1
|
Hu M, Zhang Y, Lu L, Zhou Y, Wu D, Brännström M, Shao LR, Billig H. Overactivation of the androgen receptor exacerbates gravid uterine ferroptosis via interaction with and suppression of the NRF2 defense signaling pathway. FEBS Lett 2022; 596:806-825. [DOI: 10.1002/1873-3468.14289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/02/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
- Department of Obstetrics and Gynecology Key Laboratory and Unit of Infertility in Chinese Medicine First Affiliated Hospital Heilongjiang University of Chinese Medicine 150040 Harbin China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
| | - Yu Zhou
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Guangzhou Medical University 510120 Guangzhou China
- Institute of Integrated Traditional Chinese Medicine and Western Medicine Guangzhou Medical University 510120 Guangzhou China
| | - Denghui Wu
- Department of Obstetrics and Gynecology Key Laboratory and Unit of Infertility in Chinese Medicine First Affiliated Hospital Heilongjiang University of Chinese Medicine 150040 Harbin China
| | - Mats Brännström
- Department of Obstetrics and Gynecology Sahlgrenska University Hospital Sahlgrenska Academy University of Gothenburg 41345 Gothenburg Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg 40530 Gothenburg Sweden
| |
Collapse
|
2
|
Zhang Y, Zhao W, Xu H, Hu M, Guo X, Jia W, Liu G, Li J, Cui P, Lager S, Sferruzzi-Perri AN, Li W, Wu XK, Han Y, Brännström M, Shao LR, Billig H. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome. J Physiol 2019; 597:3927-3950. [PMID: 31206177 DOI: 10.1113/jp277879] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Women with polycystic ovary syndrome (PCOS) commonly suffer from miscarriage, but the underlying mechanisms remain unknown. Herein, pregnant rats chronically treated with 5α-dihydrotestosterone (DHT) and insulin exhibited hyperandrogenism and insulin resistance, as well as increased fetal loss, and these features are strikingly similar to those observed in pregnant PCOS patients. Fetal loss in our DHT+insulin-treated pregnant rats was associated with mitochondrial dysfunction, disturbed superoxide dismutase 1 and Keap1/Nrf2 antioxidant responses, over-production of reactive oxygen species (ROS) and impaired formation of the placenta. Chronic treatment of pregnant rats with DHT or insulin alone indicated that DHT triggered many of the molecular pathways leading to placental abnormalities and fetal loss, whereas insulin often exerted distinct effects on placental gene expression compared to co-treatment with DHT and insulin. Treatment of DHT+insulin-treated pregnant rats with the antioxidant N-acetylcysteine improved fetal survival but was deleterious in normal pregnant rats. Our results provide insight into the fetal loss associated with hyperandrogenism and insulin resistance in women and suggest that physiological levels of ROS are required for normal placental formation and fetal survival during pregnancy. ABSTRACT Women with polycystic ovary syndrome (PCOS) commonly suffer from miscarriage, but the underlying mechanism of PCOS-induced fetal loss during pregnancy remains obscure and specific therapies are lacking. We used pregnant rats treated with 5α-dihydrotestosterone (DHT) and insulin to investigate the impact of hyperandrogenism and insulin resistance on fetal survival and to determine the molecular link between PCOS conditions and placental dysfunction during pregnancy. Our study shows that pregnant rats chronically treated with a combination of DHT and insulin exhibited endocrine aberrations such as hyperandrogenism and insulin resistance that are strikingly similar to those in pregnant PCOS patients. Of pathophysiological significance, DHT+insulin-treated pregnant rats had greater fetal loss and subsequently decreased litter sizes compared to normal pregnant rats. This negative effect was accompanied by impaired trophoblast differentiation, increased glycogen accumulation, and decreased angiogenesis in the placenta. Mechanistically, we report that over-production of reactive oxygen species (ROS) in the placenta, mitochondrial dysfunction, and disturbed superoxide dismutase 1 (SOD1) and Keap1/Nrf2 antioxidant responses constitute important contributors to fetal loss in DHT+insulin-treated pregnant rats. Many of the molecular pathways leading to placental abnormalities and fetal loss in DHT+insulin treatment were also seen in pregnant rats treated with DHT alone, whereas pregnant rats treated with insulin alone often exerted distinct effects on placental gene expression compared to insulin treatment in combination with DHT. We also found that treatment with the antioxidant N-acetylcysteine (NAC) improved fetal survival in DHT+insulin-treated pregnant rats, an effect related to changes in Keap1/Nrf2 and nuclear factor-κB signalling. However, NAC administration resulted in fetal loss in normal pregnant rats, most likely due to PCOS-like endocrine abnormality induced by the treatment. Our results suggest that the deleterious effects of hyperandrogenism and insulin resistance on fetal survival are related to a constellation of mitochondria-ROS-SOD1/Nrf2 changes in the placenta. Our findings also suggest that physiological levels of ROS are required for normal placental formation and fetal survival during pregnancy.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China.,Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Wei Zhao
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Hongfei Xu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Min Hu
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China.,Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiaozhu Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Wenyan Jia
