1
|
Rech L, Dietrich-Ntoukas T, Reinach PS, Brockmann T, Pleyer U, Mergler S. Complement Component C5a and Fungal Pathogen Induce Diverse Responses through Crosstalk between Transient Receptor Potential Channel (TRPs) Subtypes in Human Conjunctival Epithelial Cells. Cells 2024; 13:1329. [PMID: 39195219 PMCID: PMC11352353 DOI: 10.3390/cells13161329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.
Collapse
Affiliation(s)
- Loreena Rech
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Tina Dietrich-Ntoukas
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325015, China;
| | - Tobias Brockmann
- Department of Ophthalmology, Universitätsmedizin Rostock, 18057 Rostock, Germany;
- SciTec Department, University of Applied Sciences Jena, 07745 Jena, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| | - Stefan Mergler
- Department of Ophthalmology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.R.); (T.D.-N.); (U.P.)
| |
Collapse
|
2
|
Karema-Jokinen V, Koskela A, Hytti M, Hongisto H, Viheriälä T, Liukkonen M, Torsti T, Skottman H, Kauppinen A, Nymark S, Kaarniranta K. Crosstalk of protein clearance, inflammasome, and Ca 2+ channels in retinal pigment epithelium derived from age-related macular degeneration patients. J Biol Chem 2023:104770. [PMID: 37137441 DOI: 10.1016/j.jbc.2023.104770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Degeneration and/or dysfunction of retinal pigment epithelium (RPE) is generally detected as the formation of intra- and extracellular protein aggregates, called lipofuscin and drusen, respectively, in patients with age-related macular degeneration (AMD), the leading cause of blindness in the elderly population. These clinical hallmarks are linked to dysfunctional protein homeostasis and inflammation, and furthermore, are both regulated by changes in intracellular Ca2+ concentration. While many other cellular mechanisms have been considered in the investigations of AMD-RPE, there has been relatively little work on understanding the interactions of protein clearance, inflammation, and Ca2+ dynamics in disease pathogenesis. Here we established induced pluripotent stem cell-derived RPE from two patients with advanced AMD and from an age- and gender-matched control subject. We studied autophagy and inflammasome activation under disturbed proteostasis in these cell lines and investigated changes in their intracellular Ca2+ concentration and L-type voltage-gated Ca2+ channels. Our work demonstrated dysregulated autophagy and inflammasome activation in AMD-RPE accompanied by reduced intracellular free Ca2+ levels. Interestingly, we found currents through L-type voltage-gated Ca2+ channels to be diminished and showed these channels to be significantly localized to intracellular compartments in AMD-RPE. Taken together, the alterations in Ca2+ dynamics in AMD-RPE together with dysregulated autophagy and inflammasome activation indicate an important role for Ca2+ signaling in AMD pathogenesis, providing new avenues for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Maria Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hongisto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Taina Viheriälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Liukkonen
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Tommi Torsti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Soile Nymark
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland, Immuno-Ophthalmology, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| |
Collapse
|
3
|
Inhibitory Effects of Genistein on Vascular Smooth Muscle Cell Proliferation Induced by Ox-LDL: Role of BKCa Channels. ACTA ACUST UNITED AC 2021; 2020:8895449. [PMID: 33415067 PMCID: PMC7752275 DOI: 10.1155/2020/8895449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
Background Oxidized low-density lipoprotein (Ox-LDL) is a crucial pathogenic factor for vascular diseases, which can induce the proliferation of vascular smooth muscle cells (VSMCs). Genistein is the main component of soybean isoflavone. Genistein has a variety of pharmacological properties in the treatment of vascular diseases and a promising clinical application. Large-conductance calcium-activated potassium (BKCa) channels are the primary type of potassium channels in VSMCs, which regulate various biological functions of VSMCs. However, whether genistein exerts an antiproliferation effect on Ox-LDL-stimulated VSMCs remains unclear. The current study is aimed at elucidating the effect of genistein on the Ox-LDL-stimulated proliferation of VSMCs and its possible molecular mechanism, especially the electrophysiological mechanism related to BKCa channels. Methods Monoculture VSMC was obtained by an acute enzyme-dispersing method. The proliferation of cells was measured by CCK-8, cell cycle, and proliferating cell nuclear antigen (PCNA) expression. The BKCa whole-cell currents were measured by patch-clamp. Results Ox-LDL treatment induced the proliferation of VSMCs, upregulated the BKCa protein expression, and increased the density of BKCa currents, while genistein significantly inhibited these effects caused by Ox-LDL. BKCa channels exerted a regulatory role in the proliferation of VSMCs in response to Ox-LDL. The inhibition of BKCa channels suppressed Ox-LDL-stimulated VSMC proliferation, while the activation of BKCa channels showed the opposite effect. Moreover, genistein suppressed the activity of BKCa, including protein expression and current density in a protein tyrosine kinase- (PTK-) dependent manner. Conclusion This study demonstrated that genistein inhibited the Ox-LDL-mediated proliferation of VSMCs by blocking the cell cycle progression; the possible molecular mechanism may be related to PTK-dependent suppression of BKCa channels. Our results provided novel ideas for the application of genistein in the treatment of vascular diseases and proposed a unique insight into the antiproliferative molecular mechanism of genistein.
