1
|
Benko F, Urminská D, Ďuračka M, Tvrdá E. Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation. Biomedicines 2023; 11:2519. [PMID: 37760960 PMCID: PMC10525812 DOI: 10.3390/biomedicines11092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In order to accomplish their primary goal, mammalian spermatozoa must undergo a series of physiological, biochemical, and functional changes crucial for the acquisition of fertilization ability. Spermatozoa are highly polarized cells, which must swiftly respond to ionic changes on their passage through the female reproductive tract, and which are necessary for male gametes to acquire their functional competence. This review summarizes the current knowledge about specific ion channels and transporters located in the mammalian sperm plasma membrane, which are intricately involved in the initiation of changes within the ionic milieu of the sperm cell, leading to variations in the sperm membrane potential, membrane depolarization and hyperpolarization, changes in sperm motility and capacitation to further lead to the acrosome reaction and sperm-egg fusion. We also discuss the functionality of selected ion channels in male reproductive health and/or disease since these may become promising targets for clinical management of infertility in the future.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| |
Collapse
|
2
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
3
|
Kern C, Wu W, Lu C, Zhang J, Zhao Y, Ocon-Grove OM, Sutovsky P, Diaz F, Liu WS. Role of the bovine PRAMEY protein in sperm function during in vitro fertilization (IVF). Cell Tissue Res 2023; 391:577-594. [PMID: 36527485 DOI: 10.1007/s00441-022-03717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen (CTA) that is predominantly expressed in normal male gonad tissues and a variety of tumors. PRAME proteins are present in the acrosome and sperm tail, but their role in sperm function is unknown. The objective of this study was to examine the function of the bovine Y-linked PRAME (PRAMEY) during spermatozoal capacitation, the acrosome reaction (AR), and fertilization. Freshly ejaculated spermatozoa were induced to capacitate and undergo AR in vitro. Western blotting results revealed a decrease in the PRAMEY protein in capacitated spermatozoa, and the release of the PRAMEY protein from the acrosome during the AR, suggesting its involvement in sperm capacitation and AR. IVF was performed using in vitro matured bovine oocytes and cauda epididymal spermatozoa either treated with PRAMEY antibody, rabbit IgG, or DPBS. Sperm-egg binding and early embryos were examined at 6 and 45 h post IVF, respectively. The number of spermatozoa that bound per oocyte was nearly two-fold greater in the PRAMEY antibody treatment group (34.4) when compared to both the rabbit IgG (17.6) and DPBS (18.1) controls (P < 0.01). Polyspermy rate in the antibody-treated group (18.9%) was three-fold greater than the rabbit IgG control (6.0%) (P < 0.01). The results indicate that PRAMEY may play a role in anti-polyspermy defense. This study thus provides the initial evidence for the involvement of the PRAME protein family in sperm function and fertilization.
Collapse
Affiliation(s)
- Chandlar Kern
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Weiwei Wu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Animal Science Institute, Xinjiang Academy of Agriculture Science, Xinjiang, China
| | - Chen Lu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Fudan University, Shanghai, People's Republic of China
| | - Jianbin Zhang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Department of Animal Science, Tianjin Agriculture University, Tianjin, China
| | - Yaqi Zhao
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Olga Maria Ocon-Grove
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
- Actuated Medical, Inc., PA, Bellefonte, USA
| | - Peter Sutovsky
- Division of Animal Sciences, and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Francisco Diaz
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, 311 AVBS Building, University Park, PA, 16802, USA.
| |
Collapse
|
4
|
Ferreira AF, Santiago J, Silva JV, Oliveira PF, Fardilha M. PP1, PP2A and PP2B Interplay in the Regulation of Sperm Motility: Lessons from Protein Phosphatase Inhibitors. Int J Mol Sci 2022; 23:ijms232315235. [PMID: 36499559 PMCID: PMC9737803 DOI: 10.3390/ijms232315235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.
Collapse
Affiliation(s)
- Ana F. Ferreira
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana V. Silva
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-918-143-947
| |
Collapse
|
5
|
Silva JV, Santiago J, Matos B, Henriques MC, Patrício D, Martins AD, Duarte JA, Ferreira R, Alves MG, Oliveira P, Oliveira PF, Fardilha M. Effects of Age and Lifelong Moderate-Intensity Exercise Training on Rats' Testicular Function. Int J Mol Sci 2022; 23:ijms231911619. [PMID: 36232916 PMCID: PMC9570257 DOI: 10.3390/ijms231911619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Aging is associated with testicular morphological and functional alterations, but the underlying molecular mechanisms and the impact of physical exercise are poorly understood. In this study, we examined the effects of age and lifelong moderate-intensity exercise on rat testis. Mature adults (35 weeks) and middle-aged (61 weeks) Wistar Unilever male rats were maintained as sedentary or subjected to a lifelong moderate-intensity treadmill training protocol. Testis weight and histology, mitochondrial biogenesis and function, and proteins involved in protein synthesis and stress response were evaluated. Our results illustrate an age-induced testicular atrophy that was associated with alterations in stress response, and mitochondrial biogenesis and function. Aging was associated with increased testicular levels of heat shock protein beta-1 (HSP27) and antioxidant enzymes. Aging was also associated with decreased mRNA abundance of the nuclear respiratory factor 1 (Nrf1), a key transcription factor for mitochondrial biogenesis, which was accompanied by decreased protein levels of the oxidative phosphorylation system (OXPHOS) complexes subunits in the testes of older animals. On the other hand, exercise did not protect against age-induced testicular atrophy and led to deleterious effects on sperm morphology. Exercise led to an even more pronounced decrease in the Nrf1 mRNA levels in testes of both age groups and was associated with decreased mRNA abundance of other mitochondrial biogenesis markers and decreased protein levels of OXPHOS complexes subunits. Lifelong moderate-intensity exercise training was also associated with an increase in testicular oxidative stress markers and possibly with reduced translation. Together, our results indicate that exercise did not protect against age-induced testicular atrophy and was not associated with beneficial changes in mitochondria and stress response, further activating mechanisms of protein synthesis inhibition.
Collapse
Affiliation(s)
- Joana V. Silva
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Joana Santiago
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara Matos
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Magda C. Henriques
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela Patrício
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D. Martins
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - José A. Duarte
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Rita Ferreira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G. Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Paula Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-918-143-947
| |
Collapse
|
6
|
Kern CH, Feitosa WB, Liu WS. The Dynamic of PRAMEY Isoforms in Testis and Epididymis Suggests Their Involvement in Spermatozoa Maturation. Front Genet 2022; 13:846345. [PMID: 35386283 PMCID: PMC8979061 DOI: 10.3389/fgene.2022.846345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The preferentially expressed antigen in melanoma, Y-linked (PRAMEY) is a cancer/testis antigen expressed predominantly in bovine spermatogenic cells, playing an important role in germ cell formation. To better understand PRAMEY’s function during spermatogenesis, we studied the dynamics of PRAMEY isoforms by Western blotting (WB) with PRAMEY-specific antibodies. The PRAMEY protein was assessed in the bovine testicular and epididymal spermatozoa, fluid and tissues, and as well as in ejaculated semen. The protein was further examined, at a subcellular level in sperm head and tail, as well as in the subcellular components, including the cytosol, nucleus, membrane, and mitochondria. RNA expression of PRAMEY was also evaluated in testis and epididymal tissues. Our WB results confirmed the previously reported four isoforms of PRAMEY (58, 30, 26, and 13 kDa) in the bovine testis and spermatozoa. We found that testicular spermatozoa expressed the 58 and 30 kDa isoforms. As spermatozoa migrated to the epididymis, they expressed two additional isoforms, 26 and 13 kDa. Similarly, the 58 and 30 kDa isoforms were detected only in the testis fluid, while all four isoforms were detected in fluid from the cauda epididymis. Tissue evaluation indicated a significantly higher expression of the 58 and 13 kDa isoforms in the cauda tissue when compared to both the testis and caput tissue (p < 0.05). These results indicated that testis samples (spermatozoa, fluid, and tissue) expressed predominantly the 58 and 30 kDa PRAMEY isoforms, suggesting their involvement in spermatogenesis. In contrast, the 26 kDa isoform was specific to epididymal sperm and the 13 kDa isoform was marked in samples derived from the cauda epididymis, suggesting their involvement in sperm maturation. Results from the sperm head and tail experiments indicated that the 13 kDa isoform increased 4-fold in sperm tails from caput to cauda, suggesting this isoform may have a significant role in tail function. Additionally, the 13 kDa isoform increased significantly (p < 0.05) in the cytosol during epididymal passage and tended to increase in other subcellular components. The expression of PRAMEY in the sperm subcellular components during epididymal maturation suggests the involvement of PRAMEY, especially the 13 kDa isoform, in sperm motility.
