1
|
He K, Li Z, Yan H, Shi L, Yang H, Liu Q, Song K, Hu Y, Wang B, Yang S, Zhao L. Cold temperature delays ovarian development of largemouth bass by inhibiting sex hormone release, angiogenesis, apoptosis and autophagy during out-of-season reproduction. Comp Biochem Physiol A Mol Integr Physiol 2024; 301:111795. [PMID: 39709163 DOI: 10.1016/j.cbpa.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Cold temperature is an effective method of achieving out-of-season reproduction and obtaining fry in the autumn. This study investigated the effects of low-temperature (12-16 °C) environment on the out-of-season reproduction of largemouth bass, particularly the delayed effects on ovarian development. During the period of delayed out-of-season reproduction, there was a significant reduction in the levels of serum sex hormones (FSH and LH) and their respective receptors (FSHR and LHCGR). Exposure to cold temperature significantly reduced the expression of gonadal development genes (IGF-1, GDF9, and CDC2) (P<0.05) and diminished the vascular network on the ovarian membrane, as confirmed by angiogenesis-related analyses. In lipid metabolism, AMH mRNA levels decreased overall, while HSD3B, FABP1, APOA1, and APOC2 initially increased before declining. Serum VTG levels decreased gradually with a slight increase post-spawning. These findings suggested that cold temperature delay ovarian development in largemouth bass by impacting sex hormone synthesis, angiogenesis, and lipid deposition. This insight enhances our understanding of out-of-season reproduction and guides the development of more effective reproductive techniques.
Collapse
Affiliation(s)
- Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhihong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Longlong Shi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hangyu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Dong S, Xu J, Meng X, Jiang X, Yang D, Zhao X, Li X, Ding G. Impact of hexafluoropropylene oxide trimer acid (HFPO-TA) on sex differentiation after exposures during different development stages of zebrafish (Danio rerio). Food Chem Toxicol 2024; 194:115108. [PMID: 39536898 DOI: 10.1016/j.fct.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has been widely used and ubiquitously detected in aquatic environments. However, its potential effects on sex differentiation of aquatic organisms are not well known. Therefore, in this study, zebrafish were exposed to HFPO-TA at different development stages (0-21, 21-42, and 42-63 dpf) to investigate the effects on sex differentiation and its underlying mechanisms. All three exposures to HFPO-TA resulted in the feminization of zebrafish, and the impact of Stage II was most significant. The transcription levels of key genes related to female differentiation (bpm15, cyp19a1a, esr1, vtg1, and sox9b) were up-regulated, while those of key genes related to male differentiation (dmrt1, gata4, amh, and sox9a) were down-regulated, which could lead to the feminization. In addition, it was found that the dysregulations of these genes were prolonged in adult zebrafish even through a long recovery, which could cause sex imbalance in populations. Therefore, HFPO-TA might not be a safe alternative to PFOA, and more evidences from multi- and transgenerational toxicology are warranted.
Collapse
Affiliation(s)
- Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiangyue Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
3
|
Lu T, Zheng W, Hu F, Lin X, Tao R, Li M, Guo LH. Disruption of zebrafish sex differentiation by emerging contaminants hexafluoropropylene oxides at environmental concentrations via antagonizing androgen receptor pathways. ENVIRONMENT INTERNATIONAL 2024; 190:108868. [PMID: 38976939 DOI: 10.1016/j.envint.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
As alternatives of perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimeric acid (HFPO-DA) and trimeric acid (HFPO-TA) have been detected increasingly in environmental media and even humans. They have been shown to exhibit reproductive toxicity to model species, but their effects on human remain unclear due to the knowledge gap in their mode of action. Herein, (anti-)androgenic effects of the two HFPOs and PFOA were investigated and underlying toxicological mechanism was explored by combining zebrafish test, cell assay and molecular docking simulation. Exposure of juvenile zebrafish to the chemicals during sex differentiation promoted feminization, with HFPO-TA acting at an environmental concentration of 1 μg/L. The chemicals inhibited proliferation of human prostate cells and transcriptional activity of human and zebrafish androgen receptors (AR), with HFPO-TA displaying the strongest potency. Molecular docking revealed that the chemicals bind to AR in a conformation similar to a known AR antagonist. Combined in vivo, in vitro and in silico results demonstrated that the chemicals disrupted sex differentiation likely by antagonizing AR-mediated pathways, and provided more evidence that HFPO-TA is not a safe alternative to PFOA.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wei Zheng
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Fanglin Hu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Xicha Lin
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Ran Tao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Yang S, Tang X, Yan F, Yang H, Xu L, Jian Z, Deng H, He Q, Zhu G, Wang Q. A time-course transcriptome analysis revealing the potential molecular mechanism of early gonadal differentiation in the Chinese giant salamander. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101200. [PMID: 38320446 DOI: 10.1016/j.cbd.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
The Chinese giant salamander (CGS) Andrias davidianus is the largest extant amphibian and has recently become an important species for aquaculture with high economic value. Meanwhile, its wild populations and diversity are in urgent need of protection. Exploring the mechanism of its early gonadal differentiation will contribute to the development of CGS aquaculture and the recovery of its wild population. In this study, transcriptomic and phenotypic research was conducted on the critical time points of early gonadal differentiation of CGS. The results indicate that around 210 days post-hatching (dph) is the critical window for female CGS's gonadal differentiation, while 270 dph is that of male CGS. Besides, the TRPM1 gene may be the crucial gene among many candidates determining the sex of CGS. More importantly, in our study, key genes involved in CGS's gonadal differentiation and development are identified and their potential pathways and regulatory models at early stage are outlined. This is an initial exploration of the molecular mechanisms of CGS's early gonadal differentiation at multiple time points, providing essential theoretical foundations for its captive breeding and offering unique insights into the conservation of genetic diversity in wild populations from the perspective of sex development.
Collapse
Affiliation(s)
- Shijun Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Fan Yan
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Han Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lishan Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qu He
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangxiang Zhu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qin Wang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
5
|
Adhikari M, Biswas C, Mazumdar P, Sarkar S, Pramanick K. Evaluating the potential of daily intake of polystyrene microplastics via drinking water in inducing PCOS and its ovarian fibrosis progression using female zebrafish. NANOIMPACT 2024; 34:100507. [PMID: 38663500 DOI: 10.1016/j.impact.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Polystyrene microplastics, extensively considered endocrine disrupting chemicals, disturb the reproductive system of living organisms. Polycystic ovary syndrome (PCOS), the reproductive endocrinopathy, is longstanding concern due to its eternal impacts as reproductive disorder and infertility. Despite several reports in reproductive and endocrine toxicity, there is inadequate literature regarding the daily intake of polystyrene-microplastics via drinking water in causing PCOS and leading to ovarian fibrosis in long-term. The present study investigated whether daily consumption of polystyrene-microplastics at doses equivalent to human exposure can cause PCOS and progress to ovarian fibrosis, using female zebrafish as model. Resembling letrozole-PCOS zebrafish model, daily intake of polystyrene-microplastics displayed hallmark PCOS pathophysiology; like excess body weight and %Gonadosomatic index, decreased Follicle Stimulating Hormone and β-estradiol, increased Luteinising Hormone, brain and ovarian Testosterone (39.3% and 75% respectively). Correspondingly, ovarian histology revealed more developing (stage I and II) oocytes and less mature oocytes alongwith cystic lesions; like follicular membrane disorganization, zona pellucida invagination, theca hypertrophy, basophilic granular accumulation and oocyte buddings. Lipid deposition in intestinal and ovarian tissues was evidenced and increased fasting blood glucose manifesting insulin resistance. The expression of PCOS biomarkers (tox3, dennd1a, fem1a) was significantly disturbed. Polystyrene microplastics played vital role in inducing PCOS further enhancing oxidative stress, which positively influences inflammation and aggravate ovarian mitophagy, shedding light on its ability to harshen PCOS into ovarian fibrosis, which is characterized by collagen deposition and upregulation of pro-fibrogenic biomarker genes. These findings illustrate the potential of daily microplastics intake via drinking water in triggering PCOS and its progression to ovarian fibrosis.
