1
|
Jiménez R, Burgos M, Barrionuevo FJ. The Biology and Evolution of Fierce Females (Moles and Hyenas). Annu Rev Anim Biosci 2023; 11:141-162. [PMID: 36130099 DOI: 10.1146/annurev-animal-050622-043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (a) their specific study methods; (b) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (c) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Miguel Burgos
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Francisco J Barrionuevo
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| |
Collapse
|
2
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
3
|
Pavlicev M, Herdina AN, Wagner G. Female Genital Variation Far Exceeds that of Male Genitalia: A Review of Comparative Anatomy of Clitoris and the Female Lower Reproductive Tract in Theria. Integr Comp Biol 2022; 62:icac026. [PMID: 35524696 PMCID: PMC9494530 DOI: 10.1093/icb/icac026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
A review of the literature on the anatomy of the lower female genital tract in therian mammals reveals, contrary to the general perception, a large amount of inter-specific variation. Variation in female external genitalia is anatomically more radical than that in the male genitalia. It includes the absence of whole anatomical units, like the cervix in many Xenarthra, or the absence of the urogenital sinus (UGS), as well as the complete spatial separation of the external clitoral parts from the genital canal (either vagina or UGS). A preliminary phylogenetic analysis shows two patterns. Some morphs are unique to early branching clades, like the absence of the cervix, while others arose multiple times independently, like the flattening out or loss of the UGS, or the extreme elongation of the clitoris. Based on available information, the ancestral eutherian configuration of the external female genitalia included a cervix, a single vaginal segment, a tubular UGS, and an unperforated clitoris close to the entrance of the genital canal. The evidence for either bilobed or unitary glandes clitorides is ambivalent. Despite the wealth of information available, many gaps in knowledge remain and will require a community-wide effort to come to a more robust model of female genital evolutionary patterns.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Department of Evolutionary Biology, University of Vienna, Austria
| | - Anna Nele Herdina
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Günter Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Sinclair AW, Glickman S, Catania K, Shinohara A, Baskin L, Cunha GR. Comparative Morphology of the Penis and Clitoris in Four Species of Moles (Talpidae). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:275-294. [PMID: 28251823 PMCID: PMC5448796 DOI: 10.1002/jez.b.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 11/09/2022]
Abstract
The penile and clitoral anatomy of four species of Talpid moles (broad-footed, star-nosed, hairy-tailed, and Japanese shrew moles) were investigated to define penile and clitoral anatomy and to examine the relationship of the clitoral anatomy with the presence or absence of ovotestes. The ovotestis contains ovarian tissue and glandular tissue resembling fetal testicular tissue and can produce androgens. The ovotestis is present in star-nosed and hairy-tailed moles, but not in broad-footed and Japanese shrew moles. Using histology, three-dimensional reconstruction, and morphometric analysis, sexual dimorphism was examined with regard to a nine feature masculine trait score that included perineal appendage length (prepuce), anogenital distance, and presence/absence of bone. The presence/absence of ovotestes was discordant in all four mole species for sex differentiation features. For many sex differentiation features, discordance with ovotestes was observed in at least one mole species. The degree of concordance with ovotestes was highest for hairy-tailed moles and lowest for broad-footed moles. In relationship to phylogenetic clade, sex differentiation features also did not correlate with the similarity/divergence of the features and presence/absence of ovotestes. Hairy-tailed and Japanese shrew moles reside in separated clades, but they exhibit a high degree of congruence. Broad-footed and hairy-tailed moles reside within the same clade but had one of the lowest correlations in features and presence/absence of ovotestes. Thus, phylogenetic affinity and the presence/absence of ovotestes are poor predictors for most sex differentiation features within mole external genitalia.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Stephen Glickman
