1
|
Lee S, Yoo I, Cheon Y, Choi E, Kim S, Ka H. Function of immune cells and effector molecules of the innate immune system in the establishment and maintenance of pregnancy in mammals - A review. Anim Biosci 2024; 37:1821-1833. [PMID: 39210819 PMCID: PMC11541040 DOI: 10.5713/ab.24.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
In mammalian species, pregnancy is a complex process that involves the maternal recognition of pregnancy, implantation, decidualization, placentation, and parturition. The innate immune system is composed of cellular components, such as natural killer cells, neutrophils, monocytes, and macrophages, and effector molecules, such as cytokines, interferons, antimicrobial peptides, and complement components. The innate immune system plays a critical role as the first line of defense against infection or inflammation to maintain homeostasis and activate the adaptive immunity. During pregnancy, innate immune cells and effector molecules act on the regulation of innate immunity for host defense and processes such as embryo development, implantation, and placentation at the maternal-conceptus interface. In this review, we describe the components of the innate immune system and their functions at the maternal-conceptus interface to establish and maintain pregnancy in animal species that form hemochorial- or epitheliochorial-type placentas, including humans, rodents, ruminants, and pigs.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Eunhyeok Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Seonghyun Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493,
Korea
| |
Collapse
|
2
|
Lee S, Yoo I, Cheon Y, Ka H. Complement system molecules: Expression and regulation at the maternal-conceptus interface during pregnancy in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105229. [PMID: 39004297 DOI: 10.1016/j.dci.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
3
|
Golubska M, Paukszto Ł, Kurzyńska A, Mierzejewski K, Gerwel Z, Bogacka I. PPAR beta/delta regulates the immune response mechanisms in the porcine endometrium during LPS-induced inflammation - An in vitro study. Theriogenology 2024; 226:130-140. [PMID: 38878465 DOI: 10.1016/j.theriogenology.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Inflammation in the reproductive tract has become a serious threat to animal fertility. Recently, the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the context of reproduction and the inflammatory response has been highlighted, but the role of PPARβ/δ has not been fully elucidated. The aim of the present study was to investigate the in vitro effect of PPARβ/δ ligands (agonist: L-165,041 and antagonist: GSK 3787) on the transcriptome profile of porcine endometrium during LPS-induced inflammation in the mid-luteal and follicular phases of the oestrous cycle (days 10-12 and 18-20, respectively) using the RNA-Seq method. During the mid-luteal phase of the oestrous cycle, the current study identified 145 and 143 differentially expressed genes (DEGs) after treatment with an agonist or antagonist, respectively. During the follicular phase of the oestrous cycle, 55 and 207 DEGs were detected after treatment with an agonist or antagonist, respectively. The detected DEGs are engaged in the regulation of various processes, such as the complement and coagulation cascade, NF-κB signalling pathway, or the pathway of 15-eicosatetraenoic acid derivatives synthesis. The results of the current study indicate that PPARβ/δ ligands are involved in the control of the endometrial inflammatory response.
Collapse
Affiliation(s)
- Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zuzanna Gerwel
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
4
|
Smith-Jackson K, Harrison RA. Alternative pathway activation in pregnancy, a measured amount "complements" a successful pregnancy, too much results in adverse events. Immunol Rev 2023; 313:298-319. [PMID: 36377667 PMCID: PMC10100418 DOI: 10.1111/imr.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During pregnancy, the maternal host must adapt in order to enable growth of the fetus. These changes affect all organ systems and are designed both to protect the fetus and to minimize risk to the mother. One of the most prominent adaptations involves the immune system. The semi-allogenic fetoplacental unit has non-self components and must be protected against attack from the host. This requires both attenuation of adaptive immunity and protection from innate immune defense mechanisms. One of the key innate immune players is complement, and it is important that the fetoplacental unit is not identified as non-self and subjected to complement attack. Adaptation of the complement response must, however, be managed in such a way that maternal protection against infection is not compromised. As the complement system also plays a significant facilitating role in many of the stages of a normal pregnancy, it is also important that any necessary adaptation to accommodate the semi-allogenic aspects of the fetoplacental unit does not compromise this. In this review, both the physiological role of the alternative pathway of complement in facilitating a normal pregnancy, and its detrimental participation in pregnancy-specific disorders, are discussed.
Collapse
Affiliation(s)
- Kate Smith-Jackson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle-upon-Tyne, UK.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
5
|
Potluri T, Taylor MJ, Stulberg JJ, Lieber RL, Zhao H, Bulun SE. An estrogen-sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal hernia mouse model. JCI Insight 2022; 7:e152011. [PMID: 35439171 PMCID: PMC9090253 DOI: 10.1172/jci.insight.152011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Greater than 25% of all men develop an inguinal hernia in their lifetime, and more than 20 million inguinal hernia repair surgeries are performed worldwide each year. The mechanisms causing abdominal muscle weakness, the formation of inguinal hernias, or their recurrence are largely unknown. We previously reported that excessively produced estrogen in the lower abdominal muscles (LAMs) triggers extensive LAM fibrosis, leading to hernia formation in a transgenic male mouse model expressing the human aromatase gene (Aromhum). To understand the cellular basis of estrogen-driven muscle fibrosis, we performed single-cell RNA sequencing on LAM tissue from Aromhum and wild-type littermates. We found a fibroblast-like cell group composed of 6 clusters, 2 of which were validated for their enrichment in Aromhum LAM tissue. One of the potentially novel hernia-associated fibroblast clusters in Aromhum was enriched for the estrogen receptor-α gene (Esr1hi). Esr1hi fibroblasts maximally expressed estrogen target genes and seemed to serve as the progenitors of another cluster expressing ECM-altering enzymes (Mmp3hi) and to upregulate expression of proinflammatory, profibrotic genes. The discovery of these 2 potentially novel and unique hernia-associated fibroblasts may lead to the development of novel treatments that can nonsurgically prevent or reverse inguinal hernias.
Collapse
Affiliation(s)
- Tanvi Potluri
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Matthew J. Taylor
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Jonah J. Stulberg
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard L. Lieber
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Shirley Ryan AbilityLab, Chicago, Illinois, USA
| | - Hong Zhao
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| | - Serdar E. Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, and
| |
Collapse
|
6
|
Jaworska J, Ropka-Molik K, Piórkowska K, Szmatoła T, Kowalczyk-Zięba I, Wocławek-Potocka I, Siemieniuch M. Transcriptome Profiling of the Retained Fetal Membranes-An Insight in the Possible Pathogenesis of the Disease. Animals (Basel) 2021; 11:ani11030675. [PMID: 33802481 PMCID: PMC8000898 DOI: 10.3390/ani11030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Retained fetal membranes (RFM) in mares is a disease of a multifactorial etiology with not fully understood pathogenesis. Profound analysis of genes expressed in the placenta may reveal pathways and processes which might be comprised in mares with this disease and hence help to explain the pathogenesis of RFM. This work employed RNA sequencing to identify and compare genes differentially expressed (DEGs) in the placenta of mares that retained fetal membranes and those that released them physiologically. Results showed that within DEGs genes important for apoptosis, inflammatory-related processes, and metabolism of extracellular matrix were identified. Abstract Retained fetal membranes (RFM) is one of the most common post-partum diseases of a complex etiology. Moreover, its pathogenesis is still not elucidated. Detailed transcriptomic analysis of physiological and retained placenta may bring profound insight in the pathogenesis of the disease. The aim of the study was to compare the transcriptome of the retained and physiologically released placenta as well as biological pathways and processes in order to determine the possible pathogenesis of the disease. Samples of the endometrium and the allantochorion were taken within 2 h after parturition from control mares (n = 3) and mares with RFM (n = 3). RNA sequencing was performed with the use of all samples and mRNA expression of chosen genes was validated with Real Time PCR. Analysis of RNA-seq identified 487 differentially expressed genes in the allantochorion and 261 in the endometrium of control and RFM mares (p < 0.0001). Within genes that may be important in the release of fetal membranes and were differentially expressed, our report pinpointed BGN, TIMP1, DRB, CD3E, C3, FCN3, CASP3, BCL2L1. Gene ontology analysis showed possible processes which were altered in RFM that are apoptosis, inflammatory-related processes, and extracellular matrix metabolism and might be involved in the pathogenesis of RFM. This is the first report on the transcriptome of RFM and physiologically released placenta in mares.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; (I.K.-Z.); (I.W.-P.)