Collapse
Affiliation(s)
- Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Piyali Mazumdar
- Reproductive Endocrinology and Stem Cell Biology Laboratory, Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Shampa Sarkar
- Reproductive Endocrinology and Stem Cell Biology Laboratory, Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India.
| |
Collapse
|
6
|
Ruan Y, Li X, Zhai G, Lou Q, Jin X, He J, Yin Z. Estrogen Signaling Inhibits the Expression of anti-Müllerian hormone ( amh) and gonadal-soma-derived factor ( gsdf) during the Critical Time of Sexual Fate Determination in Zebrafish. Int J Mol Sci 2024; 25:1740. [PMID: 38339020 PMCID: PMC10855942 DOI: 10.3390/ijms25031740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
The mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination. Recently, all-testis phenotypes have been observed in the cyp17a1-deficient zebrafish and common carp, as well as in cyp19a1a-deficient zebrafish. By mating cyp17a1-deficient fish with transgenic zebrafish Tg(piwil1:EGFP-nanos3UTR), germ cells in the gonads were labelled with enhanced green fluorescent protein (EGFP). We classified the cyp17a1-deficient zebrafish and their control siblings into primordial germ cell (PGC)-rich and -less groups according to the fluorescence area of the EGFP labelling. Intriguingly, the EGFP-labelled bi-potential gonads in cyp17a1+/+ fish from the PGC-rich group were significantly larger than those of the cyp17a1-/- fish at 23 days post-fertilization (dpf). Based on the transcriptome analysis, we observed that the cyp17a1-deficient fish of the PGC-rich group displayed a significantly upregulated expression of amh and gsdf compared to that of control fish. Likewise, the upregulated expressions of amh and gsdf were observed in cyp19a1a-deficient fish as examined at 23 dpf. This upregulation of amh and gsdf could be repressed by treatment with an exogenous supplement of estradiol. Moreover, tamoxifen, an effective antagonist of both estrogen receptor α and β (ERα and Erβ), upregulates the expression of amh and gsdf in wild-type (WT) fish. Using the cyp17a1- and cyp19a1a-deficient zebrafish, we provide evidence to show that the upregulated expression of amh and gsdf due to the compromised estrogen signaling probably determines their sexual fate towards testis differentiation. Collectively, our data suggest that estrogen signaling inhibits the expression of amh and gsdf during the critical time of sexual fate determination, which may broaden the scope of sex steroid hormones in regulating gonadal sex differentiation in fish.
Collapse
Affiliation(s)
- Yonglin Ruan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan 430070, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.R.); (X.L.); (Q.L.); (J.H.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan 430070, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
8
|
Valdivieso A, Caballero-Huertas M, Moraleda-Prados J, Piferrer F, Ribas L. Exploring the Effects of Rearing Densities on Epigenetic Modifications in the Zebrafish Gonads. Int J Mol Sci 2023; 24:16002. [PMID: 37958987 PMCID: PMC10647740 DOI: 10.3390/ijms242116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction, and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and 66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to 45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression in the ovaries of fish subjected to elevated density, as previously observed in other studies. We proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a potential biomarker for predicting stress originated from high densities during the early stages of development. These findings highlight the importance of rearing densities by long-lasting effects in adulthood conveying cautions for stocking protocols in fish hatcheries.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, 34090 Montpellier, France
| | - Marta Caballero-Huertas
- CIRAD, UMR ISEM, 34398 Montpellier, France;
- ISEM, Université de Montpellier, CIRAD, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Javier Moraleda-Prados
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| |
Collapse
|
9
|
Lau ESW, Zhu B, Sun MA, Ngai SM, Ge W. Proteomic analysis of zebrafish folliculogenesis identifies YB-1 (Ybx1/ybx1) as a potential gatekeeping molecule controlling early ovarian folliculogenesis. Biol Reprod 2023; 109:482-497. [PMID: 37471641 DOI: 10.1093/biolre/ioad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
As in mammals, ovarian folliculogenesis in teleosts also consists of two phases: the primary growth (PG) and secondary growth (SG) phases, which are analogous to the preantral and antral phases respectively in mammals. In this study, we performed a proteomic analysis on zebrafish follicles undergoing the PG-SG transition aiming to identify factors involved in the event. Numerous proteins showed significant changes, and the most prominent one was Y-box binding protein 1 (YB-1; Ybx1/ybx1), a transcription factor and mRNA-binding protein. YB-1 belongs to the Y-box binding protein family, which also includes the gonad-specific YB-2. Interestingly, phylogenetic analysis showed no YB-2 homolog in zebrafish. Although ybx1 mRNA was expressed in various tissues, its protein Ybx1 was primarily produced in the gonads, similar to YB-2 in other species. In the ovary, Ybx1 protein started to appear in early follicles newly emerged from the germ cell cysts, reached the highest level in late PG oocytes, but decreased precipitously when the follicles entered the SG phase. In PG follicles, Ybx1 might function as a key component of the messenger ribonucleoprotein particles (mRNPs) in association with other RNA-binding proteins. Similar to mammalian YB-1, zebrafish Ybx1 also contains functional signals that determine its intracellular localization. In conclusion, Ybx1 may play dual roles of YB-1 and YB-2 in zebrafish. In the ovary, Ybx1 binds mRNAs to stabilize them while preventing their translation. At PG-SG transition, Ybx1 is removed to release the masked mRNAs for translation into functional proteins, leading to follicle activation.
Collapse
Affiliation(s)
- Esther Shuk-Wa Lau
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Sai Ming Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
10
|
Zhai Y, Zhang X, Zhao C, Geng R, Wu K, Yuan M, Ai N, Ge W. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet 2023; 19:e1010954. [PMID: 37713421 PMCID: PMC10529593 DOI: 10.1371/journal.pgen.1010954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/27/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-β signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin βAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xin Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruijing Geng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
11
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
12
|
Cui M, Wu X, Yuan L, Zhai Y, Liang X, Wang Z, Li J, Xu L, Song W. Exposure to tris(2,6-dimethylphenyl) phosphate interferes with sexual differentiation via estrogen receptors 2a and 2b in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130525. [PMID: 37055955 DOI: 10.1016/j.jhazmat.2022.130525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
Tris(2,6-dimethylphenyl) phosphate (TDMPP), an emerging organophosphate flame retardant, is frequently detected in multiple environmental media. Although TDMPP has been proven as a compound with estrogenic activity, its feminizing effects on reproductive system remain unclear. This study investigated the adverse effects of TDMPP on gonadal development by exposing zebrafish for 105 days from 15 days post-fertilization. Exposure to TDMPP (0.5 and 5 μM, corresponding to about 200 and 2000 μg/L) induced ovarian formation in aromatase mutant (cyp19a1a-/-) line which normally presents all-male phenotype for deficiency of endogenous estrogen (E2), suggesting its feminizing effect on sexual differentiation. In addition, TDMPP also interfered with other aspects of reproduction by delaying puberty onset, retarding sexual maturation, impairing gametogenesis and subfertility. Molecular docking and reporter gene assay indicated that all three nuclear estrogen receptors (nERs) can be binded to and activated by TDMPP. Using a series of nERs mutant lines, we confirmed the indispensable role of esr2a and esr2b in mediating the feminizing effects of TDMPP. Further analysis revealed that the prominent effects of TDMPP on sexual differentiation correlated to upregulation of female-promoting genes and downregulation of male-promoting genes. Taken together, the present study provided unequivocal genetic evidence for estrogenic effects of TDMPP on reproductive system and its molecular mechanisms of action.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Zhai
- School of Public Health, Jilin University, Changchun, China
| | - Xin Liang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zihan Wang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, China
| | - Lichun Xu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
13
|
Comparative Analysis of miRNA-mRNA Regulation in the Testes of Gobiocypris rarus following 17α-Methyltestosterone Exposure. Int J Mol Sci 2023; 24:ijms24044239. [PMID: 36835651 PMCID: PMC9968023 DOI: 10.3390/ijms24044239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
17α-Methyltestosterone (17MT), a synthetic organic compound commonly found in sewage waters, can affect reproduction in aquatic animals, such as tilapia and yellow catfish. In the present study, male Gobiocypris rarus were exposed to 25, 50, and 100 ng/L of 17α-methyltestosterone (17MT) for 7 days. We first analyzed miRNA- and RNA-seq results to determine miRNA-target gene pairs and then developed miRNA-mRNA interactive networks after 17MT administration. Total weights, total lengths, and body lengths were not significantly different between the test groups and control groups. The paraffin slice method was applied to testes of G. rarus in the MT exposure and control groups. We found that there were more mature sperm (S) and fewer secondary spermatocytes (SSs) and spermatogonia (SGs) in the testes of control groups. As 17MT concentration increased, fewer and fewer mature sperm (S) were observed in the testes of male G. rarus. The results showed that FSH, 11-KT, and E2 were significantly higher in individuals exposed to 25 ng/L 17MT compared with the control groups. VTG, FSH, LH, 11-KT, and E2 were significantly lower in the 50 ng/L 17MT exposure groups compared to the control groups. VTG, FSH, LH, 11-KT, E2, and T were significantly lower in the groups exposed to 100 ng/L 17MT. High-throughput sequencing revealed 73,449 unigenes, 1205 known mature miRNAs, and 939 novel miRNAs in the gonads of G. rarus. With miRNA-seq, 49 (MT25-M vs. Con-M), 66 (MT50-M vs. Con-M), and 49 (MT100-M vs. Con-M) DEMs were identified in the treatment groups. Five mature miRNAs (miR-122-x, miR-574-x, miR-430-y, lin-4-x, and miR-7-y), as well as seven differentially expressed genes (soat2, inhbb, ihhb, gatm, faxdc2, ebp, and cyp1a1), which may be associated with testicular development, metabolism, apoptosis, and disease response, were assayed using qRT-PCR. Furthermore, miR-122-x (related to lipid metabolism), miR-430-y (embryonic development), lin-4-x (apoptosis), and miR-7-y (disease) were differentially expressed in the testes of 17MT-exposed G. rarus. This study highlights the role of miRNA-mRNA pairs in the regulation of testicular development and immune response to disease and will facilitate future studies on the miRNA-RNA-associated regulation of teleost reproduction.
