1
|
Zheng X, Wu YJ, Wu LM, Zhang L, Zhang L, Jin Z, Gao F, Li QQ, Wang Y, Wu YD. Development and validation of a HPLC-MS/MS method the determination of genistein and equol in serum, urine and follicular fluid. J Pharm Biomed Anal 2025; 260:116800. [PMID: 40086052 DOI: 10.1016/j.jpba.2025.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Soy isoflavones exert estrogen-like synergistic or antagonistic effects by binding to estrogen receptors, and potentially impact the function of female reproductive system, but their distribution profile in human remains little clarified. To determination of genistein (GEN) and equol (EQ) in human urine, serum and follicular fluid (FF), an analytical method based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed and validated. The enrichment and clean-up are performed on a solid-phase extraction (SPE) column; the elution is a gradient one, with the mobile phase (A) of 0.1 % (v/v) formic acid aqueous solution and the mobile phase (B) of 0.1 % (v/v) formic acid in acetonitrile; the column temperature is 40 °C. Mass spectrometry is performed using negative ion mode electrospray ionization (ESI -) in multiple reaction monitoring (MRM) mode. The method was validated over the linear ranges of 7.8-1000.0 ng/mL and 39.1-5000.0 ng/mL, for serum and urine, with correlation coefficients (r) of 0.9948-0.9984. The precision, accuracy and stability meet the U.S. Food and Drug Administration guidance. This method has been used to detect genistein (GEN) and equol (EQ) in serum, follicular fluid, and urine, to report equol in follicular fluid for the first time, and to study the correlation between genistein and equol in three body fluids. The study showed that the average concentration of EQ in follicular fluid was 18.5 ng/mL and there was a significant positive Spearman's correlation between concentrations of GEN in serum and FF (r = 0.44, p ≤ 0.05).
Collapse
Affiliation(s)
- Xia Zheng
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yue-Jin Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li-Mei Wu
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ling Zhang
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lin Zhang
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhen Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fang Gao
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qing-Qing Li
- Science and Research Department, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yi-Dan Wu
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
McWilliams MM, Koohestani F, Jefferson WN, Gunewardena S, Shivashankar K, Wertenberger RA, Williams CJ, Kumar TR, Chennathukuzhi VM. Estrogen receptor alpha mediated repression of PRICKLE1 destabilizes REST and promotes uterine fibroid pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612036. [PMID: 39314474 PMCID: PMC11419101 DOI: 10.1101/2024.09.09.612036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Uterine fibroids (leiomyomas), benign tumors of the myometrial smooth muscle layer, are present in over 75% of women, often causing severe pain, menorrhagia and reproductive dysfunction. The molecular pathogenesis of fibroids is poorly understood. We previously showed that the loss of REST (RE-1 Silencing Transcription factor), a tumor suppressor, in fibroids leads to activation of PI3K/AKT-mTOR pathway. We report here a critical link between estrogen receptor alpha (ERα) and the loss of REST, via PRICKLE1. PRICKLE1 expression is markedly lower in leiomyomas, and the suppression of PRICKLE1 significantly down regulates REST protein levels. Conversely, overexpression of PRICKLE1 resulted in the restoration of REST in cultured primary leiomyoma smooth muscle cells (LSMCs). Crucially, mice exposed neonatally to environmental estrogens, proven risk factors for fibroids, expressed lower levels of PRICKLE1 and REST in the myometrium. Using mice that lack either endogenous estrogen (Lhb -/- mice) or ERα (Esr1 -/- mice), we demonstrate that Prickle1 expression in the myometrium is suppressed by estrogen through ERα. Enhancer of zeste homolog 2 (EZH2) is known to participate in the repression of specific ERα target genes. Uterine leiomyomas express increased levels of EZH2 that inversely correlate with the expression of PRICKLE1. Using chromatin immunoprecipitation, we provide evidence for association of EZH2 with the PRICKLE1 promoter and for hypermethylation of H3K27 within the regulatory region of PRICKLE1 in leiomyomas. Additionally, siRNA mediated knockdown of EZH2 leads to restoration of PRICKLE1 in LSMCs. Collectively, our results identify a novel link between estrogen exposure and PRICKLE1/REST-regulated tumorigenic pathways in leiomyomas.
Collapse
Affiliation(s)
- Michelle M McWilliams
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Faezeh Koohestani
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Kavya Shivashankar
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Riley A Wertenberger
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045
| | - Vargheese M Chennathukuzhi
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
3
|
Meyer Z, Soukup ST, Lubs A, Ohde D, Walz C, Schoen J, Willenberg HS, Hoeflich A, Brenmoehl J. Impact of Dietary Isoflavones in Standard Chow on Reproductive Development in Juvenile and Adult Female Mice with Different Metabolic Phenotypes. Nutrients 2024; 16:2697. [PMID: 39203833 PMCID: PMC11357413 DOI: 10.3390/nu16162697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Two factors influencing female reproduction have been repeatedly studied in different animal species and humans, namely, 1. secondary plant compounds, especially phytoestrogens (mainly isoflavones (IFs)), and 2. the physical constitution/metabolic phenotype (e.g., obesity). So far, these research results have only been considered separately. In this study, we investigated the influence on reproduction of both phytochemicals, mainly dietary IFs, and the metabolic phenotype represented by three mouse models considered as three distinct genetic groups (a control group, a mouse model with high metabolic activity, and a mouse line with obese body weight). The IF content in different investigated standard chows with similar macronutrient profiles varied significantly (p < 0.005), leading to high mean total plasma IF levels of up to 5.8 µmol/L in juvenile and 6.7 µmol/L in adult female mice. Reproductive performance was only slightly affected; only an IF dose-dependent effect on gestation length was observed in all genetic groups, as well as an effect on pregnancy rate in obese mice. Dietary IF exposure, however, caused earlier onset of vaginal opening by 4-10 days in juvenile mice (p < 0.05), dependent on the genetic group, resulting in a slight acceleration of sexual maturation in the already precocious obese model and to a strong earlier maturation in the otherwise late-maturing sporty model, bred for high treadmill performance. Therefore, our results may help to draw the missing line between the effect of dietary secondary plant constituents, such as IFs, and metabolic phenotype on sexual development.
Collapse
Affiliation(s)
- Zianka Meyer
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian T. Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Anna Lubs
- Working Group Cell Physiology & Reproduction, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Daniela Ohde
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Christina Walz
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jennifer Schoen
- Working Group Cell Physiology & Reproduction, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Reproduction Biology Department, Leibniz Institute for Zoo and Wildlife Research IZW, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Holger S. Willenberg
- Center for Internal Medicine, Section of Endocrinology and Metabolic Diseases, University Medicine Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Andreas Hoeflich
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Julia Brenmoehl
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
4
|
Chen Y, Liu Y, Wang Y, Zhang Y, Xie W, Zhang H, Weng Q, Xu M. Expression of cholesterol synthesis and steroidogenic markers in females of the Chinese brown frog ( Rana dybowskii) during prespawning and prehibernation. Am J Physiol Regul Integr Comp Physiol 2023; 325:R750-R758. [PMID: 37867473 DOI: 10.1152/ajpregu.00296.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 10/24/2023]
Abstract
The oviduct of the Chinese brown frog (Rana dybowskii) expands in prehibernation rather than in prespawning, which is one of the physiological phenomena that occur in the preparation for hibernation. Steroid hormones are known to regulate oviductal development. Cholesterol synthesis and steroidogenesis may play an important role in the expansion of the oviduct before hibernation. In this study, we investigated the expression patterns of the markers that are involved in the de novo steroid synthesis pathway in the oviduct of R. dybowskii during prespawning and prehibernation. According to histological analysis, the oviduct of R. dybowskii contains epithelial cells, glandular cells, and tubule lumens. During prehibernation, oviductal pipe diameter and weight were significantly larger than during prespawning. 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR), low-density lipoprotein receptor (LDLR), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) were detected in epithelial cells in prehibernation and glandular cells during prespawning. HMGCR, LDLR, StAR, and P450scc protein expression levels were higher in prehibernation than during prespawning, but the SF-1 protein expression level did not significantly differ. HMGCR, LDLR, StAR, P450scc (CYP11A1), and SF-1 (NR5A1) mRNA expression levels were significantly higher in prehibernation compared with prespawning. The transcriptome results showed that the steroid synthesis pathway was highly expressed during prehibernation. Existing results indicate that the oviduct is able to synthesize steroid hormones using cholesterol, and that steroid hormones may affect the oviductal functions of R. dybowskii.