- Correspondence:
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland; (K.R.-M.); (K.P.); (T.S.)
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland; (K.R.-M.); (K.P.); (T.S.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 32-083 Balice, Poland; (K.R.-M.); (K.P.); (T.S.)
- University Centre of Veterinary Medicine Krakow, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Ilona Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; (I.K.-Z.); (I.W.-P.)
| | - Izabela Wocławek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; (I.K.-Z.); (I.W.-P.)
| | - Marta Siemieniuch
- Research Station of the Institute of Reproduction and Food Research, Polish Academy of Sciences in Popielno, 12-220 Ruciane-Nida, Poland;
| |
Collapse
|
7
|
Sheldon IM, Molinari PCC, Ormsby TJR, Bromfield JJ. Preventing postpartum uterine disease in dairy cattle depends on avoiding, tolerating and resisting pathogenic bacteria. Theriogenology 2020; 150:158-165. [PMID: 31973964 DOI: 10.1016/j.theriogenology.2020.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/15/2022]
Abstract
Up to forty percent of dairy cows develop metritis or endometritis when pathogenic bacteria infect the uterus after parturition. However, resilient cows remain healthy even when exposed to the same pathogens. Here, we provide a perspective on the mechanisms that dairy cows use to prevent postpartum uterine disease. We suggest that resilient cows prevent the development of uterine disease using the three complementary defensive strategies of avoiding, tolerating and resisting infection with pathogenic bacteria. Avoidance maintains health by limiting the exposure to pathogens. Avoidance mechanisms include intrinsic behaviors to reduce the risk of infection by avoiding pathogens or infected animals, perhaps signaled by the fetid odor of uterine disease. Tolerance improves health by limiting the tissue damage caused by the pathogens. Tolerance mechanisms include neutralizing bacterial toxins, protecting cells against damage, enhancing tissue repair, and reprogramming metabolism. Resistance improves health by limiting the pathogen burden. Resistance mechanisms include inflammation driven by innate immunity and adaptive immunity, with the aim of killing and eliminating pathogenic bacteria. Farmers can also help cows prevent the development of postpartum uterine disease by avoiding trauma to the genital tract, reducing stress, and feeding animals appropriately during the transition period. Understanding the mechanisms of avoidance, tolerance and resistance to pathogens will inform strategies to generate resilient animals and prevent uterine disease.
Collapse
Affiliation(s)
- I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom.
| | - Paula C C Molinari
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, United States
| | - Thomas J R Ormsby
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, United States
| |
Collapse
|
8
|
A complex of novel protease inhibitor, ovostatin homolog, with its cognate proteases in immature mice uterine luminal fluid. Sci Rep 2019; 9:4973. [PMID: 30899053 PMCID: PMC6428836 DOI: 10.1038/s41598-019-41426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022] Open
Abstract
A predominant gelatinolytic enzyme with approximately 26 kDa was observed in gelatin zymogram of immature mice uterine luminal fluid (ULF). Size exclusion analysis revealed that the native size of this enzyme was close to that of human α2-macroglobulin (α2-MG), a 725 kDa protein. This large protease was isolated by a series of chromatographic steps on the Sephacryl S-400 and DEAE-Sepharose columns. The results from gelatin zymography and SDS-PAGE analysis supported that this large protease consists of gelatinolytic enzyme and a 360 kDa protein. Through tandem mass spectrometry analysis followed by MASCOT database search, the 360 kDa protein was identified as ovostatin homolog (accession: NP_001001179.2) assigned as a homolog of chicken ovostatin, a protease inhibitor. The co-fractionation analysis by gel filtration and mouse ovostatin homolog (mOH) co-immunoprecipitation experiments demonstrated that the mOH formed a complex with three gelatinolytic enzymes in immature mice ULF. Substrate zymography analysis revealed that the mOH-associated gelatinolytic enzymes were suitable to digest type I collagen rather than type IV collagen. In addition, the refolded mOH-associated 26 kDa gelatinolytic enzyme displayed the type I collagen-digesting activity in the assay, but the other two enzymes did not have this function. RT-PCR analysis showed that mOH gene was abundantly expressed in brain, spinal cord, lung, uterus, and in 17-day embryo. Taken together, our data suggest that mOH/cognate protease system may play a potential role in regulation of tissue remodeling and fetal development.
Collapse
|
9
|
Sankarganesh D, Ramachandran R, Suriyakalaa U, Ramesh Saravanakumar V, Archunan G, Akbarsha MA, Achiraman S. Assessment of urinary volatile compounds and proteins in the female goat Capra hircus: A pilot study to reveal potential indicators of oestrus. Reprod Domest Anim 2019; 54:646-651. [PMID: 30659685 DOI: 10.1111/rda.13407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/29/2018] [Indexed: 11/29/2022]
Abstract
Urine samples of female goats in pro-oestrus, oestrus and post-oestrus phases were analysed for finding oestrus-specific volatile compounds using gas chromatograph-mass spectrometry (GC-MS), and proteins using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Fourteen urinary volatile were identified covering all three phases among which four compounds, 1-Tetradecanol, n-Pentadecanol, 3-Methylene tridecane and 2-Ethyl-1-dodecene, were unique to oestrus. Also, oestrus urine contained a 25 kDa protein, which was totally absent in pro-oestrus urine, and less-expressed in post-oestrus urine. This protein revealed to be complement C3 fragment. This pilot study, for the first time, reveals the difference in urinary volatile compounds and proteins in the female goat during the different phases of oestrous cycle. The four unique volatile compounds and a 25 kDa protein that appeared as oestrus-specific in this study warrant further investigation to consider them as urinary biomarkers of oestrus in goats.
Collapse
Affiliation(s)
- D Sankarganesh
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India.,Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - R Ramachandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India.,Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - U Suriyakalaa
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India.,Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - V Ramesh Saravanakumar
- Department of Livestock Production and Management, Veterinary College and Research Institute, Namakkal, India
| | - G Archunan
- Pheromone Technology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - M A Akbarsha
- National College (Autonomous), Tiruchirappalli, India
| | - S Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
10
|
Non-invasive identification of protein biomarkers for early pregnancy diagnosis in the cheetah (Acinonyx jubatus). PLoS One 2017; 12:e0188575. [PMID: 29236714 PMCID: PMC5728495 DOI: 10.1371/journal.pone.0188575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022] Open
Abstract
Approximately 80% of cheetahs living in typical zoological collections never reproduce. In more than 60% of breedings, the female is confirmed to ovulate, but parturition fails to occur. It is unknown if these non-pregnant intervals of elevated progesterone (deemed luteal phases) are conception failures or a pregnancy terminating in embryonic/fetal loss. There have been recent advances in metabolic profiling and proteome analyses in many species with mass spectrometry used to identify ‘biomarkers’ and mechanisms indicative of specific physiological states (including pregnancy). Here, we hypothesized that protein expression in voided cheetah feces varied depending on pregnancy status. We: 1) identified the expansive protein profile present in fecal material of females; and 2) isolated proteins that may be candidates playing a role in early pregnancy establishment and diagnosis. Five hundred and seventy unique proteins were discovered among samples from pregnant (n = 8), non-pregnant, luteal phase (n = 5), and non-ovulatory control (n = 5) cheetahs. Four protein candidates were isolated that were significantly up-regulated and two were down-regulated in samples from pregnant compared to non-pregnant or control counterparts. One up-regulated candidate, immunoglobulin J chain (IGJ; an important component of the secretory immune system) was detected using a commercially available antibody via immunoblotting. Findings revealed that increased IGJ abundance could be used to detect pregnancy successfully in >80% of 23 assessed females within 4 weeks after mating. The discovery of a novel fecal pregnancy marker improves the ability to determine reproductive, especially gestational, status in cheetahs managed in an ex situ insurance and source population.