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Guoqi Liu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Juan Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Wei Li
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Xiao-Ke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Yanhua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040, Harbin, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| |
Collapse
|
3
|
Wang Y, Gray DR, Robbins AK, Crowgey EL, Chanock SJ, Greene MH, McGlynn KA, Nathanson K, Turnbull C, Wang Z, Devoto M, Barthold JS. Subphenotype meta-analysis of testicular cancer genome-wide association study data suggests a role for RBFOX family genes in cryptorchidism susceptibility. Hum Reprod 2019; 33:967-977. [PMID: 29618007 DOI: 10.1093/humrep/dey066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
STUDY QUESTION Can subphenotype analysis of genome-wide association study (GWAS) data from subjects with testicular germ cell tumor (TGCT) provide insight into cryptorchidism (undescended testis, UDT) susceptibility? SUMMARY ANSWER Suggestive intragenic GWAS signals common to UDT, TGCT case-case and TGCT case-control analyses occur in genes encoding RBFOX RNA-binding proteins (RBPs) and their neurodevelopmental targets. WHAT IS KNOWN ALREADY UDT is a strong risk factor for TGCT, but while genetic risk factors for TGCT are well-known, genetic susceptibility to UDT is poorly understood and appears to be more complex. STUDY DESIGN, SIZE, DURATION We performed a secondary subphenotype analysis of existing GWAS data from the Testicular Cancer Consortium (TECAC) and compared these results with our previously published UDT GWAS data, and with data previously acquired from studies of the fetal rat gubernaculum. PARTICIPANTS/MATERIALS, SETTING, METHODS Studies from the National Cancer Institute (NCI), United Kingdom (UK) and University of Pennsylvania (Penn) that enrolled white subjects were the source of the TGCT GWAS data. We completed UDT subphenotype case-case (TGCT/UDT vs TGCT/non-UDT) and case-control (TGCT/UDT vs control), collectively referred to as 'TECAC' analyses, followed by a meta-analysis comprising 129 TGCT/UDT cases, 1771 TGCT/non-UDT cases, and 3967 unaffected controls. We reanalyzed our UDT GWAS results comprising 844 cases and 2718 controls by mapping suggestive UDT and TECAC signals (defined as P < 0.001) to genes using Ingenuity Pathway Analysis (IPA®). We compared associated pathways and enriched gene categories common to all analyses after Benjamini-Hochberg multiple testing correction, and analyzed transcript levels and protein expression using qRT-PCR and rat fetal gubernaculum confocal imaging, respectively. MAIN RESULTS AND THE ROLE OF CHANCE We found suggestive signals within 19 genes common to all three analyses, including RBFOX1 and RBFOX3, neurodevelopmental paralogs that encode RBPs targeting (U)GCATG-containing transcripts. Ten of the 19 genes participate in neurodevelopment and/or contribute to risk of neurodevelopmental disorders. Experimentally predicted RBFOX gene targets were strongly overrepresented among suggestive intragenic signals for the UDT (117 of 628 (19%), P = 3.5 × 10-24), TECAC case-case (129 of 711 (18%), P = 2.5 × 10-27) and TECAC case-control (117 of 679 (17%), P = 2 × 10-21) analyses, and a majority of the genes common to all three analyses (12 of 19 (63%), P = 3 × 10-9) are predicted RBFOX targets. Rbfox1, Rbfox2 and their encoded proteins are expressed in the rat fetal gubernaculum. Predicted RBFOX targets are also enriched among transcripts differentially regulated in the fetal gubernaculum during normal development (P = 3 × 10-31), in response to in vitro hormonal stimulation (P = 5 × 10-45) and in the cryptorchid LE/orl rat (P = 2 × 10-42). LARGE SCALE DATA GWAS data included in this study are available in the database of Genotypes and Phenotypes (dbGaP accession numbers phs000986.v1.p1 and phs001349.v1p1). LIMITATIONS, REASONS FOR CAUTION These GWAS data did not reach genome-wide significance for any individual analysis. UDT appears to have a complex etiology that also includes environmental factors, and such complexity may require much larger sample sizes than are currently available. The current methodology may also introduce bias that favors false discovery of larger genes. WIDER IMPLICATIONS OF THE FINDINGS Common suggestive intragenic GWAS signals suggest that RBFOX paralogs and other neurodevelopmental genes are potential UDT risk candidates, and potential TGCT susceptibility modifiers. Enrichment of predicted RBFOX targets among differentially expressed transcripts in the fetal gubernaculum additionally suggests a role for this RBP family in regulation of testicular descent. As RBFOX proteins regulate alternative splicing of Calca to generate calcitonin gene-related peptide, a protein linked to development and function of the gubernaculum, additional studies that address the role of these proteins in UDT are warranted. STUDY FUNDING/COMPETING INTEREST(S) The Eunice Kennedy Shriver National Institute for Child Health and Human Development (R01HD060769); National Center for Research Resources (P20RR20173), National Institute of General Medical Sciences (P20GM103464), Nemours Biomedical Research, the Testicular Cancer Consortium (U01CA164947), the Intramural Research Program of the NCI, a support services contract HHSN26120130003C with IMS, Inc., the Abramson Cancer Center at Penn, National Cancer Institute (CA114478), the Institute of Cancer Research, UK and the Wellcome Trust Case-Control Consortium (WTCCC) 2. None of the authors reports a conflict of interest.