Collapse
Affiliation(s)
- Chandlar H Kern
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Weber B Feitosa
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Perspectives on Potential Fatty Acid Modulations of Motility Associated Human Sperm Ion Channels. Int J Mol Sci 2022; 23:ijms23073718. [PMID: 35409078 PMCID: PMC8998313 DOI: 10.3390/ijms23073718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Human spermatozoan ion channels are specifically distributed in the spermatozoan membrane, contribute to sperm motility, and are associated with male reproductive abnormalities. Calcium, potassium, protons, sodium, and chloride are the main ions that are regulated across this membrane, and their intracellular concentrations are crucial for sperm motility. Fatty acids (FAs) affect sperm quality parameters, reproductive pathologies, male fertility, and regulate ion channel functions in other cells. However, to date the literature is insufficient to draw any conclusions regarding the effects of FAs on human spermatozoan ion channels. Here, we aimed to discern the possible effects of FAs on spermatozoan ion channels and direct guidance for future research. After investigating the effects of FAs on characteristics related to human spermatozoan motility, reproductive pathologies, and the modulation of similar ion channels in other cells by FAs, we extrapolated polyunsaturated FAs (PUFAs) to have the highest potency in modulating sperm ion channels to increase sperm motility. Of the PUFAs, the ω-3 unsaturated fatty acids have the greatest effect. We speculate that saturated and monounsaturated FAs will have little to no effect on sperm ion channel activity, though the possible effects could be opposite to those of the PUFAs, considering the differences between FA structure and behavior.
Collapse
|
8
|
Regulation of Cardiac PKA Signaling by cAMP and Oxidants. Antioxidants (Basel) 2021; 10:antiox10050663. [PMID: 33923287 PMCID: PMC8146537 DOI: 10.3390/antiox10050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pathologies, such as cancer, inflammatory and cardiac diseases are commonly associated with long-term increased production and release of reactive oxygen species referred to as oxidative stress. Thereby, protein oxidation conveys protein dysfunction and contributes to disease progression. Importantly, trials to scavenge oxidants by systemic antioxidant therapy failed. This observation supports the notion that oxidants are indispensable physiological signaling molecules that induce oxidative post-translational modifications in target proteins. In cardiac myocytes, the main driver of cardiac contractility is the activation of the β-adrenoceptor-signaling cascade leading to increased cellular cAMP production and activation of its main effector, the cAMP-dependent protein kinase (PKA). PKA-mediated phosphorylation of substrate proteins that are involved in excitation-contraction coupling are responsible for the observed positive inotropic and lusitropic effects. PKA-actions are counteracted by cellular protein phosphatases (PP) that dephosphorylate substrate proteins and thus allow the termination of PKA-signaling. Both, kinase and phosphatase are redox-sensitive and susceptible to oxidation on critical cysteine residues. Thereby, oxidation of the regulatory PKA and PP subunits is considered to regulate subcellular kinase and phosphatase localization, while intradisulfide formation of the catalytic subunits negatively impacts on catalytic activity with direct consequences on substrate (de)phosphorylation and cardiac contractile function. This review article attempts to incorporate the current perception of the functionally relevant regulation of cardiac contractility by classical cAMP-dependent signaling with the contribution of oxidant modification.
Collapse
|
9
|
Nowicka-Bauer K, Szymczak-Cendlak M. Structure and Function of Ion Channels Regulating Sperm Motility-An Overview. Int J Mol Sci 2021; 22:ijms22063259. [PMID: 33806823 PMCID: PMC8004680 DOI: 10.3390/ijms22063259] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Sperm motility is linked to the activation of signaling pathways that trigger movement. These pathways are mainly dependent on Ca2+, which acts as a secondary messenger. The maintenance of adequate Ca2+ concentrations is possible thanks to proper concentrations of other ions, such as K+ and Na+, among others, that modulate plasma membrane potential and the intracellular pH. Like in every cell, ion homeostasis in spermatozoa is ensured by a vast spectrum of ion channels supported by the work of ion pumps and transporters. To achieve success in fertilization, sperm ion channels have to be sensitive to various external and internal factors. This sensitivity is provided by specific channel structures. In addition, novel sperm-specific channels or isoforms have been found with compositions that increase the chance of fertilization. Notably, the most significant sperm ion channel is the cation channel of sperm (CatSper), which is a sperm-specific Ca2+ channel required for the hyperactivation of sperm motility. The role of other ion channels in the spermatozoa, such as voltage-gated Ca2+ channels (VGCCs), Ca2+-activated Cl-channels (CaCCs), SLO K+ channels or voltage-gated H+ channels (VGHCs), is to ensure the activation and modulation of CatSper. As the activation of sperm motility differs among metazoa, different ion channels may participate; however, knowledge regarding these channels is still scarce. In the present review, the roles and structures of the most important known ion channels are described in regard to regulation of sperm motility in animals.
Collapse
Affiliation(s)
- Karolina Nowicka-Bauer
- Department of Chemical Physics, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland
- Correspondence:
| | - Monika Szymczak-Cendlak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| |
Collapse
|
10
|
Phosphoproteomics and Bioinformatics Analyses Reveal Key Roles of GSK-3 and AKAP4 in Mouse Sperm Capacitation. Int J Mol Sci 2020; 21:ijms21197283. [PMID: 33023073 PMCID: PMC7582274 DOI: 10.3390/ijms21197283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Protein phosphorylation can induce signal transduction to change sperm motility patterns during sperm capacitation. However, changes in the phosphorylation of sperm proteins in mice are still incompletely understood. Here, capacitation-related phosphorylation in mouse sperms were firstly investigated by label-free quantitative (LFQ) phosphoproteomics coupled with bioinformatics analysis using ingenuity pathway analysis (IPA) methods such as canonical pathway, upstream regulator, and network analysis. Among 1632 phosphopeptides identified at serine, threonine, and tyrosine residues, 1050 novel phosphosites, corresponding to 402 proteins, were reported. Gene heatmaps for IPA canonical pathways showed a novel role for GSK-3 in GP6 signaling pathways associated with capacitation for 60 min. At the same time, the reduction of the abundant isoform-specific GSK-3α expression was shown by western blot (WB) while the LFQ pY of this isoform slightly decreased and then increased. The combined results from WB and LFQ methods explain the less inhibitory phosphorylation of GSK-3α during capacitation and also support the predicted increases in its activity. In addition, pAKAP4 increased at the Y156 site but decreased at the Y811 site in a capacitated state, even though IPA network analysis and WB analysis for overall pAKAP revealed upregulated trends. The potential roles of GSK-3 and AKAP4 in fertility are discussed.
Collapse
|
11
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Silva JV, Freitas MJ, Santiago J, Jones S, Guimarães S, Vijayaraghavan S, Publicover S, Colombo G, Howl J, Fardilha M. Disruption of protein phosphatase 1 complexes with the use of bioportides as a novel approach to target sperm motility. Fertil Steril 2020; 115:348-362. [PMID: 32977940 DOI: 10.1016/j.fertnstert.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To design protein phosphatase 1 (PP1)-disrupting peptides covalently coupled to inert cell-penetrating peptides (CPPs) as sychnologically organized bioportide constructs as a strategy to modulate sperm motility. DESIGN Experimental study. SETTING Academic research laboratory. PATIENT(S)/ANIMAL(S) Normozoospermic men providing samples for routine analysis and Holstein Frisian bulls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Effect of the bioportides on the activity and interactions of PP1γ2-a PP1 isoform expressed exclusively in testicular germ cells and sperm-and on sperm vitality and motility. RESULT(S) PP1-disrupting peptides were designed based on the sequences from: 1) a sperm-specific PP1 interactor (A kinase anchor protein 4); and 2) a PP1 inhibitor (protein phosphatase inhibitor 2). Those sequences were covalently coupled to inert CPPs as bioportide constructs, which were successfully delivered to the flagellum of sperm cells to induce a marked impact on PP1γ2 activity and sperm motility. Molecular modeling studies further facilitated the identification of an optimized PP1-binding sequence and enabled the development of a modified stop-sperm bioportide with reduced size and increased potency of action. In addition, a bioportide mimetic of the unique 22-amino acid C-terminus of PP1γ2 accumulated within spermatozoa to significantly reduce sperm motility and further define the PP1γ2-specific interactome. CONCLUSION(S) These investigations demonstrate the utility of CPPs to deliver peptide sequences that target unique protein-protein interactions in spermatozoa to achieve a significant impact upon spermatozoa motility, a key prognostic indicator of male fertility.