Collapse
Affiliation(s)
- Yuan Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yankun Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yue Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Meiyu Xu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, People's Republic of China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Langton CR, Harmon QE, Upson K, Baird DD. Soy-Based Infant Formula Feeding and Uterine Fibroid Development in a Prospective Ultrasound Study of Black/African-American Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17006. [PMID: 36696103 PMCID: PMC9875846 DOI: 10.1289/ehp11089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Uterine fibroids are highly prevalent, benign tumors. They are the leading indication for hysterectomy, and Black women are disproportionally burdened. Soy-based infant formula contains phytoestrogens, and exposure during sensitive developmental windows may adversely affect the developing uterus; early phytoestrogen treatment in rodent studies led to detrimental uterine effects, including increased fibroid risk in Eker rats. Limited epidemiological studies also have suggested increased fibroid development with soy formula infant feeding. OBJECTIVE The goal of this study was to examine the association between soy formula feeding in infancy and fibroid development in adulthood. METHODS We evaluated this association among 1,610 Black/African-American women age 23-35 y in the Study of Environment, Lifestyle & Fibroids (SELF). Soy formula feeding data was gathered directly from the participants' mothers (89%). A standardized ultrasound examination was conducted during 4 clinic visits over 5 y to detect fibroids ≥0.5cm in diameter. We used Cox proportional hazards regression to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between soy formula feeding and incident fibroids adjusted for early-life and adult factors. Fibroid growth was calculated as change in log-volume for fibroids matched at successive visits. RESULTS Of 1,121 fibroid-free participants at baseline, 150 (13%) were ever fed soy formula as infants, and 269 (24%) developed incident fibroids. We did not observe an association between ever being fed soy formula and incident fibroid risk (HR=1.08; 95% CI: 0.75, 1.54). However, participants fed soy formula within 2 months of birth and for >6 months (n=53) had an elevated risk of fibroid incidence in comparison with those never fed soy formula (HR=1.56; 95% CI: 0.92, 2.65). Fibroid growth rates did not differ. DISCUSSION Adding support to limited human data, this prospective fibroid study found that soy-based formula feeding during infancy was associated with a suggestive increase in risk of ultrasound-identified incident fibroids in adulthood. https://doi.org/10.1289/EHP11089.
Collapse
Affiliation(s)
- Christine R. Langton
- Women’s Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Quaker E. Harmon
- Women’s Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Kristen Upson
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Donna D. Baird
- Women’s Health Group, Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| |
Collapse
|
6
|
Suen AA, Kenan AC, Williams CJ. Developmental exposure to phytoestrogens found in soy: New findings and clinical implications. Biochem Pharmacol 2022; 195:114848. [PMID: 34801523 PMCID: PMC8712417 DOI: 10.1016/j.bcp.2021.114848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Exposure to naturally derived estrogen receptor activators, such as the phytoestrogen genistein, can occur at physiologically relevant concentrations in the human diet. Soy-based infant formulas are of particular concern because infants consuming these products have serum genistein levels almost 20 times greater than those seen in vegetarian adults. Comparable exposures in animal studies have adverse physiologic effects. The timing of exposure is particularly concerning because infants undergo a steroid hormone-sensitive period termed "minipuberty" during which estrogenic chemical exposure may alter normal reproductive tissue patterning and function. The delay between genistein exposure and reproductive outcomes poses a unique challenge to collecting epidemiological data. In 2010, the U.S. National Toxicology Program monograph on the safety of the use of soy formula stated that the use of soy-based infant formula posed minimal concern and emphasized a lack of data from human subjects. Since then, several new human and animal studies have advanced our epidemiological and mechanistic understanding of the risks and benefits of phytoestrogen exposure. Here we aim to identify clinically relevant findings regarding phytoestrogen exposure and female reproductive outcomes from the past 10 years, with a focus on the phytoestrogen genistein, and explore the implications of these findings for soy infant formula recommendations. Research presented in this review will inform clinical practice and dietary recommendations for infants based on evidence from both clinical epidemiology and basic research advances in endocrinology and developmental biology from mechanistic in vitro and animal studies.
Collapse
Affiliation(s)
- Alisa A Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Autophagy as a Therapeutic Target of Natural Products Enhancing Embryo Implantation. Pharmaceuticals (Basel) 2021; 15:ph15010053. [PMID: 35056110 PMCID: PMC8779555 DOI: 10.3390/ph15010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
Infertility is an emerging health issue worldwide, and female infertility is intimately associated with embryo implantation failure. Embryo implantation is an essential process during the initiation of prenatal development. Recent studies have strongly suggested that autophagy in the endometrium is the most important factor for successful embryo implantation. In addition, several studies have reported the effects of various natural products on infertility improvement via the regulation of embryo implantation, embryo quality, and endometrial receptivity. However, it is unclear whether natural products can improve embryo implantation ability by regulating endometrial autophagy. Therefore, we performed a literature review of studies on endometrial autophagy, embryo implantation, natural products, and female infertility. Based on the information from these studies, this review suggests a new treatment strategy for female infertility by proposing natural products that have been proven to be safe and effective as endometrial autophagy regulators; additionally, we provide a comprehensive understanding of the relationship between the regulation of endometrial autophagy by natural products and female infertility, with an emphasis on embryo implantation.
Collapse
|
8
|
Wilcox AJ, Harmon Q, Doody K, Wolf DP, Adashi EY. Preimplantation loss of fertilized human ova: estimating the unobservable. Hum Reprod 2021; 35:743-750. [PMID: 32296829 DOI: 10.1093/humrep/deaa048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023] Open
Abstract
STUDY QUESTION What proportion of fertilized human ova are lost before implantation? SUMMARY ANSWER An estimated 40 to 50% of fertilized ova fail to implant. WHAT IS KNOWN ALREADY Preimplantation loss is not detectable with current technology. Published estimates of preimplantation loss range from 10 to 70%. STUDY DESIGN, SIZE, DURATION We combine data from epidemiologic, demographic, laboratory and in vitro fertilization studies to construct an empirical framework for the estimation of preimplantation loss. This framework is summarized in a user-friendly Excel file included in supplement. PARTICIPANTS/MATERIALS, SETTING, METHODS We draw from multiple sources to generate plausible estimates of fecundability, sterility, transient anovulation, intercourse patterns and the proportion of ova fertilized in the presence of sperm. We combine these estimates to generate a summary estimate of preimplantation loss. This estimate can be considered an average for couples in their prime reproductive years. MAIN RESULTS AND THE ROLE OF CHANCE Under a plausible range of assumptions, we estimate that 40 to 50% of fertilized ova fail to implant. LIMITATIONS, REASONS FOR CAUTION A crucial factor in estimating preimplantation loss is the probability that an ovum will be fertilized when exposed to sperm. Human data are available only from in vitro fertilization (IVF), which may not accurately represent events in vivo. We therefore assume a range of in vivo fertilization rates, from 64% (human IVF data) to 90% (mouse data). WIDER IMPLICATIONS OF THE FINDINGS Our estimate of preimplantation loss takes into account the biological processes relevant to fertilization and loss. Using this empirical basis for estimation, we find support for the usual assumption that risk of loss is highest in the earliest days following fertilization. Furthermore, this framework can provide improved estimates as better reproductive data become available. To the extent that our estimates are accurate, more fertilized ova are apparently lost in vitro than in vivo, suggesting that further improvements in IVF success rates may be possible. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Intramural Program of the National Institute of Environmental Health Sciences, NIH. Professor Adashi serves as Co-Chair of the Safety Advisory Board of Ohana Biosciences, Inc. The other authors have no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Quaker Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Kevin Doody
- Center for Assisted Reproduction, Bedford, TX, USA
| | - Don P Wolf
- Dept. Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
| | - Eli Y Adashi
- Dept. Obstetrics and Gynecology, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Natural Herbal Estrogen-Mimetics (Phytoestrogens) Promote the Differentiation of Fallopian Tube Epithelium into Multi-Ciliated Cells via Estrogen Receptor Beta. Molecules 2021; 26:molecules26030722. [PMID: 33573260 PMCID: PMC7866512 DOI: 10.3390/molecules26030722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Phytoestrogens are herbal polyphenolic compounds that exert various estrogen-like effects in animals and can be taken in easily from a foodstuff in daily life. The fallopian tube lumen, where transportation of the oocyte occurs, is lined with secretory cells and multi-ciliated epithelial cells. Recently, we showed that estrogen induces multi-ciliogenesis in the porcine fallopian tube epithelial cells (FTECs) through the activation of the estrogen receptor beta (ERβ) pathway and simultaneous inhibition of the Notch pathway. Thus, ingested phytoestrogens may induce FTEC ciliogenesis and thereby affect the fecundity. To address this issue, we added isoflavones (genistein, daidzein, or glycitin) and coumestan (coumestrol) to primary culture FTECs under air–liquid interface conditions and assessed the effects of each compound. All phytoestrogens except glycitin induced multi-ciliated cell differentiation, which followed Notch signal downregulation. On the contrary, the differentiation of secretory cells decreased slightly. Furthermore, genistein and daidzein had a slight effect on the proportion of proliferating cells exhibited by Ki67 expression. Ciliated-cell differentiation is inhibited by the ERβ antagonist, PHTPP. Thus, this study suggests that phytoestrogens can improve the fallopian tube epithelial sheet homeostasis by facilitating the genesis of multi-ciliated cells and this effect depends on the ERβ-mediated pathway.