Collapse
|
14
|
Chen W, Zhai Y, Zhu B, Wu K, Fan Y, Zhou X, Liu L, Ge W. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish-A novel insight into its action mechanism. PLoS Genet 2022; 18:e1010318. [PMID: 36520929 PMCID: PMC9799306 DOI: 10.1371/journal.pgen.1010318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage. These follicles eventually degenerated, and all mutant females gradually changed to males through sex reversal, which could be prevented by mutation of the male-promoting gene dmrt1. Interestingly, the phenotypes of gdf9-/- could be rescued by simultaneous mutation of inhibin α (inha-/-) but not estradiol treatment, suggesting a potential role for the activin-inhibin system or its signaling pathway in Gdf9 actions. In gdf9-null follicles, the expression of activin βAa (inhbaa), but not βAb (inhbab) and βB (inhbb), decreased dramatically; however, its expression rebounded in the double mutant (gdf9-/-;inha-/-). These results indicate clearly that the activation of PG follicles to enter the secondary growth (SG) requires intrinsic factors from the oocyte, such as Gdf9, which in turn works on the neighboring follicle cells to trigger follicle activation, probably involving activins. In addition, our data also support the view that estrogens are not involved in follicle activation as recently reported.
Collapse
Affiliation(s)
- Weiting Chen
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Lin Liu
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
15
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
16
|
He X, Wu H, Ye Y, Gong X, Bao B. Transcriptome analysis revealed gene expression feminization of testis after exogenous tetrodotoxin administration in pufferfish Takifugu flavidus. BMC Genomics 2022; 23:553. [PMID: 35922761 PMCID: PMC9347094 DOI: 10.1186/s12864-022-08787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Tetrodotoxin (TTX) is a deadly neurotoxin and usually accumulates in large amounts in the ovaries but is non-toxic or low toxic in the testis of pufferfish. The molecular mechanism underlying sexual dimorphism accumulation of TTX in ovary and testis, and the relationship between TTX accumulation with sex related genes expression remain largely unknown. The present study investigated the effects of exogenous TTX treatment on Takifugu flavidus. The results demonstrated that exogenous TTX administration significantly incresed level of TTX concentration in kidney, cholecyst, skin, liver, heart, muscle, ovary and testis of the treatment group (TG) than that of the control group (CG). Transcriptome sequencing and analysis were performed to study differential expression profiles of mRNA and piRNA after TTX administration of the ovary and testis. The results showed that compared with female control group (FCG) and male control group (MCG), TTX administration resulted in 80 and 23 piRNAs, 126 and 223 genes up and down regulated expression in female TTX-treated group (FTG), meanwhile, 286 and 223 piRNAs, 2 and 443 genes up and down regulated expression in male TTX-treated group (MTG). The female dominant genes cyp19a1, gdf9 and foxl2 were found to be up-regulated in MTG. The cyp19a1, whose corresponding target piRNA uniq_554482 was identified as down-regulated in the MTG, indicating the gene expression feminization in testis after exogenous TTX administration. The KEGG enrichment analysis revealed that differentially expressed genes (DEGs) and piRNAs (DEpiRNAs) in MTG vs MCG group were more enriched in metabolism pathways, indicating that the testis produced more metabolic pathways in response to exogenous TTX, which might be a reason for the sexual dimorphism of TTX distribution in gonads. In addition, TdT-mediated dUTP-biotin nick end labeling staining showed that significant apoptosis was detected in the MTG testis, and the role of the cell apoptotic pathways was further confirmed. Overall, our research revealed that the response of the ovary and testis to TTX administration was largely different, the ovary is more tolerant whereas the testis is more sensitive to TTX. These data will deepen our understanding on the accumulation of TTX sexual dimorphism in Takifugu.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hexing Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaping Ye
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaolin Gong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
17
|
Zhang Y, Cao X, Zou Y, Yan Z, Huang Y, Zhu Y, Gao J. De novo gonad transcriptome analysis of elongate loach (Leptobotia elongata) provides novel insights into sex-related genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100962. [PMID: 35091330 DOI: 10.1016/j.cbd.2022.100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Elongate loach (Leptobotia elongata) is endemic in middle and upper reaches of the Yangtze River in China. Because of many anthropogenic factors such as overfishing and dam construction, the loach has become a highly endangered species. So far, the genomic resources which benefit for species conservation and utilization are still lacking in elongate loach. Therefore, the first gonad transcriptome analysis of the loach was conducted in this study, providing novel insights into sex-related genes. A total of 286,800,660 clean reads with a total length of 42.02 Gb were obtained. 18,975 differentially expressed genes (DEGs) were identified, where 12,976 DEGs, especially Sox9a, Sox9b, Igf2 and Fgfr2, were upregulated in the testis, and 5999 DEGs, especially Zp3, Eg2, Plk1, Ccnb1, Cdc20 and Mos, were upregulated in the ovary. Meanwhile, some testis-specific genes (i.e. Cald1, Atp1a, Muc2 and Ca2) and ovary-specific genes (i.e. Ca4, Tuba, Acp5, Ccna, Larp6 and Nop4) were identified and verified. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs, we found a series of enrichment pathways related to reproduction in elongate loach, such as the MAPK signaling pathway, oxytocin signaling pathway and oocyte meiosis pathway. Twelve DEGs were randomly selected to verify RNA-seq results by qPCR. In conclusion, this study provides a data source to study the molecular characteristics and regulatory mechanisms of sex-related genes in elongate loach, which has a potential to improve the resource protection and aquaculture production of the loach.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Yuanchao Zou
- College of Life Sciences, Neijiang Normal University, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang, Sichuan 641100, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River Ministry of Agriculture, Yangtze River Fishery Research Institute, CAFS, Wuhan 430223, China
| | - Ze Yan
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuwei Huang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, China.