Collapse
Affiliation(s)
- Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Dione R Gray
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Alan K Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Erin L Crowgey
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Katherine Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Zhaoming Wang
- St. Jude Children's Research Hospital, Department of Computational Biology, Memphis, TN, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia and Departments of Biostatistics and Epidemiology, and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
4
|
Harrison SM, Bush NC, Wang Y, Mucher ZR, Lorenzo AJ, Grimsby GM, Schlomer BJ, Büllesbach EE, Baker LA. Insulin-Like Peptide 3 (INSL3) Serum Concentration During Human Male Fetal Life. Front Endocrinol (Lausanne) 2019; 10:596. [PMID: 31611843 PMCID: PMC6737488 DOI: 10.3389/fendo.2019.00596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
Context: Insulin-like peptide 3 (INSL3), a protein hormone produced by Leydig cells, may play a crucial role in testicular descent as male INSL3 knockout mice have bilateral cryptorchidism. Previous studies have measured human fetal INSL3 levels in amniotic fluid only. Objective: To measure INSL3 serum levels and mRNA in fetal umbilical cord blood and fetal testes, respectively. Design: INSL3 concentrations were assayed on 50 μl of serum from male human fetal umbilical cord blood by a non-commercial highly sensitive and specific radioimmunoassay. For secondary confirmation, quantitative real-time PCR was used to measure INSL3 relative mRNA expression in 7 age-matched human fetal testes. Setting: UT Southwestern Medical Center, Dallas, TX and Medical University of South Carolina, Charleston, SC. Patients or other Participants: Twelve human male umbilical cord blood samples and 7 human male testes were obtained from fetuses 14-21 weeks gestation. Male sex was verified by leukocyte genomic DNA SRY PCR. Interventions: None. Main Outcome Measures: Human male fetal INSL3 cord blood serum concentrations and testicular relative mRNA expression. Results: INSL3 serum concentrations during human male gestational weeks 15-20 were 2-4 times higher than published prepubertal male levels and were 5-100 times higher than previous reports of INSL3 concentrations obtained from amniotic fluid. Testicular fetal INSL3 mRNA relative expression was low from weeks 14-16, rose significantly weeks 17 and 18, and returned to low levels at week 21. Conclusions: These findings further support the role of INSL3 in human testicular descent and could prove relevant in uncovering the pathophysiology of cryptorchidism.
Collapse
Affiliation(s)
- Steven M. Harrison
- Clinical R&D Sequencing Platform, Broad Institute, MIT and Harvard, Cambridge, MA, United States
| | | | - Yi Wang
- Endocrinology Division, Department of Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zachary R. Mucher
- Department of Urology, Memorial Hermann Health System, Houston, TX, United States
| | - Armando J. Lorenzo
- Department of Pediatric Urology, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Bruce J. Schlomer
- Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Erika E. Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Linda A. Baker
- John W. Duckett MD Laboratory in Pediatric Urology, Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Linda A. Baker
| |
Collapse
|
5
|
Kalfa N, Gaspari L, Ollivier M, Philibert P, Bergougnoux A, Paris F, Sultan C. Molecular genetics of hypospadias and cryptorchidism recent developments. Clin Genet 2018; 95:122-131. [PMID: 30084162 DOI: 10.1111/cge.13432] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
During the last decade, a tremendous amount of work has been devoted to the study of the molecular genetics of isolated hypospadias and cryptorchidism, two minor forms of disorders of sex development (DSD). Beyond the genes involved in gonadal determination and sex differentiation, including those underlying androgen biosynthesis and signaling, new genes have been identified through genome-wide association study and familial clustering. Even if no single genetic defect can explain the whole spectrum of DSD, these recent studies reinforce the strong role of the genetic background in the occurrence of these defects. The timing of signaling disruption may explain the different phenotypes.