Collapse
|
11
|
Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 2017; 155:1-10. [DOI: 10.1016/j.jprot.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
|
12
|
Sato S, Kikuchi T, Uemoto Y, Mikawa S, Suzuki K. Effect of candidate gene polymorphisms on reproductive traits in a Large White pig population. Anim Sci J 2016; 87:1455-1463. [DOI: 10.1111/asj.12580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/24/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Shuji Sato
- National Livestock Breeding Center; Nishigo Fukushima Japan
| | | | | | - Satoshi Mikawa
- National Institute of Agrobiological Sciences; Tsukuba Ibaraki Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi Japan
| |
Collapse
|
13
|
Soleilhavoup C, Riou C, Tsikis G, Labas V, Harichaux G, Kohnke P, Reynaud K, de Graaf SP, Gerard N, Druart X. Proteomes of the Female Genital Tract During the Oestrous Cycle. Mol Cell Proteomics 2016; 15:93-108. [PMID: 26518761 PMCID: PMC4762522 DOI: 10.1074/mcp.m115.052332] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2015] [Indexed: 01/01/2023] Open
Abstract
The female genital tract includes several anatomical regions whose luminal fluids successively interact with gametes and embryos and are involved in the fertilisation and development processes. The luminal fluids from the inner cervix, the uterus and the oviduct were collected along the oestrous cycle at oestrus (Day 0 of the cycle) and during the luteal phase (Day 10) from adult cyclic ewes. The proteomes were assessed by GeLC-MS/MS and quantified by spectral counting. A set of 940 proteins were identified including 291 proteins differentially present along the cycle in one or several regions. The global analysis of the fluid proteomes revealed a general pattern of endocrine regulation of the tract, with the cervix and the oviduct showing an increased differential proteins abundance mainly at oestrus while the uterus showed an increased abundance mainly during the luteal phase. The proteins more abundant at oestrus included several families such as the heat shock proteins (HSP), the mucins, the complement cascade proteins and several redox enzymes. Other proteins known for their interaction with gametes such as oviductin (OVGP), osteopontin, HSPA8, and the spermadhesin AWN were also overexpressed at oestrus. The proteins more abundant during the luteal phase were associated with the immune system such as ceruloplasmin, lactoferrin, DMBT1, or PIGR, and also with tissue remodeling such as galectin 3 binding protein, alkaline phosphatase, CD9, or fibulin. Several proteins differentially abundant between estrus and the luteal phase, such as myosin 9 and fibronectin, were also validated by immunohistochemistry. The potential roles in sperm transit and uterine receptivity of the proteins differentially regulated along the cycle in the female genital tract are discussed.
Collapse
Affiliation(s)
- Clement Soleilhavoup
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Cindy Riou
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Guillaume Tsikis
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Valerie Labas
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Gregoire Harichaux
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Philippa Kohnke
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Karine Reynaud
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; ‡‡Alfort Veterinary School, 94700 Maisons Alfort, France
| | - Simon P de Graaf
- §§Faculty of Veterinary Science, The University of Sydney NSW 2006, Australia
| | - Nadine Gerard
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Xavier Druart
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France;
| |
Collapse
|
14
|
Kay S, Metkari SM, Madan T. Ovarian Hormones Regulate SP-D Expression in the Mouse Uterus During Estrous Cycle and Early Pregnancy. Am J Reprod Immunol 2015; 74:77-88. [DOI: 10.1111/aji.12369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/21/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
- Sharon Kay
- Department of Innate Immunity; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| | - Siddhanath Maruti Metkari
- Experimental Animal Facility; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| | - Taruna Madan
- Department of Innate Immunity; National Institute for Research in Reproductive Health (ICMR); Parel Mumbai India
| |
Collapse
|
15
|
|
16
|
Nonaka MI, Zsigmond E, Kudo A, Kawakami H, Yoshida K, Yoshida M, Kawano N, Miyado K, Nonaka M, Wetsel RA. Epididymal C4b-binding protein is processed and degraded during transit through the duct and is not essential for fertility. Immunobiology 2014; 220:467-75. [PMID: 25468721 DOI: 10.1016/j.imbio.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022]
Abstract
C4b-binding protein (C4BP) is known as one of the circulating complement regulators that prevents excessive activation of the host-defense complement system. We have reported previously that C4BP is expressed abundantly in the rodent epididymis, one of the male reproductive organs connecting the testis and vas deferens, where immature spermatozoa acquire their motility and fertilizing ability during their transit through the duct. Epididymal C4BP (EpC4BP) is synthesized androgen-dependently by the epithelial cells, secreted into the lumen, and bound to the outer membrane of the passing spermatozoa. In this study, we found that EpC4BP is secreted as a large oligomer, similar to the serum C4BP, but is digested during the epididymal transit and is almost lost from both the luminal fluid and the sperm surface in the vas deferens. Such a processing pattern is not known in serum C4BP, suggesting that EpC4BP and serum C4BP might have different functional mechanisms, and that there is a novel function of EpC4BP in reproduction. In addition, the disappearance of EpC4BP from the sperm surface prior to ejaculation suggests that EpC4BP works only in the epididymis and would not work in the female reproductive tract to protect spermatozoa from complement attack. Next, we generated C4BP-deficient (C4BP-/-) mice to examine the possible role of EpC4BP in reproduction. However, the C4BP-/- mice were fertile and no significant differences were observed between the C4BP-/- and wild-type mouse spermatozoa in terms of morphology, motility, and rate of the spontaneous acrosome reaction. These results suggest that EpC4BP is involved in male reproduction, but not essential for sperm maturation.
Collapse
Affiliation(s)
- Mayumi I Nonaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | - Eva Zsigmond
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, USA
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, The University of Tokyo, Miura, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, Japan
| | - Masaru Nonaka
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Rick A Wetsel
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, USA
| |
Collapse
|
17
|
Rezvani R, Gupta A, Smith J, Poursharifi P, Marceau P, Pérusse L, Bouchard C, Tchernof A, Cianflone K. Cross-sectional associations of acylation stimulating protein (ASP) and adipose tissue gene expression with estradiol and progesterone in pre- and postmenopausal women. Clin Endocrinol (Oxf) 2014; 81:736-745. [PMID: 25040699 DOI: 10.1111/cen.12540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/15/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Sex steroid hormones play an important regulatory role in fat metabolism and obesity. We hypothesized involvement of interactions between ovarian hormones with acylation stimulating protein (ASP). DESIGN, PATIENTS AND MEASUREMENTS In 392 women with wide age (18-69 years) and body size (BMI: 17 to 90 kg/m(2) ) ranges, fasting plasma levels of ASP, ovarian hormones, glucose, adiponectin and lipids/apolipoproteins were assessed, along with determination of metabolic syndrome (MS) features. Gene expression of C3 (ASP precursor) and related receptors C5L2, C3aR and C5aR in subcutaneous and omental adipose tissues was measured in a subset. RESULTS Acylation stimulating protein correlated negatively with concentrations of estradiol (P < 0·0001), adiponectin (P < 0·001) and apolipoprotein A1 (P < 0·001) and positively with apolipoprotein B levels (P < 0·001), systolic blood pressure (P < 0·001), waist circumference (P < 0·001), and triglyceride concentrations (P < 0·01). In age-matched groups of lean, overweight, metabolically healthy obese (MHO) and obese with metabolic syndrome (MSO), there was a stepwise increase in ASP levels (P < 0·001) while concentrations of adiponectin (P < 0·0001) and estradiol (P < 0·001) but not those of progesterone decreased. Progesterone but not estradiol levels correlated positively with C3 gene expression in omental adipose tissue (P < 0·05) and negatively with C5L2 expression in both omental (P < 0·01) and subcutaneous (P < 0·05) adipose tissues. CONCLUSION Our results are consistent with the concept that sex hormones differentially influence circulating ASP and adipose tissue gene expression of its related proteins in a depot-specific manner. ASP may play a role in the regulation of regional fat metabolism through interactions with sex hormones in women.