| |
Collapse
|
18
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Hu MY, Yu J, Lin JQ, Fang SG. Sex-Biased miRNAs in the Gonads of Adult Chinese Alligator ( Alligator sinensis) and Their Potential Roles in Sex Maintenance. Front Genet 2022; 13:843884. [PMID: 35432471 PMCID: PMC9008718 DOI: 10.3389/fgene.2022.843884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) is a category of single-stranded non-coding small RNA (sRNA) that regulates gene expression by targeting mRNA. It plays a key role in the temperature-dependent sex determination of Chinese alligator (Alligator sinensis), a reptile whose sex is determined solely by the temperature during the incubation period and remains stable thereafter. However, the potential function of miRNAs in the gonads of adult Chinese alligators is still unclear. Here, we prepared and sequenced sRNA libraries of adult female and male alligator gonads, from breeding (in summer) and hibernating (in winter) animals. We obtained 130 conserved miRNAs and 683 novel miRNAs, which were assessed for sex bias in summer and winter; a total of 65 miRNAs that maintained sex bias in both seasons were identified. A regulatory network of sex-biased miRNAs and genes was constructed. Sex-biased miRNAs targeted multiple genes in the meiosis pathway of adult Chinese alligator oocytes and the antagonistic gonadal function maintenance pathway, such as MOS, MYT1, DMRT1, and GDF9. Our study emphasizes the function of miRNA in the epigenetic mechanisms of sex maintenance in crocodilians.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jun Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Qin M, Xie Q, Wu K, Zhou X, Ge W. Loss of Nobox prevents ovarian differentiation from juvenile ovaries in zebrafish. Biol Reprod 2022; 106:1254-1266. [PMID: 35157068 DOI: 10.1093/biolre/ioac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 11/12/2022] Open
Abstract
As a species without master sex-determining genes, zebrafish displays high plasticity in sex differentiation, making it an excellent model for studying the regulatory mechanisms underlying gonadal differentiation and gametogenesis. Despite being a gonochorist, zebrafish is a juvenile hermaphrodite that undergoes a special phase of juvenile ovary before further differentiation into functional testis and ovary. The mechanisms underlying juvenile ovary formation and subsequent gonadal differentiation remain largely unknown. In a recent study, we demonstrated an important role for Figla (factor in the germline alpha) in zebrafish oogenesis. In this study, we explored the role of Nobox/nobox (new born ovary homeobox protein), another oocyte-specific transcription factor in females, in early zebrafish gonadogenesis using CRISPR/Cas9 technology. As in mammals, nobox is specifically expressed in zebrafish gonads with a dimorphic pattern at juvenile stage. In contrast to the mutant of figla (another oocyte-specific transcription factor), the nobox mutants showed formation of typical perinucleolar (PN) follicles at primary growth (PG) stage in juvenile gonads, suggesting occurrence of follicle assembly from cystic oocytes (chromatin nucleolar stage, CN). These follicles, however, failed to develop further to form functional ovaries, resulting in all-male phenotype. Despite its expression in adult testis, the loss of nobox did not seem to affect testis development, spermatogenesis and male spawning. In summary, our results indicate an important role for Nobox in zebrafish ovarian differentiation and early folliculogenesis.
Collapse
Affiliation(s)
- Mingming Qin
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Qingping Xie
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
21
|
Song Y, Hu W, Ge W. Establishment of transgenic zebrafish (Danio rerio) models expressing fluorescence proteins in the oocytes and somatic supporting cells. Gen Comp Endocrinol 2021; 314:113907. [PMID: 34543655 DOI: 10.1016/j.ygcen.2021.113907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
The interaction between gonadal somatic support cells and germ cells plays a crucial role in gonadal development. In fish, the process involves various local growth factors such as growth differentiation factor 9 (Gdf9) and gonadal soma-derived factor (Gsdf), which are both members of the transforming growth factor-β (TGF-β) superfamily. Gdf9, an oocyte-secreted factor, is a potent regulator of folliculogenesis in both mammals and fish. By contrast, Gsdf is expressed by the gonadal somatic cells (i.e., Sertoli cells in the testis and granulosa cells in the ovary) that support germ cell development. In this study, we established two transgenic zebrafish models, and demonstrated that the 2.7-kb proximal promoter region of gdf9 drove mCherry expression specifically in the oocytes, whereas the 2.1-kb proximal promoter region of gsdf drove enhanced green fluorescent protein (eGFP) expression in the Sertoli cells and granulosa cells. These proximal promoters contained sufficient information to respectively mimic the spatiotemporal expression patterns of endogenous gdf9 and gsdf in zebrafish. In the Tg(gdf9:mCherry) fish, mCherry was weakly expressed in the oocytes at primary growth stage but strongly expressed in those entering the secondary growth phase. In the Tg(gsdf:eGFP) fish, eGFP-positive Sertoli cells were distributed around spermatogenic cysts in the testis, whereas eGFP-positive granulosa cells were located at the outer side of the follicle layer in the ovary. The eGFP-positive Sertoli cells and granulosa cells seemed to have originated from the dorsal epithelium of the gonads. These Tg(gdf9:mCherry) and Tg(gsdf:eGFP) zebrafish models are suitable for studying gonadal development and function especially on the interaction between germ cells and supporting somatic cells.
Collapse
Affiliation(s)
- Yanlong Song
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
22
|
Shi WJ, Ma DD, Fang GZ, Zhang JG, Huang GY, Xie L, Chen HX, Hou LP, Ying GG. Levonorgestrel and dydrogesterone affect sex determination via different pathways in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105972. [PMID: 34571414 DOI: 10.1016/j.aquatox.2021.105972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Levonorgestrel (LNG) and dydrogesterone (DDG) are two commonly used synthetic progestins that have been detected in aquatic environments. They could affect fish sex differentiation, but the underlying mechanisms remain unknown. Here we investigated the effects of LNG (5 ng L-1 and 50 ng L-1), DDG (100 ng L-1) and their mixtures on gonadal differentiation and sex determination in zebrafish at transcriptomic and histological levels from 2 hours post-fertilization (eleutheroembryos) to 144 days post-fertilization (sexual maturity). Germ cell development and oogenesis pathways were significantly enriched in LNG and the mixture of LNG and DDG treatments, while insulin and apoptosis pathways in the DDG treatment. LNG and the mixture of LNG and DDG strongly decreased transcripts of germ cell development and oogenesis related genes, while DDG increased the transcripts of insulin and apoptosis related genes at 28 days post fertilization (dpf) and 35 dpf. Furthermore, DDG caused ∼ 90% males, and LNG and the mixture of LNG and DDG resulted in 100% males on all sampling dates. Specifically, most males in LNG and the mixture of LNG and DDG treatments were "Type I" males without juvenile oocytes at 28 dpf and 35 dpf, while those in DDG treatment were "Type II" and "Type III" males with a few juvenile oocytes. These results indicated that LNG and DDG promoted testicular differentiation via different pathways to cause male bias. LNG and DDG mixtures have similar effect on testicular differentiation to LNG alone. The findings from this study could have significant ecological implications to fish populations.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Ping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
23
|
Zhu KC, Zhang N, Liu BS, Guo L, Guo HY, Jiang SG, Zhang DC. A chromosome-level genome assembly of the yellowfin seabream (Acanthopagrus latus; Hottuyn, 1782) provides insights into its osmoregulation and sex reversal. Genomics 2021; 113:1617-1627. [PMID: 33839268 DOI: 10.1016/j.ygeno.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/14/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
