1
|
Bavarsad SB, Shahryarhesami S, Karami N, Naseri N, Tajbakhsh A, Gheibihayat SM. Efferocytosis and infertility: Implications for diagnosis and therapy. J Reprod Immunol 2025; 167:104413. [PMID: 39631138 DOI: 10.1016/j.jri.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Recent research has shed light on the intricate connection between efferocytosis and infertility, revealing its dysregulation as a contributing factor in various reproductive diseases. Despite the multifaceted nature of infertility etiology, the impact of insufficient clearance of apoptotic cells on fertility has emerged as a focal point. Notably, the removal of apoptotic cells through phagocytosis in the female reproductive system has been a subject of extensive investigation in the field of infertility. Additionally, special functions performed by immune system cell types, such as macrophages and Sertoli cells, in the male reproductive system underscore their significance in spermatogenesis and the efferocytosis of apoptotic germ cells. Dysregulation of efferocytosis emerges as a critical factor contributing to reproductive challenges, such as low pregnancy rates, miscarriages, and implantation failures. Moreover, defective efferocytosis can lead to compromised implantation, recurrent miscarriages, and unsuccessful assisted reproductive procedures. This review article aims to provide a comprehensive overview of efferocytosis in the context of infertility. Molecular mechanisms underlying efferocytosis, its relevance in both female and male infertility, and its implications in various reproductive diseases are elucidated. The elucidation of the intricate relationship between efferocytosis and infertility not only facilitates diagnosis but also paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
| | - Soroosh Shahryarhesami
- Functional Genome Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, Heidelberg 69120, Germany.
| | - Noorodin Karami
- Genetics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Song L, Yang C, Ji G, Hu R. The role and potential treatment of macrophages in patients with infertility and endometriosis. J Reprod Immunol 2024; 166:104384. [PMID: 39442472 DOI: 10.1016/j.jri.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Endometriosis is characterized as a macrophage-related ailment due to its strong link with immune dysfunction. Understanding the status of macrophage polarization in the context of endometriosis-related infertility is crucial for advancing diagnostic and therapeutic strategies. Our comprehensive review delves into the foundational understanding of macrophages and their profound influence on both endometriosis and infertility. Additionally, we illuminate the complex role of macrophages in infertility and endometriosis specifically. Finally, we focused on four critical dimensions: follicular fluid, the intraperitoneal environment, endometrial receptivity, and strategies for managing endometriosis. It is clear that throughout the progression of endometriosis, the diverse polarization states of macrophages play a pivotal role in the internal reproductive environment of infertile individuals grappling with this condition. Modulating macrophage polarization in the reproductive environment of endometriosis patients could address infertility challenges more effectively, offering a promising pathway for treating infertility associated with endometriosis.
Collapse
Affiliation(s)
- Linlin Song
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Caihong Yang
- Department of Gynecology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Guiyi Ji
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
3
|
Schumacher TJ, Iyer AV, Rumbley J, Ronayne CT, Mereddy VR. Exploring the impact of mitochondrial-targeting anthelmintic agents with GLUT1 inhibitor BAY-876 on breast cancer cell metabolism. BMC Cancer 2024; 24:1415. [PMID: 39550554 PMCID: PMC11568538 DOI: 10.1186/s12885-024-13186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Cancer cells alter their metabolic phenotypes with nutritional change. Single agent approaches targeting mitochondrial metabolism in cancer have failed due to either dose limiting off target toxicities, or lack of significant efficacy in vivo. To mitigate these clinical challenges, we investigated the potential utility of repurposing FDA approved mitochondrial targeting anthelmintic agents, niclosamide, IMD-0354 and pyrvinium pamoate, to be combined with GLUT1 inhibitor BAY-876 to enhance the inhibitory capacity of the major metabolic phenotypes exhibited by tumors. METHODS To test this, we used breast cancer cell lines MDA-MB-231 and 4T1 which exhibit differing basal metabolic rates of glycolysis and mitochondrial respiration, respectively. Metabolic characterization was carried out using Seahorse XFe96 Bioanalyzer and statistical analysis was carried out via ANOVA. RESULTS Here, we found that specific responses to mitochondrial and glycolysis targeting agents elicit responses that correlate with tested cell lines basal metabolic rates and fuel preference, highlighting the potential to cater metabolism targeting treatment regimens based on specific tumor nutrient handling. Inhibition of GLUT1 with BAY-876 potently inhibited glycolysis in both MDA-MB-231 and 4T1 cells, and niclosamide and pyrvinium pamoate perturbed mitochondrial respiration that resulted in potent compensatory glycolysis in the cell lines tested. CONCLUSION In this regard, combination of BAY-876 with both mitochondrial targeting agents resulted in inhibition of compensatory glycolysis and subsequent metabolic crisis. These studies highlight targeting tumor metabolism as a combination treatment regimen that can be tailored by basal and compensatory metabolic phenotypes.