Collapse
Affiliation(s)
- Nicolas Kalfa
- Département de Chirurgie et Urologie Pédiatrique, Hôpital Lapeyronie, CHU de Montpellier et Université Montpellier, Montpellier, France.,National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France
| | - Laura Gaspari
- National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France.,Unité d'Endocrinologie et Gynécologie Pédiatriques, Service de Pédiatrie, CHU de Montpellier, Hôpital Arnaud de Villeneuve et Université Montpellier, Montpellier, France
| | - Margot Ollivier
- Département de Chirurgie et Urologie Pédiatrique, Hôpital Lapeyronie, CHU de Montpellier et Université Montpellier, Montpellier, France.,National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France
| | - Pascal Philibert
- National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France.,Unité d'Endocrinologie et Gynécologie Pédiatriques, Service de Pédiatrie, CHU de Montpellier, Hôpital Arnaud de Villeneuve et Université Montpellier, Montpellier, France
| | - Anne Bergougnoux
- National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France
| | - Francoise Paris
- National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France.,Unité d'Endocrinologie et Gynécologie Pédiatriques, Service de Pédiatrie, CHU de Montpellier, Hôpital Arnaud de Villeneuve et Université Montpellier, Montpellier, France
| | - Charles Sultan
- National Reference Center of Genital Development CRMR DEV-GEN Constitutif, Institut Universitaire de Recherche Clinique, Departement de Génétique, Université de Montpellier, Montpellier, France.,Unité d'Endocrinologie et Gynécologie Pédiatriques, Service de Pédiatrie, CHU de Montpellier, Hôpital Arnaud de Villeneuve et Université Montpellier, Montpellier, France
| |
Collapse
|
6
|
Morgan JT, Robbins AK, Mateson AB, Sawamoto K, Tomatsu S, Gray DR, Gleghorn JP, Barthold JS. Regional Variation in Androgen Receptor Expression and Biomechanical Properties May Contribute to Cryptorchidism Susceptibility in the LE/orl Rat. Front Endocrinol (Lausanne) 2018; 9:738. [PMID: 30568634 PMCID: PMC6290328 DOI: 10.3389/fendo.2018.00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The process of testicular descent requires androgen and insulin-like 3, hormones secreted by fetal Leydig cells. Knowledge concerning distinct and common functions of these hormones in regulating development of the fetal gubernaculum remains limited and/or conflicting. The current studies were designed to better define characteristics of androgen receptor (AR) expression, function and regulation, as well as the biomechanical properties of normal and cryptorchid gubernaculum during fetal development. Methods: We studied fetal gubernacula from Long Evans outbred (LE/wt) rats and an inbred (LE/orl) strain with an inherited form of cryptorchidism associated with an AR signaling defect. Gubernacular cells or whole organs obtained from LE/wt and LE/orl fetal gubernacula underwent AR immunostaining and quantitative image analysis. The effects of dihydrotestosterone (DHT) on AR expression, muscle fiber morphology, hyaluronan (HA) levels and glycosaminoglycan (GAG) content were measured in LE/wt gubernacula. Finally, the spatial mechanics of freshly harvested LE/wt and LE/orl fetal gubernacula were compared using micropipette aspiration. Results: AR is expressed in the nucleus of mesenchymal core, tip and cord cells of the embryonic (E) day 17 and 21 fetal gubernaculum, and is enhanced by DHT in primary cultures of gubernacular mesenchymal cells. Enhanced AR expression at the tip was observed in LE/wt but not LE/orl gubernacula. In in vitro studies of whole mount fetal gubernaculum, DHT did not alter muscle fiber morphology, HA content or GAG production. Progressive swelling with reduced cellular density of the LE/wt gubernaculum at E19-21 was associated with increased central stiffness in LE/wt but not in LE/orl fetuses. Conclusions: These data confirm nuclear AR expression in gubernacular mesenchyme with distal enhancement at the tip/cord region in LE/wt but not LE/orl rat fetuses. DHT enhanced cellular AR expression but had no major effects on muscle morphology or matrix composition in the rat fetal gubernaculum in vitro. Regional increased stiffness and decreased cell density between E19 and E21 were observed in LE/wt but not LE/orl fetal gubernacula. Developmental differences in cell-specific AR expression in LE/orl fetal gubernacula may contribute to the dysmorphism and aberrant function that underlies cryptorchidism susceptibility in this strain.