Collapse
Affiliation(s)
- Joana Vieira Silva
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, University of Porto, Porto, Portugal; Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Maria João Freitas
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal; present address: Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
| | - Joana Santiago
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Sarah Jones
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Sofia Guimarães
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal; present address: Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | | | - Steven Publicover
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Pavia, Italy; Istituto di Scienze e Tecnologie Chimiche "Giulio Natta," Consiglio Nazionale delle Ricerche, Milano, Italy
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
13
|
Freitas MJ, Silva JV, Brothag C, Regadas-Correia B, Fardilha M, Vijayaraghavan S. Isoform-specific GSK3A activity is negatively correlated with human sperm motility. Mol Hum Reprod 2020; 25:171-183. [PMID: 30824926 DOI: 10.1093/molehr/gaz009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
In mouse and bovine sperm, GSK3 activity is inversely proportional to motility. Targeted disruption of the GSK3A gene in testis results in normal spermatogenesis, but mature sperm present a reduced motility, rendering male mice infertile. On the other hand, GSK3B testis-specific KO is fertile. Yet in human sperm, an isoform-specific correlation between GSK3A and sperm motility was never established. In order to analyze GSK3 function in human sperm motility, normospermic and asthenozoospermic samples from adult males were used to correlate GSK3 expression and activity levels with human sperm motility profiles. Moreover, testicular and sperm GSK3 interactomes were identified using a yeast two-hybrid screen and coimmunoprecipitation, respectively. An extensive in-silico analysis of the GSK3 interactome was performed. The results proved that inhibited GSK3A (serine phosphorylated) presents a significant strong positive correlation (r = 0.822, P = 0.023) with the percentage of progressive human sperm, whereas inhibited GSK3B is not significantly correlated with sperm motility (r = 0.577, P = 0.175). The importance of GSK3 in human sperm motility was further reinforced by in-silico analysis of the GSK3 interactome, which revealed a high level of involvement of GSK3 interactors in sperm motility-related functions. The limitation of techniques used for GSK3 interactome identification can be a drawback, since none completely mimics the physiological environment. Our findings prove that human sperm motility relies on isoform-specific functions of GSK3A within this cell. Given the reported relevance of GSK3 protein-protein interactions in sperm motility, we hypothesized that they stand as potential targets for male contraceptive strategies based on sperm motility modulation.
Collapse
Affiliation(s)
- M J Freitas
- Signal Transduction Laboratory, Institute for Research in Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - J V Silva
- Signal Transduction Laboratory, Institute for Research in Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal.,Reproductive Genetics & Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - C Brothag
- Kent State University, Kent, OH, USA
| | - B Regadas-Correia
- CNC.IBILI-Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Department Quantitative Methods and Information and Management Systems, Coimbra Business School, Coimbra, Portugal
| | - M Fardilha
- Signal Transduction Laboratory, Institute for Research in Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
14
|
Leemans B, Stout TAE, De Schauwer C, Heras S, Nelis H, Hoogewijs M, Van Soom A, Gadella BM. Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction 2020; 157:R181-R197. [PMID: 30721132 DOI: 10.1530/rep-18-0541] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
In contrast to various other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. In particular, stallion spermatozoa fails to penetrate the zona pellucida, most likely due to incomplete activation of stallion spermatozoa (capacitation) under in vitro conditions. In other mammalian species, specific capacitation triggers have been described; unfortunately, none of these is able to induce full capacitation in stallion spermatozoa. Nevertheless, knowledge of capacitation pathways and their molecular triggers might improve our understanding of capacitation-related events observed in stallion sperm. When sperm cells are exposed to appropriate capacitation triggers, several molecular and biochemical changes should be induced in the sperm plasma membrane and cytoplasm. At the level of the sperm plasma membrane, (1) an increase in membrane fluidity, (2) cholesterol depletion and (3) lipid raft aggregation should occur consecutively; the cytoplasmic changes consist of protein tyrosine phosphorylation and elevated pH, cAMP and Ca2+ concentrations. These capacitation-related events enable the switch from progressive to hyperactivated motility of the sperm cells, and the induction of the acrosome reaction. These final capacitation triggers are indispensable for sperm cells to migrate through the viscous oviductal environment, penetrate the cumulus cells and zona pellucida and, finally, fuse with the oolemma. This review will focus on molecular aspects of sperm capacitation and known triggers in various mammalian species. Similarities and differences with the horse will be highlighted to improve our understanding of equine sperm capacitation/fertilizing events.
Collapse
Affiliation(s)
- Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharina De Schauwer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Sonia Heras
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hilde Nelis
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Maarten Hoogewijs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bart M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
16
|
Bhattacharjee R, Goswami S, Dey S, Gangoda M, Brothag C, Eisa A, Woodgett J, Phiel C, Kline D, Vijayaraghavan S. Isoform-specific requirement for GSK3α in sperm for male fertility. Biol Reprod 2019; 99:384-394. [PMID: 29385396 DOI: 10.1093/biolre/ioy020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a highly conserved protein kinase regulating key cellular functions. Its two isoforms, GSK3α and GSK3β, are encoded by distinct genes. In most tissues the two isoforms are functionally interchangeable, except in the developing embryo where GSK3β is essential. One functional allele of either of the two isoforms is sufficient to maintain normal tissue functions. Both GSK3 isoforms, present in sperm from several species including human, are suggested to play a role in epididymal initiation of sperm motility. Using genetic approaches, we have tested requirement for each of the two GSK3 isoforms in testis and sperm. Both GSK3 isoforms are expressed at high levels during the onset of spermatogenesis. Conditional knockout of GSK3α, but not GSK3β, in developing testicular germ cells in mice results in male infertility. Mice lacking one allele each of GSK3α and GSK3β are fertile. Despite overlapping expression and localization in differentiating spermatids, GSK3β does not substitute for GSK3α. Loss of GSK3α impairs sperm hexokinase activity resulting in low ATP levels. Net adenine nucleotide levels in caudal sperm lacking GSK3α resemble immature caput epididymal sperm. Changes in the association of the protein phosphatase PP1γ2 with its protein interactors occurring during epididymal sperm maturation is impaired in sperm lacking GSK3α. The isoform-specific requirement for GSK3α is likely due to its specific binding partners in the sperm principal piece. Testis and sperm are unique in their specific requirement of GSK3α for normal function and male fertility.
Collapse
Affiliation(s)
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Souvik Dey
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Mahinda Gangoda
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio, USA
| | - Cameron Brothag
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Alaa Eisa
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - James Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Christopher Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | | |
Collapse
|
17
|
Edler MC, Salek AB, Watkins DS, Kaur H, Morris CW, Yamamoto BK, Baucum AJ. Mechanisms Regulating the Association of Protein Phosphatase 1 with Spinophilin and Neurabin. ACS Chem Neurosci 2018; 9:2701-2712. [PMID: 29786422 DOI: 10.1021/acschemneuro.8b00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein phosphorylation is a key mediator of signal transduction, allowing for dynamic regulation of substrate activity. Whereas protein kinases obtain substrate specificity by targeting specific amino acid sequences, serine/threonine phosphatase catalytic subunits are much more promiscuous in their ability to dephosphorylate substrates. To obtain substrate specificity, serine/threonine phosphatases utilize targeting proteins to regulate phosphatase subcellular localization and catalytic activity. Spinophilin and its homologue neurabin are two of the most abundant dendritic spine-localized protein phosphatase 1 (PP1) targeting proteins. The association between spinophilin and PP1 is increased in the striatum of animal models of Parkinson's disease (PD). However, mechanisms that regulate the association of spinophilin and neurabin with PP1 are unclear. Here, we report that the association between spinophilin and PP1α or PP1γ1 was increased by CDK5 expression and activation in a heterologous cell system. This increased association is at least partially due to phosphorylation of PP1. Conversely, CDK5 expression and activation decreased the association of PP1 with neurabin. As with dopamine depletion, methamphetamine (METH) abuse causes persistent alterations in dopamine signaling which influence striatal medium spiny neuron function and biochemistry. Moreover, both METH toxicity and dopamine depletion are associated with deficits in motor control and motor learning. Pathologically, we observed a decreased association of spinophilin with PP1 in rat striatum evaluated one month following a binge METH paradigm. Behaviorally, we found that loss of spinophilin recapitulates rotarod pathology previously observed in dopamine-depleted and METH-treated animals. Together, these data have implications in multiple disease states associated with altered dopamine signaling such as PD and psychostimulant drug abuse and delineate a novel mechanism by which PP1 interactions with spinophilin and neurabin may be differentially regulated.
Collapse
|
18
|
Goswami S, Korrodi-Gregório L, Sinha N, Bhutada S, Bhattacharjee R, Kline D, Vijayaraghavan S. Regulators of the protein phosphatase PP1γ2, PPP1R2, PPP1R7, and PPP1R11 are involved in epididymal sperm maturation. J Cell Physiol 2018; 234:3105-3118. [PMID: 30144392 DOI: 10.1002/jcp.27130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The serine/threonine protein phosphatase 1 (PP1) inhibitors PPP1R2, PPP1R7, and PPP1R11 are evolutionarily ancient and highly conserved proteins. Four PP1 isoforms, PP1α, PP1β, PP1γ1, and PP1γ2, exist; three of them except PP1γ2 are ubiquitous. The fact that PP1γ2 isoform is present only in mammalian testis and sperm led to the notion that isoform-specific regulators for PP1γ2 in sperm may be responsible for its function. In this report, we studied these inhibitors, PPP1R2, R7, and R11, to determine their spatial and temporal expression in testis and their regulatory functions in sperm. We show that, similar to PP1γ2, the three inhibitors are expressed at high levels in developing spermatogenic cells. However, the transcripts for the regulators are expressed as unique sizes in testis compared with somatic tissues. The three regulators share localization with PP1γ2 in the head and the principal piece of sperm. We show that the association of inhibitors to PP1γ2 changes during epididymal sperm maturation. In immotile caput epididymal sperm, PPP1R2 and PPP1R7 are not bound to PP1γ2, whereas in motile caudal sperm, all three inhibitors are bound as heterodimers or heterotrimers. In caudal sperm from male mice lacking sAC and glycogen synthase kinase 3, where motility and fertility are impaired, the association of PP1γ2 to the inhibitors resembles immature caput sperm. Changes in the association of the regulators with PP1γ2, due to their phosphorylation, are part of biochemical mechanisms responsible for the development of motility and fertilizing ability of sperm during their passage through the epididymis.