Collapse
|
4
|
Korkka I, Viheriälä T, Juuti-Uusitalo K, Uusitalo-Järvinen H, Skottman H, Hyttinen J, Nymark S. Functional Voltage-Gated Calcium Channels Are Present in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med 2018; 8:179-193. [PMID: 30394009 PMCID: PMC6344904 DOI: 10.1002/sctm.18-0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 11/25/2022] Open
Abstract
Retinal pigment epithelium (RPE) performs important functions for the maintenance of photoreceptors and vision. Malfunctions within the RPE are implicated in several retinal diseases for which transplantations of stem cell‐derived RPE are promising treatment options. Their success, however, is largely dependent on the functionality of the transplanted cells. This requires correct cellular physiology, which is highly influenced by the various ion channels of RPE, including voltage‐gated Ca2+ (CaV) channels. This study investigated the localization and functionality of CaV channels in human embryonic stem cell (hESC)‐derived RPE. Whole‐cell patch‐clamp recordings from these cells revealed slowly inactivating L‐type currents comparable to freshly isolated mouse RPE. Some hESC‐RPE cells also carried fast transient T‐type resembling currents. These findings were confirmed by immunostainings from both hESC‐ and mouse RPE that showed the presence of the L‐type Ca2+ channels CaV1.2 and CaV1.3 as well as the T‐type Ca2+ channels CaV3.1 and CaV3.2. The localization of the major subtype, CaV1.3, changed during hESC‐RPE maturation co‐localizing with pericentrin to the base of the primary cilium before reaching more homogeneous membrane localization comparable to mouse RPE. Based on functional assessment, the L‐type Ca2+ channels participated in the regulation of vascular endothelial growth factor secretion as well as in the phagocytosis of photoreceptor outer segments in hESC‐RPE. Overall, this study demonstrates that a functional machinery of voltage‐gated Ca2+ channels is present in mature hESC‐RPE, which is promising for the success of transplantation therapies. stem cells translational medicine2019;8:179&15
Collapse
Affiliation(s)
- Iina Korkka
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Taina Viheriälä
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland.,Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Kati Juuti-Uusitalo
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Eye Centre, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, Department of Ophthalmology, University of Tampere, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Soile Nymark
- Faculty of Biomedical Sciences and Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
5
|
Zhao J, Zhong W, Sun L, Yin Y, Zheng Y. Effect of chloride channel activity on retinal pigment cell proliferation and migration. Mol Med Rep 2017; 15:1771-1776. [PMID: 28259964 DOI: 10.3892/mmr.2017.6202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/15/2016] [Indexed: 11/06/2022] Open
|
6
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
7
|
Ion channels and transporters of the retinal pigment epithelium. Exp Eye Res 2014; 126:27-37. [DOI: 10.1016/j.exer.2014.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
|
8
|
Chen Z, Song Y, Yao J, Weng C, Yin ZQ. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration. J Mol Neurosci 2013; 51:976-85. [PMID: 23934450 DOI: 10.1007/s12031-013-0082-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022]
Abstract
All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.