Collapse
Affiliation(s)
- Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Joshua T. Morgan
| | - Alan K. Robbins
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Abigail B. Mateson
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Kazuki Sawamoto
- Department of Orthopedics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Shunji Tomatsu
- Department of Orthopedics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Dione R. Gray
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Julia Spencer Barthold
- Nemours Biomedical Research, Division of Urology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
7
|
Barthold JS, Ivell R. Perspective: A Neuro-Hormonal Systems Approach to Understanding the Complexity of Cryptorchidism Susceptibility. Front Endocrinol (Lausanne) 2018; 9:401. [PMID: 30083133 PMCID: PMC6065160 DOI: 10.3389/fendo.2018.00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Nonsyndromic cryptorchidism is a common multifactorial, condition with long-term risks of subfertility and testicular cancer. Revealing the causes of cryptorchidism will likely improve prediction and prevention of adverse outcomes. Herein we provide our current perspective of cryptorchidism complexity in a synthesis of cumulative clinical and translational data generated by ourselves and others. From our recent comparison of genome-wide association study (GWAS) data of cryptorchidism with or without testicular germ cell tumor, we identified RBFOX family genes as candidate susceptibility loci. Notably, RBFOX proteins regulate production of calcitonin gene-related peptide (CGRP), a sensory neuropeptide linked to testicular descent in animal models. We also re-analyzed existing fetal testis transcriptome data from a rat model of inherited cryptorchidism (the LE/orl strain) for enrichment of Leydig cell progenitor genes. The majority are coordinately downregulated, consistent with known reduced testicular testosterone levels in the LE/orl fetus, and similarly suppressed in the gubernaculum. Using qRT-PCR, we found dysregulation of dorsal root ganglia (DRG) sensory transcripts ipsilateral to undescended testes. These data suggest that LE/orl cryptorchidism is associated with altered signaling in possibly related cell types in the testis and gubernaculum as well as DRG. Complementary rat and human studies thus lead us to propose a multi-level, integrated neuro-hormonal model of testicular descent. Variants in genes encoding RBFOX family proteins and/or their transcriptional targets combined with environmental exposures may disrupt this complex pathway to enhance cryptorchidism susceptibility. We believe that a systems approach is necessary to provide further insight into the causes and consequences of cryptorchidism.
Collapse
Affiliation(s)
- Julia S. Barthold
- Nemours Biomedical Research, Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- *Correspondence: Julia S. Barthold
| | - Richard Ivell
- School of Biosciences and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
8
|
Rossi SL, Lumpkin CJ, Harris AW, Holbrook J, Gentillon C, McCahan SM, Wang W, Butchbach MER. Identification of early gene expression changes in primary cultured neurons treated with topoisomerase I poisons. Biochem Biophys Res Commun 2016; 479:319-324. [PMID: 27641670 DOI: 10.1016/j.bbrc.2016.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
Topoisomerase 1 (TOP1) poisons like camptothecin (CPT) are currently used in cancer chemotherapy but these compounds can have damaging, off-target effects on neurons leading to cognitive, sensory and motor deficits. To understand the molecular basis for the enhanced sensitivity of neurons to CPT, we examined the effects of compounds that inhibit TOP1-CPT, actinomycin D (ActD) and β-lapachone (β-Lap)-on primary cultured rat motor (MN) and cortical (CN) neurons as well as fibroblasts. Neuronal cells expressed higher levels of Top1 mRNA than fibroblasts but transcript levels are reduced in all cell types after treatment with CPT. Microarray analysis was performed to identify differentially regulated transcripts in MNs in response to a brief exposure to CPT. Pathway analysis of the differentially expressed transcripts revealed activation of ERK and JNK signaling cascades in CPT-treated MNs. Immediate-early genes like Fos, Egr-1 and Gadd45b were upregulated in CPT-treated MNs. Fos mRNA levels were elevated in all cell types treated with CPT; Egr-1, Gadd45b and Dyrk3 transcript levels, however, increased in CPT-treated MNs and CNs but decreased in CPT-treated fibroblasts. These transcripts may represent new targets for the development of therapeutic agents that mitigate the off-target effects of chemotherapy on the nervous system.