The yellowfin seabream Acanthopagrus latus is the economically most important Sparidae fish in the northern South China Sea. As euryhaline fish, they are perfect model for investigating osmoregulatory mechanisms in teleosts. Moreover, the reproductive biology of hermaphrodites has long been intriguing; however, little information is known about the molecular pathways underlying their sex change. Here, we report a chromosome level reference genome of A. latus generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The draft genome of yellowfin seabream was 806 Mb, with 732 Mb scaffolds anchored on 24 chromosomes. The contig N50 and scaffold N50 were 2.6 Mb and 30.17 Mb, respectively. The assembly is of high integrity and includes 92.23% universal single-copy orthologues based on benchmarking universal single-copy orthologs (BUSCO) analysis. A total of 19,631 protein-coding genes were functionally annotated in the reference genome. Moreover, ARRDC3 and GSTA gene families which related to osmoregulation underwent an extensive expansion in two euryhaline sparids fish genomes compared to other teleost genomes. Moreover, integrating sex-specific transcriptome analyses, several genes related to the transforming growth factor beta (TGF-β) signalling pathway involved in sex differentiation and development. This genomic resource will not only be valuable for studying the osmoregulatory mechanisms in estuarine fish and sex determination in hermaphrodite vertebrate species, but also provide useful genomic tools for facilitating breeding of the yellowfin seabream.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
24
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
25
|
Cooper R, David A, Lange A, Tyler CR. Health Effects and Life Stage Sensitivities in Zebrafish Exposed to an Estrogenic Wastewater Treatment Works Effluent. Front Endocrinol (Lausanne) 2021; 12:666656. [PMID: 33995285 PMCID: PMC8120895 DOI: 10.3389/fendo.2021.666656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 11/27/2022] Open
Abstract
A wide range of health effects in fish have been reported for exposure to wastewater treatment work (WwTW) effluents including feminized responses in males. Most of these exposure studies, however, have assessed acute health effects and chronic exposure effects are less well established. Using an Estrogen Responsive Element-Green Fluorescent Protein (ERE-GFP)-Casper transgenic zebrafish, we investigated chronic health effects and life stage sensitivities for exposure to an estrogenic WwTW effluent and the synthetic estrogen 17α-ethinylestradiol (EE2). Exposure to the WwTW effluent (at full strength;100%) and to 10 ng/L (nominal) EE2 delayed testis maturation in male fish but accelerated ovary development in females. Exposure to 50% and 100% effluent, and to 10 ng/L EE2, also resulted in skewed sex ratios in favor of females. Differing patterns of green fluorescent protein (GFP) expression, in terms of target tissues and developmental life stages occurred in the ERE-GFP- zebrafish chronically exposed to 100% effluent and reflected the estrogenic content of the effluent. gfp and vitellogenin (vtg) mRNA induction were positively correlated with measured levels of steroidal estrogens in the effluent throughout the study. Our findings illustrate the importance of a fish's developmental stage for estrogen exposure effects and demonstrate the utility of the ERE-GFP zebrafish for integrative health analysis for exposure to estrogenic chemical mixtures.
Collapse
Affiliation(s)
- Ruth Cooper
- College of Life & Environmental Sciences, University of Exeter, Biosciences, Exeter, United Kingdom
| | - Arthur David
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Anke Lange
- College of Life & Environmental Sciences, University of Exeter, Biosciences, Exeter, United Kingdom
| | - Charles R. Tyler
- College of Life & Environmental Sciences, University of Exeter, Biosciences, Exeter, United Kingdom
- *Correspondence: Charles R. Tyler,
| |
Collapse
|
26
|
King AC, Gut M, Zenker AK. Shedding new light on early sex determination in zebrafish. Arch Toxicol 2020; 94:4143-4158. [PMID: 32975586 PMCID: PMC7655572 DOI: 10.1007/s00204-020-02915-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
Abstract
In contrast to established zebrafish gene annotations, the question of sex determination has still not been conclusively clarified for developing zebrafish, Danio rerio, larvae, 28 dpf or earlier. Recent studies indicate polygenic sex determination (PSD), with the genes being distributed throughout the genome. Early genetic markers of sex in zebrafish help unravel co-founding sex-related differences to apply to human health and environmental toxicity studies. A qPCR-based method was developed for six genes: cytochrome P450, family 17, subfamily A, polypeptide 1 (cyp17a1); cytochrome P450, family 19, subfamily A, polypeptide 1a (cyp19a1a); cytochrome P450, family 19, subfamily A, polypeptides 1b (cyp19a1b); vitellogenin 1 (vtg1); nuclear receptor subfamily 0, group B, member 1 (nr0b1), sry (sex-determining region Y)-box 9b (sox9b) and actin, beta 1 (actb1), the reference gene. Sry-box 9a (Sox9a), insulin-like growth factor 3 (igf3) and double sex and mab-3 related transcription factor 1 (dmrt1), which are also known to be associated with sex determination, were used in gene expression tests. Additionally, Next-Generation-Sequencing (NGS) sequenced the genome of two adult female and male and two juveniles. PCR analysis of adult zebrafish revealed sex-specific expression of cyp17a1, cyp19a1a, vtg1, igf3 and dmrt1, the first four strongly expressed in female zebrafish and the last one highly expressed in male conspecifics. From NGS, nine female and four male-fated genes were selected as novel for assessing zebrafish sex, 28 dpf. Differences in transcriptomes allowed allocation of sex-specific genes also expressed in juvenile zebrafish.
Collapse
Affiliation(s)
- Alex C King
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Michelle Gut
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Armin K Zenker
- FHNW, University of Applied Sciences and Arts North-Western Switzerland, School of Life Sciences, Institute for Ecopreneurship, Hofackerstrasse 30, 4132, Muttenz, Switzerland.
| |
Collapse
|
27
|
Maradonna F, Gioacchini G, Notarstefano V, Fontana CM, Citton F, Dalla Valle L, Giorgini E, Carnevali O. Knockout of the Glucocorticoid Receptor Impairs Reproduction in Female Zebrafish. Int J Mol Sci 2020; 21:E9073. [PMID: 33260663 PMCID: PMC7729492 DOI: 10.3390/ijms21239073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
The pleiotropic effects of glucocorticoids in metabolic, developmental, immune and stress response processes have been extensively investigated; conversely, their roles in reproduction are still less documented. It is well known that stress or long-lasting therapies can cause a strong increase in these hormones, negatively affecting reproduction. Moreover, the need of glucocorticoid (GC) homeostatic levels is highlighted by the reduced fertility reported in the zebrafish glucocorticoid receptor mutant (nr3c1ia30/ia30) line (hereafter named gr-/-). Starting from such evidence, in this study, we have investigated the role of glucocorticoid receptor (Gr) in the reproduction of female zebrafish. Key signals orchestrating the reproductive process at the brain, liver, and ovarian levels were analyzed using a multidisciplinary approach. An impairment of the kiss-GnRH system was observed at the central level in (gr-/-) mutants as compared to wild-type (wt) females while, in the liver, vitellogenin (vtg) mRNA transcription was not affected. Changes were instead observed in the ovary, particularly in maturing and fully grown follicles (classes III and IV), as documented by the mRNA levels of signals involved in oocyte maturation and ovulation. Follicles isolated from gr-/- females displayed a decreased level of signals involved in the acquisition of competence and maturation, causing a reduction in ovulation with respect to wt females. Fourier transform infrared imaging (FTIRI) analysis of gr-/- follicle cytoplasm showed major changes in macromolecule abundance and distribution with a clear alteration of oocyte composition. Finally, differences in the molecular structure of the zona radiata layer of gr-/- follicles are likely to contribute to the reduced fertilization rate observed in mutants.
Collapse
Affiliation(s)
- Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Camilla Maria Fontana
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Filippo Citton
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Luisa Dalla Valle
- Department of Biology, Università di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (C.M.F.); (F.C.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche snc, 60131 Ancona, Italy; (F.M.); (G.G.); (V.N.); (E.G.)