Collapse
|
10
|
Jefferson WN, Padilla-Banks E, Suen AA, Royer LJ, Zeldin SM, Arora R, Williams CJ. Uterine Patterning, Endometrial Gland Development, and Implantation Failure in Mice Exposed Neonatally to Genistein. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:37001. [PMID: 32186404 PMCID: PMC7138129 DOI: 10.1289/ehp6336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Embryo implantation relies on precise hormonal regulation, associated gene expression changes, and appropriate female reproductive tract tissue architecture. Female mice exposed neonatally to the phytoestrogen genistein (GEN) at doses similar to those in infants consuming soy-based infant formulas are infertile due in part to uterine implantation defects. OBJECTIVES Our goal was to determine the mechanisms by which neonatal GEN exposure causes implantation defects. METHODS Female mice were exposed to GEN on postnatal days (PND)1-5 and uterine tissues collected on PND5, PND22-26, and during pregnancy. Analysis of tissue weights, morphology, and gene expression was performed using standard histology, confocal imaging with three-dimensional analysis, real-time reverse transcription polymerase chain reaction (real-time RT-PCR), and microarrays. The response of ovariectomized adults to 17 β -estradiol (E2) and artificial decidualization were measured. Leukemia inhibitory factor (LIF) injections were given intraperitoneally and implantation sites visualized. Gene expression patterns were compared with curated data sets to identify upstream regulators. RESULTS GEN-exposed mice exhibited reduced uterine weight gain in response to E2 treatment or artificial decidualization compared with controls; however, expression of select hormone responsive genes remained similar between the two groups. Uteri from pregnant GEN-exposed mice were posteriorized and had reduced glandular epithelium. Implantation failure was not rescued by LIF administration. Microarray analysis of GEN-exposed uteri during early pregnancy revealed significant overlap with several conditional uterine knockout mouse models, including Foxa2, Wnt4, and Sox17. These models exhibit reduced endometrial glands, features of posteriorization and implantation failure. Expression of Foxa2, Wnt4, and Sox17, as well as genes important for neonatal uterine differentiation (Wnt7a, Hoxa10, and Msx2), were severely disrupted on PND5 in GEN-exposed mice. DISCUSSION Our findings suggest that neonatal GEN exposure in mice disrupts expression of genes important for uterine development, causing posteriorization and diminished gland function during pregnancy that contribute to implantation failure. These findings could have implications for women who consumed soy-based formulas as infants. https://doi.org/10.1289/EHP6336.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alisa A. Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lindsey J. Royer
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sharon M. Zeldin
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology, and Reproductive Biology, Institute for Quantitative Health Science and Engineering, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Helppi J, Naumann R, Zierau O. Phytoestrogen-containing diets offer benefits for mouse embryology but lead to fewer offspring being produced. Lab Anim 2020; 54:536-545. [PMID: 32050842 DOI: 10.1177/0023677219898486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most commonly used protein sources in rodent diets is soy, which is naturally rich in phytoestrogens. Although phytoestrogens have shown potential health benefits in humans, they may also have the ability to disrupt reproduction. Consequently, there has been a tendency to try to exclude them from rodent diets. In the current study, we investigated whether phytoestrogen content in the mouse diet could affect reproduction in mice used as embryo donors. Donor mice (C57BL/6JOlaHsd) were maintained with three different diets: high phytoestrogen (ca. 400 mg/kg genistein), low phytoestrogen (ca. 10 mg/kg genistein) and standard breeding diet (ca. 120 mg/kg genistein). Mice fed a high phytoestrogen diet had a high yield of plugs, embryos, and injectable embryos, as well as producing good quality embryos. Results from donor mice fed a low phytoestrogen diet were consistently but only slightly inferior, whereas mice fed a standard diet performed the poorest. Interestingly, the largest number of born and weaned offspring were observed when recipient females received embryos from the standard diet group. Sperm yield and quality of stud males did not differ between the groups. We surmize that for experimental endpoints requiring fertilized embryos it may be more beneficial to feed mice a diet containing phytoestrogen, but if the goal is to produce transgenic mice, a diet high in phytoestrogen may be inadvisable. In conclusion, care should be taken when selecting a diet for experimental mouse colonies as phytoestrogen could influence the study outcome.
Collapse
Affiliation(s)
- Jussi Helppi
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany
| | - Oliver Zierau
- Institute of Zoology, Technische Universität Dresden, Germany
| |
Collapse
|
12
|
Parra-Forero LY, Veloz-Contreras A, Vargas-Marín S, Mojica-Villegas MA, Alfaro-Pedraza E, Urióstegui-Acosta M, Hernández-Ochoa I. Alterations in oocytes and early zygotes following oral exposure to di(2-ethylhexyl) phthalate in young adult female mice. Reprod Toxicol 2019; 90:53-61. [PMID: 31442482 DOI: 10.1016/j.reprotox.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Because di(2-ethylhexyl) phthalate (DEHP) toxicity on ovarian function is incomplete, effects of DEHP oocyte fertilization and the resulting zygotes were investigated. Further, an analysis characterizing the stage of zygote arrest was performed. Female CD1 mice were dosed orally with DEHP (0, 20, 200 and 2000 μg/kg/day) for 30 days. Following an in vivo mating post-dosing, DEHP-treated females exhibited fewer oocytes/zygotes, fewer oocytes displaying the polar body extrusion, fewer 1-cell zygotes having 2-pronuclei, more unfertilized oocytes, and decreased number of zygotes at every stage of development. DEHP induced blastomere fragmentation in zygotes. DNA replication in zygotes directly assessed by the 5-Ethynyl-2'-deoxyuridine (5-EdU) incorporation assay and indirectly by dosing mice with 5-fluorouracil (5-FU) suggested that DEHP inhibits DNA replication. Our data suggest that DEHP at doses found in 'every-day' (200 μg/Kg/day) or occupational (2000 μg/Kg/day) environments induces zygote fragmentation and arrests its development from the 2-cell stage potentially impairing DNA replication.
Collapse
Affiliation(s)
- Lyda Yuliana Parra-Forero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Arlet Veloz-Contreras
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - Shirley Vargas-Marín
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | - María Angelica Mojica-Villegas
- Laboratorio de Toxicología de la Reproducción-Fertilidad, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-IPN, Col. San Pedro Zacatenco, Ciudad de México, 2508, Mexico
| | - Elim Alfaro-Pedraza
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico
| | | | - Isabel Hernández-Ochoa
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, Mexico.
| |
Collapse
|
13
|
Belcher SM, Cline JM, Conley J, Groeters S, Jefferson WN, Law M, Mackey E, Suen AA, Williams CJ, Dixon D, Wolf JC. Endocrine Disruption and Reproductive Pathology. Toxicol Pathol 2019; 47:1049-1071. [PMID: 31833458 PMCID: PMC8008741 DOI: 10.1177/0192623319879903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past 20 years, investigations involving endocrine active substances (EAS) and reproductive toxicity have dominated the landscape of ecotoxicological research. This has occurred in concert with heightened awareness in the scientific community, general public, and governmental entities of the potential consequences of chemical perturbation in humans and wildlife. The exponential growth of experimentation in this field is fueled by our expanding knowledge into the complex nature of endocrine systems and the intricacy of their interactions with xenobiotic agents. Complicating factors include the ever-increasing number of novel receptors and alternate mechanistic pathways that have come to light, effects of chemical mixtures in the environment versus those of single EAS laboratory exposures, the challenge of differentiating endocrine disruption from direct cytotoxicity, and the potential for transgenerational effects. Although initially concerned with EAS effects chiefly in the thyroid glands and reproductive organs, it is now recognized that anthropomorphic substances may also adversely affect the nervous and immune systems via hormonal mechanisms and play substantial roles in metabolic diseases, such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - Mac Law
- North Carolina State College of Veterinary Medicine, Raleigh, NC, USA
| | - Emily Mackey
- Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
14
|
The developmental effects of isoflavone aglycone administration on early chick embryos. Interdiscip Toxicol 2019; 11:236-239. [PMID: 31736638 PMCID: PMC6853006 DOI: 10.2478/intox-2018-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Soybeans contain the isoflavone aglycone, an endocrine disrupter. To determine the effects of small amounts of isoflavones on developmental processes, we administered 6.25, 62.5, or 625 μg isoflavone per egg to early stage (stage 10) developing chick embryos via the yolk just beneath the embryo. Eggs were kept at 37±0.5 °C and >80% relative humidity, with one rotation per hour for 48 hrs. The embryos were observed under a stereomicroscope for morphological abnormalities and number of somites. Relative to control eggs, there were no significant differences in the average number of somites in eggs administered isoflavone aglycone. Isoflavone, however, had a dose associated effect on abnormal embryogenesis. Embryos treated with isoflavone aglycone showed developmental arrest not reaching somitegenesis, dysmorphology of the neural tube, and shortening of entire embryos.