- Departments of Psychology and Integrative Biology, University of California, Berkeley, CA 94720
| | - Kenneth Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Akio Shinohara
- Frontier Science Research Center, University of Miyazaki, Kihara 5200, Japan
| | - Lawrence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| | - Gerald R. Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143
| |
Collapse
|
5
|
Sinclair AW, Glickman SE, Baskin L, Cunha GR. Anatomy of mole external genitalia: Setting the record straight. Anat Rec (Hoboken) 2016; 299:385-99. [PMID: 26694958 DOI: 10.1002/ar.23309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 11/08/2015] [Indexed: 12/19/2022]
Abstract
Anatomy of male and female external genitalia of adult mice (Mus musculus) and broad-footed moles (Scapanus latimanus) was re-examined to provide more meaningful anatomical terminology. In the past the perineal appendage of male broad-footed moles has been called the penis, while the female perineal appendage has been given several terms (e.g. clitoris, penile clitoris, peniform clitoris and others). Histological examination demonstrates that perineal appendages of male and female broad-footed moles are the prepuce, which in both sexes are covered externally with a hair-bearing epidermis and lacks erectile bodies. The inner preputial epithelium is non-hair-bearing and defines the preputial space in both sexes. The penis of broad-footed moles lies deep within the preputial space, is an "internal organ" in the resting state and contains the penile urethra, os penis, and erectile bodies. The clitoris of broad-footed moles is defined by a U-shaped clitoral epithelial lamina. Residing within clitoral stroma encompassed by the clitoral epithelial lamina is the corpus cavernosum, blood-filled spaces and the urethra. External genitalia of male and female mice are anatomically similar to that of broad-footed moles with the exception that in female mice the clitoris contains a small os clitoridis and lacks defined erectile bodies, while male mice have an os penis and a prominent distal cartilaginous structure within the male urogenital mating protuberance (MUMP). Clitori of female broad-footed moles lack an os clitoridis but contain defined erectile bodies, while male moles have an os penis similar to the mouse but lack the distal cartilaginous structure.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, California, 94143
| | - Stephen E Glickman
- Departments of Psychology and Integrative Biology, University of California, Berkeley, California, 94720
| | - Laurence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, California, 94143
| | - Gerald R Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, California, 94143
| |
Collapse
|
6
|
Jiménez R, Barrionuevo FJ, Burgos M. Natural exceptions to normal gonad development in mammals. Sex Dev 2012; 7:147-62. [PMID: 22626995 DOI: 10.1159/000338768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gonads are the only organs with 2 possible developmental pathways, testis or ovary. A consequence of this unique feature is that mutations in genes controlling gonad development give rise not only to gonadal malformation or dysfunction but also to frequent cases of sex reversal, including XY females, XX males and intersexes. Most of our current knowledge on mammalian sex determination, the genetic process by which the gonadal primordia are committed to differentiate as either testes or ovaries, has derived mainly from the study of sex-reversed mice obtained by direct genetic manipulation. However, there are also numerous cases of natural exceptions to normal gonad development which have been described in a variety of mammals, including both domestic and wild species. Here, we review the most relevant cases of: (1) natural, non-induced sex reversal and intersexuality described in laboratory rodents, including Sxr and B6-Y(DOM) mice; (2) sex reversal in domestic animals, including freemartinism in bovids and pigs, XX sex reversal in pigs, goats and dogs, XY sex reversal in the horse, and sex chromosome chimerism and sex reversal in the cat, and (3) sex reversal in wild mammals, including the generalised true hermaphroditism described in talpid moles, XY sex reversal in Akodon, Microtus and Dicrostonyx species, males lacking a Y chromosome and SRY in Ellobius lutescens, the X* chromosome of Myopus schisticolor, and sex chromosome mosaicism and X0 females in Microtus oregoni. These studies are necessary to elucidate particular aspects of mammalian gonad development in some instances and to understand how the genetic mechanisms controlling gonad development have evolved.