Collapse
Affiliation(s)
- Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Luís Korrodi-Gregório
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Sumit Bhutada
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
19
|
Ehsan M, Wang W, Gadahi JA, Hasan MW, Lu M, Wang Y, Liu X, Haseeb M, Yan R, Xu L, Song X, Li X. The Serine/Threonine-Protein Phosphatase 1 From Haemonchus contortus Is Actively Involved in Suppressive Regulatory Roles on Immune Functions of Goat Peripheral Blood Mononuclear Cells. Front Immunol 2018; 9:1627. [PMID: 30061894 PMCID: PMC6054924 DOI: 10.3389/fimmu.2018.01627] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Serine/threonine-protein phosphatases (STPs), as integral constituents of parasitic excretory/secretory proteins, are assumed to be released during the host–parasite interactions. However, knowledge about these phosphatases and their immunoregulatory and immune protective efficiencies with host peripheral blood mononuclear cells (PBMCs) is scant. In this study, an open reading frame of STP from Haemonchus contortus designated as HcSTP-1 was amplified and cloned using reverse-transcription-polymerase chain reaction (RT-PCR) method. The 951-bp nucleotides sequence was encoded to a protein of 316 amino acid residues, conserved in characteristics motifs GDXHG, GDYVDRG, GNHE, HGG, RG, and H. The HcSTP-1 protein was detected at approximately 35 kDa as recombinant protein fused in an expression vector system and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunohistochemically, HcSTP-1 was found to be localized in both male and female adult worm sections. Using immunofluorescence assay, the binding activity of rHcSTP-1 was confirmed on surface of goat PBMCs, which resulted in expression of multiple cytokines and various immunoregulatory activities in vitro. The RT-PCR results showed that mRNA level of interleukin-2, TGF-β1, IFN-γ, and IL-17 (with 10 µg/ml) was upregulated and IL-10 was decreased. However, IL-6 showed no change after PBMCs incubated with rHcSTP-1 protein. Further functional analysis showed that migratory activity of cells, intracellular nitrite production (NO), and apoptotic efficiency of PBMCs were elevated at significant level, whereas the proliferation of goat PBMCs and monocytes-associated major histocompatibility complex (MHC)-I and MHC-II expressions were decreased significantly at concentration-dependent fashion. Our results showed that the HcSTP-1 protein engaged in vital suppressive regulatory roles on host immune cells, which might represent a potential molecular target for controlling H. contortus infection in future.
Collapse
Affiliation(s)
- Muhammad Ehsan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - WenJuan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Javaid Ali Gadahi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Waqqas Hasan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - MingMin Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - YuJian Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XinChao Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Haseeb
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Liu SW, Li Y, Zou LL, Guan YT, Peng S, Zheng LX, Deng SM, Zhu LY, Wang LW, Chen LX. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia. Asian J Androl 2018; 19:418-424. [PMID: 27270342 PMCID: PMC5507086 DOI: 10.4103/1008-682x.181816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human spermatozoa encounter an osmotic decrease from 330 to 290 mOsm l−1 when passing through the female reproductive tract. We aimed to evaluate the role of chloride channels in volume regulation and sperm motility from patients with asthenozoospermia. Spermatozoa were purified using Percoll density gradients. Sperm volume was measured as the forward scatter signal using flow cytometry. Sperm motility was analyzed using computer-aided sperm analysis (CASA). When transferred from an isotonic solution (330 mOsm l−1) to a hypotonic solution (290 mOsm l−1), cell volume was not changed in spermatozoa from normozoospermic men; but increased in those from asthenozoospermic samples. The addition of the chloride channel blockers, 4,4′-diisothiocyanatostilbene-2,2′- isulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) to the hypotonic solution caused the normal spermatozoa to swell but did not increase the volume of those from the asthenozoospermic semen. DIDS and NPPB decreased sperm motility in both sets of semen samples. The inhibitory effect of NPPB on normal sperm motility was much stronger than on spermatozoa from the asthenozoospermic samples. Both sperm types expressed ClC-3 chloride channels, but the expression levels in the asthenozoospermic samples were much lower, especially in the neck and mid-piece areas. Spermatozoa from men with asthenozoospermia demonstrated lower volume regulating capacity, mobility, and ClC-3 expression levels (especially in the neck) than did normal spermatozoa. Thus, chloride channels play important roles in the regulation of sperm volume and motility and are downregulated in cases of asthenozoospermia.
Collapse
Affiliation(s)
- Shan-Wen Liu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Department of Pathology and Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Li
- Department of Pathology and Pathophysiology, Medical College, Jinan University, Guangzhou, China.,Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Li-Li Zou
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Yu-Tao Guan
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China.,Department of Pathology and Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Shuang Peng
- Department of Pathology and Pathophysiology, Medical College, Jinan University, Guangzhou, China.,Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Li-Xin Zheng
- Male Reproductive Center, Family Planning Special Hospital of Guangdong, Guangzhou, China
| | - Shun-Mei Deng
- Male Reproductive Center, Family Planning Special Hospital of Guangdong, Guangzhou, China
| | - Lin-Yan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Li-Wei Wang
- Department of Pathology and Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Li-Xin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Huang Z, Danshina PV, Mohr K, Qu W, Goodson SG, O’Connell TM, O’Brien DA. Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes†. Biol Reprod 2017; 97:586-597. [DOI: 10.1093/biolre/iox103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
|
22
|
Serrano JB, Martins F, Sousa JC, Pereira CD, van Pelt AMM, Rebelo S, da Cruz E Silva OAB. Descriptive Analysis of LAP1 Distribution and That of Associated Proteins throughout Spermatogenesis. MEMBRANES 2017; 7:E22. [PMID: 28387711 PMCID: PMC5489856 DOI: 10.3390/membranes7020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/12/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
Abstract
Spermatogenesis comprises highly complex differentiation processes. Nuclear envelope (NE) proteins have been associated with these processes, including lamins, lamina-associated polypeptide (LAP) 2 and the lamin B-receptor. LAP1 is an important NE protein whose function has not been fully elucidated, but several binding partners allow predicting putative LAP1 functions. To date, LAP1 had not been associated with spermatogenesis. In this study, LAP1 expression and cellular/subcellular localization during spermatogenesis in human and mouse testes is established for the first time. The fact that LAP1 is expressed during nuclear elongation in spermiogenesis and is located at the spermatids' centriolar pole is singularly important. LAP1 binds to members of the protein phosphatase 1 (PP1) family. Similar localization of LAP1 and PP1γ2, a testis-specific PP1 isoform, suggests a shared function for both proteins during spermiogenesis. Furthermore, this study suggests an involvement of LAP1 in manchette development and chromatin regulation possibly via interaction with acetylated α-tubulin and lamins, respectively. Taken together, the present results indicate that, by moving to the posterior pole in spermatids, LAP1 can contribute to the achievement of non-random, sperm-specific chromatin distribution, as well as modulate cellular remodeling during spermiogenesis. In addition, LAP1 seems to be associated with dynamic microtubule changes related to manchette formation and flagella development.
Collapse
Affiliation(s)
- Joana B Serrano
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Filipa Martins
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João C Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga/Guimarães, Portugal.
| | - Cátia D Pereira
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Liu WS, Zhao Y, Lu C, Ning G, Ma Y, Diaz F, O'Connor M. A novel testis-specific protein, PRAMEY, is involved in spermatogenesis in cattle. Reproduction 2017; 153:847-863. [PMID: 28356500 DOI: 10.1530/rep-17-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 11/08/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is predominantly expressed in normal testicular tissues and a variety of tumors. The function of the PRAME family in spermatogenesis remains unknown. This study was designed to characterize the Y-linked PRAME (PRAMEY) protein during spermatogenesis in cattle. We found that PRAMEY is a novel male germ cell-specific, and a germinal granule-associated protein that is expressed in spermatogenic cells during spermatogenesis. The intact PRAMEY protein (58 kDa) was detected in different ages of testes but not in epididymal spermatozoa. A PRAMEY isoform (30 kDa) was highly expressed only in testes after puberty and in epididymal spermatozoa. This isoform interacts with PP1γ2 and is likely the mature protein present in the testes and sperm. Immunofluorescent staining demonstrated that PRAMEY was located predominantly in the acrosome granule of spermatids, and in acrosome and flagellum of spermatozoa. Immunogold electron microscopy further localized the PRAMEY protein complex to the nucleus and several cytoplasmic organelles, including the rough endoplasmic reticulum, some small vesicles, the intermitochondrial cement, the chromatoid body and the centrioles, in spermatogonia, spermatocytes, spermatids and/or spermatozoa. PRAMEY was highly enriched in and structurally associated with the matrix of the acrosomal granule (AG) in round spermatids, and migrated with the expansion of the AG during acrosomal biogenesis. While the function of PRAMEY remains unclear during spermatogenesis, our results suggest that PRAMEY may play an essential role in acrosome biogenesis and spermatogenesis.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC1.FreeSpanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/847/suppl/DC2.