- Biostructures and Biosystems National Institute—Interuniversity Consortium, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| |
Collapse
|
28
|
Zhang Z, Zhu B, Chen W, Ge W. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish. Mol Cell Endocrinol 2020; 517:110963. [PMID: 32745576 DOI: 10.1016/j.mce.2020.110963] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
Anti-Müllerian hormone (AMH/Amh) plays a role in gonadal differentiation and function across vertebrates. In zebrafish we demonstrated that Amh deficiency caused severe gonadal dysgenesis and dysfunction. The mutant gonads showed extreme hypertrophy with accumulation of early germ cells in both sexes, namely spermatogonia in the testis and primary growth oocytes in the ovary. In amh mutant females, the folliculogenesis was normal in young fish but receded progressively in adults, which was accompanied by progressive decrease in follicle-stimulating hormone (fshb) expression. Interestingly the expression of fshb increased in the pituitary of juvenile amh mutant males but decreased in adults. The upregulation of fshb in mutant male juveniles was likely one of the mechanisms for triggering gonadal hypergrowth, whereas the downregulation of fshb in adults might involve a negative feedback by gonadal inhibin. Further analysis using mutants of fshb and growth differentiation factor 9 (gdf9) provided evidence for a role of FSH in triggering ovarian hypertrophy in young female amh mutant as well. In summary, the present study provided comprehensive genetic evidence for dual roles of Amh in controlling zebrafish gonadal homeostasis and gametogenesis in both sexes. Amh suppresses proliferation or accumulation of early germ cells (spermatogonia in testis and primary growth oocytes in ovary) while promoting their exit to advanced stages, and its action may involve both endocrine and paracrine pathways.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
29
|
Zhang X, Zhou J, Li L, Huang W, Ahmad HI, Li H, Jiang H, Chen J. Full-length transcriptome sequencing and comparative transcriptomic analysis to uncover genes involved in early gametogenesis in the gonads of Amur sturgeon ( Acipenser schrenckii). Front Zool 2020; 17:11. [PMID: 32308726 PMCID: PMC7147073 DOI: 10.1186/s12983-020-00355-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sturgeons (Acipenseriformes) are polyploid chondrostean fish that constitute an important model species for studying development and evolution in vertebrates. To better understand the mechanisms of reproduction regulation in sturgeon, this study combined PacBio isoform sequencing (Iso-Seq) with Illumina short-read RNA-seq methods to discover full-length genes involved in early gametogenesis of the Amur sturgeon, Acipenser schrenckii. RESULTS A total of 50.04 G subread bases were generated from two SMRT cells, and herein 164,618 nonredundant full-length transcripts (unigenes) were produced with an average length of 2782 bp from gonad tissues (three testes and four ovaries) from seven 3-year-old A. schrenckii individuals. The number of ovary-specific expressed unigenes was greater than those of testis (19,716 vs. 3028), and completely different KEGG pathways were significantly enriched between the ovary-biased and testis-biased DEUs. Importantly, 60 early gametogenesis-related genes (involving 755 unigenes) were successfully identified, and exactly 50% (30/60) genes of those showed significantly differential expression in testes and ovaries. Among these, the Amh and Gsdf with testis-biased expression, and the Foxl2 and Cyp19a with ovary-biased expression strongly suggested the important regulatory roles in spermatogenesis and oogenesis of A. schrenckii, respectively. We also found the four novel Sox9 transcript variants, which increase the numbers of regulatory genes and imply function complexity in early gametogenesis. Finally, a total of 236,672 AS events (involving 36,522 unigenes) were detected, and 10,556 putative long noncoding RNAs (lncRNAs) and 4339 predicted transcript factors (TFs) were also respectively identified, which were all significantly associated with the early gametogenesis of A. schrenckii. CONCLUSIONS Overall, our results provide new genetic resources of full-length transcription data and information as a genomic-level reference for sturgeon. Crucially, we explored the comprehensive genetic characteristics that differ between the testes and ovaries of A. schrenckii in the early gametogenesis stage, which could provide candidate genes and theoretical basis for further the mechanisms of reproduction regulation of sturgeon.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Hafiz Ishfaq Ahmad
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Huiming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260 Guangdong China
| |
Collapse
|
30
|
Huang X, Qin Q, Gong K, Wu C, Zhou Y, Chen Q, Feng W, Xing Y, Wang C, Wang Y, Cao L, Tao M, Liu S. Comparative analyses of the Sox9a-Amh-Cyp19a1a regulatory Cascade in Autotetraploid fish and its diploid parent. BMC Genet 2020; 21:35. [PMID: 32199463 PMCID: PMC7085200 DOI: 10.1186/s12863-020-00840-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Autotetraploid Carassius auratus (4nRCC, 4n = 200, RRRR) was derived from the whole genome duplication of diploid red crucian carp (Carassius auratus red var.) (2nRCC, 2n = 100, RR). To investigate the genetic effects of tetraploidization, we analyzed DNA variation, epigenetic modification and gene expression changes in the Sox9a-Amh-Cyp19a1a regulatory cascade between 4nRCC and 2nRCC. RESULTS We found that the Sox9a gene contained two variants in 2nRCC and four variants in 4nRCC. Compared with that in 2nRCC, DNA methylation in the promoter regions of the Amh and Cyp19a1a genes in 4nRCC was altered by single nucleotide polymorphism (SNP) mutations, which resulted in the insertions and deletions of CpG sites, and the methylation levels of the Sox9a, Amh and Cyp19a1a genes increased after tetraploidization. The gene expression level of the Sox9a-Amh-Cyp19a1a regulatory cascade was downregulated in 4nRCC compared with that in 2nRCC. CONCLUSION The above results demonstrate that tetraploidization leads to significant changes in the genome, epigenetic modification and gene expression in the Sox9a-Amh-Cyp19a1a regulatory cascade; these findings increase the extant knowledge regarding the effects of polyploidization.
Collapse
Affiliation(s)
- Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Kaijun Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Yuwei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Qian Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Wenjing Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Yiying Xing
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, PR China.
| |
Collapse
|
31
|
Wu K, Song W, Zhang Z, Ge W. Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish - a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development 2020; 147:dev.182758. [PMID: 32001440 DOI: 10.1242/dev.182758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/20/2020] [Indexed: 12/27/2022]
Abstract
Sex determination and differentiation are complex processes controlled by many different factors; however, the relationships among these factors are poorly understood. Zebrafish gonadal differentiation exhibits high plasticity involving multiple factors and pathways, which provides an excellent model for investigating the interactions between them. Ovarian aromatase (cyp19a1a) and dmrt1 are key factors in directing vertebrate ovary and testis differentiation, respectively. Knockout of zebrafish cyp19a1a leads to all-male offspring, whereas the loss of dmrt1 results in a female-biased sex ratio. In the present study, we established dmrt1-/- ;cyp19a1a-/- double mutant zebrafish and discovered that the introduction of the dmrt1 mutation into the cyp19a1a mutant could rescue the all-male phenotype of the latter. Interestingly, despite the lack of aromatase/estrogens, the follicles in the ovary of the rescued cyp19a1a mutant could develop normally up to the previtellogenic stage. Further evidence suggested the ovarian aromatase directed ovarian differentiation by suppressing dmrt1 expression via nuclear estrogen receptors (nERs). Our results provide solid evidence for an interaction between cyp19a1a and dmrt1 in zebrafish gonadal differentiation, and for the dispensability of estrogens in controlling early folliculogenesis.
Collapse
Affiliation(s)
- Kun Wu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Weiyi Song
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| |
Collapse
|
32
|
Lobo IKC, Nascimento ÁRD, Yamagishi MEB, Guiguen Y, Silva GFD, Severac D, Amaral ADC, Reis VR, Almeida FLD. Transcriptome of tambaqui Colossoma macropomum during gonad differentiation: Different molecular signals leading to sex identity. Genomics 2020; 112:2478-2488. [PMID: 32027957 DOI: 10.1016/j.ygeno.2020.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022]
Abstract
Tambaqui (Colossoma macropomum) is the major native species in Brazilian aquaculture, and we have shown that females exhibit a higher growth compared to males, opening up the possibility for the production of all-female population. To date, there is no information on the sex determination and differentiation molecular mechanisms of tambaqui. In the present study, transcriptome sequencing of juvenile trunks was performed to understand the molecular network involved in the gonadal sex differentiation. The results showed that before differentiation, components of the Wnt/β-catenin pathway, fox and fst genes imprint female sex development, whereas antagonistic pathways (gsk3b, wt1 and fgfr2), sox9 and genes for androgen synthesis indicate male differentiation. Hence, in undifferentiated tambaqui, the Wnt/β-catenin exerts a role on sex differentiation, either upregulated in female-like individuals, or antagonized in male-like individuals.