Collapse
|
15
|
Ajuogu PK, Mgbere OO, Bila DS, McFarlane JR. Hormonal changes, semen quality and variance in reproductive activity outcomes of post pubertal rabbits fed Moringa oleifera Lam. leaf powder. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:80-86. [PMID: 30593891 DOI: 10.1016/j.jep.2018.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/22/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (Moringaceae) is an important plant based staple food, known for its nutritional and medicinal value and is usually prescribed by herbal practitioners in Nigeria and in other tropical countries for the treatment of male infertility problems and reproductive diseases in females. Although the aphrodisiac properties and fertility enhancement potential in males have been reported, the underlying mechanisms for the activity remain unclear. In this study, we investigated the influence of supplementing the diet with M. oleifera Lam. leaf powder on reproductive hormones and semen quality of New Zealand White (NZW) rabbits. MATERIALS AND METHODS Thirty-two (32) NZW rabbits of 50:50 ratio bucks to does, were randomly distributed to four treatment groups (n = 4 bucks, n = 4 does per group). Graded levels (0, 5, 10 and 15 g/kg) of M. oleifera Lam. leaf powder was incorporated into rabbit growers pellet. The does and bucks were housed separately in hutches and sheltered under the same environmental conditions with free access to their respective treatment diets for a period of 12 weeks. RESULTS In female rabbits, treatment revealed significant (P < 0.05) dose-dependent reduction in the concentration of serum FSH, LH and oestrogen. While in contrast the highest dose of leaf powder significantly (P < 0.05) increased progesterone and prolactin concentrations remained unaffected. On the other hand, the concentration of FSH and LH in bucks was significantly (P < 0.05) increased in treatment groups compared to the control group. Serum testosterone concentrations were significantly lower in the 5 and 10 g/kg treatment groups. Semen volume, sperm count and motility were significantly improved in a dose dependent manner with increasing amounts of M. oleifera Lam. leaf powder in the diet. CONCLUSIONS We conclude that M. oleifera Lam. leaf powder supplementation to the diet was more beneficial to male rabbit fertility than the female, where it tended to have a negative impact through the hypothalamic-pituitary-gonadal axis. However, with the varying impact of M. oleifera Lam. leaf powder on the hypothalamic-pituitary-gonadal axis of male and female animals, further investigation is necessary to determine the mechanism through which it operates.
Collapse
Affiliation(s)
- Peter Kelechi Ajuogu
- School of Science and Technology, University of New England, Armidale, New South Wales 2350, Australia; Department of Animal Science, Faculty of Agriculture, University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt, Nigeria
| | - Osaro O Mgbere
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston College of Pharmacy, Houston, TX 77204, USA.
| | - Disere S Bila
- Department of Animal Science, Faculty of Agriculture, University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt, Nigeria
| | - James R McFarlane
- School of Science and Technology, University of New England, Armidale, New South Wales 2350, Australia
| |
Collapse
|
16
|
Di Gioia F, Petropoulos SA. Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:351-421. [PMID: 31445599 DOI: 10.1016/bs.afnr.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phytoestrogens are non-steroidal secondary metabolites with similarities in structure and biological activities with human estrogens divided into various classes of compounds, including lignans, isoflavones, ellagitannins, coumestans and stilbenes. Similarly, phytosteroids are steroidal compounds of plant origin which have estrogenic effects and can act as agonists, antagonists, or have a mixed agonistic/antagonistic activity to animal steroid receptors. On the other hand, saponins are widely distributed plant glucosides divided into triterpenoid and steroidal saponins that contribute to plant defense mechanism against herbivores. They present a great variation from a structural point of view, including compounds from different classes. In this chapter, the main vegetable sources of these compounds will be presented, while details regarding their biosynthesis and plant functions will be also discussed. Moreover, considering the significant bioactive properties that these compounds exhibit, special focus will be given on their health effects, either beneficial or adverse. The practical applications of these compounds in agriculture and phytomedicine will be also demonstrated, as well as the future prospects for related research.
Collapse
Affiliation(s)
- Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Spyridon A Petropoulos
- Department of Crop Production and Rural Environment, University of Thessaly, Volos, Greece.
| |
Collapse
|
17
|
Wu G, Wei Q, Yu D, Shi F. Neonatal genistein exposure disrupts ovarian and uterine development in the mouse by inhibiting cellular proliferation. J Reprod Dev 2019; 65:7-17. [PMID: 30333376 PMCID: PMC6379766 DOI: 10.1262/jrd.2018-070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Soy-based formula contains high concentrations of the isoflavone genistein. Genistein possesses estrogenic and tyrosine kinase inhibitory activity and interferes with cellular proliferation
and development. To date, the acute and chronic effects of genistein on ovarian and uterine development have not been fully elucidated. In this study, mice at postnatal day 1 were
subcutaneously injected with 100 mg/kg genistein for 10 consecutive days, and then their ovaries and uteri were collected on days 10, 21, and 90. Histological evaluation was performed after
hematoxylin and eosin staining. The proliferating activity was indicated by the proliferating indicator protein Ki67. Results showed that the subcutaneous injection of genistein to neonatal
mice induced the formation of multi-oocyte follicles and delayed the primordial follicle assembly in the ovaries. Genistein significantly enlarged the cross-sectional area of the uterine
cavity and wall and disrupted the regularity between the uterine stroma and myometrium. Genistein exposure inhibited proliferative activity because fewer Ki67-positive nuclei were detected
in ovarian and uterine cell populations than in the control. Furthermore, most ovaries from adult mice given neonatal genistein were without corpora lutea, and there appeared to be cystic
follicles and hypertrophy of the theca, and cortical and medullary layers. Considering the high concentration of isoflavone in soy-based infant formulas and livestock feed, we suggest that
the use of isoflavone-rich diets in humans and livestock receive closer examination.
Collapse
Affiliation(s)
- Guoyun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Anandhi Senthilkumar H, Fata JE, Kennelly EJ. Phytoestrogens: The current state of research emphasizing breast pathophysiology. Phytother Res 2018; 32:1707-1719. [DOI: 10.1002/ptr.6115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Harini Anandhi Senthilkumar
- Department of Biological Sciences, Lehman College; City University of New York; Bronx New York NY 10468 USA
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
| | - Jimmie E. Fata
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
- Department of Biological Sciences; College of Staten Island; Staten Island New York NY 10314 USA
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College; City University of New York; Bronx New York NY 10468 USA
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
| |
Collapse
|
19
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
20
|
Whirledge SD, Kisanga EP, Oakley RH, Cidlowski JA. Neonatal Genistein Exposure and Glucocorticoid Signaling in the Adult Mouse Uterus. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047002. [PMID: 29624291 PMCID: PMC6071733 DOI: 10.1289/ehp1575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Female reproductive tract development is sensitive to the endocrine-disrupting potential of environmental estrogens. Early-life exposure to the dietary phytoestrogen genistein impairs fertility and persistently alters the transcriptome in the oviduct and uterus of rodents. Glucocorticoid signaling, which has recently been shown to be essential for normal fertility in the female mouse uterus, is antagonized by genistein. OBJECTIVE Our goal was to determine whether early-life exposure to genistein disrupts glucocorticoid signaling in the mouse uterus, which may contribute to infertility. METHODS Female C57Bl/6 mice were exposed to either 50 mg/kg per day genistein, 10 μg/kg per day estradiol, or vehicle (corn oil) on postnatal days 1-5 (PND1-5), and then treated with the synthetic glucocorticoid dexamethasone (Dex: 1 mg/kg) or vehicle (saline) on PND5, at weaning on PND21, or as adults on PND56 following adrenalectomy and ovariectomy to evaluate glucocorticoid responsiveness. Uteri were isolated following treatment for gene expression or chromatin immunoprecipitation. RESULTS Neonatal exposure to genistein altered the uterine transcriptome of adult mice and caused substantial changes to the transcriptional response to glucocorticoids. Although expression of the glucocorticoid receptor was not affected, genistein exposure disrupted glucocorticoid receptor recruitment to specific regulatory sites in target genes. Many genes involved in chromatin remodeling were dysregulated in genistein-exposed mice, suggesting that epigenetic reprograming may contribute to the altered glucocorticoid response of the uterus following early-life exposure to genistein. These changes affected the biological activity of glucocorticoids within the uterus, as glucocorticoids antagonized the proliferative effects of estradiol in the uterus of control mice but not genistein-exposed mice. CONCLUSIONS Our findings suggest that disruption of glucocorticoid signaling due to early-life exposure to environmental estrogens may in part render the uterus unable to support implantation. https://doi.org/10.1289/EHP1575.