Collapse
Affiliation(s)
- Tanner J Schumacher
- Integrated Biosciences Graduate Program, University of Minnesota, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Ananth V Iyer
- Department of Chemistry, Carleton College, One North College Street, Northfield, MN, 55057, USA
| | - Jon Rumbley
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| | - Conor T Ronayne
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA.
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, 1035 Kirby Drive, Duluth, MN, 55812, USA
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
- Department of Chemistry and Biochemistry, University of Minnesota, 1038 University Drive, Duluth, MN, 55812, USA
| |
Collapse
|
4
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Herup-Wheeler T, Shi M, Harvey ME, Talwar C, Kommagani R, MacLean JA, Hayashi K. High-fat diets promote peritoneal inflammation and augment endometriosis-associated abdominal hyperalgesia. Front Endocrinol (Lausanne) 2024; 15:1336496. [PMID: 38559689 PMCID: PMC10978581 DOI: 10.3389/fendo.2024.1336496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Immune dysfunction is one of the central components in the development and progression of endometriosis by establishing a chronic inflammatory environment. Western-style high-fat diets (HFD) have been linked to greater systemic inflammation to cause metabolic and chronic inflammatory diseases, and are also considered an environmental risk factor for gynecologic diseases. Here, we aimed to examine how HFD cause an inflammatory environment in endometriosis and discern their contribution to endometriotic-associated hyperalgesia. Our results showed that HFD-induced obesity enhanced abdominal hyperalgesia that was induced by endometriotic lesions. Peritoneal inflammatory macrophages and cytokine levels increased by lesion induction were elevated by chronic exposure to HFD. Increased expression of pain-related mediators in the dorsal root ganglia was observed after lesion induction under the HFD condition. Although HFD did not affect inflammatory macrophages in the peritoneal cavity without lesion induction, the diversity and composition of the gut microbiota were clearly altered by HFD as a sign of low-grade systemic inflammation. Thus, HFD alone might not establish a local inflammatory environment in the pelvic cavity, but it can contribute to further enhancing chronic inflammation, leading to the exacerbation of endometriosis-associated abdominal hyperalgesia following the establishment and progression of the disease.
Collapse
Affiliation(s)
- Tristin Herup-Wheeler
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Mingxin Shi
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Madeleine E. Harvey
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Chandni Talwar
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Ramakrishna Kommagani
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - James A. MacLean
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Kanako Hayashi
- School of Molecular Bioscience, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Xu Y, Wu F, Qin C, Lin Y. Paradoxical role of phosphorylated STAT3 in normal fertility and the pathogenesis of adenomyosis and endometriosis†. Biol Reprod 2024; 110:5-13. [PMID: 37930185 DOI: 10.1093/biolre/ioad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), when phosphorylated at tyrosine 705, plays an important role in endometrial stromal cell decidualization and the receptivity of the endometrial epithelium during embryo implantation. However, the function of phosphorylated STAT3 (p-STAT3) in normal uterine receptivity is distinct from that in adenomyosis and endometriosis. In normal pregnancy, STAT3 phosphorylation in the endometrial epithelium determines the success of embryo implantation by regulating uterine receptivity. Additionally, p-STAT3 promotes cellular proliferation and differentiation during endometrial decidualization, which is crucial for embryonic development. In contrast, excessive STAT3 phosphorylation occurs in adenomyosis and endometriosis, which may lead to disease progression. Therefore, achieving a delicate balance in STAT3 activation is crucial. This review aimed to focus on the current understanding and knowledge gaps regarding the control of p-STAT3 activity in normal and pathological endometrial processes. This topic is important because precise control of p-STAT3 production could alleviate the symptoms of adenomyosis and endometriosis, improve endometrial receptivity, and potentially mitigate infertility without compromising normal fertility processes.
Collapse
Affiliation(s)
- Yichi Xu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanmei Qin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Lin
- Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Shiwakoti S, Gong D, Sharma K, Kang KW, Schini-Kerth VB, Kim HJ, Ko JY, Oak MH. γ-Oryzanol ameliorates fine dust-induced premature endothelial senescence and dysfunction via attenuating oxidative stress. Food Chem Toxicol 2023; 179:113981. [PMID: 37549806 DOI: 10.1016/j.fct.2023.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Various cardiovascular diseases are associated with endothelial senescence, and a recent study showed that fine dust (FD)-induced premature endothelial senescence and dysfunction is associated with increased oxidative stress. The aim of the present study was to investigate protective effect of rice bran extract (RBE) and its major component of γ-Oryzanol (γ-Ory) against FD-induced premature endothelial senescence. Porcine coronary artery endothelial cells (PCAECs) were treated with FD alone or with RBE or γ-Ory. Senescence-associated β-galactosidase (SA-β-gal) activity, expression of cell cycle regulatory proteins, and oxidative stress levels were evaluated. The results indicated that SA-β-gal activity in the FD-treated PCAECs was attenuated by RBE and γ-Ory. Additionally, γ-Ory inhibited FD-induced cell cycle arrest, restored cell proliferation, and reduced the expression of cell cycle regulatory proteins. γ-Ory also inhibited oxidative stress and prevented senescence-associated NADPH oxidase and LAS activity in FD-exposed ECs suggesting that γ-Ory could protect against FD-induced ECs senescence and dysfunction.