Collapse
Affiliation(s)
- Zhongshan Chen
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | |
Collapse
|
9
|
Nifedipine alters the light-rise of the electro-oculogram in man. Graefes Arch Clin Exp Ophthalmol 2011; 249:677-84. [DOI: 10.1007/s00417-010-1604-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/30/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022] Open
|
10
|
Cordeiro S, Strauss O. Expression of Orai genes and ICRAC activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 2010; 249:47-54. [DOI: 10.1007/s00417-010-1445-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022] Open
|
11
|
Mergler S, Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retin Eye Res 2007; 26:359-78. [PMID: 17446115 DOI: 10.1016/j.preteyeres.2007.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The corneal endothelium is a monolayer that mediates the flux of solutes and water across the posterior corneal surface. Thereby, it plays an essential role to maintain the transparency of the cornea. Unlike the epithelium, the human endothelium is an amitotic cell layer with a critical cell density and the risk of corneal decompensation. The number of endothelial cells subsequently decreases with age. Moreover, the endothelial cell loss is accelerated after various impairments such as surgical trauma (e.g. cataract extraction) and following corneal transplantation. This cell loss is associated with programmed cell death (apoptosis) and changed ion channel activity. However, little is known about the electrophysiology and ion channel expression (in particular Ca2+ channels) in corneal endothelial cells. This article reviews our current knowledge about the electrophysiology of the corneal endothelium. It highlights ion channel expression, which may have a major role in corneal cell physiology and pathological events. A better understanding of the (electro)physiological function of the cornea may lead to the development of clinical relevant new therapeutic and preventive measures.
Collapse
Affiliation(s)
- Stefan Mergler
- Department of Ophthalmology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
12
|
Abstract
The retinal pigment epithelium (RPE) lying distal to the retina regulates the extracellular environment and provides metabolic support to the outer retina. RPE abnormalities are closely associated with retinal death and it has been claimed several of the most important diseases causing blindness are degenerations of the RPE. Therefore, the study of the RPE is important in Ophthalmology. Although visualisation of the RPE is part of clinical investigations, there are a limited number of methods which have been used to investigate RPE function. One of the most important is a study of the current generated by the RPE. In this it is similar to other secretory epithelia. The RPE current is large and varies as retinal activity alters. It is also affected by drugs and disease. The RPE currents can be studied in cell culture, in animal experimentation but also in clinical situations. The object of this review is to summarise this work, to relate it to the molecular membrane mechanisms of the RPE and to possible mechanisms of disease states.
Collapse
Affiliation(s)
- Geoffrey B Arden
- Department of Optometry and Visual Science, Henry Wellcome Laboratiories for Visual Sciences, City University, London, UK.
| | | |
Collapse
|
13
|
Rosenthal R, Bakall B, Kinnick T, Peachey N, Wimmers S, Wadelius C, Marmorstein A, Strauss O. Expression of bestrophin‐1, the product of the VMD2 gene, modulates voltage‐dependent Ca
2+
channels in retinal pigment epithelial cells. FASEB J 2006; 20:178-80. [PMID: 16282372 DOI: 10.1096/fj.05-4495fje] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations in the VMD2 gene cause Best's disease, an inherited form of macular degeneration. The reduction in the light-peak amplitude in the patient's electro-oculogram suggests that bestrophin-1 influences the membrane conductance of the retinal pigment epithelium (RPE). Systemic application of the L-type Ca2+ channel blocker nimodipine reduced the light-peak amplitude in the rat electroretinogram but not a- and b-waves. Expression of bestrophin-1 in a RPE cell line (RPE-J) led to changes in L-type channel properties. Wild-type bestrophin-1 induced an acceleration of activation kinetics of Ba2+ currents through L-type Ca2+ channels and a shift of the voltage-dependent activation to more negative values, closer to the resting potential of RPE cells. Expression of bestrophin-1 with Best disease-causing mutations led to comparable shifts in voltage-dependent activation but different effects on activation and inactivation kinetics. Bestrophin W93C exhibited slowed activation and inactivation, and bestrophin R218C accelerated the activation and inactivation. Thus, transfection of RPE cells with bestrophin-1 distinctively changed L-type Ca2+ channel kinetics and voltage-dependence. On the basis of these data, we propose that presence of bestrophin-1 influences kinetics and voltage-dependence of voltage-dependent Ca2+ channels and that these effects might open new ways to understand the mechanisms leading to retinal degeneration in Best's disease.