Collapse
Affiliation(s)
- Sharyn L Rossi
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Casey J Lumpkin
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Jennifer Holbrook
- Biomolecular Core Laboratory, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Cinsley Gentillon
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Suzanne M McCahan
- Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Bioinformatics Core Facility, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenlan Wang
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Barthold JS, Pugarelli J, MacDonald ML, Ren J, Adetunji MO, Polson SW, Mateson A, Wang Y, Sol-Church K, McCahan SM, Akins RE, Devoto M, Robbins AK. Polygenic inheritance of cryptorchidism susceptibility in the LE/orl rat. Mol Hum Reprod 2016; 22:18-34. [PMID: 26502805 PMCID: PMC4694052 DOI: 10.1093/molehr/gav060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
STUDY HYPOTHESIS Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. STUDY FINDING Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. WHAT IS KNOWN ALREADY Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl:SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F2 males used for genotyping and/or linkage analysis. At least five fetuses per gestational time point from two or more litters were used for quantitative real-time RT-PCR (qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. MAIN RESULTS AND THE ROLE OF CHANCE LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared with Crl:LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl:LE and Crl:SD strains for alleles within two of the most significant (P < 0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. LIMITATIONS, REASONS FOR CAUTION The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. WIDER IMPLICATIONS OF THE FINDINGS Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism. LARGE SCALE DATA Sequences were deposited in the Rat Genome Database (RGD, http://rgd.mcw.edu/). STUDY FUNDING AND COMPETING INTERESTS This work was supported by: R01HD060769 from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD), 2P20GM103446 and P20GM103464 from the National Institute of General Medical Sciences (NIGMS), and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Joan Pugarelli
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Madolyn L MacDonald
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Jia Ren
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Modupeore O Adetunji
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Abigail Mateson
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yanping Wang
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Katia Sol-Church
- Biomolecular Core Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Suzanne M McCahan
- Bioinformatics Core, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert E Akins
- Tissue Engineering and Regenerative Medicine Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Alan K Robbins
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| |
Collapse
|
10
|
Robbins AK, Mateson AB, Khandha A, Pugarelli JE, Buchanan TS, Akins RE, Barthold JS. Fetal Rat Gubernaculum Mesenchymal Cells Adopt Myogenic and Myofibroblast-Like Phenotypes. J Urol 2015; 196:270-8. [PMID: 26748163 DOI: 10.1016/j.juro.2015.12.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE Gubernaculum-cremaster complex development is hormonally regulated and abnormal in a cryptorchid rat model. Using cell tracking techniques and imaging we studied myogenic phenotypes and fates in the fetal rat gubernaculum-cremaster complex. MATERIALS AND METHODS Embryonic day 17 gubernaculum-cremaster complexes were labeled with CellTracker™ or the DNA synthesis marker EdU (5-ethynyl-2'-deoxyuridine), or immobilized in Matrigel® and grown in culture. Embryonic day 17 to 21 gubernaculum-cremaster complex sections and cells were imaged using wide field and deconvolution immunofluorescence microscopy, and muscle and/or myofibroblast specific antibodies. Deconvolved image stacks were used to create a 3-dimensional model of embryonic day 21 gubernaculum-cremaster complex muscle. RESULTS PAX7 (paired box 7) positive and myogenin positive muscle precursors were visible in a desmin-rich myogenic zone between muscle layers that elongated and became thicker during development. Gubernaculum-cremaster complex inner mesenchymal cells expressed desmin and αSMA (α smooth muscle actin) at lower levels than in the myogenic zone. After pulse labeling with CellTracker or EdU mesenchymal cells became incorporated into differentiated muscle. Conversely, mesenchymal cells migrated beyond Matrigel immobilized gubernaculum-cremaster complexes, expressed PAX7 and fused to form striated myotubes. Mesenchymal gubernaculum-cremaster complex cell lines proliferated more than 40 passages and showed contractile behavior but did not form striated muscle. Our 3-dimensional gubernaculum-cremaster complex model had 2 orthogonal ventral layers and an arcing inner layer of muscle. CONCLUSIONS Our data suggest that mesenchymal cells in the peripheral myogenic zone of the fetal gubernaculum-cremaster complex contribute to formation of a distinctively patterned cremaster muscle. Nonmyogenic, desmin and αSMA positive gubernaculum-cremaster complex mesenchymal cells proliferate and have a myofibroblast-like phenotype in culture. Intrinsic mechanical properties of these divergent cell types may facilitate perinatal inversion of the gubernaculum-cremaster complex.
Collapse
Affiliation(s)
- Alan K Robbins
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Abigail B Mateson
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ashutosh Khandha
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Joan E Pugarelli
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Thomas S Buchanan
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware; Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Robert E Akins
- Tissue Engineering and Regenerative Medicine Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware; Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Julia Spencer Barthold
- Pediatric Urology Research Laboratory, Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware.