Collapse
Affiliation(s)
- R Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Laboratorio 127 CIBM, Centro de Investigación Biomédica, ES–18100 Armilla, Granada, Spain.
| | | | | |
Collapse
|
7
|
Murphy S, Deaville R, Monies RJ, Davison N, Jepson PD. True hermaphroditism: first evidence of an ovotestis in a cetacean species. J Comp Pathol 2010; 144:195-9. [PMID: 20708743 DOI: 10.1016/j.jcpa.2010.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/21/2010] [Accepted: 06/06/2010] [Indexed: 11/25/2022]
Abstract
An immature unilateral hermaphrodite common dolphin (Delphinus delphis) was found stranded on the southwest coast of the UK. The external phenotype was that of a female, but internally there was one ovotestis, containing both ovarian follicles and testicular tubular elements, and a contralateral ovary. Ovarian portions of the ovotestis appeared normal and demonstrated follicular development, whereas the testicular tissue exhibited hypoplasia and degeneration. This is the first reported case of an ovotestis in a cetacean species.
Collapse
Affiliation(s)
- S Murphy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK.
| | | | | | | | | |
Collapse
|
8
|
Abstract
A critical element of successful sexual reproduction is the generation of sexually dimorphic adult reproductive organs, the testis and ovary, which produce functional gametes. Examination of different vertebrate species shows that the adult gonad is remarkably similar in its morphology across different phylogenetic classes. Surprisingly, however, the cellular and molecular programs employed to create similar organs are not evolutionarily conserved. We highlight the mechanisms used by different vertebrate model systems to generate the somatic architecture necessary to support gametogenesis. In addition, we examine the different vertebrate patterns of germ cell migration from their site of origin to colonize the gonad and highlight their roles in sex-specific morphogenesis. We also discuss the plasticity of the adult gonad and consider how different genetic and environmental conditions can induce transitions between testis and ovary morphology.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
9
|
Wagner AP, Frank LG, Creel S, Coscia EM. Transient genital abnormalities in striped hyenas (Hyaena hyaena). Horm Behav 2007; 51:626-32. [PMID: 17442316 DOI: 10.1016/j.yhbeh.2007.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 03/05/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The highly masculinized genitalia of female spotted hyenas Crocuta crocuta is unique among mammals: Crocuta have no external vagina so urination, penile intromission and parturition take place through the clitoris, which mimics a fully erectile male penis. Among hyenids, virilization of external female genitalia has previously been observed only in Crocuta, so functional explanations of masculinization have focused on aspects of social ecology unique to the species. Here we first show that the striped hyena Hyaena hyaena exhibits both unusual similarity in male and female androgen concentrations and transient genital anomalies characterized by a convergence in genital appearance among young males and females. We then evaluate hypotheses regarding the evolution of genital masculinization in the Hyaenidae and other taxa. Hyaena are behaviorally solitary, so discovery of unusual genital development patterns in this species does not support any current evolutionary models for masculinization in Crocuta, which all rely on the trait originating within a highly social species. Some hypotheses can be modified so that masculinization in Crocuta represents an extreme elaboration of a preexisting trait, shared as a homology with Hyaena.
Collapse
Affiliation(s)
- Aaron P Wagner
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
10
|
Koren L, Mokady O, Geffen E. Elevated testosterone levels and social ranks in female rock hyrax. Horm Behav 2006; 49:470-7. [PMID: 16313907 DOI: 10.1016/j.yhbeh.2005.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 10/16/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022]
Abstract
In mammals, males maintain significantly higher testosterone (T, 'the male hormone') levels than females throughout the year and are typically dominant over females. Our study of the cooperatively breeding rock hyrax (Procavia capensis) demonstrated a distinct exception. In most hyrax social groups that we studied, adult females were at the highest social rank within the group and showed higher than or equal T levels to males. To our knowledge, this is the first reported instance of adult female mammals demonstrating higher T levels than adult males. However, although T levels significantly correlated with rank in males, in females such correlations were not detected, suggesting a more complex interplay between behavior and endocrine factors in this species.