Collapse
Affiliation(s)
- Reza Rezvani
- Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec City, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wlazlo N, van Greevenbroek MMJ, Ferreira I, Feskens EJM, van der Kallen CJH, Schalkwijk CG, Bravenboer B, Stehouwer CDA. Complement factor 3 is associated with insulin resistance and with incident type 2 diabetes over a 7-year follow-up period: the CODAM Study. Diabetes Care 2014; 37:1900-9. [PMID: 24760264 DOI: 10.2337/dc13-2804] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Immune dysregulation can affect insulin resistance (IR) and β-cell function and hence contribute to development of type 2 diabetes mellitus (T2DM). The complement system, as a regulator of immune and inflammatory homeostasis, may be a relevant contributor therein. However, longitudinal studies focusing on complement as a determinant of T2DM and IR are scarce. Therefore, we prospectively investigated the association of plasma complement factor 3 (C3) with (estimates of) IR in muscle, liver, and adipocytes, as well as with glucose tolerance, including incident T2DM. RESEARCH DESIGN AND METHODS Fasting C3, nonesterified fatty acids, glucose, and insulin (the latter two during oral glucose tolerance tests) were measured at baseline (n = 545) and after 7 years of follow-up (n = 394) in a prospective cohort study. RESULTS Over the 7-year period, C3 levels (per 0.1 g/L) were longitudinally associated with higher homeostasis model assessment of IR (HOMA2-IR; β = 15.2% [95% CI 12.9-17.6]), hepatic IR (β = 6.1% [95% CI 4.7-7.4]), adipocyte IR (β = 16.0% [95% CI 13.0-19.1]), fasting glucose (β = 1.8% [95% CI 1.2-2.4]), 2-h glucose (β = 5.2% [95% CI 3.7-6.7]), and area under the curve for glucose (β = 3.6% [95% CI 2.7-4.6]). In addition, greater changes in C3 (per 0.1 g/L) were associated with greater changes in HOMA2-IR (β = 0.08 [95% CI 0.02-0.15]) and greater changes in hepatic IR (β = 0.87 [95% CI 0.12-1.61]) over 7 years, but not glucose tolerance. Moreover, baseline C3 was associated with the 7-year incidence of T2DM (odds ratio 1.5 [95% CI 1.1-2.0]). CONCLUSIONS Changes in C3 were associated with changes in several measures of IR and may reflect progression of metabolic dysregulation, which eventually leads to abnormalities in glucose tolerance and T2DM.
Collapse
Affiliation(s)
- Nick Wlazlo
- Department of Internal Medicine, Catharina Hospital, Eindhoven, the NetherlandsCARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Isabel Ferreira
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the NetherlandsDepartment of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, the NetherlandsCAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition, Section of Nutrition and Epidemiology, Wageningen University, Wageningen, the Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bert Bravenboer
- Department of Internal Medicine, Catharina Hospital, Eindhoven, the Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the NetherlandsDepartment of Internal Medicine/Laboratory for Metabolism and Vascular Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
19
|
Keiler AM, Bernhardt R, Scharnweber D, Jarry H, Vollmer G, Zierau O. Comparison of estrogenic responses in bone and uterus depending on the parity status in Lewis rats. J Steroid Biochem Mol Biol 2013; 133:101-9. [PMID: 23032373 DOI: 10.1016/j.jsbmb.2012.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/04/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The reproductive transition of women through peri- to postmenopause is characterized by changes in steroid hormone levels due to the cessation of the ovarian function. Beside several complaints associated with these hormonal changes, the deterioration of the trabecular bone micro-architecture and the loss of skeletal mass can cause osteoporosis. At this life stage, women often have a reproductive history of one to several pregnancies. The ovariectomized skeletally mature rat (>10 months old) is one of the most commonly used animal models for postmenopausal osteoporosis research. Despite the fact that mammals can undergo up to several reproductive cycles (primi-/pluriparous), nulliparous animals are often used and the question whether changes in the hormonal milieu subsequently affect the skeleton and influence the outcome of intervention studies is often neglected in study designs. Therefore, the aim of the present study was to compare the estrogen responsiveness of nulliparous and pluriparous rats. For this purpose, one year old virgin or retired breeder Lewis rats were either sham operated or ovariectomized, whereas half of the ovariectomized animals received subcutaneous 17β-estradiol pellets eight weeks after surgery. After another four weeks, the effects on the uterus were determined by expression analysis of estrogen-dependently regulated steroid receptor genes and well-established marker genes. Moreover, trabecular bone parameters in the tibia were analyzed by micro-computed tomography (μCT). Parity-dependency in estrogen responsiveness was observed with respect to the achieved serum E2 levels in response to similar E2 treatment. This led to differences both on the uterus wet weight and on the expression level of uterine target genes. In addition, a reversal of the ovariectomy-induced changes of the bone architecture after 17β-estradiol substitution was only observed among the nulliparous. In conclusion, the observations of this study support parity-dependent differences in the responses to estrogenic compounds in the uterus and the bone of rats. These results indicate that the parity-status has an impact on the outcome of studies aiming at the investigation of estrogenic effects of compounds potentially used in hormone replacement and thus, this should be taken into consideration for further studies and particularly for the discussion of data obtained with the preclinical ovariectomized rat animal model.
Collapse
Affiliation(s)
- Annekathrin Martina Keiler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, 01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Wlazlo N, van Greevenbroek MMJ, Ferreira I, Jansen EJHM, Feskens EJM, van der Kallen CJH, Schalkwijk CG, Bravenboer B, Stehouwer CDA. Low-grade inflammation and insulin resistance independently explain substantial parts of the association between body fat and serum C3: the CODAM study. Metabolism 2012; 61:1787-96. [PMID: 22762725 DOI: 10.1016/j.metabol.2012.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/11/2012] [Accepted: 05/30/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the role of low-grade inflammation and insulin resistance (HOMA2-IR) in adiposity-related increases in serum complement factor 3 (C3). Although C3 has been linked to type 2 diabetes and cardiovascular diseases, and C3 levels are closely related to body fat, the underlying mechanisms explaining this association are still unknown. METHODS Adiposity measures (including BMI, waist circumference (WC), sagittal diameter and several skinfolds), HOMA2-IR and markers of inflammation (hs-CRP, IL-6, SAA, haptoglobin, ceruloplasmin, sICAM-1) were determined in 532 individuals (62% men, mean age 59±6.9 yrs) from the Cohort on Diabetes and Atherosclerosis Maastricht study. Markers of inflammation were standardized and compiled into an averaged inflammation score. Cross-sectional associations between adiposity measures and C3 and the mediating role of low-grade inflammation and/or HOMA2-IR herein were analysed with multiple linear regression models. RESULTS Adiposity measurements were significantly associated with C3 levels, with the strongest (adjusted) associations found for WC (β=0.383; 95%CI 0.302-0.464) and sagittal diameter (β=0.412; 95%CI 0.333-0.490). Further adjustment for inflammation and HOMA2-IR attenuated these associations to β=0.115 (95%CI 0.030-0.200) and β=0.163 (95%CI 0.082-0.244) respectively. Multiple mediation analyses showed that inflammation [β=0.090 (95%CI 0.060-0.126)] and HOMA2-IR [β=0.179 (95%CI 0.128-0.236)] each explained, independently of one another, a significant portion of the association between WC and C3 (23% and 47%, respectively). Similar mediation by inflammation (19-27%) and HOMA2-IR (37-56%) was found for other adiposity measures. CONCLUSION Systemic low-grade inflammation and insulin resistance may represent two independent pathways by which body fat leads to elevated C3 levels.