Collapse
Affiliation(s)
| | | | | | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France.
| | | | - Dany Severac
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Aldessandro da Costa Amaral
- Programa de Pós-graduação em Ciências Pesqueiras nos Trópicos, Universidade Federal do Amazonas, Manaus, Brazil
| | - Vanessa Ribeiro Reis
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | |
Collapse
|
33
|
Castelli MA, Whiteley SL, Georges A, Holleley CE. Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination? Biol Rev Camb Philos Soc 2020; 95:680-695. [DOI: 10.1111/brv.12582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan A. Castelli
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Sarah L. Whiteley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Clare E. Holleley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| |
Collapse
|
34
|
He FX, Jiang DN, Huang YQ, Mustapha UF, Yang W, Cui XF, Tian CX, Chen HP, Shi HJ, Deng SP, Li GL, Zhu CH. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1963-1980. [PMID: 31399918 DOI: 10.1007/s10695-019-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Scatophagus argus is a new emerging aquaculture fish in East and Southeast Asia. To date, research on reproductive development and regulation in S. argus is lacking. Additionally, genetic and genomic information about reproduction, such as gonadal transcriptome data, is also lacking. Herein, we report the first gonadal transcriptomes of S. argus and identify genes potentially involved in reproduction and gonadal development. A total of 136,561 unigenes were obtained by sequencing of testes (n = 3) and ovaries (n = 3) at stage III. Genes upregulated in males and females known to be involved in gonadal development and gametogenesis were identified, including male-biased dmrt1, amh, gsdf, wt1a, sox9b, and nanos2, and female-biased foxl2, gdf9, bmp15, sox3, zar1, and figla. Serum estradiol-17β and 11-ketotestosterone levels were biased in female and male fish, respectively. Sexual dimorphism of serum steroid hormone levels were interpreted after expression analysis of 20 steroidogenesis-related genes, including cyp19a1a and cyp11b2. This gonadal transcript dataset will help investigate functional genes related to reproduction in S. argus.
Collapse
Affiliation(s)
- Fei-Xiang He
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dong-Neng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuan-Qing Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Umar Farouk Mustapha
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wei Yang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xue-Fan Cui
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chang-Xu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hua-Pu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong-Juan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Si-Ping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Guang-Li Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chun-Hua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
35
|
Yan YL, Batzel P, Titus T, Sydes J, Desvignes T, BreMiller R, Draper B, Postlethwait JH. A Hormone That Lost Its Receptor: Anti-Müllerian Hormone (AMH) in Zebrafish Gonad Development and Sex Determination. Genetics 2019; 213:529-553. [PMID: 31399485 PMCID: PMC6781894 DOI: 10.1534/genetics.119.302365] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fetal mammalian testes secrete Anti-Müllerian hormone (Amh), which inhibits female reproductive tract (Müllerian duct) development. Amh also derives from mature mammalian ovarian follicles, which marks oocyte reserve and characterizes polycystic ovarian syndrome. Zebrafish (Danio rerio) lacks Müllerian ducts and the Amh receptor gene amhr2 but, curiously, retains amh To discover the roles of Amh in the absence of Müllerian ducts and the ancestral receptor gene, we made amh null alleles in zebrafish. Results showed that normal amh prevents female-biased sex ratios. Adult male amh mutants had enormous testes, half of which contained immature oocytes, demonstrating that Amh regulates male germ cell accumulation and inhibits oocyte development or survival. Mutant males formed sperm ducts and some produced a few offspring. Young female mutants laid a few fertile eggs, so they also had functional sex ducts. Older amh mutants accumulated nonvitellogenic follicles in exceedingly large but sterile ovaries, showing that Amh helps control ovarian follicle maturation and proliferation. RNA-sequencing data partitioned juveniles at 21 days postfertilization (dpf) into two groups that each contained mutant and wild-type fish. Group21-1 upregulated ovary genes compared to Group21-2, which were likely developing as males. By 35 dpf, transcriptomes distinguished males from females and, within each sex, mutants from wild types. In adult mutants, ovaries greatly underexpressed granulosa and theca genes, and testes underexpressed Leydig cell genes. These results show that ancestral Amh functions included development of the gonadal soma in ovaries and testes and regulation of gamete proliferation and maturation. A major gap in our understanding is the identity of the gene encoding a zebrafish Amh receptor; we show here that the loss of amhr2 is associated with the breakpoint of a chromosome rearrangement shared among cyprinid fishes.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | | |
Collapse
|
36
|
Jiang L, Bi D, Ding H, Ren Q, Wang P, Kan X. Identification and comparative profiling of gonadal microRNAs in the adult pigeon ( Columba livia). Br Poult Sci 2019; 60:638-648. [PMID: 31343256 DOI: 10.1080/00071668.2019.1639140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1. MicroRNAs are small noncoding RNA molecules that play crucial roles in gene expression. However, the comparative profiling of testicular and ovarian microRNAs in birds are rarely reported, particularly in pigeon.2. In this study, Illumina next-generation sequencing technology was used to sequence miRNA libraries of the gonads from six healthy adult utility pigeons. A total of 344 conserved known miRNAs and 32 novel putative miRNAs candidates were detected. Compared with those of ovaries, 130 differentially expressed (DE) miRNAs were identified in the testes. Among them, 70 miRNAs showed down-regulation in the ovaries, while another 60 miRNAs were up-regulated.3. Combining the results of the expression of target gene measurements and pathway enrichment analyses, it was revealed that some DEmiRNAs from the gonad samples involved in sexual differentiation and development (such as cli-miR-210-3p and cli-miR-214-3p) could down-regulate AR (androgen receptor). Cli-miR-181b-5p, cli-miR-9622-3p and cli-miR-145-5p were highly expressed in both the ovaries and testes, which could co-target HOXC9, and were related to regulation of primary metabolic processes. KEGG enrichment analysis showed that DEmiRNAs may play biological and sex-related roles in pigeon gonads.4. The expression profiles of testicular and ovarian miRNA in adult pigeon gonads are presented for the first time, and the findings may contribute to a better understanding of gonadal expression in poultry.
Collapse
Affiliation(s)
- L Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - D Bi
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - H Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Q Ren
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - P Wang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - X Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China.,The Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
37
|
Tsakogiannis A, Manousaki T, Lagnel J, Papanikolaou N, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The Gene Toolkit Implicated in Functional Sex in Sparidae Hermaphrodites: Inferences From Comparative Transcriptomics. Front Genet 2019; 9:749. [PMID: 30713551 PMCID: PMC6345689 DOI: 10.3389/fgene.2018.00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture.
Collapse
Affiliation(s)
- Alexandros Tsakogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Tereza Manousaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Jacques Lagnel
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | | | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Constantinos C. Mylonas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Costas S. Tsigenopoulos
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| |
Collapse
|
38
|
Zayed Y, Qi X, Peng C. Identification of Novel MicroRNAs and Characterization of MicroRNA Expression Profiles in Zebrafish Ovarian Follicular Cells. Front Endocrinol (Lausanne) 2019; 10:518. [PMID: 31417497 PMCID: PMC6684945 DOI: 10.3389/fendo.2019.00518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional levels and thereby play important roles in regulating many physiological and developmental processes. Oocyte maturation in fish is induced by hormones produced from the hypothalamus, pituitary, and ovary. Gonadotropin-releasing hormone (GnRH) stimulates the secretion of luteinizing hormone (LH), which in turn, induces the secretion of maturation-inducing hormone (MIH) from the ovary. It is documented that small early vitellogenic (or stage IIIa) follicles are unable to undergo oocyte maturation whereas oocytes in mid- to late vitellogenic (stage IIIb) follicles can be induced by LH and MIH to become mature. To determine whether miRNAs may be involved in the growth and acquisition of maturational competency of ovarian follicles, we determined the miRNA expression profiles in follicular cells collected from stage IIIa and IIIb follicles using next-generation sequencing. It was found that miRNAs are abundantly expressed in the follicular cells from both stages IIIa and IIIb follicles. Furthermore, bioinformatics analysis revealed the presence of 214 known, 31 conserved novel and 44 novel miRNAs in zebrafish vitellogenic ovarian follicular cells. Most mature miRNAs in follicular cells were found to be in the length of 22 nucleotides. Differential expression analysis revealed that 11 miRNAs were significantly up-regulated, and 13 miRNAs were significantly down-regulated in the stage IIIb follicular cells as compared with stage IIIa follicular cells. The expression of four of the significantly regulated miRNAs, dre-miR-22a-3p, dre-miR-16a, dre-miR-181a-3p, and dre-miR-29a, was validated by real-time PCR. Finally, gene enrichment and pathway analyses of the predicted targets of the significantly regulated miRNAs supported the involvement of several key signaling pathways in regulating ovarian function, including oocyte maturation. Taken together, this study identifies novel zebrafish miRNAs and characterizes miRNA expression profiles in somatic cells within the zebrafish ovarian follicles. The differential expression of miRNAs between stage IIIa and IIIb follicular cells suggests that these miRNAs are important regulators of zebrafish ovarian follicle development and/or oocyte maturation.