Collapse
Affiliation(s)
- Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dalseong Gong
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea; Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
9
|
Chang LY, Shan J, Hou XX, Li DJ, Wang XQ. Synergy between Th1 and Th2 responses during endometriosis: A review of current understanding. J Reprod Immunol 2023; 158:103975. [PMID: 37331087 DOI: 10.1016/j.jri.2023.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Endometriosis is widely perceived as an estrogen-dependent chronic disorder with infertility and pelvic pain. Although the etiology of endometriosis has remained elusive, many studies have proclaimed the relevance of immune system disorders with endometriosis. With the discovery that the dysregulation of multiple biological functions in endometriosis is caused by the aberrant differentiation of T helper cells, a shift towards Th2 immune response may account for the disease progression. This review attempts to present mechanisms of cytokines, chemokines, signal pathways, transcription factors and some other factors related with the derivation of Th1/Th2 immune response involved in the development of endometriosis. The current understanding of treatment approaches and potential therapeutic targets will also be outlined with brief discussion.
Collapse
Affiliation(s)
- Ling-Yu Chang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China
| | - Jing Shan
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China
| | - Xin-Xin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Da-Jin Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China.
| | - Xiao-Qiu Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China.
| |
Collapse
|
10
|
Alex NS, Khan HR, Ramachandra SG, Medhamurthy R. Pregnancy-associated Steroid Effects on Insulin Sensitivity, Adipogenesis, and Lipogenesis: Role of Wnt/β-Catenin Pathway. J Endocr Soc 2023; 7:bvad076. [PMID: 37440965 PMCID: PMC10334487 DOI: 10.1210/jendso/bvad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 07/15/2023] Open
Abstract
Context The shift in maternal energy metabolism characteristic of pregnancy is thought to be driven by various hormonal changes, especially of ovarian and placental steroids. Imbalances in circulating estradiol (E2) and progesterone (P4) levels during this period are often associated with metabolic disturbances leading to the development of gestational diabetes mellitus (GDM). Since abnormalities in the Wnt pathway effector transcription factor 7-like 2 (TCF7L2) are commonly associated with the occurrence of GDM, we hypothesized that the canonical or β-catenin-dependent Wnt signaling pathway mediates the metabolic actions of E2 and P4. Objective Our study was aimed at elucidating the metabolic function of the steroids E2 and P4, and examining the role of the canonical Wnt signaling pathway in mediating the actions of these steroids. Methods The ovariectomized (OVX) rat was used as a model system to study the effect of known concentrations of exogenously administered E2 and P4. Niclosamide (Nic) was administered to block Wnt signaling. 3T3-L1 cells were used to analyze changes in differentiation in the presence of the steroids or niclosamide. Results In the present study, we observed that E2 enhanced insulin sensitivity and inhibited lipogenesis while P4 increased lipogenic gene expression-in 3T3-L1 adipocytes, and in adipose tissue and skeletal muscle of OVX rats when the dosage of E2 and P4 mimicked that of pregnancy. Both E2 and P4 were also found to upregulate Wnt signaling. Nic nhibited the steroid-mediated increase in Wnt signaling in adipocytes and OVX rats. The insulin-sensitizing and antilipogenic actions of E2 were found to be mediated by the canonical Wnt pathway, but the effects of P4 on lipogenesis appeared to be independent of it. Additionally, it was observed that inhibition of Wnt signaling by Nic hastened adipogenic differentiation, and the inhibitory effect of E2 on differentiation was prevented by Nic. Conclusion The findings presented in this study highlight the role of steroids and Wnt pathway in glucose and lipid metabolism and are relevant to understanding the pathophysiology of metabolic disorders arising from hormonal disturbances.