Collapse
Affiliation(s)
- Wan-Sheng Liu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Yaqi Zhao
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Chen Lu
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Gang Ning
- Microscopy and Cytometry FacilityThe Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yun Ma
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences.,College of Life ScienceXinyang Normal University, Xinyang, Henan, China
| | - Francisco Diaz
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| | - Michael O'Connor
- Department of Animal ScienceCenter for Reproductive Biology and Health (CRBH), College of Agricultural Sciences
| |
Collapse
|
24
|
Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochim Biophys Acta Gen Subj 2017; 1861:375-385. [DOI: 10.1016/j.bbagen.2016.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
|
25
|
Silva JV, Korrodi-Gregório L, Luers G, Cardoso MJ, Patrício A, Maia N, da Cruz e Silva EF, Fardilha M. Characterisation of several ankyrin repeat protein variant 2, a phosphoprotein phosphatase 1-interacting protein, in testis and spermatozoa. Reprod Fertil Dev 2016; 28:1009-1019. [DOI: 10.1071/rd14303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/16/2014] [Indexed: 12/26/2022] Open
Abstract
Phosphoprotein phosphatase 1 (PPP1) catalytic subunit gamma 2 (PPP1CC2), a PPP1 isoform, is largely restricted to testicular germ cells and spermatozoa. The key to understanding PPP1 regulation in male germ cells lies in the identification and characterisation of its interacting partners. This study was undertaken to determine the expression patterns of the several ankyrin repeat protein variant 2 (SARP2), a PPP1-interacting protein, in testis and spermatozoa. SARP2 was found to be highly expressed in testis and spermatozoa, and its interaction with human spermatozoa endogenous PPP1CC2 was confirmed by immunoprecipitation. Expression analysis by RT-qPCR revealed that SARP2 and PPP1CC2 mRNA levels were significantly higher in the spermatocyte fraction. However, microscopy revealed that SARP2 protein was only present in the nucleus of elongating and mature spermatids and in spermatozoa. In spermatozoa, SARP2 was prominently expressed in the connecting piece and flagellum, as well as, to a lesser extent, in the acrosome. A yeast two-hybrid approach was used to detect SARP2-interacting proteins and a relevant interaction with a novel sperm-associated antigen 9 (SPAG9) variant, a testis and spermatozoa-specific c-Jun N-terminal kinase-binding protein, was validated in human spermatozoa. Given the expression pattern of SARP2 and its association with PPP1CC2 and SPAG9, it may play a role in spermiogenesis and sperm function, namely in sperm motility and the acrosome reaction.
Collapse
|
26
|
Dudiki T, Kadunganattil S, Ferrara JK, Kline DW, Vijayaraghavan S. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility. PLoS One 2015; 10:e0141961. [PMID: 26569399 PMCID: PMC4646675 DOI: 10.1371/journal.pone.0141961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/15/2015] [Indexed: 01/21/2023] Open
Abstract
Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Suraj Kadunganattil
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - John K. Ferrara
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Douglas W. Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | | |
Collapse
|
27
|
Naresh S, Atreja SK. Detection, Localization and Tyrosine Phosphorylation Status of Ser/Thr Protein Phosphatase1γ in Freshly Ejaculated, In Vitro Capacitated and Cryopreserved Buffalo Spermatozoa. Reprod Domest Anim 2015; 50:901-9. [PMID: 26478561 DOI: 10.1111/rda.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022]
Abstract
Several recent studies have indicated the important roles of Ser/Thr protein phosphatase1γ (PP1γ) in regulating the motility and capacitation of mammalian spermatozoa. Here, we report the presence and distribution of PP1γ protein in freshly ejaculated, in vitro capacitated and cryopreserved buffalo spermatozoa. The presence of PP1γ and its distribution were assessed by Western blotting and indirect immunofluorescence techniques, whereas the isoforms of PP1γ and their tyrosine phosphorylation status were identified by using 2D electrophoresis. The number of isoforms and the status of tyrosine phosphorylation of PP1γ were increased in capacitated spermatozoa when compared with freshly ejaculated spermatozoa. Differential pattern of expression and tyrosine phosphorylation of PP1γ were observed in cryopreserved spermatozoa, wherein some isoforms were degraded and some were tyrosine phosphorylated. In addition, immunofluorescence technique revealed that PP1γ was localized to principle, mid-piece, post-acrosomal and equatorial regions of buffalo spermatozoa. Differential distribution of tyrosine-phosphorylated proteins were observed in fresh, capacitated and cryopreserved spermatozoa. The tyrosine phosphorylation of several proteins (20, 37, 38, 52, 60, 79 and 100 kDa) were increased when sperm cells were incubated with PP1γ inhibitor, okadaic acid. Together, our results suggest that buffalo spermatozoa express different isoforms of PP1γ protein. The protein expression and tyrosine phosphorylation of PP1γ were increased during capacitation. Furthermore, the differential pattern of expression and tyrosine phosphorylation of PP1γ were observed in cryopreserved spermatozoa. In addition, the inhibition of PP1γ protein increases protein tyrosine phosphorylation in capacitation.
Collapse
Affiliation(s)
- S Naresh
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Atreja
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
28
|
Reid AT, Anderson AL, Roman SD, McLaughlin EA, McCluskey A, Robinson PJ, Aitken RJ, Nixon B. Glycogen synthase kinase 3 regulates acrosomal exocytosis in mouse spermatozoa via dynamin phosphorylation. FASEB J 2015; 29:2872-82. [PMID: 25808536 DOI: 10.1096/fj.14-265553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/09/2015] [Indexed: 11/11/2022]
Abstract
The dynamin family of GTPases has been implicated as novel regulators of the acrosome reaction, a unique exocytotic event that is essential for fertilization. Dynamin activity during the acrosome reaction is accompanied by phosphorylation of key serine residues. We now tested the hypothesis that glycogen synthase kinase 3 (GSK3) is the protein kinase responsible for dynamin phosphorylation at these phosphosites in mouse spermatozoa. Pharmacologic inhibition of GSK3 in mature mouse spermatozoa (CHIR99021: IC50 = 6.7 nM) led to a significant reduction in dynamin phosphorylation (10.3% vs. 27.3%; P < 0.001), acrosomal exocytosis (9.7% vs. 25.7%; P < 0.01), and in vitro fertilization (53% vs. 100%; P < 0.01). GSK3 was shown to be present in developing germ cells where it colocalized with dynamin in the peri-acrosomal domain. However, additional GSK3 was acquired by maturing mouse spermatozoa within the male reproductive tract, via a novel mechanism involving direct interaction of sperm heads with extracellular structures known as epididymal dense bodies. These data reveal a novel mode for the cellular acquisition of a protein kinase and identify a key role for GSK3 in the regulation of sperm maturation and acrosomal exocytosis.
Collapse
Affiliation(s)
- Andrew T Reid
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Amanda L Anderson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Shaun D Roman
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Eileen A McLaughlin
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Adam McCluskey
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - R John Aitken
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| | - Brett Nixon
- *School of Environmental and Life Sciences, Discipline of Biological Sciences, and School of Environmental and Life Sciences, Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales, Australia; and Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
29
|
Matsuura M, Yogo K. TMEM225: a possible protein phosphatase 1γ2 (PP1γ2) regulator localizes to the equatorial segment in mouse spermatozoa. Mol Reprod Dev 2015; 82:139-48. [PMID: 25605614 DOI: 10.1002/mrd.22453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/05/2014] [Indexed: 11/08/2022]
Abstract
Tmem225 encodes a putative four-transmembrane domain protein that has an RVxF motif, which is known to be a consensus site for interacting with serine/threonine protein phosphatase 1 (PP1). We previously identified Tmem225 as one of 53 spermatogenesis-associated transmembrane protein genes, with no known physiological function. In this study, we investigated the expression and molecular characteristics of TMEM225 in mice. Tmem225 production was found to be specific to testicular germ cells, with expression increasing during spermatogenesis. In mature spermatozoa, TMEM225 is localized to the equatorial segment of the acrosome but not to the midpiece or tail. TMEM225 appears to be an outer and/or inner acrosomal membrane protein that is lost from the dorsal region of the acrosome after the acrosome reaction. TMEM225 interacts with PP1 in vivo, and a pull-down assay revealed that the carboxy-terminal region of TMEM225 can bind to PP1γ2, the predominant isoform of PP1 in male germ cells. In addition, TMEM225 inhibited PP1γ2 activity in vitro via its RVxF motif. Our results suggest that in mice, TMEM225 is involved in the differentiation and function of spermatozoa through the regulation of PP1γ2 activity, which is necessary for normal spermatogenesis as well as spermatozoa capacitation and motility.