Collapse
Affiliation(s)
- Lee Koren
- Department of Zoology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
11
|
Abstract
Abnormal reproductive development in males has been linked to environmental contaminant exposure in a wide variety of vertebrates. These include humans, rodent models, and a large number of comparative wildlife species. In human males, abnormal reproductive development can manifest as a suite of symptoms, described collectively as testicular dysgenesis syndrome (TDS). TDS is also described as demasculinization or feminization of the male phenotype. The suite includes cryptorchidism, in situ germ cell carcinoma of the testis and overt testicular cancer, reduced semen quality, and hypospadias. In this paper, we review examples of TDS among comparative species. Wildlife exposed to environmental contaminants are susceptible to some of the same developmental abnormalities and subsequent symptoms as those seen in human males with TDS. There are additional end points, which are also discussed. In some cases, the symptoms are more severe than those normally seen in humans with TDS (i.e. oocytes developing within the testis) because some non-mammalian species exhibit greater innate reproductive plasticity, and are thus more easily feminized. Based on our review, we present an approach regarding the ontogeny of TDS. Namely, we suggest that male susceptibility to the androgynizing influences of environmental contaminants originates in the sexually undifferentiated embryo, which, in almost all species, including humans, consists of bipotential reproductive tissues. These tissues can develop as either male or female and their ultimate direction depends on the environment in which they develop.
Collapse
Affiliation(s)
- Thea M Edwards
- Department of Zoology, University of Florida, Gainesville, 32611, USA.
| | | | | |
Collapse
|
12
|
Bedford JM, Mock OB, Goodman SM. Novelties of conception in insectivorous mammals (Lipotyphla), particularly shrews. Biol Rev Camb Philos Soc 2005; 79:891-909. [PMID: 15682875 DOI: 10.1017/s1464793104006529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the order Lipotyphla (Insectivora), certain reproductive features differ quite distinctly from the eutherian norms, and are of interest with regard to the evolution of mammalian gamete function and perhaps for questions of lipotyphlan phylogeny. As seen in one or more members of five lipotyphlan families (shrews, moles, hedgehogs, golden moles, tenrecs), these features can involve the configuration of the male tract including the penis, the morphology of the sperm head, the anatomy of the oviduct and the patterns of sperm transport within it, the character of the cumulus oophorus, and the way in which fertilising spermatozoa interact with the eggs. However, the picture is by no means uniform within the order. Reproductive idiosyncrasies occur variously in the different lipotyphlan families, and appear consistently and strikingly in shrews--the group studied most extensively. Compared to the patterns in most Eutheria, the most interesting anomalies in soricids include (a) the regulation of sperm transport to the site of fertilisation by oviduct crypts, whose arrangement can vary even according to species, (b) a circumscribed matrix-free cumulus oophorus that appears essential for fertilisation as the inducer of the acrosome reaction, (c) barbs on the acrosome-reacted sperm head by which it may attach to the zona pellucida. With regard to the bearing such reproductive traits might have on lipotyphlan systematics, the African mouse shrew (Myosorex varius) displays a mix of traits that characterize either crocidurine or soricine shrews, consistent with the proposal that it belongs in a more primitive tribe, Myosoricinae, or subfamily, the Crocidosoricinae, from which the crocidurine and soricine lines probably evolved. Moreover, although elephant shrews are assigned now to a separate order (Macroscelidea), they display several of the unusual reproductive features seen in lipotyphlans, particularly in chrysochlorids and tenrecs. On the other hand, if used as a phylogenetic yardstick, none of the reproductive features described serves to define the Lipotyphla as classically constituted within one order, nor necessarily all the relationships suggested by recent sequencing studies of nuclear and mitochondrial genes.