Collapse
Affiliation(s)
- Neethu Sara Alex
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Habibur Rahaman Khan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Subbaraya Gudde Ramachandra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Rudraiah Medhamurthy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Wanas H, Elbadawy HM, Almikhlafi MA, Hamoud AE, Ali EN, Galal AM. Combination of Niclosamide and Pirfenidone Alleviates Pulmonary Fibrosis by Inhibiting Oxidative Stress and MAPK/Nf-κB and STATs Regulated Genes. Pharmaceuticals (Basel) 2023; 16:ph16050697. [PMID: 37242480 DOI: 10.3390/ph16050697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of pulmonary fibrosis (PF) is extremely complex and involves numerous intersecting pathways. The successful management of PF may require combining multiple agents. There is a growing body of evidence that suggests the potential benefits of niclosamide (NCL), an FDA-approved anthelminthic drug, in targeting different fibrogenesis molecules. This study aimed at investigating the anti-fibrotic potential of NCL alone and in combination with pirfenidone (PRF), an approved drug for PF, in a bleomycin (BLM) induced PF experimental model. PF was induced in rats by intratracheal BLM administration. The effect of NCL and PRF individually and in combination on different histological and biochemical parameters of fibrosis was investigated. Results revealed that NCL and PRF individually and in combination alleviated the histopathological changes, extracellular matrix deposition and myofibroblastic activation induced by BLM. NCL and PRF either individually or in combination inhibited the oxidative stress and subsequent pathways. They modulated the process of fibrogenesis by inhibiting MAPK/NF-κB and downstream cytokines. They inhibited STATs and downstream survival-related genes including BCL-2, VEGF, HIF-α and IL-6. Combining both drugs showed significant improvement in the tested markers in comparison to the monotherapy. NCL, therefore, has a potential synergistic effect with PRF in reducing the severity of PF.
Collapse
Affiliation(s)
- Hanaa Wanas
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia
| | - Amany E Hamoud
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Eid N Ali
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
- Department of Anatomy, Faculty of Medicine, Taibah University, Madinah 41477, Saudi Arabia
| | - Amr M Galal
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| |
Collapse
|
12
|
Niclosamide targets the dynamic progression of macrophages for the resolution of endometriosis in a mouse model. Commun Biol 2022; 5:1225. [DOI: 10.1038/s42003-022-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractDue to the vital roles of macrophages in the pathogenesis of endometriosis, targeting macrophages could be a promising therapeutic direction. Here, we investigated the efficacy of niclosamide for the resolution of a perturbed microenvironment caused by dysregulated macrophages in a mouse model of endometriosis. Single-cell transcriptomic analysis revealed the heterogeneity of macrophages including three intermediate subtypes with sharing characteristics of traditional “small” or “large” peritoneal macrophages (SPMs and LPMs) in the peritoneal cavity. Endometriosis-like lesions (ELL) enhanced the differentiation of recruited macrophages, promoted the replenishment of resident LPMs, and increased the ablation of embryo-derived LPMs, which were stepwise suppressed by niclosamide. In addition, niclosamide restored intercellular communications between macrophages and B cells. Therefore, niclosamide rescued the perturbed microenvironment in endometriosis through its fine regulations on the dynamic progression of macrophages. Validation of similar macrophage pathogenesis in patients will further promote the clinical usage of niclosamide for endometriosis treatment.
Collapse
|
13
|
Zhang D, Yu Y, Duan T, Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon 2022; 8:e11686. [DOI: 10.1016/j.heliyon.2022.e11686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
|
14
|
Wu Y, Liu Y, Jia H, Luo C, Chen H. Treatment of endometriosis with dienogest in combination with traditional Chinese medicine: A systematic review and meta-analysis. Front Surg 2022; 9:992490. [PMID: 36386543 PMCID: PMC9663487 DOI: 10.3389/fsurg.2022.992490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Endometriosis is now considered to be a systemic disease rather than a disease that primarily affects the pelvis. Dienogest (DNG) has unique advantages in the treatment of endometriosis, but it also has side effects. Alternatively, Traditional Chinese Medicine (TCM) has been used for over 2000 years in the treatment and prevention of disease and growing numbers of Chinese scholars are experimenting with the combined use of Dienogest and TCM for endometriosis treatment. OBJECTIVES This review evaluated the efficacy and safety of TCM in combination with Dienogest in the treatment of endometriosis through meta-analysis. METHODS MEDLINE, Embase, the Cochrane Library, PubMed, Web of Science, China National Knowledge Infrastructure, Journal Integration Platform, and Wanfang were used in literature searches, with a deadline of May 31, 2022. Literature quality was assessed using the Cochrane Collaboration "risk of bias" (ROB2) tool, and the "meta" package of R software v.4.1 was used for meta-analysis. Dichotomous variables and continuous variables were assessed using the relative risk (RR) and 95% confidence intervals (95% CI); standard mean differences (MD) and 95% CI, respectively. RESULTS Twelve human randomized controlled trials (RCTs) and one retrospective study, all 13 written in the Chinese language, were included in the meta-analysis (720 experiments and 719 controls). The result indicated that TCM plus Dienogest was superior to Dienogest/TCM alone in increasing the cure rates (RR = 1.3780; 95% CI, 1.1058, 1.7172; P = 0.0043), remarkable effect rate (RR = 1.3389; 95% CI, 1.1829, 1.5154; P < 0.0001), invalid rate (RR = 0.2299; 95% CI, 0.1591, 0.3322; P < 0.0001), and rate of adverse effects (RR = 0.6177; 95% CI, 0.4288, 0.8899; P = 0.0097). The same conclusion was drawn from the subgroup analysis. CONCLUSION Results suggest that TCM combined with Dienogest is superior to Dienogest or TCM alone and can be used as a complementary treatment for endometriosis. TCMs have potential to improve clinical efficacy and reduce the side effects of Dienogest. This study was financially supported by Annual Science and Technology Steering Plan Project of Zhuzhou. PROSPERO has registered our meta-analysis as CRD42022339518 (https://www.crd.york.ac.uk/prospero/record_email.php).