Collapse
Affiliation(s)
- Rita Rosenthal
- Augenklinik, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Er H, Turkoz Y, Mizrak B, Parlakpinar H. Inhibition of Experimental Proliferative Vitreoretinopathy with Protein Kinase C Inhibitor (Chelerythrine Chloride) and Melatonin. Ophthalmologica 2005; 220:17-22. [PMID: 16374044 DOI: 10.1159/000089270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 03/11/2005] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate whether a protein kinase C (PKC) inhibitor and melatonin prevent proliferative vitreoretinopathy (PVR). METHODS Twenty pigmented rabbits were used in this study. All rabbits except controls received an intravitreal injection of 0.15 ml (75,000 units) of platelet-rich plasma into their left eye. The animals were divided into four groups: group I was treated with intravitreal injection of 0.1 ml (100 micromol/ml) of PKC inhibitor (chelerythrine chloride), group II received 1 ml (4 mg/kg) of intraperitoneal melatonin for 3 days, group III received nothing (blank group), and group IV (control group) received only 0.5 ml of 1% ethanol intraperitoneally for 3 days. Proliferative changes were graded in a masked fashion by indirect ophthalmoscopy for a 15-day follow-up period. The malondialdehyde (MDA), reduced glutathione (GSH) and total nitrite levels were measured in the vitreous humor. RESULTS The grades of PVR were A and B in group I and II, treated with PKC inhibitor and melatonin, respectively. The PVR grade in the blank group was C-D. The mean MDA level in group I (4.2 +/- 0.9 micromol/l) was significantly lower than in the blank group (6.0 +/- 1.0 micromol/l; p < 0.05). The mean GSH level in group I (66.3 +/- 8.8 micromol/l) was not significantly different from that in the blank group (p > 0.05). The MDA and GSH levels in group II were 3.2 +/- 0.7 and 70.1 +/- 13.3 micromol/l, respectively. Both these levels were significantly different from those of the blank group (p < 0.05). The NO levels in both treatment groups were significantly lower than in the blank group (p < 0.001). CONCLUSION These findings suggest an inhibitory effect of PKC inhibitor and melatonin on PVR. The inhibition of PVR development was associated with lower MDA and NO levels with higher GSH levels in the treatment groups.
Collapse
Affiliation(s)
- Hamdi Er
- Department of Ophthalmology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey.
| | | | | | | |
Collapse
|
15
|
Rosenthal R, Malek G, Salomon N, Peill-Meininghaus M, Coeppicus L, Wohlleben H, Wimmers S, Bowes Rickman C, Strauss O. The fibroblast growth factor receptors, FGFR-1 and FGFR-2, mediate two independent signalling pathways in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2005; 337:241-7. [PMID: 16188231 DOI: 10.1016/j.bbrc.2005.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/01/2005] [Indexed: 11/16/2022]
Abstract
To examine the effects and potential implications for the expression of the two basic fibroblast growth factor (bFGF) receptors, FGFR-1 and FGFR-2, in retinal pigment epithelial (RPE) cells, bFGF-dependent changes in gene expression and RPE cell function were studied. bFGF increased L-type Ca2+ channel activity of RPE cells, which in turn resulted in an increase of vascular endothelial growth factor A (VEGF-A) secretion from RPE cells. Also, both bFGF and direct stimulation of L-type Ca2+ channels by BayK8644 increased the expression of c-fos in RPE cells, to the same extent. bFGF-induced-c-fos expression was reduced by inhibition of FGFR-1, but not by L-type Ca2+ channel inhibition, demonstrating that stimulation of FGFR-1 results in a Ca2+ channel-independent change of gene expression. In contrast, stimulation of FGFR-2 results in a Ca2+ channel-dependent stimulation of VEGF secretion. Furthermore, immunohistological investigation of neovascular tissues obtained from patients with age-related macular degeneration (AMD) revealed FGFR-1 and FGFR-2 expression in the RPE of the diseased tissue. Our findings support the hypothesis that there are two different FGFR-1- and FGFR-2-dependent pathways that modulate the role of bFGF in induction of neovascularisation in AMD.
Collapse
Affiliation(s)
- Rita Rosenthal
- Augenklinik und Hochschulambulanz, Charité-Universitätsmedizin, Berlin Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.