Collapse
Affiliation(s)
- J Michael Bedford
- Center for Reproductive Medicine and Infertility, Weill Medical College, Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
13
|
Barrionuevo FJ, Zurita F, Burgos M, Jiménez R. Testis-like development of gonads in female moles. New insights on mammalian gonad organogenesis. Dev Biol 2004; 268:39-52. [PMID: 15031103 DOI: 10.1016/j.ydbio.2003.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/24/2003] [Indexed: 11/23/2022]
Abstract
Moles are unique among mammals because all females of several species of genus Talpa have bilateral ovotestes (gonads with both ovarian and testicular tissue). Based on the analysis of a large sample of embryos, foetuses and infants over a 13-year period, we have studied the development of the gonads in male and female moles of the species Talpa occidentalis. Several new field and laboratory procedures were developed specifically to obtain and manage this singular material. Our results reveal that gonads of female moles develop according to a testis-like pattern, which includes cord formation and mesonephric cell migration, and begins at the same time as testis differentiation in males. The first signs of sex differentiation do not appear in males but in females. Female (but not male) gonads are regionalised with a cortex (precursor of the ovarian tissue) and a medulla (precursor of the testicular tissue). Germ cells concentrate only in the cortex, so that the medulla soon becomes sterile. Testicular tissue development is transiently retarded in females for about a week before birth, and resumes afterwards. Development of the ovarian tissue in females is considerably delayed with respect to that of testicular tissue in both males and females. The molecular characterisation of peritubular myoid cells, which are exclusive of testes, evidences the presence of testicular tissue in the gonads of female moles, which also contain Leydig cells. However, the absence of fully differentiated Sertoli cells indicates that these cells are not responsible for triggering the differentiation of such a testicular tissue. Our results are also discussed regarding the definition of Sertoli cell morphology and function, and the possible role of germ cells in the sex-reversal process. Differences observed between XX and XY gonad development in moles suggest that the mammalian testis-determining gene, SRY, has an "anti-regionalisation" role during gonadal development, at least in those mammalian species in which regionalisation of the female gonad occurs.
Collapse
Affiliation(s)
- Francisco J Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
14
|
Barrionuevo FJ, Zurita F, Burgos M, Jiménez R. Developmental Stages and Growth Rate of the Mole Talpa occidentalis (Insectivora, Mammalia). J Mammal 2004. [DOI: 10.1644/bpr-010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Place NJ, Glickman SE. Masculinization of Female Mammals: Lessons from Nature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 545:243-53. [PMID: 15086031 DOI: 10.1007/978-1-4419-8995-6_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although varying degrees of genital masculinization are a reasonably common phenomenon in the world of female mammals, the majority of such variation has not been investigated. In this chapter we have described research on the "masculinized" genitalia of moles and hyenas. Such research raises intriguing possibilities regarding the coordinated role that androgens, estrogens and peptide hormones (e.g., relaxin) might play, at different stages of sexual differentiation and development, in preparing genital tissues for their functional roles in reproduction. Such studies also suggest that non-androgenic mechanisms need to be considered. Arnold (1996) and Carruth et al. (2002) have recently presented the argument for broadening our view of sexual differentiation of brain and behavior, emphasizing direct genetic effects. A similar view has been presented for the Tammar wallaby, where formation of a scrotum, or a pouch, is a direct consequence of the presence/absence of two X chromosomes (Pask and Renfree, 2001). Although our research on moles and hyenas has not yet yielded such definitive results, the research reviewed in this chapter calls attention to processes that could well operate in other mammals, including humans.
Collapse
Affiliation(s)
- Ned J Place
- Spotted Hyena Project, Department of Psychology, University of California, Berkeley 94720-1650, USA.
