
Abstract
Prenatal testosterone treatment leads to LH excess as well as ovarian follicular and ovulatory defects in the adult. These disruptions may stem from LH excess, abnormal FSH input, compromised ovarian sensitivity to gonadotropins, or intrinsic ovarian defects. To determine if exogenous gonadotropins rescue ovarian and ovulatory function of testosterone-treated sheep, the release of endogenous LH and biopotent FSH in control and prenatal testosterone-treated sheep was blocked with a GnRH antagonist during the first two breeding seasons and with LH/FSH coadministered in a manner approximating natural follicular phase. An acidic mix of FSH was administered the first 36 h at 2-h intervals and a less acidic mix for the next 12 h at 1-h intervals (different FSH preparations were used each year), and ovulation was induced with hCG. Circulating FSH and estradiol responses to gonadotropins measured in 2-h samples differed between treatment groups in Year 1 but not in Year 2. Ovarian follicular distribution and number of corpora lutea (in ewes that ovulated) tracked by ultrasonography and luteal progesterone responses were similar between control and prenatal testosterone-treated females but differed between years. Furthermore, hCG administration induced large cystic and luteinized follicles in both groups of females in Year 2, although the growth rate differed between control and prenatal testosterone-treated females. Our findings provide evidence that 1) ovulatory response in prenatal testosterone-treated females can be rescued with exogenous gonadotropins, 2) resultant follicular response is dependent on the nature of gonadotropic input, and 3) an abnormal follicular milieu may underlie differences in developmental trajectory of cystic follicles in prenatal testosterone-treated females.
Collapse
Affiliation(s)
- Teresa L. Steckler
- Departments of Pediatrics, Biostatistics, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404
| | - James S. Lee
- Departments of Pediatrics, Biostatistics, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404
| | - Wen Ye
- Departments of Pediatrics, Biostatistics, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404
| | - E. Keith Inskeep
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, West Virginia 26506-6108
| | - Vasantha Padmanabhan
- Departments of Pediatrics, Biostatistics, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan 48109-0404
| |
Collapse
|