Collapse
Affiliation(s)
- Nick Wlazlo
- Department of Internal Medicine, Catharina Hospital, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jung EM, An BS, Yang H, Choi KC, Jeung EB. Biomarker genes for detecting estrogenic activity of endocrine disruptors via estrogen receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:698-711. [PMID: 22690157 PMCID: PMC3367271 DOI: 10.3390/ijerph9030698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 12/31/2022]
Abstract
Endocrine disruptors (EDs) are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by binding to these receptors. EDs are therefore a global concern and assays should be developed to efficiently determine whether these compounds are detrimental to biological systems. Diverse experimental methods may help determine the endocrine disrupting potential of EDs and evaluate the adverse effects of a single and/or combination of these reagents. Currently, biomarkers have been employed to objectively measure EDs potency and understand the underlying mechanisms. Further studies are required to develop ideal screening methods and biomarkers to determine EDs potency at environmentally relevant concentrations. In this review, we describe the biomarkers for estrogenicity of EDs identified both in vitro and in vivo, and introduce a biomarker, cabindin-D9k (CaBP-9k), that may be used to assess estrogenic activity of EDs.
Collapse
Affiliation(s)
- Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea.
| | | | | | | | | |
Collapse
|
22
|
Jerse AE, Wu H, Packiam M, Vonck RA, Begum AA, Garvin LE. Estradiol-Treated Female Mice as Surrogate Hosts for Neisseria gonorrhoeae Genital Tract Infections. Front Microbiol 2011; 2:107. [PMID: 21747807 PMCID: PMC3129519 DOI: 10.3389/fmicb.2011.00107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Historically, animal modeling of gonorrhea has been hampered by the exclusive adaptation of Neisseria gonorrhoeae to humans. Genital tract infection can be established in female mice that are treated with 17β-estradiol, however, and many features of experimental murine infection mimic human infection. Here we review the colonization kinetics and host response to experimental murine gonococcal infection, including mouse strain differences and evidence that IL-17 responses, toll-like receptor 4, and T regulatory cells play a role in infection. We also discuss the strengths and limitations of the mouse system and the potential of transgenic mice to circumvent host restrictions. Additionally, we review studies with genetically defined mutants that demonstrated a role for sialyltransferase and the MtrC-MtrD-MtrE active efflux pump in evading innate defenses in vivo, but not for factors hypothesized to protect against the phagocytic respiratory burst and H(2)O(2)-producing lactobacilli. Studies using estradiol-treated mice have also revealed the existence of non-host-restricted iron sources in the female genital tract and the influence of hormonal factors on colonization kinetics and selection for opacity (Opa) protein expression. Recent work by others with estradiol-treated mice that are transgenic for human carcinoembryonic adhesion molecules (CEACAMs) supports a role for Opa proteins in enhancing cellular attachment and thus reduced shedding of N. gonorrhoeae. Finally we discuss the use of the mouse model in product testing and a recently developed gonorrhea chlamydia coinfection model.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
23
|
Saleh J, Al-Wardy N, Farhan H, Al-Khanbashi M, Cianflone K. Acylation stimulating protein: a female lipogenic factor? Obes Rev 2011; 12:440-8. [PMID: 21348923 DOI: 10.1111/j.1467-789x.2010.00832.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acylation stimulating protein (ASP) is a potent lipogenic factor produced from adipocytes. Plasma ASP levels were shown to increase in obesity, diabetes mellitus type II and dyslipidemia, and decrease after weight loss and fasting. Growing evidence suggests that ASP may significantly contribute to subcutaneous fat storage in females. In vitro, ASP stimulated triglyceride synthesis to a larger extent in subcutaneous compared with omental adipocytes. The ASP receptor binding affinity to plasma membranes prepared from adipose tissue showed higher binding affinity to plasma membranes from female adipose tissue compared with male adipose tissue, and was more pronounced to subcutaneous compared with omental plasma membranes. Human studies demonstrated that postprandial triglyceride clearance predicted by ASP levels was more efficient in women than in men. In mice, postprandial triglyceride clearance, with intraperitoneal ASP administration, was faster in females compared with males. The ASP deficient mice were resistant to weight gain and had reduced fat mass that was more pronounced in females. Recent findings in humans and mice point to a significant association between progesterone and ASP variations in females. In this review, we highlight findings, to date, linking ASP to physiological and hormonal alterations that may contribute to subcutaneous fat distribution typical to females.
Collapse
Affiliation(s)
- J Saleh
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman.
| | | | | | | | | |
Collapse
|
24
|
Cole JG, Fulcher NB, Jerse AE. Opacity proteins increase Neisseria gonorrhoeae fitness in the female genital tract due to a factor under ovarian control. Infect Immun 2010; 78:1629-41. [PMID: 20100859 PMCID: PMC2849431 DOI: 10.1128/iai.00996-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/14/2009] [Accepted: 01/19/2010] [Indexed: 12/25/2022] Open
Abstract
The neisserial opacity (Opa) proteins are a family of antigenically distinct outer membrane proteins that undergo phase-variable expression. Opa(+) variants of Neisseria gonorrhoeae strain FA1090 are selected in a cyclical pattern from the lower genital tract of estradiol-treated mice. Here we show that cyclical recovery of Opa(+) gonococci does not occur in ovariectomized mice; therefore, the reproductive cycle plays a role in the selection kinetics in vivo. As predicted by the selection pattern shown by wild-type gonococci, we demonstrated that a constitutive Opa-expressing strain was more fit than an Opa-deficient mutant in the early and late phases of infection. We found no evidence that Opa-mediated colonization selects for Opa(+) variants during murine infection based on adherence assays with cultured murine epithelial cells. We also tested the hypothesis that complement selects for Opa protein expression during infection. Although some Opa(+) variants of a serum-sensitive derivative of strain FA1090 were more resistant to the bactericidal activity of normal human serum, selection for Opa expression was not abrogated in C3-depleted mice. Finally, as previously reported, Opa(+) gonococci were more sensitive to serine proteases. Thus, proteases or protease inhibitors may contribute to the observed in vivo selection pattern. We concluded that Opa proteins promote persistence of N. gonorrhoeae in the female genital tract and that opa gene phase variation allows gonococci to evade or capitalize upon unidentified host factors of the mammalian reproductive cycle. This work revealed an intimate interaction between pathogen and host and provides evidence that hormonally related factors shape bacterial adaptation.
Collapse
Affiliation(s)
- Jessica G. Cole
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology and Immunology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27278
| | - Nanette B. Fulcher
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology and Immunology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27278
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, Department of Microbiology and Immunology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina 27278
| |
Collapse
|
25
|
Spink BC, Bennett JA, Pentecost BT, Lostritto N, Englert NA, Benn GK, Goodenough AK, Turesky RJ, Spink DC. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol 2009; 240:355-66. [PMID: 19619570 PMCID: PMC3180932 DOI: 10.1016/j.taap.2009.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 12/21/2022]
Abstract
The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor alpha (ERalpha) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERalpha and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERalpha- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17beta-estradiol (E(2)). With these LTEE cells and with parallel control cells cultured without E(2) supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E(2)-dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E(2).