Collapse
Affiliation(s)
- Shannon D Whirledge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Edwina P Kisanga
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert H Oakley
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
22
|
Patel S, Hartman JA, Helferich WG, Flaws JA. Preconception exposure to dietary levels of genistein affects female reproductive outcomes. Reprod Toxicol 2017; 74:174-180. [PMID: 28970133 DOI: 10.1016/j.reprotox.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 11/28/2022]
Abstract
Genistein is a phytoestrogen found in soy and soy-based products. Previously, we found that genistein adversely affected estradiol levels and follicle growth in vitro. Proper hormone production and follicle growth are key regulators of normal fertility. Therefore, we hypothesized that genistein adversely affects female fertility and pregnancy outcomes. To test this hypothesis, we dosed sexually mature female CD-1 mice (35days) with 0, 300, 500, or 1000ppm genistein for 30, 60, 150, and 240days. At the end of the dosing periods, we measured mating rate, pregnancy rate, fertility rate, gestation time, parturition time, pup mortality, litter size, average pup weight, and estradiol and progesterone levels. We found that chronic, preconception exposure to genistein affects gestation time, parturition time, litter size, pup weight, and pup mortality. Additionally, genistein exposure for 240days appears to have a protective effect on fertility rate, but does not affect hormone levels in vivo.
Collapse
Affiliation(s)
- Shreya Patel
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL, 61802, United States.
| | - James A Hartman
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL, 61801, United States.
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL, 61801, United States.
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL, 61802, United States.
| |
Collapse
|
23
|
Gu H, Wu W, Yuan B, Tang Q, Guo D, Chen Y, Xia Y, Hu L, Chen D, Sha J, Wang X. Genistein up-regulates miR-20a to disrupt spermatogenesis via targeting Limk1. Oncotarget 2017; 8:58728-58737. [PMID: 28938591 PMCID: PMC5601687 DOI: 10.18632/oncotarget.17637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/16/2017] [Indexed: 11/25/2022] Open
Abstract
Genistein (GEN) is one of the isoflavones that has effect on male reproduction. However, the underlying mechanism remains unknown. miRNAs are a type of small non-coding RNAs that play important roles in spermatogenesis. We measured the GEN levels and miR-17-92 cluster expression in infertile subjects and found that miR-17-92 might be involved in GEN induced abnormal spermatogenesis. To clarify, we fed adult ICR mice with different doses of GEN (0, 0.5, 5, 50 and 250 mg/kg/day) for 35 days to study the underlying mechanism. We found that sperm average path velocity, straight-line velocity and eurvilinear velocity of the mice orally with GEN at 5mg/kg/day were significantly decreased, the expression levels of miR-17 and miR-20a in mice testis were higher in corresponding group. We also found miR-20a was the only miRNA that differentially expressed both in human and mice. By applying bioinformatics methods, Limk1 was predicted to be the target gene of miR-20a that is involved in spermatogenesis. Limk1 were significantly decreased in the corresponding group. Dual-luciferase report assay also proved that miR-20a could directly target Limk1. These results implied that Limk1 might be the target gene of miR-20a that is involved in GEN induced abnormal spermatogenesis.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Central Laboratory, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223002, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Beilei Yuan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Dan Guo
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingqing Hu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
24
|
Simintiras CA, Sturmey RG. Genistein crosses the bioartificial oviduct and alters secretion composition. Reprod Toxicol 2017; 71:63-70. [DOI: 10.1016/j.reprotox.2017.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
|
25
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
26
|
Abstract
Uterine fibroids, also known as uterine leiomyoma (UL), are monoclonal tumors of the smooth muscle tissue layer (myometrium) of the uterus. Although ULs are considered benign, uterine fibroids are the source of major quality-of-life issues for approximately 25% of all women, who suffer from clinically significant symptoms of UL. Despite the prevalence of UL, there is no treatment option for UL which is long term, cost-effective, and leaves fertility intact. The lack of understanding about the etiology of UL contributes to the scarcity of medical therapies available. Studies have identified an important role for sex steroid hormones in the pathogenesis of UL, and have driven the use of hormonal treatment for fibroids, with mixed results. Dysregulation of cell signaling pathways, miRNA expression, and cytogenetic abnormalities have also been implicated in UL etiology. Recent discoveries on the etiology of UL and the development of relevant genetically modified rodent models of UL have started to revitalize UL research. This review outlines the major characteristics of fibroids; major contributors to UL etiology, including steroid hormones; and available preclinical animal models for UL.
Collapse
Affiliation(s)
- Michelle M McWilliams
- Department of Molecular and Integrative Physiology, Center for Reproductive Sciences, IRHRM, University of Kansas Medical Center, Kansas
| | - Vargheese M Chennathukuzhi
- Department of Molecular and Integrative Physiology, Center for Reproductive Sciences, IRHRM, University of Kansas Medical Center, Kansas
| |
Collapse
|
27
|
Carter CJ, Blizard RA. Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016; 101:S0197-0186(16)30197-8. [PMID: 27984170 DOI: 10.1016/j.neuint.2016.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
Abstract
The increasing incidence of autism suggests a major environmental influence. Epidemiology has implicated many candidates and genetics many susceptibility genes. Gene/environment interactions in autism were analysed using 206 autism susceptibility genes (ASG's) from the Autworks database to interrogate ∼1 million chemical/gene interactions in the comparative toxicogenomics database. Any bias towards ASG's was statistically determined for each chemical. Many suspect compounds identified in epidemiology, including tetrachlorodibenzodioxin, pesticides, particulate matter, benzo(a)pyrene, heavy metals, valproate, acetaminophen, SSRI's, cocaine, bisphenol A, phthalates, polyhalogenated biphenyls, flame retardants, diesel constituents, terbutaline and oxytocin, inter alia showed a significant degree of bias towards ASG's, as did relevant endogenous agents (retinoids, sex steroids, thyroxine, melatonin, folate, dopamine, serotonin). Numerous other suspected endocrine disruptors (over 100) selectively targeted ASG's including paraquat, atrazine and other pesticides not yet studied in autism and many compounds used in food, cosmetics or household products, including tretinoin, soy phytoestrogens, aspartame, titanium dioxide and sodium fluoride. Autism polymorphisms influence the sensitivity to some of these chemicals and these same genes play an important role in barrier function and control of respiratory cilia sweeping particulate matter from the airways. Pesticides, heavy metals and pollutants also disrupt barrier and/or ciliary function, which is regulated by sex steroids and by bitter/sweet taste receptors. Further epidemiological studies and neurodevelopmental and behavioural research is warranted to determine the relevance of large number of suspect candidates whose addition to the environment, household, food and cosmetics might be fuelling the autism epidemic in a gene-dependent manner.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 2, 40 Baldslow Road, Hastings, East Sussex, TN34 2EY, UK.
| | - R A Blizard
- Molecular Psychiatry Laboratory, Mental Health Sciences Unit, University College, London, UK
| |
Collapse
|
28
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
29
|
Kang JT, Moon JH, Choi JY, Park SJ, Kim SJ, Saadeldin IM, Lee BC. Effect of Antioxidant Flavonoids (Quercetin and Taxifolin) on In vitro Maturation of Porcine Oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:352-8. [PMID: 26950865 PMCID: PMC4811785 DOI: 10.5713/ajas.15.0341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/04/2015] [Accepted: 07/17/2015] [Indexed: 11/27/2022]
Abstract
Quercetin (QT) and taxifolin (TF) are structurally similar plant-derived flavonoids that have antioxidant properties and act as free radical scavengers. The objective of this study was to investigate effects of QT and TF on nuclear maturation of porcine oocytes. Effects of TF at 0, 1, 10, and 50 μg/mL on oocyte nuclear maturation (polar body extrusion) were investigated. After incubation for 44 h, there were no significant differences between the treatment and control groups except in the 50 μg/mL group which was significantly lower (59.2%, p<0.05) than the other groups (control: >80%). After parthenogenetic activation, further in vitro development of QT- or TF-treated vs control oocytes was investigated. A significantly higher proportion of QT-treated (1 μg/mL) oocytes developed into blastocysts compared to controls (24.3% vs 16.8%, respectively); however, cleavage rate and blastocyst cell number were not affected. The TF-treated group was not significantly different from controls. Levels of reactive oxygen species (ROS) and intracellular glutathione (GSH) in oocytes and embryos in a culture medium supplemented with QT or TF were measured. Both treatment groups had significantly lower (p<0.05) levels of ROS than controls, however GSH levels were different only in QT-treated oocytes. We conclude that exogenous flavonoids such as QT and TF reduce ROS levels in oocytes. Although at high concentration (50 μg/mL) both QT and TF appear to be toxic to oocytes.