| | | |
Collapse
|
16
|
Hawkins CE, Dallas JF, Fowler PA, Woodroffe R, Racey PA. Transient masculinization in the fossa, Cryptoprocta ferox (Carnivora, Viverridae). Biol Reprod 2002; 66:610-5. [PMID: 11870065 DOI: 10.1095/biolreprod66.3.610] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In at least 9 mammalian species, females are masculinized throughout life, but the benefits of this remain unclear despite decades of thorough study, in particular of the spotted hyaena (Crocuta crocuta) in which the phenomenon has been associated with a high fitness cost. Through examination of wild and captive fossas (Cryptoprocta ferox, Viverridae), androgen assays, and DNA typing for confirmation of gender, we made the first discovery of transient masculinization of a female mammal. Juvenile female fossas exhibited an enlarged, spinescent clitoris supported by an os clitoridis and a pigmented secretion on the underpart fur that in adults was confined to males. These features appeared to diminish with age. The majority of adult females lacked them, and os clitoridis length was inversely related to head-body length. No evidence was found to link this masculinization to elevated female androgen levels. Circulating concentrations of testosterone and androstenedione, but not dihydrotestosterone, were significantly lower in females than in males. No significant differences in testosterone, androstenedione, or dihydrotestosterone levels were found between juvenile (masculinized) and adult (nonmasculinized) females. There are several possible physiological mechanisms for this masculinization. None of the hypotheses so far proposed to explain the evolutionary basis of female masculinization in mammals are applicable to our findings. We present 2 new hypotheses for testing and development.
Collapse
Affiliation(s)
- Clare E Hawkins
- Department of Zoology, University of Aberdeen, Foresterhill, Aberdeen AB24 2TZ, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
East ML, Hofer H. Conflict and cooperation in a female-dominated society: A reassessment of the “hyperaggressive” image of spotted hyenas. ADVANCES IN THE STUDY OF BEHAVIOR 2002. [DOI: 10.1016/s0065-3454(02)80004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
18
|
Beolchini F, Rebecchi L, Capanna E, Bertolani R. Female gonad of moles, genusTalpa (Insectivora, Mammalia): Ovary or ovotestis? ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-010x(20000601)286:7<745::aid-jez9>3.0.co;2-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Perez JF, Conley AJ, Dieter JA, Sanz-Ortega J, Lasley BL. Studies on the origin of ovarian interstitial tissue and the incidence of endometrial hyperplasia in domestic and feral cats. Gen Comp Endocrinol 1999; 116:10-20. [PMID: 10525357 DOI: 10.1006/gcen.1999.7331] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian interstitial cells (OICs) are a common feature of mammalian gonads but little is understood concerning their origin or functional significance. This study investigated the development and steroidogenic potential of OIC in feral and colony-reared feline queens. Reproductive tracts, collected from a total of 50 female colony and feral cats, were fixed and analyzed by morphometry. Ovarian sections were also immuno-stained for the expression of the steroidogenic enzymes 17alpha-hydroxylase/17,20 lyase cytochrome P450 (P450c17), 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD), and aromatase. These findings were related to serum estradiol and testosterone concentrations and to the degree of existing cystic endometrial hyperplasia (CEH). Feral cats had three times as many OICs as colony-reared queens (2713 +/- 855 vs 744 +/- 494 cells/mm(2), P < 0.01). These cells were lipid laden and expressed both P450c17 and 3beta-HSD at levels that were higher than those seen in the theca interna of adjacent follicles. Aromatase expression was undetectable. The pattern of enzyme expression was consistent with development of interstitial tissue from atretic follicles and the potential for continued steroid secretion during the anestrum. The incidence of CEH was higher in older (>5 years old; 88.2%) than in younger (2-4 years; 30%) colony queens (P < 0. 01), whereas no such disease was evident in any of the feral cats. Estradiol levels were higher in colony-reared than in feral cats, but testosterone levels were not different. These data are consistent with the transformation of the theca interna of atretic follicles in cats into OICs that retain a similar, or even enhanced, steroidogenic phenotype. Colony-reared cats exhibit a predisposition to CEH compared with feral queens that is associated with elevated serum estradiol concentrations. Whether or not OICs somehow prevent the development of uterine disease or otherwise reflect a gonadal response to reduced negative feedback on the hypothalamic-pituitary axis remains to be determined.
Collapse
Affiliation(s)
- J F Perez
- School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | |
Collapse
|