Collapse
Affiliation(s)
- Yu’e Wu
- Guangdong Laboratory Animals Monitoring Insitute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Yujie Liu
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Insitute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Chao Luo
- Department of Neurology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Huan Chen
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, China
| |
Collapse
|
15
|
Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M, Cheriyan J. Niclosamide-A promising treatment for COVID-19. Br J Pharmacol 2022; 179:3250-3267. [PMID: 35348204 PMCID: PMC9111792 DOI: 10.1111/bph.15843] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care MedicineNYU School of MedicineNew YorkNew YorkUSA
| | - Anne Weiss
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION Therapeutics Research ServicesHellerupDenmark
| | - James Goodman
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Marie Fisk
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Spoorthy Kulkarni
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ing Lu
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Joanna Gray
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rona Smith
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Morten Sommer
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION TherapeuticsHellerupDenmark
| | - Joseph Cheriyan
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
16
|
Sekulovski N, Whorton AE, Tanaka T, Hirota Y, Shi M, MacLean JA, de Mola JRL, Groesch K, Diaz-Sylvester P, Wilson T, Hayashi K. Niclosamide suppresses macrophage-induced inflammation in endometriosis†. Biol Reprod 2021; 102:1011-1019. [PMID: 31950153 DOI: 10.1093/biolre/ioaa010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a common gynecological disease, which causes chronic pelvic pain and infertility in women of reproductive age. Due to limited efficacy of current treatment options, a critical need exists to develop new and effective treatments for endometriosis. Niclosamide is an efficacious and FDA-approved drug for the treatment of helminthosis in humans that has been used for decades. We have reported that niclosamide reduces growth and progression of endometriosis-like lesions via targeting STAT3 and NFĸB signaling in a mouse model of endometriosis. To examine the effects of niclosamide on macrophage-induced inflammation in endometriosis, a total of 29 stage III-IV endometrioma samples were used to isolate human endometriotic stromal cells (hESCs). M1 or M2 macrophages were isolated and differentiated from fresh human peripheral blood samples. Then, hESCs were cultured in conditioned media (CM) from macrophages with/without niclosamide. Niclosamide dose dependently reduced cell viability and the activity of STAT3 and NFκB signaling in hESCs. While macrophage CM stimulated cell viability in hESCs, niclosamide inhibited this stimulation. Macrophage CM stimulated the secretion of proinflammatory cytokines and chemokines from hESCs. Most of these secreted factors were inhibited by niclosamide. These results indicate that niclosamide is able to reduce macrophage-induced cell viability and cytokine/chemokine secretion in hESCs by inhibiting inflammatory mechanisms via STAT3 and/or NFκB signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo Japan
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Julio Ricardo Loret de Mola
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Kathleen Groesch
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Paula Diaz-Sylvester
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Teresa Wilson
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA.,Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA
| |
Collapse
|
17
|
Jiang K, Zhang J, Huang Y, Wang Y, Xiao S, Hadden MK, Woodruff TK, Sun J. A platform utilizing Drosophila ovulation for nonhormonal contraceptive screening. Proc Natl Acad Sci U S A 2021; 118:e2026403118. [PMID: 34260376 PMCID: PMC8285897 DOI: 10.1073/pnas.2026403118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A significant unmet need for new contraceptive options for both women and men remains due to side-effect profiles, medical concerns, and the inconvenience of many currently available contraceptive products. Unfortunately, the development of novel nonsteroidal female contraceptive medicine has been stalled in the last couple of decades due to the lack of effective screening platforms. Drosophila utilizes conserved signaling pathways for follicle rupture, a final step in ovulation that is essential for female reproduction. Therefore, we explored the potential to use Drosophila as a model to screen compounds that could inhibit follicle rupture and be nonsteroidal contraceptive candidates. Using our ex vivo follicle rupture assay, we screened 1,172 Food and Drug Administration (FDA)-approved drugs and identified six drugs that could inhibit Drosophila follicle rupture in a dose-dependent manner. In addition, we characterized the molecular actions of these drugs in the inhibition of adrenergic signaling and follicle rupture. Furthermore, we validated that three of the four drugs consistently inhibited mouse follicle rupture in vitro and that two of them did not affect progesterone production. Finally, we showed that chlorpromazine, one of the candidate drugs, can significantly inhibit mouse follicle rupture in vivo. Our work suggests that Drosophila ovulation is a valuable platform for identifying lead compounds for nonsteroidal contraceptive development and highlights the potential of these FDA-approved drugs as novel nonsteroidal contraceptive agents.