Collapse
Affiliation(s)
- Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Xin Qi
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|
39
|
Crowder CM, Romano SN, Gorelick DA. G Protein-Coupled Estrogen Receptor Is Not Required for Sex Determination or Ovary Function in Zebrafish. Endocrinology 2018; 159:3515-3523. [PMID: 30169775 PMCID: PMC6137278 DOI: 10.1210/en.2018-00685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023]
Abstract
Estrogens regulate vertebrate development and function through binding to nuclear estrogen receptors α and β (ERα and ERβ) and the G protein-coupled estrogen receptor (GPER). Studies in mutant animal models demonstrated that ERα and ERβ are required for normal ovary development and function. However, the degree to which GPER signaling contributes to ovary development and function is less well understood. Previous studies using cultured fish oocytes found that estradiol inhibits oocyte maturation in a GPER-dependent manner, but whether GPER regulates oocyte maturation in vivo is not known. To test the hypothesis that GPER regulates oocyte maturation in vivo, we assayed ovary development and function in gper mutant zebrafish. We found that homozygous mutant gper embryos developed into male and female adults with normal sex ratios. Adult mutant fish exhibited normal secondary sex characteristics and fertility. Additionally, mutant ovaries were histologically normal. We observed no differences in the number of immature versus mature oocytes in mutant versus wild-type ovaries from both young and aged adults. Furthermore, expression of genes associated with sex determination and ovary function was normal in gper mutant ovaries compared with wild type. Our findings suggest that GPER is not required for sex determination, ovary development, or fertility in zebrafish.
Collapse
Affiliation(s)
- Camerron M Crowder
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon N Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Correspondence: Daniel A. Gorelick, PhD, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Alkek Building, Suite N1317.02, One Baylor Plaza, BCM229, Houston, Texas 77030. E-mail:
| |
Collapse
|
40
|
Hsu CW, Pan YJ, Wang YW, Tong SK, Chung BC. Changes in the morphology and gene expression of developing zebrafish gonads. Gen Comp Endocrinol 2018; 265:154-159. [PMID: 29409886 DOI: 10.1016/j.ygcen.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 11/30/2022]
Abstract
Zebrafish gonadal sexual differentiation is an important but poorly understood subject. The difficulty in investigating zebrafish sexual development lies in its sex determination plasticity, the lack of morphological tools to distinguish juvenile females from males, and the lack of sex chromosomes in laboratory strains. Zebrafish sexual differentiation starts at around 8 days post-fertilization when germ cells start to proliferate. The number of germ cells determines the future sex of the gonad. Gonads with more germ cells differentiate into ovaries, whereas a reduced germ cell number leads to male-biased sexual differentiation. Genes controlling sexual differentiation in pre-meiotic gonads encode proteins such as transcription factors, the transforming growth factor (TGF)-β family of signaling proteins, and RNA-binding proteins. These proteins coordinately control germ cell proliferation/meiosis/maintenance and gonadal somatic cell differentiation, leading to stepwise differentiation of gonads. Morphological changes in differentiating gonads are characterized by the appearance of oocytes containing condensed chromatin, followed by incorporation of vitellogenin and oocyte maturation. Marker genes and morphological characteristics help distinguish the steps in zebrafish gonadal differentiation during this important sex-determining stage.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - You-Jiun Pan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Yan-Wei Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
41
|
Zhu B, Pardeshi L, Chen Y, Ge W. Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish. Front Endocrinol (Lausanne) 2018; 9:593. [PMID: 30364302 PMCID: PMC6193065 DOI: 10.3389/fendo.2018.00593] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
In teleosts, the onset of puberty in females is marked by the appearance of the first wave of pre-vitellogenic (PV) follicles from the pool of primary growth (PG) follicles (follicle activation) in the ovary during sexual maturation. To understand the mechanisms underlying follicle activation and therefore puberty onset, we undertook this transcriptomic study to investigate gene expression profiles in the event. Our analysis revealed a total of 2,027 up-regulated and 859 down-regulated genes during the PG-PV transition. Gene Ontology (GO) analysis showed that in addition to basic cellular functions such as gene transcription, cell differentiation, and cell migration, other biological processes such as steroidogenesis, cell signaling and angiogenesis were also enriched in up-regulated genes; by comparison, some processes were down-regulated including piRNA metabolism, gene silencing and proteolysis. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified a variety of signaling pathways that might play pivotal roles in PG-PV transition, including MAPK, TGF-β, Hedgehog, FoxO, VEGF, Jak-STAT, and phosphatidylinositol signaling pathways. Other pathways of particular interest included endocytosis and glycosaminoglycan biosynthesis. We also analyzed expression changes of genes expressed in different compartments viz. oocytes and follicle cells. Interestingly, most oocyte-specific genes remained unchanged in expression during follicle activation whereas a great number of genes specifically expressed in the follicle cells showed significant changes in expression. Overall, this study reported a comprehensive analysis for genes, biological processes and pathways involved in follicle activation, which also marks female puberty onset in the zebrafish when occurring for the first time in sexual maturation.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
- *Correspondence: Wei Ge ;
| |
Collapse
|
42
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:141-163. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.08.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 05/13/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
43
|
Robust gdf9 and bmp15 expression in the oocytes of ovotestes through the Figla-independent pathway in the hermaphroditic black porgy, Acanthopagrus schlegelii. PLoS One 2017; 12:e0186991. [PMID: 29073214 PMCID: PMC5658113 DOI: 10.1371/journal.pone.0186991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
More than 1,500 fish species are hermaphroditic, but no hermaphroditic lineage appears to be evolutionarily ancient in fishes. Thus, whether more than one sex at a time was present during the evolutionary shift from gonochorism to hermaphroditism in fishes is an intriguing question. Ectopic oocytes were created in the ovotestes of protandrous black porgy via the withdrawal of estradiol (E2) administration. These ectopic oocytes reprogrammed the surrounding cells, which changed from Sertoli cells to follicle-like cells. We observed that gdf9 and bmp15 expression was localized in the primary oocytes and gradually decreased after oocytes entered a secondary oocyte stage. Robust expression of gdf9 and bmp15 in ectopic oocytes was associated with the surrounding Sertoli cells. However, blocking Cyp19a1a activity and increasing androgen levels did not stimulate the expression of gdf9 and bmp15. Thus, the robust gdf9 and bmp15 expression was not related to the inappropriate male microenvironment. Furthermore, in vitro data demonstrated that gdf9 and bmp15 were not downstream genes of Figla signaling. Therefore, our results suggest that there are two independent mechanisms, a Figla-dependent pathway and a Figla-independent pathway, by which oocyte-surrounding cells are altered from a male somatic fate to a female somatic fate. This functional switch might clarify how oocytes created an appropriate microenvironment during the transition from the ancient gonochorism to the present hermaphroditism.
Collapse
|