Collapse
Affiliation(s)
- Olaf Strauss
- Bereich Experimentelle Ophthalmologie, Klinik und Poliklinik fuer Augenheilkunde, Universitaetsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
17
|
Kang M, Morsy N, Jin X, Lupu F, Akbarali HI. Protein and gene expression of Ca2+ channel isoforms in murine colon: effect of inflammation. Pflugers Arch 2005; 449:288-97. [PMID: 15452714 DOI: 10.1007/s00424-004-1339-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
L-Type voltage-dependent Ca2+ channels (L-VDCC) mediate calcium influx in response to membrane depolarization and regulate intracellular processes such as contraction, secretion, neurotransmission, and gene expression. Colonic inflammation significantly attenuates calcium currents in smooth muscle; however, the basis for this remains unclear. In this study we examined the protein and mRNA expression of two isoforms of Ca(v)1.2, encoded by either exon la or 1b. Both isoforms were detected by Western blots, immunohistochemistry and RT-PCR in smooth muscle cells. Neither the protein nor mRNA expression measured by real-time PCR of either isoforms was affected in colonic myocytes from dextran sulfate sodium-treated mice. In whole-cell voltage-clamp experiments, the amplitude of the calcium currents were decreased by almost 70% by inflammation. The calcium channel currents were attenuated by 50 +/- 3% by the c-src kinase specific inhibitor, PP2, in control cells but only 19 +/- 7% in cells from inflamed mice. These studies suggest that decreased calcium channel currents following colonic inflammation are not due to decreased expression but may result from altered regulation by the non-receptor cellular tyrosine kinase, c-src kinase.
Collapse
Affiliation(s)
- Minho Kang
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
18
|
Mergler S, Pleyer U, Reinach P, Bednarz J, Dannowski H, Engelmann K, Hartmann C, Yousif T. EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. Exp Eye Res 2005; 80:285-93. [PMID: 15670807 DOI: 10.1016/j.exer.2004.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 09/21/2004] [Indexed: 11/24/2022]
Abstract
Endogenous generated hydrogen peroxide during eye bank storage limits viability. We determined in cultured human corneal endothelial cells (HCEC) whether: (1) this oxidant induces elevations in intracellular calcium concentration [Ca2+]i; (2) epidermal growth factor (EGF) medium supplementation has a protective effect against peroxide mediated rises in [Ca2+]i. Whereas pathophysiological concentrations of H2O2 (10 mM) induced irreversible large increases in [Ca2+]i, lower concentrations (up to 1 mM) had smaller effects, which were further reduced by exposure to either 5 microM nifedipine or EGF (10 ng ml(-1)). EGF had a larger protective effect against H2O2-induced rises in [Ca2+]i than nifedipine. In addition, icilin, the agonist for the temperature sensitive transient receptor potential protein, TRPM8, had complex dose-dependent effects (i.e. 10 and 50 microM) on [Ca2+]i. At 10 microM, it reversibly elevated [Ca2+]i whereas at 50 microM an opposite effect occurred suggesting complex effects of temperature on endothelial viability. Taken together, H2O2 induces rises in [Ca2+]i that occur through increases in Ca2+ permeation along plasma membrane pathways that include L-type Ca2+ channels as well as other EGF-sensitive pathways. As EGF overcomes H2O2-induced rises in [Ca2+]i, its presence during eye bank storage could improve the outcome of corneal transplant surgery.
Collapse
Affiliation(s)
- Stefan Mergler
- Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mergler S, Strauss O, Strowski M, Prada J, Drost A, Langrehr J, Neuhaus P, Wiedenmann B, Ploeckinger U. Insulin-like growth factor-1 increases intracellular calcium concentration in human primary neuroendocrine pancreatic tumor cells and a pancreatic neuroendocrine tumor cell line (BON-1) via R-type Ca2+ channels and regulates chromogranin a secretion in BON-1 cells. Neuroendocrinology 2005; 82:87-102. [PMID: 16424676 DOI: 10.1159/000091008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/28/2005] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a potent mitogenic and secretory factor that acts on voltage operated Ca(2+) channels (VOCCs). VOCCs are categorized into L-type channels (Ca(V)1.1-1.4), P/Q-type channels (Ca(V)2.1), N-type channels (Ca(V)2.2), R-type channels (Ca(V)2.3), and T-type channels (Ca(V)3.1-3.3). Aside from regulating membrane excitability, VOCCs influence chromogranin A (CgA) secretion in neuroendocrine tumor (NET) cells. It is not known, whether VOCCs play a role in the IGF-1-dependent regulation of CgA secretion in NET cells. We therefore studied the effects of IGF-1 on individual VOCC subtypes and characterized their role in mediating IGF-1-dependent regulation of CgA secretion in NET cells. Using specific modulators of VOCC subtypes, we identified the functional expression of L-, N-, P/Q- and R-type channels in primary as well as permanent models of NET. The IGF-1-induced intracellular Ca(2+) increase in NET cells was mainly due to the activation of R-type channel activity. The effects on intracellular calcium, observed in whole-cell patch-clamp recordings and fluorescence imaging, were partially blocked by the specific R-type channel blocker SNX-482 and antisense oligonucleotides against the alpha(1) subunit of this channel. IGF-1 potently induced CgA secretion. The effect of IGF-1 was reduced by both, inhibition of R-type channel activity and a reduction of R-type channel expression using antisense oligonucleotides. Since R-type channels exist in NET cells and couple to both, IGF-1 receptor signaling as well as CgA secretion, pharmacological interference with R-type channels may represent a new therapeutic option by blocking Ca(2+) signaling thereby abrogating IGF-1-dependent hypersecretion in NET disease.