Collapse
Affiliation(s)
- Kewa Jiang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Jiyang Zhang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Yuping Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269;
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
18
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
19
|
Saunders PT, Horne AW. Endometriosis: Etiology, pathobiology, and therapeutic prospects. Cell 2021; 184:2807-2824. [DOI: 10.1016/j.cell.2021.04.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
|
20
|
Shi M, Sekulovski N, Whorton AE, MacLean JA, Greaves E, Hayashi K. Efficacy of niclosamide on the intra-abdominal inflammatory environment in endometriosis. FASEB J 2021; 35:e21584. [PMID: 33860549 PMCID: PMC10777336 DOI: 10.1096/fj.202002541rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Endometriosis, a common gynecological disease, causes chronic pelvic pain and infertility in women of reproductive age. Due to the limited efficacy of current therapies, a critical need exists to develop new treatments for endometriosis. Inflammatory dysfunction, instigated by abnormal macrophage (MΦ) function, contributes to disease development and progression. However, the fundamental role of the heterogeneous population of peritoneal MΦ and their potential druggable functions is uncertain. Here we report that GATA6-expressing large peritoneal MΦ (LPM) were increased in the peritoneal cavity following lesion induction. This was associated with increased cytokine and chemokine secretion in the peritoneal fluid (PF), as well as MΦ infiltration, vascularization and innervation in endometriosis-like lesions (ELL). Niclosamide, an FDA-approved anti-helminthic drug, was effective in reducing LPM number, but not small peritoneal MΦ (SPM), in the PF. Niclosamide also inhibits aberrant inflammation in the PF, ELL, pelvic organs (uterus and vagina) and dorsal root ganglion (DRG), as well as MΦ infiltration, vascularization and innervation in the ELL. PF from ELL mice stimulated DRG outgrowth in vitro, whereas the PF from niclosamide-treated ELL mice lacked the strong stimulatory nerve growth response. These results suggest LPM induce aberrant inflammation in endometriosis promoting lesion progression and establishment of the inflammatory environment that sensitizes peripheral nociceptors in the lesions and other pelvic organs, leading to increased hyperalgesia. Our findings provide the rationale for targeting LPM and their functions with niclosamide and its efficacy in endometriosis as a new non-hormonal therapy to reduce aberrant inflammation which may ultimately diminish associated pain.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Allison E. Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - James A. MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Chou YC, Chen MJ, Chen PH, Chang CW, Yu MH, Chen YJ, Tsai EM, Tsai SF, Kuo WS, Tzeng CR. Integration of genome-wide association study and expression quantitative trait locus mapping for identification of endometriosis-associated genes. Sci Rep 2021; 11:478. [PMID: 33436679 PMCID: PMC7803948 DOI: 10.1038/s41598-020-79515-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
To determine whether genetic predisposition to endometriosis varies depending on ethnicity and in association with expression quantitative trait loci (eQTL) in a Taiwanese population. We conducted a genome-wide association study (GWAS) and replicated it in 259 individuals with laparoscopy-confirmed stage III or IV endometriosis (cases) and 171 women without endometriosis (controls). Their genomic DNA was extracted from blood and evaluated by the GWAS of Taiwan Biobank Array. Novel genetic variants that predispose individuals to endometriosis were identified using GWAS and replication, including rs10739199 (P = 6.75 × 10-5) and rs2025392 (P = 8.01 × 10-5) at chromosome 9, rs1998998 (P = 6.5 × 10-6) at chromosome 14, and rs6576560 (P = 9.7 × 10-6) at chromosome 15. After imputation, strong signals were exhibited by rs10822312 (P = 1.80 × 10-7) at chromosome 10, rs58991632 (P = 1.92 × 10-6) and rs2273422 (P = 2.42 × 10-6) at chromosome 20, and rs12566078 (P = 2.5 × 10-6) at chromosome 1. We used the Genotype-Tissue Expression (GTEx) database to observe eQTL. Among these SNPs, the cis-eQTL rs13126673 of inturned planar cell polarity protein (INTU) showed significant association with INTU expression (P = 5.1 × 10-33). Moreover, the eQTL analysis was performed on endometriotic tissues from women with endometriosis. The expression of INTU in 78 endometriotic tissue of women with endometriosis is associated with rs13126673 genotype (P = 0.034). To our knowledge, this is the first GWAS to link endometriosis and eQTL in a Taiwanese population.