Collapse
Affiliation(s)
- Jung-Taek Kang
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Joon Ho Moon
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Ji-Yei Choi
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Sol Ji Park
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Su Jin Kim
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Islam M Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| | - Byeong Chun Lee
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt
| |
Collapse
|
30
|
Čurlej J, Židek R, Belej Ľ, Zajác P, Čapla J. Phytoestrogens dietary intake and health status of retiree from middle-north Slovakia region. POTRAVINARSTVO 2015. [DOI: 10.5219/572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phytoestrogens found in foods of plant origin presents chemical substances that possess a wide range of biochemical benefits. It has been found that they contribute in different health related problems. A wide range of commonly consumed foods contain appreciable amounts of phytoestrogens. Consumption of diet rich to phytoestrogen acts as a protective factor against many diseases such as cardiovascular diseases, post-menopausal symptoms in the context of osteoporosis, cancerous illnesses of colon, prostate and breast. Three main classes of phytoestrogens covers: isoflavones, lignans and coumestans. Selected nine major phytoestrogens had been analyzed simultaneously in the same foods. Questionnaire designed to determine intake frequency as well as amount of selected foods and the most common diseases presented in the population has been used to find relationships between dietary habits and health status. Evaluation of selected goals in the present study has been realized in cooperation with 140 respondents in retired age (divided into Males - covered by 34 individuals and Females - 106 individuals), comming from middle-north Slovakia region. On the base of collected data it can be concluded, that evaluated population is presented by high values of lignans intake and particularly secoisolariciresinol, mainly caused by relative high proportion of cereals and linseed in the diet. Furthermore, the relationship between phytoestrogens intake and eating habits as well as its contribution in protection against selected diseases was demonstrated.
Collapse
|
31
|
Winuthayanon W, Bernhardt ML, Padilla-Banks E, Myers PH, Edin ML, Lih FB, Hewitt SC, Korach KS, Williams CJ. Oviductal estrogen receptor α signaling prevents protease-mediated embryo death. eLife 2015; 4:e10453. [PMID: 26623518 PMCID: PMC4718728 DOI: 10.7554/elife.10453] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022] Open
Abstract
Development of uterine endometrial receptivity for implantation is orchestrated by cyclic steroid hormone-mediated signals. It is unknown if these signals are necessary for oviduct function in supporting fertilization and preimplantation development. Here we show that conditional knockout (cKO) mice lacking estrogen receptor α (ERα) in oviduct and uterine epithelial cells have impaired fertilization due to a dramatic reduction in sperm migration. In addition, all successfully fertilized eggs die before the 2-cell stage due to persistence of secreted innate immune mediators including proteases. Elevated protease activity in cKO oviducts causes premature degradation of the zona pellucida and embryo lysis, and wild-type embryos transferred into cKO oviducts fail to develop normally unless rescued by concomitant transfer of protease inhibitors. Thus, suppression of oviductal protease activity mediated by estrogen-epithelial ERα signaling is required for fertilization and preimplantation embryo development. These findings have implications for human infertility and post-coital contraception. DOI:http://dx.doi.org/10.7554/eLife.10453.001 In female mammals, eggs made in the ovaries travel to the uterus via tubes called oviducts (or Fallopian tubes). If sperm fertilize these eggs on the way, they complete this journey as early embryos and then implant into the wall of the uterus. As sperm and then newly fertilized embryos travel down these tubes, they encounter fluid inside the oviduct, which is generated by the cells that line the tube. The hormonal changes that occur with the menstrual cycle alter the complexity and cellular composition of the uterus. When an egg is fertilized, further changes in the levels of the hormones, estrogen and progesterone, ensure the uterus becomes receptive to the embryo. However, it remains unknown whether such hormone-mediated signals also regulate the oviduct to support fertilization and early embryo development. To investigate this question, Winuthayanon et al. studied female mice that lack an important estrogen receptor in the cells that line their oviducts and uterus. These mice are infertile. This is partly because most sperm become stuck in the uterus and fail to reach the eggs in the oviduct in order to fertilize them. The oviduct also becomes a hostile environment for both eggs and embryos, as reflected in damaged eggs and the complete loss of all new embryos by two days after fertilization. These embryos die, not because their development fails, but because their outer membrane becomes damaged and breaks apart. Winuthayanon et al. showed that this is due to the persistence of enzymes that form part of the immune system inside the oviduct. These enzymes can degrade proteins and damage cell membranes. The presence of this estrogen receptor on the inner lining of the oviduct thus appears to be crucially important for reproduction (these effects were not seen when it is removed from other cells of the oviduct). The loss of this receptor also reveals the vital role that estrogen plays in suppressing parts of the immune response to ensure the oviduct provides a supportive environment for fertilization and embryo development. These findings could also have future application in the development of new contraceptives and might also shed light on the causes of human infertility. DOI:http://dx.doi.org/10.7554/eLife.10453.002
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, United States
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Page H Myers
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Matthew L Edin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Fred B Lih
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, USA
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| |
Collapse
|
32
|
The role of diet and housing-temperature in the production of genetically modified mouse embryos and their developmental capacity after cryopreservation. Theriogenology 2015; 84:1306-13. [DOI: 10.1016/j.theriogenology.2015.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/16/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022]
|
33
|
Zhang Z, Li H, Manjanatha MG, Chen T, Mei N. Neonatal exposure of 17β-estradiol has no effects on mutagenicity of 7,12-dimethylbenz [a] anthracene in reproductive tissues of adult mice. Genes Environ 2015; 37:16. [PMID: 27350812 PMCID: PMC4918036 DOI: 10.1186/s41021-015-0011-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Biological studies in animals and epidemiological findings in humans clearly demonstrate that estrogens including 17β-estradiol (E2) are weak carcinogens via both genetic and epigenetic mechanisms. Carcinogenesis analyses have indicated that female mice exposed to E2 as neonates develop more mammary and ovarian tumors when compared to adult exposures. In the present study, Big Blue transgenic mice were used to investigate the effects of E2 on mutagenicity of 7,12-dimethylbenz [a] anthracene (DMBA), a genotoxic carcinogen, in mammary gland and ovary following neonatal exposure. RESULTS DMBA treatment resulted in significant increases in cII mutant frequencies (MFs) in both mammary glands and ovaries, with A:T → T:A transversion as the predominant type of mutation. However, co-exposure to E2 daily for the first 5 days after birth and to DMBA at 6 months of age did not significantly increase cII MFs compared to DMBA treatment alone. Further, there were also no significant differences in mutational spectra between DMBA exposure alone and E2 + DMBA treatment. CONCLUSION These results suggest that early life exposures of mice to estrogens like E2 do not enhance mutagenicity by subsequent exposure to a chemical like DMBA in later life.
Collapse
Affiliation(s)
- Zhuhong Zhang
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
- />Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Haifang Li
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
- />Xinjiang Institute for Food and Drug Control, Urumqi, Xinjiang 830004 China
| | - Mugimane G. Manjanatha
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
| | - Tao Chen
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
| | - Nan Mei
- />Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 USA
| |
Collapse
|
34
|
Bernhardt ML, Lowther KM, Padilla-Banks E, McDonough CE, Lee KN, Evsikov AV, Uliasz TF, Chidiac P, Williams CJ, Mehlmann LM. Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs. Development 2015; 142:2633-40. [PMID: 26160904 DOI: 10.1242/dev.121707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
Abstract
During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katie M Lowther
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Katherine N Lee
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Alexei V Evsikov
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tracy F Uliasz
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lisa M Mehlmann
- Department of Cell Biology, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
35
|
Weng J, Liu Y, Xu Y, Hu R, Zhang H, Sheng X, Watanabe G, Taya K, Weng Q, Xu M. Expression of P450arom and Estrogen Receptor Alpha in the Oviduct of Chinese Brown Frog (Rana dybowskii) during Prehibernation. Int J Endocrinol 2015; 2015:283085. [PMID: 25802518 PMCID: PMC4353437 DOI: 10.1155/2015/283085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 01/29/2023] Open
Abstract
One specific physiological phenomenon of Chinese brown frog (Rana dybowskii) is that its oviduct expands prior to hibernation instead of expanding during the breeding period. In this study, we investigated the expression of P450arom and estrogen receptors α and β (ERα and ERβ) in the oviduct of Rana dybowskii during the breeding period and prehibernation. The results of the present study showed that there were significant differences in both oviductal weight and size with values markedly higher in prehibernation than in the breeding period. P450arom was observed in stromal tissue in both the breeding period and prehibernation. ERα was expressed in stromal tissue and epithelial cells in both periods, whereas ERβ could not be detected. The mean protein and mRNA levels of P450arom and ERα were significantly higher in prehibernation as compared to the breeding period. Besides, oviductal content of 17β-estradiol was also higher in prehibernation than in the breeding period. These results suggested that estrogen may play autocrine/paracrine roles mediated by ERα in regulating the oviductal hypertrophy during prehibernation.