Collapse
Affiliation(s)
- Minami Matsuura
- Laboratory of Animal Physiology, Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| | | |
Collapse
|
30
|
Bhattacharjee R, Goswami S, Dudiki T, Popkie AP, Phiel CJ, Kline D, Vijayaraghavan S. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod 2015; 92:65. [PMID: 25568307 DOI: 10.1095/biolreprod.114.124495] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms-GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a(-/-) mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a(-/-) mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a(-/-) sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a(-/-) mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.
Collapse
Affiliation(s)
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Anthony P Popkie
- Laboratory of Cancer Epigenomics, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
31
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
32
|
Ma GX, Zhou RQ, Huang HC, Hu SJ, Lin J. Tissue-specific distribution of serine/threonine protein phosphatase 1 of Toxocara canis. Vet Parasitol 2014; 205:551-7. [PMID: 25282049 DOI: 10.1016/j.vetpar.2014.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/06/2014] [Accepted: 09/13/2014] [Indexed: 01/21/2023]
Abstract
Serine/threonine protein phosphatase 1 (PP1) is expressed in developing and reproductively active male Toxocara canis. To investigate the tissue-specific expression of PP1 in T. canis, the PP1 protein was expressed in Escherichia coli, and the recombinant protein was used to generate a rabbit polyclonal antiserum. Indirect fluorescence immunohistochemical analysis of adult male T. canis showed that PP1 was expressed in the germ line tissues, primarily in the testis, seminal vesicle, vas deferens, and sperm cells, indicating the potential roles of PP1 in spermatogenesis. What's more, structural predictions of PP1 in T. canis were performed. The predictions of the structure indicated that PP1 may be a potential target for antihelmintic drugs. This is the first report of the tissue distributions and structural prediction of PP1 in T. canis, which might lead to the development of novel, innovative strategies for controlling T. canis infestations.
Collapse
Affiliation(s)
- Guang Xu Ma
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Rong Qiong Zhou
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China.
| | - Han Cheng Huang
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Shi Jun Hu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Jie Lin
- Dazhou Animal Disease Control and Prevention Center, Dazhou 635000, People's Republic of China
| |
Collapse
|
33
|
Vias de sinalização reguladoras das funções do espermatozoide. Rev Int Androl 2014. [DOI: 10.1016/j.androl.2014.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ma GX, Zhou RQ, Hu SJ, Huang HC, Zhu T, Xia QY. Molecular characterization and functional analysis of serine/threonine protein phosphatase of Toxocara canis. Exp Parasitol 2014; 141:55-61. [PMID: 24657583 DOI: 10.1016/j.exppara.2014.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
Abstract
Toxocara canis (T. canis) is a widely prevalent zoonotic parasite that infects a wide range of mammalian hosts, including humans. We generated the full-length complementary DNA (cDNA) of the serine/threonine phosphatase gene of T. canis (Tc stp) using 5' rapid amplification of the cDNA ends. The 1192-bp sequence contained a continuous 942-nucleotide open reading frame, encoding a 313-amino-acid polypeptide. The Tc STP polypeptide shares a high level of amino-acid sequence identity with the predicted STPs of Loa loa (89%), Brugia malayi (86%), Oesophagostomum columbianum (76%), and Oesophagostomumdentatum (76%). The Tc STP contains GDXHG, GDXVDRG, GNHE motifs, which are characteristic of members of the phosphoprotein phosphatase family. Our quantitative real-time polymerase chain reaction analysis showed that the Tc STP was expressed in six different tissues in the adult male, with high-level expression in the spermary, vas deferens, and musculature, but was not expressed in the adult female, suggesting that Tc STP might be involved in spermatogenesis and mating behavior. Thus, STP might represent a potential molecular target for controlling T. canis reproduction.
Collapse
Affiliation(s)
- Guang Xu Ma
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Rong Qiong Zhou
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China.
| | - Shi Jun Hu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Han Cheng Huang
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Tao Zhu
- Department of Veterinary Medicine, Rongchang Campus, Southwest University, Chongqing 402460, People's Republic of China
| | - Qing You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
35
|
Freitas MJ, Korrodi-Gregório L, Morais-Santos F, Cruz e Silva ED, Fardilha M. TCTEX1D4 interactome in human testis: unraveling the function of dynein light chain in spermatozoa. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:242-53. [PMID: 24606217 DOI: 10.1089/omi.2013.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Studies were designed to identify the TCTEX1D4 interactome in human testis, with the purpose of unraveling putative protein complexes essential to male reproduction and thus novel TCTEX1D4 functions. TCTEX1D4 is a dynein light chain that belongs to the DYNT1/TCTEX1 family. In spermatozoa, it appears to be important to sperm motility, intraflagellar transport, and acrosome reaction. To contribute to the knowledge on TCTEX1D4 function in testis and spermatozoa, a yeast two-hybrid assay was performed in testis, which allowed the identification of 40 novel TCTEX1D4 interactors. Curiously, another dynein light chain, TCTEX1D2, was identified and its existence demonstrated for the first time in human spermatozoa. Immunofluorescence studies proved that TCTEX1D2 is an intra-acrosomal protein also present in the midpiece, suggesting a role in cargo movement in human spermatozoa. Further, an in silico profile of TCTEX1D4 revealed that most TCTEX1D4 interacting proteins were not previously characterized and the ones described present a very broad nature. This reinforces TCTEX1D4 as a dynein light chain that is capable of interacting with a variety of functionally different proteins. These observations collectively contribute to a deeper molecular understanding of the human spermatozoa function.
Collapse
Affiliation(s)
- Maria João Freitas
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, Health Sciences Department, University of Aveiro , Aveiro, Portugal
| | | | | | | | | |
Collapse
|
36
|
Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction 2014; 147:R27-42. [DOI: 10.1530/rep-13-0420] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Testicular spermatozoa acquire fertility only after 1 or 2 weeks of transit through the epididymis. At the end of this several meters long epididymal tubule, the male gamete is able to move, capacitate, migrate through the female tract, bind to the egg membrane and fuse to the oocyte to result in a viable embryo. All these sperm properties are acquired after sequential modifications occurring either at the level of the spermatozoon or in the epididymal surroundings. Over the last few decades, significant increases in the understanding of the composition of the male gamete and its surroundings have resulted from the use of new techniques such as genome sequencing, proteomics combined with high-sensitivity mass spectrometry, and gene-knockout approaches. This review reports and discusses the most relevant new results obtained in different species regarding the various cellular processes occurring at the sperm level, in particular, those related to the development of motility and egg binding during epididymal transit.
Collapse
|
37
|
Protein phosphatases decrease their activity during capacitation: a new requirement for this event. PLoS One 2013; 8:e81286. [PMID: 24312544 PMCID: PMC3846847 DOI: 10.1371/journal.pone.0081286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the success of sperm capacitation.
Collapse
|
38
|
Vadnais ML, Aghajanian HK, Lin A, Gerton GL. Signaling in sperm: toward a molecular understanding of the acquisition of sperm motility in the mouse epididymis. Biol Reprod 2013; 89:127. [PMID: 24006282 DOI: 10.1095/biolreprod.113.110163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sperm motility encompasses a wide range of events involving epididymal maturation and activation of biochemical pathways, most notably cyclic AMP (cAMP)-protein kinase A (PKA) activation. Following the discovery of guanine-nucleotide exchange factors (RAPGEFs), also known as exchange proteins activated by cAMP, we investigated the separate roles of PKA and RAPGEFs in sperm motility. RT-PCR showed the presence of Rapgef3, Rapgef4, and Rapgef5, as well as several known RAPGEF partner mRNAs, in spermatogenic cells. However, Rapgef3 and Rapgef4 appeared to be less abundant in condensing spermatids versus pachytene spermatocytes. Similarly, many of these proteins were detected by immunoblotting. RAPGEF5 was detected in germ cells and murine epididymal sperm. Indirect immunofluorescence localized SGK1, SGK3, AKT1 pT(308), and RAPGEF5 to the acrosome, while PDPK1 was found in the postacrosomal region. SGK3 was present throughout the tail, while PDPK1 and AKT1 pT(308) were in the midpiece. When motility was assessed in demembranated cauda epididymal sperm, addition of ATP and the selective ligand for RAPGEFs, 8-pCPT-2'-O-Me-cAMP, resulted in motility, but the sperm were unable to undergo hyperactivated-like motility. In contrast, when demembranated cauda epididymal sperm were incubated with ATP plus dibutyryl cAMP, sperm became motile and progressed to hyperactivated-like motility. However, no significant difference was observed when intact sperm were examined. GSK3 phosphorylation was altered in the presence of H89, a PKA inhibitor. Significantly, intact caput epididymal sperm became motile when incubated in the presence of extracellular ATP. These results provide evidence for a new pathway involved in endowing sperm with the capacity to swim.