Collapse
Affiliation(s)
- Barbara C Spink
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Höfer N, Diel P, Wittsiepe J, Wilhelm M, Degen GH. Dose- and route-dependent hormonal activity of the metalloestrogen cadmium in the rat uterus. Toxicol Lett 2009; 191:123-31. [PMID: 19703529 DOI: 10.1016/j.toxlet.2009.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/14/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
The toxic heavy metal cadmium (Cd) is regarded as a potential endocrine disruptor, since Cd exerts estrogen-like activity in vitro and can elicit some typical estrogenic responses in rodents upon intraperitoneal (i.p.) injection. But estrogenic effects have not been documented in vivo with other more relevant routes of exposure, although it is known that Cd absorption and distribution in the body is strongly affected by the application route. Therefore, we investigated its hormonal activity in ovariectomized Wistar rats after oral administration of CdCl(2) (0.05-4 mg/kg b.w. on 3 days by gavage and 0.4-9 mg/kg b.w. for 4 weeks in drinking water) in comparison with i.p. injection of CdCl(2) (0.00005-2 mg/kg b.w.). Uterus wet weight, height of uterine epithelium, and modulation of estrogen-regulated gene expression, i.e. uterine complement component 3 (C3), were determined, and also Cd-levels in uterus and liver were measured by atomic absorption spectrometry. The analysis revealed pronounced differences in Cd tissue levels and hormonal potency for the two routes of administration: a single i.p. injection of Cd increased dose-dependently uterine wet weight and thickness of the uterine epithelium. Interestingly, C3 mRNA expression in the uterus was down regulated at low doses of CdCl(2) (0.00005-0.05 mg/kg b.w.), but strongly stimulated at the highest dose of 2 mg/kg b.w. Other than i.p. injection, oral treatment with Cd, by gavage or in drinking water, did neither increase uterine wet weights nor epithelial thickness. But, both 3-day- and 4-week oral Cd administration resulted in a dose-dependent stimulation of C3 expression in the uterus, significant at and above 0.5 mg/kg b.w. In summary, our data demonstrate an estrogenic effect in the uterus upon i.p. injection of Cd, but considerably lower hormonal potency with oral administration: short and long-term oral treatment with Cd did not affect uterus weight or histology, whilst on the molecular level, an induction of estrogen sensitive uterine gene expression was observed, albeit at dose levels far exceeding those of dietary exposure in humans.
Collapse
Affiliation(s)
- Nicola Höfer
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Am Sportpark Müngersdorf 6, D-50933 Köln, Germany
| | | | | | | | | |
Collapse
|
27
|
Lie KK, Meier S, Olsvik PA. Effects of environmental relevant doses of pollutants from offshore oil production on Atlantic cod (Gadus morhua). Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:141-9. [PMID: 19379838 DOI: 10.1016/j.cbpc.2009.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
The release of produced water (PW), a by-product of offshore oil production, has increased in Norwegian waters in recent years. Alkylphenols (AP), a major component of PW, have been shown to have endocrine disrupting effects on several fish species. In the present study, four groups of female Atlantic cod (Gadus morhua) were orally exposed for 20 weeks to two different concentrations of a mixture of C4-C7 APs, PW or 17beta-estradiol. The transcriptional responses in the liver of Atlantic female cod were studied using a custom-made cDNA microarray. The largest transcriptional effects were seen in cod exposed to the lowest dose of APs. Several biological processes such as glycolysis, apoptosis and the general stress response were affected by exposure to APs. In addition, genes coding for the detoxification enzymes CYP1A and sulfotransferase 2 were up-regulated in the low exposure group. Significant reduction in gonadosomatic index (GSI) and the concentration of plasma vitellogenin were seen in both AP and 17beta-estradiol exposed cod. Exposure to PW had little effect on GSI and the regulation of stress responsive genes. The findings indicate that chronic exposure to low levels of APs may cause a stress response and delayed maturation in female cod.
Collapse
Affiliation(s)
- Kai K Lie
- National Institute of Nutrition and Seafood Research, Nordnesboder 2, N-5005 Bergen, Norway.
| | | | | |
Collapse
|
28
|
Lee YL, Cheong AW, Chow WN, Lee KF, Yeung WS. Regulation of complement-3 protein expression in human and mouse oviducts. Mol Reprod Dev 2009; 76:301-8. [PMID: 18671285 DOI: 10.1002/mrd.20955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Rath D, Schuberth HJ, Coy P, Taylor U. Sperm Interactions from Insemination to Fertilization. Reprod Domest Anim 2008; 43 Suppl 5:2-11. [DOI: 10.1111/j.1439-0531.2008.01250.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Wen Y, Wang H, MacLaren R, Lu H, Hu XF, Cianflone K. Sex steroid hormones induce acylation stimulating protein resistance in 3T3-L1 adipocytes. J Cell Biochem 2008; 105:404-13. [PMID: 18615583 DOI: 10.1002/jcb.21838] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008; 29:313-39. [PMID: 18374402 PMCID: PMC2398769 DOI: 10.1016/j.yfrne.2008.02.001] [Citation(s) in RCA: 494] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022]
Abstract
Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tse PK, Lee YL, Chow WN, Luk JMC, Lee KF, Yeung WSB. Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b. Endocrinology 2008; 149:1268-76. [PMID: 18039777 DOI: 10.1210/en.2007-1277] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human oviductal epithelial (OE) cells produce complement protein 3 (C3) and its derivatives, C3b and inactivated complement-3b (iC3b). Among them, iC3b is the most potent embryotrophic molecule. We studied the production of iC3b in the oviductal cell/embryo culture system. In the immune system, C3 convertase converts C3 into C3b, and the conversion of C3b to iC3b requires factor I (fI) and its cofactors, such as factor H or membrane cofactor protein. Human oviductal epithelium and OE cells expressed mRNA and protein of the components of C3 convertase, including C2, C4, factor B, and factor D. The OE cell-conditioned medium contained active C3 convertase activity that was suppressed by C3 convertase inhibitor, H17 in a dose and time-dependent manner. Although the oviductal epithelium and OE cells produced fI, the production of its cofactor, factor H required for the conversion of C3b to iC3b, was weak. Thus, OE cell-conditioned medium was inefficient in producing iC3b from exogenous C3b. On the contrary, mouse embryos facilitated such conversion to iC3b, which was taken up by the embryos, resulting in the formation of more blastocysts of larger size. The facilitatory activity was mediated by complement receptor 1-related gene/protein Y (Crry) with known membrane cofactor protein activity on the trophectoderm of the embryos as anti-Crry antibody inhibited the conversion and embryotrophic activity of C3b in the presence of fI. In conclusion, human oviduct possesses C3 convertase activity converting C3 to C3b, and Crry of the preimplantation embryos may be involved in the production of embryotrophic iC3b on the surface of the embryos.