| |
Collapse
|
11
|
Barthold JS, Wang Y, Kolon TF, Kollin C, Nordenskjöld A, Olivant Fisher A, Figueroa TE, BaniHani AH, Hagerty JA, Gonzaléz R, Noh PH, Chiavacci RM, Harden KR, Abrams DJ, Kim CE, Li J, Hakonarson H, Devoto M. Pathway analysis supports association of nonsyndromic cryptorchidism with genetic loci linked to cytoskeleton-dependent functions. Hum Reprod 2015; 30:2439-51. [PMID: 26209787 PMCID: PMC4573451 DOI: 10.1093/humrep/dev180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION What are the genetic loci that increase susceptibility to nonsyndromic cryptorchidism, or undescended testis? SUMMARY ANSWER A genome-wide association study (GWAS) suggests that susceptibility to cryptorchidism is heterogeneous, with a subset of suggestive signals linked to cytoskeleton-dependent functions and syndromic forms of the disease. WHAT IS KNOWN ALREADY Population studies suggest moderate genetic risk of cryptorchidism and possible maternal and environmental contributions to risk. Previous candidate gene analyses have failed to identify a major associated locus, although variants in insulin-like 3 (INSL3), relaxin/insulin-like family peptide receptor 2 (RXFP2) and other hormonal pathway genes may increase risk in a small percentage of patients. STUDY DESIGN, SIZE, DURATION This is a case-control GWAS of 844 boys with nonsyndromic cryptorchidism and 2718 control subjects without syndromes or genital anomalies, all of European ancestry. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys with cryptorchidism were diagnosed and treated by a pediatric specialist. In the discovery phase, DNA was extracted from tissue or blood samples and genotyping performed using the Illumina HumanHap550 and Human610-Quad (Group 1) or OmniExpress (Group 2) platform. We imputed genotypes genome-wide, and combined single marker association results in meta-analyses for all cases and for secondary subphenotype analyses based on testis position, laterality and age, and defined genome-wide significance as P = 7 × 10(-9) to correct for multiple testing. Selected markers were genotyped in an independent replication group of European cases (n = 298) and controls (n = 324). We used several bioinformatics tools to analyze top (P < 10(-5)) and suggestive (P < 10(-3)) signals for significant enrichment of signaling pathways, cellular functions and custom gene lists after multiple testing correction. MAIN RESULTS AND THE ROLE OF CHANCE In the full analysis, we identified 20 top loci, none reaching genome-wide significance, but one passing this threshold in a subphenotype analysis of proximal testis position (rs55867206, near SH3PXD2B, odds ratio = 2.2 (95% confidence interval 1.7, 2.9), P = 2 × 10(-9)). An additional 127 top loci emerged in at least one secondary analysis, particularly of more severe phenotypes. Cytoskeleton-dependent molecular and cellular functions were prevalent in pathway analysis of suggestive signals, and may implicate loci encoding cytoskeletal proteins that participate in androgen receptor signaling. Genes linked to human syndromic cryptorchidism, including hypogonadotropic hypogonadism, and to hormone-responsive and/or differentially expressed genes in normal and cryptorchid rat gubernaculum, were also significantly overrepresented. No tested marker showed significant replication in an independent population. The results suggest heterogeneous, multilocus and potentially multifactorial susceptibility to nonsyndromic cryptorchidism. LIMITATIONS, REASONS FOR CAUTION The present study failed to identify genome-wide significant markers associated with cryptorchidism that could be replicated in an independent population, so further studies are required to define true positive signals among suggestive loci. WIDER IMPLICATIONS OF THE FINDINGS As the only GWAS to date of nonsyndromic cryptorchidism, these data will provide a basis for future efforts to understand genetic susceptibility to this common reproductive anomaly and the potential for additive risk from environmental exposures. STUDY FUNDING/COMPETING INTERESTS This work was supported by R01HD060769 (the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD)), P20RR20173 (the National Center for Research Resources (NCRR), currently P20GM103464 from the National Institute of General Medical Sciences (NIGMS)), an Institute Development Fund to the Center for Applied Genomics at The Children's Hospital of Philadelphia, and Nemours Biomedical Research. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Yanping Wang
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Thomas F Kolon
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Claude Kollin
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Alicia Olivant Fisher
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - T Ernesto Figueroa
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ahmad H BaniHani
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jennifer A Hagerty
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Ricardo Gonzaléz
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Present address: Auf der Bult Kinder- und Jugendkrankenhaus, Hannover, Germany
| | - Paul H Noh
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA Present address: Division of Pediatric Urology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kisha R Harden
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Debra J Abrams
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cecilia E Kim