Collapse
Affiliation(s)
- Melissa L Vadnais
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
39
|
Sinha N, Puri P, Nairn AC, Vijayaraghavan S. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice. Biol Reprod 2013; 89:128. [PMID: 24089200 DOI: 10.1095/biolreprod.113.110239] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | | | | |
Collapse
|
40
|
Korrodi-Gregório L, Abrantes J, Muller T, Melo-Ferreira J, Marcus K, da Cruz e Silva OAB, Fardilha M, Esteves PJ. Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evol Biol 2013; 13:242. [PMID: 24195737 PMCID: PMC3840573 DOI: 10.1186/1471-2148-13-242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/29/2013] [Indexed: 01/23/2023] Open
Abstract
Background Pseudogenes are traditionally considered “dead” genes, therefore lacking biological functions. This view has however been challenged during the last decade. This is the case of the Protein phosphatase 1 regulatory subunit 2 (PPP1R2) or inhibitor-2 gene family, for which several incomplete copies exist scattered throughout the genome. Results In this study, the pseudogenization process of PPP1R2 was analyzed. Ten PPP1R2-related pseudogenes (PPP1R2P1-P10), highly similar to PPP1R2, were retrieved from the human genome assembly present in the databases. The phylogenetic analysis of mammalian PPP1R2 and related pseudogenes suggested that PPP1R2P7 and PPP1R2P9 retroposons appeared before the great mammalian radiation, while the remaining pseudogenes are primate-specific and retroposed at different times during Primate evolution. Although considered inactive, four of these pseudogenes seem to be transcribed and possibly possess biological functions. Given the role of PPP1R2 in sperm motility, the presence of these proteins was assessed in human sperm, and two PPP1R2-related proteins were detected, PPP1R2P3 and PPP1R2P9. Signatures of negative and positive selection were also detected in PPP1R2P9, further suggesting a role as a functional protein. Conclusions The results show that contrary to initial observations PPP1R2-related pseudogenes are not simple bystanders of the evolutionary process but may rather be at the origin of genes with novel functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal.
| |
Collapse
|
41
|
Fardilha M, Ferreira M, Pelech S, Vieira S, Rebelo S, Korrodi-Gregorio L, Sousa M, Barros A, Silva V, da Cruz e Silva OAB, da Cruz e Silva EF. "Omics" of human sperm: profiling protein phosphatases. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:460-72. [PMID: 23895272 DOI: 10.1089/omi.2012.0119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation is a major regulatory mechanism in eukaryotic cells performed by the concerted actions of kinases and phosphatases (PPs). Protein phosphorylation has long been relevant to sperm physiology, from acquisition of motility in the epididymis to capacitation in the female reproductive tract. While the precise kinases involved in the regulation of sperm phosphorylation have been studied for decades, the PPs have only recently received research interest. Tyrosine phosphorylation was first implicated in the regulation of several sperm-related functions, from capacitation to oocyte binding. Only afterwards, in 1996, the inhibition of the serine/threonine-PP phosphoprotein phosphatase 1 (PPP1) by okadaic acid and calyculin-A was shown to initiate motility in caput epididymal sperm. Today, the current mechanisms of sperm motility acquisition based on PPP1 and its regulators are still far from being fully understood. PPP1CC2, specifically expressed in mammalian sperm, has been considered to be the only sperm-specific serine/threonine-PP, while other PPP1 isoforms were thought to be absent from sperm. This article examines the "Omics" of human sperm, and reports, for the first time, the identification of three new serine/threonine-protein PPs, PPP1CB, PPP4C, and PPP6C, in human sperm, together with two tyrosine-PPs, MKP1 and PTP1C. We specifically localized in sperm PPP1CB and PPP1CC2 from the PPP1 subfamily, and PPP2CA, PPP4C, and PPP6C from the PPP2 subfamily of the serine/threonine-PPs. A semi-quantitative analysis was performed to determine the various PPs' differential expression in sperm head and tail. These findings contribute to a comprehensive understanding of human sperm PPs, and warrant further research for their clinical and therapeutic significance.
Collapse
Affiliation(s)
- Margarida Fardilha
- Centro de Biologia Celular, Secção Autónoma de Ciências da Saúde, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Intranasal immunization of lambs with serine/threonine phosphatase 2A against gastrointestinal nematodes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1352-9. [PMID: 23761655 DOI: 10.1128/cvi.00336-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven 3-month-old, female, helminth-free lambs were immunized intranasally with three doses (1 mg total) of a recombinant part of the catalytic region of the serine/threonine phosphatase 2A (PP2Ar) (group 1 [G1]). In addition, four lambs were used as an adjuvant control group (G2), four as unimmunized, infected controls (G3), and four as unimmunized, uninfected controls (G4). Fifteen days after the last immunization, lambs from G1, G2, and G3 were challenged with 10,000 larval stage 3 (L3) organisms in a plurispecific nematode infection composed of ca. 40% Trichostrongylus colubriformis, 40% Haemonchus contortus, and 20% Teladorsagia circumcincta. All the lambs were clinically monitored throughout the experiment. Parasitological (fecal egg output and immunological response), biopathological (packed-cell volume and leukocyte and eosinophil counts), and zootechnical (live-weight gain) analyses were conducted. On day 105 of the experiment, all the animals were slaughtered and the adult worm population in their abomasa examined. Intranasal administration of PP2Ar with bacterial walls as an adjuvant elicited a strong immune response in the immunized lambs, as evidenced by their humoral immune response. Immunized animals and animals receiving the adjuvant shed significantly (P < 0.001) fewer numbers of parasites' eggs in their feces. The immunization significantly reduced the helminth burden in the abomasa by the end of the experiment (>68%), protection being provided against both Haemonchus and Teladorsagia. Live-weight gain in the immunized lambs was similar to that in the uninfected controls versus the infected or adjuvanted animal groups. Our results suggest that heterologous immunization of ruminants by intranasal administration may be efficacious in the struggle to control gastrointestinal helminths in these livestock.
Collapse
|
43
|
Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE, Cuasnicú PS. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod 2013; 19:570-80. [PMID: 23630234 DOI: 10.1093/molehr/gat033] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In all mammalian species studied so far, sperm capacitation correlates with an increase in protein tyrosine (Tyr) phosphorylation mediated by a bicarbonate-dependent cAMP/protein kinase A (PKA) pathway. Recent studies in mice revealed, however, that a Src family kinase (SFK)-induced inactivation of serine/threonine (Ser/Thr) phosphatases is also involved in the signaling pathways leading to Tyr phosphorylation. In view of these observations and with the aim of getting a better understanding of the signaling pathways involved in human sperm capacitation, in the present work we investigated the involvement of both the cAMP/PKA and SFK/phosphatase pathways in relation to the capacitation state of the cells. For this purpose, different signaling events and sperm functional parameters were analyzed as a function of capacitation time. Results revealed a very early bicarbonate-dependent activation of PKA indicated by the rapid (1 min) increase in both phospho-PKA substrates and cAMP levels (P < 0.05). However, a complete pattern of Tyr phosphorylation was detected only after 6-h incubation at which time sperm exhibited the ability to undergo the acrosome reaction (AR) and to penetrate zona-free hamster oocytes. Sperm capacitated in the presence of the SFK inhibitor SKI606 showed a decrease in both PKA substrate and Tyr phosphorylation levels, which was overcome by exposure of sperm to the Ser/Thr phosphatase inhibitor okadaic acid (OA). However, OA was unable to induce phosphorylation when sperm were incubated under PKA-inhibitory conditions (i.e. in the absence of bicarbonate or in the presence of PKA inhibitor). Moreover, the increase in PKA activity by exposure to a cAMP analog and a phosphodiesterase inhibitor did not overcome the inhibition produced by SKI606. Whereas the presence of SKI606 during capacitation produced a negative effect (P < 0.05) on sperm motility, progesterone-induced AR and fertilizing ability, none of these inhibitions were observed when sperm were exposed to SKI606 and OA. Interestingly, different concentrations of inhibitors were required to modulate human and mouse capacitation revealing the species specificity of the molecular mechanisms underlying this process. In conclusion, our results describe for the first time the involvement of both PKA activation and Ser/Thr phosphatase down-regulation in functional human sperm capacitation and provide convincing evidence that early PKA-dependent phosphorylation is the convergent regulatory point between these two signaling pathways.