Collapse
Affiliation(s)
- Stefan Mergler
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Interdisziplinares Stoffwechsel-Centrum: Endokrinologie, Diabetes und Stoffwechsel, Charité-Universitatsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jin X, Morsy N, Winston J, Pasricha PJ, Garrett K, Akbarali HI. Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase. Am J Physiol Cell Physiol 2004; 287:C558-63. [PMID: 15084474 DOI: 10.1152/ajpcell.00113.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capsaicin receptor TRPV1 is a nonselective cation channel that is expressed in sensory neurons. In this study, we examined the role of the nonreceptor cellular tyrosine kinase c-Src kinase in the modulation of the rat TRPV1. Capsaicin-induced currents in identified colonic dorsal root ganglion neurons were blocked by the c-Src kinase inhibitor PP2 and enhanced by the tyrosine phosphatase inhibitor sodium orthovandate. PP2 also abolished currents in human embryonic kidney-293 cells transfected with rat TRPV1, whereas cotransfection of TRPV1 with v-Src resulted in fivefold increase in capsaicin-induced currents. In cells transfected with dominant-negative c-Src and TRPV1, capsaicin-induced currents were decreased by approximately fourfold. TRPV1 co-immunoprecipitated with Src kinase and was tyrosine phosphorylated. These studies demonstrate that TRPV1 is a potential target for cellular tyrosine kinase-dependent phosphorylation.
Collapse
Affiliation(s)
- Xiaochun Jin
- Dept. of Physiology, University of Oklahoma Health Science Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mergler S, Dannowski H, Bednarz J, Engelmann K, Hartmann C, Pleyer U. Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. Exp Eye Res 2003; 77:485-95. [PMID: 12957147 DOI: 10.1016/s0014-4835(03)00154-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study was undertaken to investigate electrophysiological properties of immortalized SV40-transfected human corneal endothelial cells (HCEC-SV40) combined with the analysis of intracellular Ca(2+) responses mediated by ligands for receptor tyrosine kinases (RTK). In addition, the effects of several tyrosine kinase inhibitors were tested on Ca(2+) inflow mediated by induction of capacitative calcium entry (CCE). Patch-clamp techniques and measurements of the intracellular free Ca(2+) ([Ca(2+)](i)) by fura-2 were performed using HCEC-SV40. Stimulation of fibroblast growth factor receptors (FGFR) (e.g. by basic-FGF) (10 ng ml(-1)) elicited activation of Ca(2+) permeable channels and a subsequent increase of cytosolic free Ca(2+) in HCEC-SV40. This effect could be disrupted by the L-type Ca(2+) channel blocker nifedipine (5 microM). In addition, nifedipine significantly reduced the magnitude of CCE. Inhibition of protein tyrosine kinases (PTKs) by genistein, lavendustin A, or tyrphostin 51 (all 5 microM) also led to a reduction of CCE in HCEC-SV40. This study demonstrates for the first time that L-type Ca(2+) channel activity in HCEC-SV40 is linked to the activity of FGF receptor tyrosine kinases. These data regarding Ca(2+) inflow through Ca(2+) channels could be useful for investigation of culture and vitality conditions of HCEC.