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jin Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Barthold JS, Wang Y, Kolon TF, Kollin C, Nordenskjöld A, Olivant Fisher A, Figueroa TE, BaniHani AH, Hagerty JA, Gonzalez R, Noh PH, Chiavacci RM, Harden KR, Abrams DJ, Kim CE, Mateson AB, Robbins AK, Li J, Akins RE, Hakonarson H, Devoto M. Phenotype specific association of the TGFBR3 locus with nonsyndromic cryptorchidism. J Urol 2014; 193:1637-45. [PMID: 25390077 DOI: 10.1016/j.juro.2014.10.097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE Based on a genome-wide association study of testicular dysgenesis syndrome showing a possible association with TGFBR3, we analyzed data from a larger, phenotypically restricted cryptorchidism population for potential replication of this signal. MATERIALS AND METHODS We excluded samples based on strict quality control criteria, leaving 844 cases and 2,718 controls of European ancestry that were analyzed in 2 separate groups based on genotyping platform (ie Illumina® HumanHap550, version 1 or 3, or Human610-Quad, version 1 BeadChip in group 1 and Human OmniExpress 12, version 1 BeadChip platform in group 2). Analyses included genotype imputation at the TGFBR3 locus, association analysis of imputed data with correction for population substructure, subsequent meta-analysis of data for groups 1 and 2, and selective genotyping of independent cases (330) and controls (324) for replication. We also measured Tgfbr3 mRNA levels and performed TGFBR3/betaglycan immunostaining in rat fetal gubernaculum. RESULTS We identified suggestive (p ≤ 1× 10(-4)) association of markers in/near TGFBR3, including rs9661103 (OR 1.40; 95% CI 1.20, 1.64; p = 2.71 × 10(-5)) and rs10782968 (OR 1.58; 95% CI 1.26, 1.98; p = 9.36 × 10(-5)) in groups 1 and 2, respectively. In subgroup analyses we observed strongest association of rs17576372 (OR 1.42; 95% CI 1.24, 1.60; p = 1.67 × 10(-4)) with proximal and rs11165059 (OR 1.32; 95% CI 1.15, 1.38; p = 9.42 × 10(-4)) with distal testis position, signals in strong linkage disequilibrium with rs9661103 and rs10782968, respectively. Association of the prior genome-wide association study signal (rs12082710) was marginal (OR 1.13; 95% CI 0.99, 1.28; p = 0.09 for group 1), and we were unable to replicate signals in our independent cohort. Tgfbr3/betaglycan was differentially expressed in wild-type and cryptorchid rat fetal gubernaculum. CONCLUSIONS These data suggest complex or phenotype specific association of cryptorchidism with TGFBR3 and the gubernaculum as a potential target of TGFβ signaling.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware; Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware.
| | - Yanping Wang
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Thomas F Kolon
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claude Kollin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alicia Olivant Fisher
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - T Ernesto Figueroa
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ahmad H BaniHani
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jennifer A Hagerty
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ricardo Gonzalez
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Paul H Noh
- Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kisha R Harden
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Debra J Abrams
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cecilia E Kim
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Abigail B Mateson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Alan K Robbins
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Jin Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert E Akins
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
13
|
Barthold JS, Robbins A, Wang Y, Pugarelli J, Mateson A, Anand-Ivell R, Ivell R, McCahan SM, Akins RE. Cryptorchidism in the orl rat is associated with muscle patterning defects in the fetal gubernaculum and altered hormonal signaling. Biol Reprod 2014; 91:41. [PMID: 24966393 DOI: 10.1095/biolreprod.114.119560] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cryptorchidism, or undescended testis, is a common male genital anomaly of unclear etiology. Hormonal stimulation of the developing fetal gubernaculum by testicular androgens and insulin-like 3 (INSL3) is required for testicular descent. In studies of the orl fetal rat, one of several reported strains with inherited cryptorchidism, we studied hormone levels, gene expression in intact and hormone-stimulated gubernaculum, and imaging of the developing cremaster muscle facilitated by a tissue clearing protocol to further characterize development of the orl gubernaculum. Abnormal localization of the inverted gubernaculum was visible soon after birth. In the orl fetus, testicular testosterone, gubernacular androgen-responsive transcript levels, and muscle-specific gene expression were reduced. However, the in vitro transcriptional response of the orl gubernaculum to androgen was largely comparable to wild type (wt). In contrast, increases in serum INSL3, gubernacular INSL3-responsive transcript levels, expression of the INSL3 receptor, Rxfp2, and the response of the orl gubernaculum to INSL3 in vitro all suggest enhanced activation of INSL3/RXFP2 signaling in the orl rat. However, DNA sequence analysis did not identify functional variants in orl Insl3. Finally, combined analysis of the present and previous studies of the orl transcriptome confirmed altered expression of muscle and cellular motility genes, and whole mount imaging revealed aberrant muscle pattern formation in the orl fetal gubernaculum. The nature and prevalence of developmental muscle defects in the orl gubernaculum are consistent with the cryptorchid phenotype in this strain. These data suggest impaired androgen and enhanced INSL3 signaling in the orl fetus accompanied by defective cremaster muscle development.
Collapse
Affiliation(s)
- Julia S Barthold
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Alan Robbins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Yanping Wang
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Joan Pugarelli
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Abigail Mateson
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Ravinder Anand-Ivell
- Division of Animal Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Suzanne M McCahan
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Robert E Akins
- Nemours Biomedical Research/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
14
|
Ivell R, Heng K, Anand-Ivell R. Insulin-Like Factor 3 and the HPG Axis in the Male. Front Endocrinol (Lausanne) 2014; 5:6. [PMID: 24478759 PMCID: PMC3902607 DOI: 10.3389/fendo.2014.00006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output.
Collapse
Affiliation(s)
- Richard Ivell
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia ; Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Kee Heng
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia
| | | |
Collapse
|