Collapse
Affiliation(s)
- Pui-Keung Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
33
|
Saleh J, Cianflone K, Chaudhary T, Al-Riyami H, Al-Abri AR, Bayoumi R. Increased plasma acylation-stimulating protein correlates with hyperlipidemia at late gestation. Obesity (Silver Spring) 2007; 15:646-52. [PMID: 17372315 DOI: 10.1038/oby.2007.575] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Obesity is often associated with negative consequences, including hyperlipidemia and insulin resistance. Weight gain during pregnancy is also associated with major lipid alterations. Fat storage is enhanced in early pregnancy. At late gestation, hyperlipidemia becomes a major manifestation. The acylation-stimulating protein (ASP) is a potent lipogenic adipocytokine that correlates with postprandial triglyceride (TG) clearance in vivo and has been linked to hyperlipidemic disorders. The role of ASP during a normal pregnancy is unknown. The objective of this study was to investigate plasma ASP levels in correlation with the lipid profile during late gestation. RESEARCH METHODS AND PROCEDURES Seventy healthy women at late gestation and 60 non-pregnant controls of similar age and prepregnancy BMI were included in a cross-sectional study. Fasting plasma ASP levels and the lipid profile of all of the women were measured. RESULTS ASP levels were markedly elevated in the pregnant women (66%, p < 0.001). ASP levels correlated strongly with the elevated levels of TGs (r = 0.608, p < 0.000), apolipoprotein B (0.519, p < 0.000), and low-density lipoprotein-cholesterol (r = 0.405, p < 0.000). Multivariate analysis adjusting for BMI and age showed that changes in ASP levels at late gestation were best predicted by TG and apoB levels, accounting for 53.8% of plasma ASP variation. For the controls, ASP strongly correlated with BMI, which was the only significant predictor of ASP levels. DISCUSSION Gestational hormone alterations during pregnancy may affect ASP function as a lipogenic factor. Increased plasma ASP levels at late gestation and their strong correlation with parameters reflecting very low-density lipoprotein accumulation are suggestive of ASP resistance, which may further contribute to the hyperlipidemic state, shifting energy in the form of TGs to the rapidly growing fetus.
Collapse
Affiliation(s)
- Jumana Saleh
- Biochemistry Department, Faculty of Medicine, Sultan Qaboos University, P.O. Box 35, Postal Code 123, Muscat, Oman.
| | | | | | | | | | | |
Collapse
|
34
|
Simms AN, Jerse AE. In vivo selection for Neisseria gonorrhoeae opacity protein expression in the absence of human carcinoembryonic antigen cell adhesion molecules. Infect Immun 2006; 74:2965-74. [PMID: 16622235 PMCID: PMC1459723 DOI: 10.1128/iai.74.5.2965-2974.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neisserial opacity (Opa) proteins are phase-variable, antigenically distinct outer membrane proteins that mediate adherence to and invasion of human cells. We previously reported that Neisseria gonorrhoeae Opa protein expression appeared to be selected for or induced during experimental murine genital tract infection. Here we further defined the kinetics of recovery of Opa variants from the lower genital tracts of female mice and investigated the basis for this initial observation. We found that the recovery of different Opa phenotypes from mice appears cyclical. Three phases of infection were defined. Following intravaginal inoculation with primarily Opa- gonococci, the majority of isolates recovered were Opa+ (early phase). A subsequent decline in the percentage of Opa+ isolates occurred in a majority of mice (middle phase) and was followed by a reemergence of Opa+ variants in mice that were infected for longer than 8 days (late phase). We showed the early phase was due to selection for preexisting Opa+ variants in the inoculum by constructing a chloramphenicol-resistant (Cm(r)) strain and following Cm(r) Opa+ populations mixed with a higher percentage of Opa- variants of the wild-type (Cm(s)) strain. Reciprocal experiments (Opa- Cm(r) gonococci spiked with Opa+ Cm(s) bacteria) were consistent with selection of Opa+ variants. Based on the absence in mice of human carcinoembryonic antigen cell adhesion molecules, the major class of Opa protein adherence receptors, we conclude the observed selection for Opa+ variants early in infection is not likely due to a specific adherence advantage and may be due to Opa-mediated evasion of innate defenses.
Collapse
Affiliation(s)
- Amy N Simms
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
35
|
Hayashi Y, Toda K, Saibara T, Okada T, Enzan H. Assessment of anti-estrogenic activity of tamoxifen in transgenic mice expressing an enhanced green fluorescent protein gene regulated by estrogen response element. Biochim Biophys Acta Gen Subj 2005; 1760:164-71. [PMID: 16309844 DOI: 10.1016/j.bbagen.2005.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/23/2005] [Accepted: 08/23/2005] [Indexed: 11/28/2022]
Abstract
Tamoxifen is an anti-estrogenic agent for the treatment of breast cancer, while exhibiting estrogenic activity in such tissues as the uterus. This study aimed to test whether these opposite properties of tamoxifen in the uterus can be evaluated separately in vivo. We employed two transgenic murine models named, respectively, the ERE-EGFP Ar+/+ mouse and ERE-EGFP Ar-/- mouse. Both types of mice possess an enhanced green fluorescent protein (EGFP) gene regulated by four copies of estrogen response elements (EREs), while the latter lacks a functional aromatase gene, which encodes an enzyme catalyzing conversion of androgens to estrogens. Tamoxifen clearly exhibited estrogenic activity in the uteri of ERE-EGFP Ar-/- mice, as it caused uterine wet weight gain and E2-target gene induction, as 17beta-estradiol (E2) did. However, tamoxifen did not enhance the EGFP expression in ERE-EGFP Ar-/- mice, although E2 induced it significantly. In ERE-EGFP Ar+/+ mice, tamoxifen suppressed the EGFP expression in a time- and dose-dependent manner. Thus, the present study demonstrated that estrogenic and anti-estrogenic activities of tamoxifen can be evaluated by using ERE-EGFP Ar-/- and ERE-EGFP Ar+/+ mice, respectively. Furthermore, these animal models are useful to select and evaluate estrogenic and anti-estrogenic activities of chemical compounds.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Department of Pathology, School of Medicine, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | | | | | | | | |
Collapse
|
36
|
Rhen T, Cidlowski JA. Estrogens and glucocorticoids have opposing effects on the amount and latent activity of complement proteins in the rat uterus. Biol Reprod 2005; 74:265-74. [PMID: 16221988 DOI: 10.1095/biolreprod.105.045336] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mammalian uterus faces unique immunological challenges. It must nurture and protect the semiallogenic fetus from attack by the maternal immune system while guarding against infection by pathogens that compromise fetal and maternal health. Complement has recently been implicated in the etiology of pregnancy loss, but its regulation by steroid hormones and its role in host defense in the uterus are not clearly defined. Here we use biochemical, functional, and physiological assays to elucidate the regulation of complement proteins in the rat uterus. We demonstrate that estrogens (17 beta-estradiol) and glucocorticoids (dexamethasone) have major, but opposing, effects on the amount and latent activity of complement effectors in the uterus. Treatment with 17 beta-estradiol induced vasodilation and an increase in vascular permeability, which resulted in extravasation of plasma and complement into the uterus, rather than de novo complement biosynthesis. In vitro assays revealed that 17 beta-estradiol induced a potent bactericidal activity in uterine luminal fluid and that the antibacterial component was complement. These proinflammatory and immunomodulatory effects were evident within 4 h of treatment and were blocked by coadministration of dexamethasone. We also found that estrogen effects on the vasculature were mediated in part by activation of the contact system and bradykinin B1 receptors. These results indicate that complement plays a central role in innate immunity in the female reproductive tract and suggest that estrogens or glucocorticoids might be used therapeutically to enhance or inhibit complement-dependent processes in the uterus.