Collapse
Affiliation(s)
- Ji Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ying Xu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ruiqi Hu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Xia Sheng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kazuyoshi Taya
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meiyu Xu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
- *Meiyu Xu:
| |
Collapse
|
36
|
Mansouri-Attia N, James R, Ligon A, Li X, Pangas SA. Soy promotes juvenile granulosa cell tumor development in mice and in the human granulosa cell tumor-derived COV434 cell line. Biol Reprod 2014; 91:100. [PMID: 25165122 PMCID: PMC4435027 DOI: 10.1095/biolreprod.114.120899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/15/2014] [Accepted: 08/07/2014] [Indexed: 12/25/2022] Open
Abstract
Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development.
Collapse
Affiliation(s)
| | - Rebecca James
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Alysse Ligon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Xiaohui Li
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas
| | - Stephanie A Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
37
|
Zhao F, Zhou J, El Zowalaty AE, Li R, Dudley EA, Ye X. Timing and recovery of postweaning exposure to diethylstilbestrol on early pregnancy in CD-1 mice. Reprod Toxicol 2014; 49:48-54. [PMID: 25062584 DOI: 10.1016/j.reprotox.2014.07.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 02/02/2023]
Abstract
Exposure timing could play an important role in the effects of estrogenic endocrine disrupting chemicals (EEDCs) on early pregnancy. This study examined the sensitivity of different exposure periods from weaning to gestation day 4.5 (D4.5) to 50ppb diethylstilbestrol (DES, a test EEDC) diet on embryo implantation and potential recovery upon temporary cessation of DES exposure in CD-1 mice. Peripubertal (3-5 weeks old) DES exposure reduced the numbers of corpora lutea and implantation sites. Postpubertal (5-7 weeks old) DES exposure did not have significant effects on early pregnancy. Postmating (D0.5-D4.5) DES exposure affected postovulation events leading to impaired embryo implantation. A 5-day premating rest from 5-week DES exposure (3-8 weeks old) resulted in recovery of early pregnancy rate. These data demonstrate that peripubertal and postmating periods are sensitive windows to endocrine disruption of early pregnancy and temporary cessation of exposure could partially alleviate adverse effects of DES on early pregnancy.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Jun Zhou
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Ahmed E El Zowalaty
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Rong Li
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Elizabeth A Dudley
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Hu XJ, Song WR, Gao LY, Nie SP, Eisenbrand G, Xie MY. Assessment of dietary phytoestrogen intake via plant-derived foods in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1325-35. [PMID: 24950423 DOI: 10.1080/19440049.2014.930562] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The potential influence of dietary phytoestrogen exposure on human health during different life phases including early childhood is a matter of scientific debate. In order to improve the risk-benefit assessment of exposure to dietary phytoestrogen, reliable and age-stratified exposure data are desirable. For contributing to the database on phytoestrogen exposure, in the present study plant-derived foods from the Chinese market were analysed by LC-MS/MS for their contents of phytoestrogens, including daidzein, genistein, secoisolariciresinol, glycitein and coumestrol. The analytical data showed the presence of phytoestrogens in a concentration range of less than 0.1 to about 50 μg g(-1). Dietary intake was assessed on the basis of average food intake data obtained from interviewing 1000 randomly selected people with the help of food frequency questionnaires. Based on the overall population sampled, the average total phytoestrogen intake was estimated at 232 μg kg(-1) day(-1). Genistein contributed to about 66%, secoisolariciresinol and glycitein to about 10% each, and daidzein to about 7% of the overall intake. Coumestrol was present only in trace amounts. Age-related exposure assessment indicated that pre-pubertal children (aged 0-14 years) were exposed at the highest level with an average total phytoestrogen intake of 621 μg kg(-1) day(-1). The substantially higher average exposure of children as compared with adults should trigger further research into the potential health effects of early life exposure to phytoestrogen.
Collapse
Affiliation(s)
- Xiao Juan Hu
- a State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , China
| | | | | | | | | | | |
Collapse
|
39
|
Santangelo C, Varì R, Scazzocchio B, Filesi C, Masella R. Management of reproduction and pregnancy complications in maternal obesity: which role for dietary polyphenols? Biofactors 2014; 40:79-102. [PMID: 23983164 DOI: 10.1002/biof.1126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 02/06/2023]
Abstract
Obesity is a global and dramatic public health problem; maternal obesity represents one of the main risk factors of infertility and pregnancy complications as it is associated with adverse maternal and offspring outcomes. In the last few years, adipose tissue dysfunction associated with altered adipocytokine secretion has been suggested to play a critical role in all the phases of reproductive process. Obesity is a nutrition-related disorder. In this regard, dietary intervention strategies, such as high intake of fruit and vegetables, have shown significant effects in both preserving health and counteracting obesity-associated diseases. Evidence has been provided that polyphenols, important constituents of plant-derived food, can influence developmental program of oocyte and embryo, as well as pregnancy progression by modulating several cellular pathways. This review will examine the controversial results so far obtained on adipocytokine involvement in fertility impairment and pregnancy complications. Furthermore, the different effects exerted by polyphenols on oocyte, embryo, and pregnancy development will be also taken in account.
Collapse
Affiliation(s)
- Carmela Santangelo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
40
|
Guerrero-Bosagna CM, Skinner MK. Environmental epigenetics and phytoestrogen/phytochemical exposures. J Steroid Biochem Mol Biol 2014; 139:270-6. [PMID: 23274117 PMCID: PMC3644519 DOI: 10.1016/j.jsbmb.2012.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 12/12/2022]
Abstract
One of the most important environmental factors to promote epigenetic alterations in an individual is nutrition and exposure to plant compounds. Phytoestrogens and other phytochemicals have dramatic effects on cellular signaling events, so have the capacity to dramatically alter developmental and physiological events. Epigenetics provides one of the more critical molecular mechanisms for environmental factors such as phytoestrogens/phytochemicals to influence biology. In the event these epigenetic mechanisms become heritable through epigenetic transgenerational mechanisms the impacts on the health of future generations and areas such as evolutionary biology need to be considered. The current review focuses on available information on the environmental epigenetics of phytoestrogen/phytochemical exposures, with impacts on health, disease and evolutionary biology considered. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Carlos M Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | | |
Collapse
|
41
|
Strakovsky RS, Lezmi S, Flaws JA, Schantz SL, Pan YX, Helferich WG. Genistein exposure during the early postnatal period favors the development of obesity in female, but not male rats. Toxicol Sci 2013; 138:161-74. [PMID: 24361872 DOI: 10.1093/toxsci/kft331] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genistein (Gen), the primary isoflavone in soy, has been shown to adversely affect various endocrine-mediated endpoints in rodents and humans. Soy formula intake by human infants has been associated with early age at menarche and decreased female-typical behavior in girls. Adipose deposition and expansion are also hormonally regulated and Gen has been shown to alter these processes. However, little is known about the impact of early-life soy intake on metabolic homeostasis in adulthood. The current study examined the impact of early-life Gen exposure on adulthood body composition (by magnetic resonance imaging) and the molecular signals mediating adipose expansion. From postnatal day (PND) 1 to 22, rat pups were daily orally dosed with 50mg/kg Gen to mimic blood Gen levels in human infants fed soy formula. Female but not male Gen-exposed rats had increased fat/lean mass ratio, fat mass, adipocyte size and number, and decreased muscle fiber perimeter. PND22 Gen-exposed females, but not males, had increased expression of adipogenic factors, including CCAAT/enhancer binding protein alpha (Cebpα), CCAAT/enhancer binding protein beta (Cebpβ), and peroxisome proliferator-activated receptor gamma (Pparγ). Furthermore, Wingless-related MMTV integration site 10b (Wnt10b), a critical regulator of adipogenic cell fate determination, was hypermethylated and had decreased expression in adipose of PND22 Gen-exposed females. These data suggest that developmental Gen exposure in rats has gender-specific effects on adiposity that closely parallel the effects of a postweaning high-fat diet and underscore the importance of considering timing of exposure and gender when establishing safety recommendations for early-life dietary Gen intake.