Collapse
Affiliation(s)
- Stefan Mergler
- Medizinische Klinik m. S. Hepatologie und Gastroenterologie, Universitätsklinikum Charité der Humboldt-Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Mergler S, Strauss O. Stimulation of L-type Ca(2+) channels by increase of intracellular InsP3 in rat retinal pigment epithelial cells. Exp Eye Res 2002; 74:29-40. [PMID: 11878816 DOI: 10.1006/exer.2001.1128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The purpose of this study was to investigate the role of voltage-dependent L-type Ca(2+)channels in intracellular Ca(2+)signaling of the retinal pigment epithelium (RPE). Patch-clamp techniques in conjunction with measurements of the intracellular free Ca(2+)using the Ca(2+)-sensitive fluorescence dye fura-2 were performed using cultured rat RPE cells. Intracellular application of inositol-1,4,5-trisphosphate (InsP3; 10 microM) via the patch-pipette during the whole-cell configuration led to an increase in the intracellular free Ca(2+)([Ca(2+)](i)). This effect could be reduced by the L-type Ca(2+)channel blocker nifedipine (2 microM). At the moment of the maximal rise in [Ca(2+)](i)L-type currents displayed an increase in the current density and shifts in the activation curve and of the steady-state inactivation. Comparable changes of L-type channel activity could be observed by induction of capacitative Ca(2+)entry, a maneuver to release Ca(2+)from intracellular Ca(2+)stores independently from InsP3. The increase in L-type Ca(2+)channel activity and [Ca(2+)](i)by intracellular application of InsP3 or induction of capacitative Ca(2+)entry could be inhibited by blocking tyrosine kinase activity using genistein (5 microM) or tyrphostin 51 (10 microM). It is concluded that L-type Ca(2+)channels are involved in the Ca(2+)/InsP3 second messenger system by generating an influx of extracellular Ca(2+)into the cell. This is enabled by depletion of cytosolic Ca(2+)stores and tyrosine kinase-dependent activation of L-type channels.
Collapse
Affiliation(s)
- Stefan Mergler
- Universitätsklinikum Charité der Humboldt-Universität zu Berlin, Medizinische Klinik, Hepatologie und Gastroenterologie, Campus Virchow Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany
| | | |
Collapse
|
23
|
|
24
|
Stepien O, Zhang Y, Zhu D, Marche P. Dual mechanism of action of amlodipine in human vascular smooth muscle cells. J Hypertens 2002; 20:95-102. [PMID: 11791031 DOI: 10.1097/00004872-200201000-00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES It has been recently shown that calcium channel blockers (CCBs) could also control smooth muscle cell (SMC) growth/reactivity through mechanisms that were unrelated to their CCB property. Here, we investigated the effects of amlodipine and isradipine on Ca2+ movements and p42/p44 mitogen-activated protein kinase (ERK 1/2) activities, which are two early signalling events triggered by growth factors such as thrombin and basic fibroblast growth factor (bFGF). METHODS In cultured human SMCs isolated from internal mammary arteries, Ca2+ movements and ERK 1/2 activation were studied by measurement of the intracellular Ca2+ concentration in Fura 2-labelled SMCs and by Western blots, respectively. RESULTS In thrombin- and thapsigargin-stimulated SMCs, amlodipine and not isradipine dose-dependently reduced Ca2+ mobilization (i.e. Ca2+ release from internal stores); these dihydropyridines did not affect either Ca2+ influx or ERK 1/2 activation. In bFGF-stimulated SMCs, amlodipine and isradipine reduced both Ca2+ influx and ERK 1/2 activation without affecting Ca2+ mobilization. ERK 1/2 activation could also be directly stimulated by the l-type channel agonist Bay K 8644, demonstrating the involvement of voltage-gated Ca2+ influx in this process. Most of the observed effects described were obtained with approximately 10 nmol/l amlodipine/isradipine (i.e. concentrations close to the peak plasma level in treated patients). CONCLUSIONS In human SMCs, amlodipine can (i) specifically alter Ca2+ mobilization, likely by interacting with the sarcoplasmic reticulum and (ii) inhibit voltage-dependent Ca2+ influx and the resulting ERK 1/2 activation. It is likely that amlodipine exerts its growth-inhibitory potency by interfering with multiple branches of mitogenic signalling pathways.