Collapse
Affiliation(s)
- Turk Rhen
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
37
|
von Schalburg KR, Rise ML, Brown GD, Davidson WS, Koop BF. A Comprehensive Survey of the Genes Involved in Maturation and Development of the Rainbow Trout Ovary1. Biol Reprod 2005; 72:687-99. [PMID: 15496514 DOI: 10.1095/biolreprod.104.034967] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Development and maturation of the ovary requires precisely coordinated expression of specific gene classes to produce viable oocytes. We undertook identification of some of the genes involved in these processes by creating ovary-specific cDNA libraries by suppression subtractive hybridization and by microarray-based analyses. We present 5778 tissue- and sex-specific genes from subtracted ovary and testis libraries, many of which remain unidentified. A microarray containing 3557 salmonid cDNAs was used to compare the transcriptomes of precocious ovary at three different stages during the second year of life with a reference (normal ovary) transcriptome. On average, approximately 240 genes were developmentally regulated during the study period from June to October. Classes of genes maintaining relatively steady-state levels of expression, such as those controlling tissue remodeling, immunoregulation, cell-cycle progression, apoptosis, and growth also were identified. Concurrent expression of various cell division and ubiquitin-mediated proteolysis regulators revealed the utility of microarray analysis to monitor important maturation events. We also report unequivocal evidence for expression of the transcripts that encode the common glycoprotein alpha, LH beta, FSH beta, thyroid-stimulating hormone beta, and retinol-binding protein in both the ovary and testis of trout.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|
38
|
Diel P, Laudenbach-Leschowsky U, Friedel A, Voss A, Roussel J. Pulsed estradiol exposure has a limited ability to induce uterine proliferation in ovariectomised female Wistar rats. Mol Cell Endocrinol 2005; 230:7-15. [PMID: 15664446 DOI: 10.1016/j.mce.2004.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/17/2004] [Accepted: 11/18/2004] [Indexed: 11/16/2022]
Abstract
All post-menopausal hormone replacement therapies (HRT) aim to provide a steady mid-follicular serum concentration of estrogen, with the exception of pulsed estrogen therapy, which concentrates estradiol (E2) exposure in the few hours following administration. This study was carried out to identify and characterise cellular and molecular mechanisms specifically involved in the response of the uterus to pulsed E2. Ovariectomised Wistar rats were treated with E2 for 10 days via IV route to mimic pulsed therapy (1, 4, 10 and 250 microg/kg) or with a subcutaneous pump to mimic standard HRT (10 and 250 microg/kg). Pulsed estrogen therapy effects on uterus was revealed by general E2 sensitivity markers (C3 mRNA, progesterone receptor (PR)) from the lower dose with no over stimulation even at the highest dose conversely to what observed with continuous exposure. Uterotrophic effect of pulsed E2 (uterine weight and epithelium thickness) was observed at all dose administered but with a limited maximal effect comparable to the ranges measurable in sham animals. This data corroborates with proliferating cell nuclear antigen (PCNA) expression in the uterine epithelium used as a marker of proliferation. PCNA was significantly induced after continuous administration but only slightly after pulsed E2 (250 microg/kg). In summary, pulsed E2 leads to a more limited proliferative effect than with continuous E2 in the uterus.
Collapse
Affiliation(s)
- Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Deutsche Sporthochschule Köln, Carl Diem Weg 6, 50927 Köln, Germany.
| | | | | | | | | |
Collapse
|
39
|
Naciff JM, Overmann GJ, Torontali SM, Carr GJ, Tiesman JP, Daston GP. Impact of the phytoestrogen content of laboratory animal feed on the gene expression profile of the reproductive system in the immature female rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1519-26. [PMID: 15531437 PMCID: PMC1247616 DOI: 10.1289/ehp.6848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 08/16/2004] [Indexed: 05/23/2023]
Abstract
The effect of the dietary background of phytoestrogens on the outcome of rodent bioassays used to identify and assess the reproductive hazard of endocrine-disrupting chemicals is controversial. Phytoestrogens, including genistein, daidzein, and coumestrol, are fairly abundant in soybeans and alfalfa, common ingredients of laboratory animal diets. These compounds are weak agonists for the estrogen receptor (ER) and, when administered at sufficient doses, elicit an estrogenic response in vivo. In this study, we assessed the potential estrogenic effects of dietary phytoestrogens at the gene expression level, together with traditional biologic end points, using estrogen-responsive tissues of the immature female rat. We compared the gene expression profile of the uterus and ovaries, as a pool, obtained using a uterotrophic assay protocol, from intact prepubertal rats fed a casein-based diet (free from soy and alfalfa) or a regular rodent diet (Purina 5001) containing soy and alfalfa. Estrogenic potency of the phytoestrogen-containing diet was determined by analyzing uterine wet weight gain, luminal epithelial cell height, and gene expression profile in the uterus and ovaries. These were compared with the same parameters evaluated in animals exposed to a low dose of a potent ER agonist [0.1 microg/kg/day 17alpha-ethynyl estradiol (EE) for 4 days]. Exposure to dietary phytoestrogens or to a low dose of EE did not advance vaginal opening, increase uterine wet weight, or increase luminal epithelial cell height in animals fed either diet. Although there are genes whose expression differs in animals fed the soy/alfalfa-based diet versus the casein diet, those genes are not associated with estrogenic stimulation. The expression of genes well known to be estrogen regulated, such as progesterone receptor, intestinal calcium-binding protein, and complement component 3, is not affected by consumption of the soy/alfalfa-based diet when assessed by microarray or quantitative reverse transcriptase-polymerase chain reaction analysis. Our results indicate that although diet composition has an impact on gene expression in uterus and ovaries, it does not contribute to the effects of an ER agonist.
Collapse
Affiliation(s)
- Jorge M Naciff
- Miami Valley Laboratories, The Procter and Gamble Company, Cincinnati, Ohio 45253-8707, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Diel P, Geis RB, Caldarelli A, Schmidt S, Leschowsky UL, Voss A, Vollmer G. The differential ability of the phytoestrogen genistein and of estradiol to induce uterine weight and proliferation in the rat is associated with a substance specific modulation of uterine gene expression. Mol Cell Endocrinol 2004; 221:21-32. [PMID: 15223129 DOI: 10.1016/j.mce.2004.04.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 11/20/2022]
Abstract
In this study the ability of the phytoestrogen genistein (GEN) to regulate proliferation in the rat uterine tissue and the associated molecular mechanisms were investigated in a dose and time dependent manner. A single administration of GEN induced a rapid increase of the uterine weight during the first 24 h. In contrast to E2, treatment with GEN for 3 days did not result in a further increase of the uterine weight. GEN only marginally effected the thickness of the uterine epithelium and the expression of epithelial proliferating cell nuclear antigen (PCNA). Whereas, estrogen sensitive genes were modulated significantly, the expression of key genes involved in the regulation of proliferation (PCNA, ERalpha /ERbeta ratio) remained unaffected by GEN. Our results indicate that GEN has only a limited ability to activate molecular mechanisms involved in the induction of proliferation whereas estrogen sensitive genes are induced in a estrogen like manner.
Collapse
Affiliation(s)
- Patrick Diel
- Department Molecular and Cellular Sports Medicine, DSHS Cologne, Carl Diem Weg 6, 50927 Köln, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Lee YL, Lee KF, Xu JS, He QY, Chiu JF, Lee WM, Luk JM, Yeung WSB. The Embryotrophic Activity of Oviductal Cell-derived Complement C3b and iC3b, a Novel Function of Complement Protein in Reproduction. J Biol Chem 2004; 279:12763-8. [PMID: 14699127 DOI: 10.1074/jbc.m311160200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Blastocyst/metabolism
- Blotting, Western
- CHO Cells
- Cell Line
- Complement C3b/chemistry
- Complement C3b/metabolism
- Cricetinae
- Culture Media, Conditioned/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Embryo, Mammalian/metabolism
- Female
- Humans
- Immunohistochemistry
- Mass Spectrometry
- Mice
- Microscopy, Confocal
- Nerve Tissue Proteins/metabolism
- Oviducts/cytology
- Oviducts/metabolism
- Protein Binding
- Proteins/metabolism
- Proteins/physiology
- RNA, Messenger/metabolism
- Receptors, Complement/metabolism
- Reproduction/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Yin-Lau Lee
- Department of Obstetrics and Gynaecology, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|