Collapse
|
42
|
Li R, Zhao F, Diao H, Xiao S, Ye X. Postweaning dietary genistein exposure advances puberty without significantly affecting early pregnancy in C57BL/6J female mice. Reprod Toxicol 2013; 44:85-92. [PMID: 24365114 DOI: 10.1016/j.reprotox.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023]
Abstract
An epidemiological study indicates higher plasma level of genistein in girls with earlier puberty. This study tests the hypothesis in C57BL/6J mice that postweaning (peripubertal) dietary genistein exposure could result in earlier puberty in females assessed by vaginal opening, estrous cyclicity, corpus luteum and mammary gland development. Newly weaned female mice were fed with 0, 5, 100, or 500 ppm genistein diets. Decreased age at vaginal opening, increased length on estrus stage, and accelerated mammary gland development were detected in 100 and 500 ppm genistein-treated groups. Increased presence of corpus luteum was found in 5 ppm genistein-treated group at 6 weeks old only. Increased expression of epithelial-specific genes but not that of ERα or ERβ was detected in 500 ppm genistein-treated mammary glands at 5 weeks old. No significant adverse effect on embryo implantation was observed. These data demonstrate causal effect of dietary genistein on earlier puberty in female mice.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
43
|
Richardson M, Guo M, Fauser B, Macklon N. Environmental and developmental origins of ovarian reserve. Hum Reprod Update 2013; 20:353-69. [DOI: 10.1093/humupd/dmt057] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Carmichael SL, Cogswell ME, Ma C, Gonzalez-Feliciano A, Olney RS, Correa A, Shaw GM. Hypospadias and maternal intake of phytoestrogens. Am J Epidemiol 2013; 178:434-40. [PMID: 23752918 DOI: 10.1093/aje/kws591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Experimental data indicate that gestational exposures to estrogenic compounds impact risk of hypospadias. We examined whether risk of hypospadias (i.e., a congenital malformation in which the opening of the penile urethra occurs on the ventral side of the penis) was associated with maternal intake of phytoestrogens, given their potential impact on estrogen metabolism. The analysis included data on mothers of 1,250 hypospadias cases and 3,118 controls who delivered their infants from 1997 to 2005 and participated in the National Birth Defects Prevention Study, a multistate, population-based, case-control study. After adjustment for several covariates, high intakes of daidzein, genistein, glycetin, secoisolariciresinol, total isoflavones, total lignans, and total phytoestrogens were associated with reduced risks; odds ratios comparing intakes ≥90th percentile with intakes between the 11th and 89th percentiles ranged from 0.6 to 0.8. For example, the odds ratio for total phytoestrogen intake was 0.7 (95% confidence interval: 0.5, 1.0). This study represents the first large-scale analysis of phytoestrogen intake and hypospadias. The observed associations merit investigation in additional populations before firm conclusions can be reached.
Collapse
Affiliation(s)
- Suzan L Carmichael
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Evaluation of the toxicity of Pradosia huberi extract during the preimplantation in Wistar rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:294172. [PMID: 23509706 PMCID: PMC3591233 DOI: 10.1155/2013/294172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/12/2012] [Indexed: 12/29/2022]
Abstract
The treatment during the embryonic preimplantation phase of Wistar rats with the Pradosia huberi extract did not interfere with the water and feed consumption, as well as upon the body-weight gain. However, it has expressed a decrease of the uterine implant number, followed by the preimplantation losses at all applied doses (1.22, 6.1, and 30.5 mg/kg), and the number of embryonic resorptions in the two highest doses (6.1 and 30.5 mg/kg). After the organ weighing (hypophysis, ovaries, and uterus), only the relative weight of the hypophysis was raised at the different doses (1.22, 6.1, and 30.5 mg/kg). It was concluded that the hydroalcoholic extract of Pradosia huberi compromises the reproductive ability during the embryonic preimplantation phase, suggesting a possible toxic effect upon the reproductive system of Wistar rats.
Collapse
|
46
|
Salleh N, Helmy MM, Fadila KN, Yeong SO. Isoflavone genistein induces fluid secretion and morphological changes in the uteri of post-pubertal rats. Int J Med Sci 2013; 10:665-75. [PMID: 23569430 PMCID: PMC3619115 DOI: 10.7150/ijms.5207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED A reported increase in the incidence of infertility following high genistein intake could be related to alteration in the normal fluid volume and morphology of the uterus in adult female. In view of this, we investigated the effect of this compound on fluid secretion, fluid volume and morphology of the uterus in post-pubertal rats. METHODS Ovariectomised SD rats were treated with 17-β oestradiol (E) (0.8 X 10(-4) mg/kg/day) and genistein (0.5, 5, 10, 25, 50 and 100 mg/kg/day) for three days. Following drug treatment, in-vivo uterine perfusion was performed and the rate of fluid secretion and the volume of fluid in the uterus were determined via changes in weight (μl/min) and F-dextran concentration of the perfusate respectively. The animals were then sacrificed and the uteri were removed for weight determination, morphological analyses and proliferative cell nuclear antigen (PCNA) expression analyses by Western blotting. RESULTS Subcutaneous genistein treatment resulted in a dose-dependent increase in fluid secretion rate, fluid volume and uterine wet weight. Treatment with 100 mg/kg/day genistein resulted in a remarkable increase in the rate of uterine fluid secretion, the volume of the uterine luminal fluid as well as the circumference of the uterine and uterine glandular lumen suggesting an excessive fluid accumulation. Meanwhile, there were evidence of glandular hyperplasia and an increase in the expression of PCNA following treatment with 50 and 100 mg/kg/day genistein. CONCLUSION High genistein intake could potentially cause adverse effects on the uterus by inducing excessive fluid secretion and accumulation as well as hyperplasia.
Collapse
Affiliation(s)
- Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
47
|
Abstract
The oocyte is at the center of the equation that results in female fertility. Many factors influence oocyte quality, including external factors such as maternal nutrition, stress, and environmental exposures, as well as ovarian factors such as steroids, intercellular communication, antral follicle count, and follicular fluid composition. These influences are interconnected; changes in the external environment of the female translate into ovarian changes that affect the oocyte. The lengthy period during which the oocyte remains arrested in the ovary provides ample time and opportunity for environmental factors to take their toll. An appropriate environment for growth and maturation of the oocyte, in vivo and in vitro, is critical to ensure optimal oocyte quality, which determines the success of fertilization and preimplantation embryo development, and has long-term implications for implantation, fetal growth, and offspring health.
Collapse
Affiliation(s)
- Rebecca L Krisher
- National Foundation for Fertility Research, Lone Tree, Colorado 80124;
| |
Collapse
|
48
|
Jefferson WN, Padilla-Banks E, Phelps JY, Cantor AM, Williams CJ. Neonatal phytoestrogen exposure alters oviduct mucosal immune response to pregnancy and affects preimplantation embryo development in the mouse. Biol Reprod 2012; 87:10, 1-10. [PMID: 22553218 DOI: 10.1095/biolreprod.112.099846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of neonatal mice with the phytoestrogen genistein (50 mg/kg/day) results in complete female infertility caused in part by preimplantation embryo loss in the oviduct between Days 2 and 3 of pregnancy. We previously demonstrated that oviducts of genistein-treated mice are "posteriorized" as compared to control mouse oviducts because they express numerous genes normally restricted to posterior regions of the female reproductive tract (FRT), the cervix and vagina. We report here that neonatal genistein treatment resulted in substantial changes in oviduct expression of genes important for the FRT mucosal immune response, including immunoglobulins, antimicrobials, and chemokines. Some of the altered immune response genes were chronically altered beginning at the time of neonatal genistein treatment, indicating that these alterations were a result of the posteriorization phenotype. Other alterations in oviduct gene expression were observed only in early pregnancy, immediately after the FRT was exposed to inflammatory or antigenic stimuli from ovulation and mating. The oviduct changes affected development of the surviving embryos by increasing the rate of cleavage and decreasing the trophectoderm-to-inner cell mass cell ratio at the blastocyst stage. We conclude that both altered immune responses to pregnancy and deficits in oviduct support for preimplantation embryo development in the neonatal genistein model are likely to contribute to infertility phenotype.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
49
|
Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 2012; 355:192-200. [PMID: 22210487 DOI: 10.1016/j.mce.2011.05.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 11/24/2022]
Abstract
There is growing interest in the potential health threats posed by endocrine-disrupting chemicals (EDCs) to the reproductive system. Soybean is the most important dietary source of isoflavones, an important class of phytoestrogen. While consumption of soy food or phytoestrogen supplements has been frequently associated with beneficial health effects, the potentially adverse effects on development, fertility, and the reproductive and endocrine systems are likely underappreciated. Here we review the available epidemiological, clinical and animal data on the effects of soy and phytoestrogens on the development and function of the male and female reproductive system, and weigh the evidence as to their detrimental impact.
Collapse
Affiliation(s)
- Christopher Robin Cederroth
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
50
|
Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol 2012; 354:34-53. [PMID: 22008458 DOI: 10.1016/j.mce.2011.09.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/30/2023]
Abstract
The uterus is an essential organ for reproduction in mammals that derives from the Müllerian duct. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular and molecular mechanisms that regulate development of the Müllerian duct and uterus. This review aims to summarize the hormonal, cellular and molecular mechanisms and pathways governing development of the Müllerian duct and uterus as well as highlight developmental programming effects of endocrine disruptor compounds. Organogenesis, morphogenesis, and functional differentiation of the uterus are complex, multifactorial processes. Disruption of uterine development in the fetus and neonate by genetic defects and exposure to endocrine disruptor compounds can cause infertility and cancer in the adult and their offspring via developmental programming. Clear conservation of some factors and pathways are observed between species; therefore, comparative biology is useful to identify candidate genes and pathways underlying congenital abnormalities in humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164-6310, USA.
| | | | | |
Collapse
|