Collapse
Affiliation(s)
- Ya-Ching Chou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.,Center for Reproductive Medicine and Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jer Chen
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pi-Hua Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Wen Chang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Chen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Eing-Mei Tsai
- General Research Centers of R&D Office, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wun-Syuan Kuo
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine and Sciences, Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan. .,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Sekulovski N, Whorton AE, Shi M, MacLean JA, Hayashi K. Endometriotic inflammatory microenvironment induced by macrophages can be targeted by niclosamide†. Biol Reprod 2020; 100:398-408. [PMID: 30329025 DOI: 10.1093/biolre/ioy222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Endometriosis causes severe chronic pelvic pain and infertility. We have recently reported that niclosamide treatment reduces growth and progression of endometriosis-like lesions and inflammatory signaling (NF${\rm \small K}$B and STAT3) in a mouse model. In the present study, we examined further inhibitory mechanisms by which niclosamide affects endometriotic lesions using an endometriotic epithelial cell line, 12Z, and macrophages differentiated from a monocytic THP-1 cell line. Niclosamide dose dependently reduced 12Z viability, reduced STAT3 and NF${\rm \small K}$B activity, and increased both cleaved caspase-3 and cleaved PARP. To model the inflammatory microenvironment in endometriotic lesions, we exposed 12Z cells to macrophage conditioned media (CM). Macrophages were differentiated from THP-1 cells using 12-O-tetradecanoylphorbol-13-acetate as M0, and then M0 macrophages were polarized into M1 or M2 using LPS/IFNγ or IL4/IL13, respectively. Conditioned media from M0, M1, or M2 cultures increased 12Z viability. This effect was blocked by niclosamide, and cell viability returned to that of CM from cells treated with niclosamide alone. To assess proteins targeted by niclosamide in 12Z cells, CM from 12Z cells cultured with M0, M1, or M2 with/without niclosamide were analyzed by cytokine/chemokine protein array kits. Conditioned media from M0, M1, and/or M2 stimulated the secretion of cytokines/chemokines from 12Z cells. Production of most of these secreted cytokines/chemokines in 12Z cells was inhibited by niclosamide. Knockdown of each gene in 12Z cells using siRNA resulted in reduced cell viability. These results indicate that niclosamide can inhibit the inflammatory factors in endometriotic epithelial cells stimulated by macrophages by targeting STAT3 and/or NF${\rm \small K}$B signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| |
Collapse
|
23
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Periovulatory insulin signaling is essential for ovulation, granulosa cell differentiation, and female fertility. FASEB J 2020; 34:2376-2391. [PMID: 31908002 PMCID: PMC7781071 DOI: 10.1096/fj.201901791r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated an essential role for insulin signaling in folliculogenesis as conditional ablation of Igf1r in primary follicles elicits defective follicle-stimulating hormone responsiveness blocking development at the preantral stage. Thus the potential role of insulin action in the periovulatory window and in the corpus luteum is unknown. To examine this, we generated conditional Insr,Igf1r, and double receptor knockout mice driven by Pgr-Cre. These models escape the preantral follicle block and in response to superovulatory gonadotropins exhibit normal distribution of ovarian follicles and corpora lutea. However, single ablation of Igf1r leads to subfertility and mice lacking both receptors are infertile. Double knockout mice have impaired oocyte development and ovulation. While some oocytes are released and fertilized, subsequent embryo development is retarded, and the embryos potentially fail to thrive due to lack of luteal support. In support of this, we found reduced expression of key enzymes in the steroid synthesis pathway and reduced serum progesterone. In addition to metabolic and steroidogenic pathways, RNA-sequencing analysis revealed transcription factor-3 as an important transcription factor downstream of insulin signaling. Collectively, these results highlight the importance of growth factors of the insulin family during two distinct windows of follicular development, ovulation, and luteinization.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Life Science III, Carbondale, IL, USA
| |
Collapse
|
24
|
Vliet SMF, Dasgupta S, Sparks NRL, Kirkwood JS, Vollaro A, Hur M, Zur Nieden NI, Volz DC. Maternal-to-zygotic transition as a potential target for niclosamide during early embryogenesis. Toxicol Appl Pharmacol 2019. [PMID: 31398420 DOI: 10.1016/j.taap.2019.114699,114699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicole R L Sparks
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
25
|
Vliet SMF, Dasgupta S, Sparks NRL, Kirkwood JS, Vollaro A, Hur M, Zur Nieden NI, Volz DC. Maternal-to-zygotic transition as a potential target for niclosamide during early embryogenesis. Toxicol Appl Pharmacol 2019; 380:114699. [PMID: 31398420 DOI: 10.1016/j.taap.2019.114699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicole R L Sparks
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
26
|