Collapse
Affiliation(s)
- M A Battistone
- Instituto de Biología y Medicina Experimental, IByME-CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
44
|
Korrodi-Gregório L, Ferreira M, Vintém AP, Wu W, Muller T, Marcus K, Vijayaraghavan S, Brautigan DL, da Cruz E Silva OAB, Fardilha M, da Cruz E Silva EF. Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa. BMC Cell Biol 2013; 14:15. [PMID: 23506001 PMCID: PMC3606321 DOI: 10.1186/1471-2121-14-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of PPP1C that is highly enriched in testis and selectively expressed in sperm. Addition of the phosphatase inhibitor toxins okadaic acid or calyculin A to caput and caudal sperm triggers and stimulates motility, respectively. Thus, the endogenous mechanisms of phosphatase inhibition are fundamental for controlling sperm function and should be characterized. Preliminary results have shown a protein phosphatase inhibitor activity resembling PPP1R2 in bovine and primate spermatozoa. Results Here we show conclusively, for the first time, that PPP1R2 is present in sperm. In addition, we have also identified a novel protein, PPP1R2P3. The latter was previously thought to be an intron-less pseudogene. We show that the protein corresponding to the pseudogene is expressed. It has PPP1 inhibitory potency similar to PPP1R2. The potential phosphosites in PPP1R2 are substituted by non-phosphorylable residues, T73P and S87R, in PPP1R2P3. We also confirm that PPP1R2/PPP1R2P3 are phosphorylated at Ser121 and Ser122, and report a novel phosphorylation site, Ser127. Subfractionation of sperm structures show that PPP1CC2, PPP1R2/PPP1R2P3 are located in the head and tail structures. Conclusions The conclusive identification and localization of sperm PPP1R2 and PPP1R2P3 lays the basis for future studies on their roles in acrosome reaction, sperm motility and hyperactivation. An intriguing possibility is that a switch in PPP1CC2 inhibitory subunits could be the trigger for sperm motility in the epididymis and/or sperm hyperactivation in the female reproductive tract.
Collapse
Affiliation(s)
- Luis Korrodi-Gregório
- Laboratory of Signal Transduction, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Regina M Turner
- Department of Clinical Studies, Center for Animal Transgenesis, Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Kennett Square, USA
| |
Collapse
|
46
|
Sinha N, Pilder S, Vijayaraghavan S. Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice. PLoS One 2012; 7:e47623. [PMID: 23082183 PMCID: PMC3474748 DOI: 10.1371/journal.pone.0047623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
PPP1CC2, one of four isoforms of the ser/thr protein phosphatase PP1, is a mammalian-specific splice variant of the Ppp1cc gene, and the only isoform whose expression is confined almost completely to spermatogenic cells. Additionally, PPP1CC2 is the sole isoform found in mammalian spermatozoa. Although PPP1CC1, the other Ppp1cc product, is expressed in many tissues including testis, the only phenotype resulting from deletion of Ppp1cc gene is male infertility. To determine which of the products of Ppp1cc is essential for male fertility, we created two PPP1CC2 transgenes, eTg-G2 and pTg-G2, where Ppp1cc2 expression was driven by the putative endogenous promoter of Ppp1cc or by the testis specific human Pgk2 promoter, respectively. Our results demonstrate that the 2.6-kb genomic region directly upstream of the Ppp1cc structural gene can drive expression of Ppp1cc2, and recapitulate the wild-type tissue specificity of PPP1CC2 in transgenic mice. More importantly, we show that expression of PPP1CC2 alone, via either promoter, is able not only to restore normal spermatogenesis, but the fertility of Ppp1cc null mice as well, provided that transgenic PPP1CC2 expression in testis reaches at least a lower threshold level equivalent to approximately 50% of its expression by a Ppp1cc +/- male. We conclude that the endogenous Ppp1cc promoter normally functions in the testis to maintain a sufficient level of PPP1CC2 expression for normal spermatogenesis to occur, and that production of spermatozoa capable of fertilization in vivo can take place in the complete absence of PPP1CC1 expression.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| |
Collapse
|
47
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
48
|
Jagan Mohanarao G, Atreja SK. Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Res Vet Sci 2011; 93:618-23. [PMID: 22035659 DOI: 10.1016/j.rvsc.2011.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/27/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022]
Abstract
To acquire the fertilizing competence, spermatozoa must undergo a cascade of physiological and biochemical changes collectively defined as capacitation. Compelling evidence signifies that the global increase in protein tyrosine phosphorylation is the driving factor for capacitation. In our laboratory, we previously demonstrated that nitric oxide (NO) induces capacitation in buffalo sperm and is associated with an increase in protein tyrosine phosphorylation. The aim of the present study is to identify the proteins undergo tyrosine phosphorylation during NO induced buffalo sperm capacitation using 2-D immunoblotting and mass spectrometry. The percentage of progressively motile and capacitated sperm was more in presence of l-arginine. Along with known tyrosine phosphoproteins like ATP synthase subunit beta, pyruvate dehydrogenase E1 component subunit beta, GST mu 3, F-actin capping protein subunit beta 2, GPD2 and VDAC2, interestingly novel tyrosine phosphoprotein substrates such as actin, serine/threonine-protein phosphatase PP1-gamma catalytic subunit, and glutamine synthetase were also identified which might be specific to the NO induced signaling and also emphasizes the species specificity with respect to tyrosine phosphorylation of proteins during capacitation. In conclusion, this study forms an essential step in delineating the proteins undergo tyrosine phosphorylation in response to NO induced signaling pathways during capacitation of buffalo sperm.
Collapse
Affiliation(s)
- G Jagan Mohanarao
- Animal Biochemistry Division, National Dairy Research Institute, Karnal 132 001, Haryana, India.
| | | |
Collapse
|
49
|
Chang H, Suarez SS. Two distinct Ca(2+) signaling pathways modulate sperm flagellar beating patterns in mice. Biol Reprod 2011; 85:296-305. [PMID: 21389347 DOI: 10.1095/biolreprod.110.089789] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hyperactivation, a swimming pattern of mammalian sperm in the oviduct, is essential for fertilization. It is characterized by asymmetrical flagellar beating and an increase of cytoplasmic Ca(2+). We observed that some mouse sperm swimming in the oviduct produce high-amplitude pro-hook bends (bends in the direction of the hook on the head), whereas other sperm produce high-amplitude anti-hook bends. Switching direction of the major bends could serve to redirect sperm toward oocytes. We hypothesized that different Ca(2+) signaling pathways produce high-amplitude pro-hook and anti-hook bends. In vitro, sperm that hyperactivated during capacitation (because of activation of CATSPER plasma membrane Ca(2+) channels) developed high-amplitude pro-hook bends. The CATSPER activators procaine and 4-aminopyridine (4-AP) also induced high-amplitude pro-hook bends. Thimerosal, which triggers a Ca(2+) release from internal stores, induced high-amplitude anti-hook bends. Activation of CATSPER channels is facilitated by a pH rise, so both Ca(2+) and pH responses to treatments with 4-AP and thimerosal were monitored. Thimerosal triggered a Ca(2+) increase that initiated at the base of the flagellum, whereas 4-AP initiated a rise in the proximal principal piece. Only 4-AP triggered a flagellar pH rise. Proteins were extracted from sperm for examination of phosphorylation patterns induced by Ca(2+) signaling. Procaine and 4-AP induced phosphorylation of proteins on threonine and serine, whereas thimerosal primarily induced dephosphorylation of proteins. Tyrosine phosphorylation was unaffected. We concluded that hyperactivation, which is associated with capacitation, can be modulated by release of Ca(2+) from intracellular stores to reverse the direction of the dominant flagellar bend and, thus, redirect sperm.
Collapse
Affiliation(s)
- Haixin Chang
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
50
|
Fardilha M, Esteves SLC, Korrodi-Gregório L, Vintém AP, Domingues SC, Rebelo S, Morrice N, Cohen PTW, da Cruz e Silva OAB, da Cruz e Silva EF. Identification of the human testis protein phosphatase 1 interactome. Biochem Pharmacol 2011; 82:1403-15. [PMID: 21382349 DOI: 10.1016/j.bcp.2011.02.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is a critical regulatory mechanism in cellular signalling. To this end, PP1 is a major eukaryotic serine/threonine-specific phosphatase whose cellular functions, in turn, depend on complexes it forms with PP1 interacting proteins-PIPs. The importance of the testis/sperm-enriched variant, PP1γ2, in sperm motility and spermatogenesis has previously been shown. Given the key role of PIPs, it is imperative to identify the physiologically relevant PIPs in testis and sperm. Hence, we performed Yeast Two-Hybrid screens of a human testis cDNA library using as baits the different PP1 isoforms and also a proteomic approach aimed at identifying PP1γ2 binding proteins. To the best of our knowledge this is the largest data set of the human testis PP1 interactome. We report the identification of 77 proteins in human testis and 7 proteins in human sperm that bind PP1. The data obtained increased the known PP1 interactome by reporting 72 novel interactions. Confirmation of the interaction of PP1 with 5 different proteins was also further validated by co-immunoprecipitation or protein overlays. The data here presented provides important insights towards the function of these proteins and opens new possibilities for future research. In fact, such diversity in PP1 regulators makes them excellent targets for pharmacological intervention.
Collapse
Affiliation(s)
- Margarida Fardilha
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|