Jiang X, Wu M, Xu Z, Wang H, Wang H, Yu X, Li Z, Teng L. HJC0152, a novel STAT3 inhibitor with promising anti-tumor effect in gastric cancer. Cancer Manag Res 2018; 10:6857-6867. [PMID: 30588091 PMCID: PMC6296682 DOI: 10.2147/cmar.s188364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) is frequently seen in patients with gastric cancer (GC), and is generally associated with worse prognosis. HJC0152, a novel STAT3 inhibitor, has shown significant anti-tumor effects in several cancers, although its role in GC remains to be clarified. Methods The effect of HJC0152 on STAT3 signaling pathway and the biological behaviors of GC cells were evaluated through in vitro and/or in vivo experiments. Meanwhile, RNA sequence analysis was used to further explore its potential anti-tumor mechanisms. Results HJC0152 inhibited the expression of activated STAT3 and its downstream target genes (c-Myc and clyclinD1) in GC cells, and restrained tumor growth in vivo. HJC0152 treatment induced apoptosis in the STAT3 hyper-activated AGS and MKN45 cell lines, along with down-regulation of survivin and Mcl1, and up-regulation of cleaved-poly(ADP-ribose) polymerase. Moreover, HJC0152 markedly inhibited migration and invasion of these cells. Finally, RNA sequence analysis and protein expression analyses showed that in addition to STAT3 suppression, HJC0152 also exerts its anti-tumor effects at least partly via the mitogen-activated protein kinases pathway. Conclusion Our findings highlight that HJC0152 is a promising therapeutic agent for GC.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Mengjie Wu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China,
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China,
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China, .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, People's Republic of China,
| |
Collapse
|
27
|
Painter JN, O'Mara TA, Morris AP, Cheng THT, Gorman M, Martin L, Hodson S, Jones A, Martin NG, Gordon S, Henders AK, Attia J, McEvoy M, Holliday EG, Scott RJ, Webb PM, Fasching PA, Beckmann MW, Ekici AB, Hein A, Rübner M, Hall P, Czene K, Dörk T, Dürst M, Hillemanns P, Runnebaum I, Lambrechts D, Amant F, Annibali D, Depreeuw J, Vanderstichele A, Goode EL, Cunningham JM, Dowdy SC, Winham SJ, Trovik J, Hoivik E, Werner HMJ, Krakstad C, Ashton K, Otton G, Proietto T, Tham E, Mints M, Ahmed S, Healey CS, Shah M, Pharoah PDP, Dunning AM, Dennis J, Bolla MK, Michailidou K, Wang Q, Tyrer JP, Hopper JL, Peto J, Swerdlow AJ, Burwinkel B, Brenner H, Meindl A, Brauch H, Lindblom A, Chang‐Claude J, Couch FJ, Giles GG, Kristensen VN, Cox A, Zondervan KT, Nyholt DR, MacGregor S, Montgomery GW, Tomlinson I, Easton DF, Thompson DJ, Spurdle AB. Genetic overlap between endometriosis and endometrial cancer: evidence from cross-disease genetic correlation and GWAS meta-analyses. Cancer Med 2018; 7:1978-1987. [PMID: 29608257 PMCID: PMC5943470 DOI: 10.1002/cam4.1445] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/27/2022] Open
Abstract
Epidemiological, biological, and molecular data suggest links between endometriosis and endometrial cancer, with recent epidemiological studies providing evidence for an association between a previous diagnosis of endometriosis and risk of endometrial cancer. We used genetic data as an alternative approach to investigate shared biological etiology of these two diseases. Genetic correlation analysis of summary level statistics from genomewide association studies (GWAS) using LD Score regression revealed moderate but significant genetic correlation (rg = 0.23, P = 9.3 × 10-3 ), and SNP effect concordance analysis provided evidence for significant SNP pleiotropy (P = 6.0 × 10-3 ) and concordance in effect direction (P = 2.0 × 10-3 ) between the two diseases. Cross-disease GWAS meta-analysis highlighted 13 distinct loci associated at P ≤ 10-5 with both endometriosis and endometrial cancer, with one locus (SNP rs2475335) located within PTPRD associated at a genomewide significant level (P = 4.9 × 10-8 , OR = 1.11, 95% CI = 1.07-1.15). PTPRD acts in the STAT3 pathway, which has been implicated in both endometriosis and endometrial cancer. This study demonstrates the value of cross-disease genetic analysis to support epidemiological observations and to identify biological pathways of relevance to multiple diseases.
Collapse
|
28
|
Miura K. [Histopathologic studies on epithelial proliferation in the peripheral region of the lung with special consideration of tumorlets]. Cell Signal 1968; 41:89-96. [PMID: 28389414 PMCID: PMC5628105 DOI: 10.1016/j.cellsig.2017.04.001] [Citation(s) in RCA: 295] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Niclosamide is an oral antihelminthic drug used to treat parasitic infections in millions of people worldwide. However recent studies have indicated that niclosamide may have broad clinical applications for the treatment of diseases other than those caused by parasites. These diseases and symptoms may include cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, and systemic sclerosis. Among the underlying mechanisms associated with the drug actions of niclosamide are uncoupling of oxidative phosphorylation, and modulation of Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways. Here we provide a brief overview of the biological activities of niclosamide, its potential clinical applications, and its challenges for use as a new therapy for systemic diseases. Niclosamide is an oral antihelminthic drug used to treat parasitic infections. Niclosamide is a multifunctional drug inhibiting multiple signaling pathways and biological processes. Niclosamide has biological activities potentially against systemic diseases.
Collapse
|