Collapse
Affiliation(s)
- Olivier Stepien
- Department of Pharmacology, CNRS UMR 8604 and University René Descartes, Paris, France
| | | | | | | |
Collapse
|
25
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Rosenthal R, Thieme H, Strauss O. Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L-type channels (Ca(v)1.3). FASEB J 2001; 15:970-7. [PMID: 11292657 DOI: 10.1096/fj.00-0188com] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In contrast to the fibroblast growth factor receptor 1 (FGFR1), little is known about intracellular signaling of FGFR2. The signaling cascade of FGFR2 was studied using the perforated patch configuration of the patch-clamp technique in cultured rat retinal pigment epithelial (RPE) cells that express both FGFR1 and FGFR2. Interaction of signaling proteins was studied using immunoprecipitation techniques with membrane proteins from RPE cells and freshly isolated rat brain. When Ba(2+) currents through L-type channels were studied, extracellular application of bFGF (10 ng/ml) led to a shift of the steady-state activation to more negative values. In 50% of cells, an additional increase in maximal current amplitude was observed. This effect was blocked by the tyrosine kinase inhibitor lavendustin A (10(-5) M) but was not influenced by the FGFR1 blocker SU5402 (2 x 10(-5) M) or by the blocker for src-kinase herbimycin A (10(-5) M). Immunoprecipitation of FGFR2 led to coprecipitation of alpha 1D Ca(2+) channel subunits and precipitation of alpha 1D subunits led to coprecipitation of FGFR2. Immunoprecipitation of FGFR1 did not result in the coprecipitation with alpha 1D Ca(2+) channel subunits. The coprecipitation results were comparable when using brain tissue and RPE cells. The alpha 1D subunit-specific band were stained with antiphosphotyrosine antibodies. We conclude that FGFR2 acts via a different signaling cascade than FGFR1. This cascade involves an src-kinase-independent, close functional interaction of FGFR2 and the alpha subunit of neuroendocrine L-type channels.
Collapse
Affiliation(s)
- R Rosenthal
- Institut für Klinische Physiologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, 12200 Berlin, Germany
| | | | | |
Collapse
|
27
|
Rosenthal R, Thieme H, Strauss O. Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L‐type channels (Ca
v
1.3). FASEB J 2001. [DOI: 10.1096/fsb2fj000188com] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rita Rosenthal
- Institut für Klinische Physiologie Universitätsklinikum Benjamin Franklin, Freie UniversitätBerlin 12200 Berlin Germany
| | - Hagen Thieme
- Institut für Klinische Physiologie Universitätsklinikum Benjamin Franklin, Freie UniversitätBerlin 12200 Berlin Germany
| | - Olaf Strauss
- Institut für Klinische Physiologie Universitätsklinikum Benjamin Franklin, Freie UniversitätBerlin 12200 Berlin Germany
| |
Collapse
|
28
|
Summanen J, Vuorela P, Rauha JP, Tammela P, Marjamäki K, Pasternack M, Törnquist K, Vuorela H. Effects of simple aromatic compounds and flavonoids on Ca2+ fluxes in rat pituitary GH(4)C(1) cells. Eur J Pharmacol 2001; 414:125-33. [PMID: 11239912 DOI: 10.1016/s0014-2999(01)00774-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The biological activity of phenolic compounds from plants is well documented in vitro, but little is known about the possible effect of simple aromatic compounds and flavonoids on voltage-operated Ca2+ channels (VOCCs). In pituitary cells, several intracellular pathways may regulate the activity of VOCCs. In this study, we investigated the effect of nine phenylpropanes and metanes, and 20 flavonoids on high K(+)-induced 45Ca2+ entry in clonal rat pituitary GH(4)C(1) cells. At the highest dose tested (20 microg/ml), flavone (a flavone) inhibited 45Ca2+ entry by 63.5%, naringenin (a flavanone) by 56.3% and genistein (an isoflavone) by 54.6%. The phenylmetane derivative octyl gallate was the most potent compound tested, with an IC(50) value of 15.0 microg/ml. The IC(50) value for the reference compound verapamil hydrochloride was 3.0 microg/ml. In sharp contrast to the above, the flavonols quercetin and morin potentiated 45Ca2+ entry. At 20 microg/ml, quercetin increased 45Ca2+ entry by 54.1% and morin by 48.0%. Quercetin increased the cellular cAMP content in a concentration-dependent manner. H 89, an inhibitor of protein kinase A, inhibited the effect of quercetin on 45Ca2+ entry. The results thus suggest that the effect of quercetin is the result of a protein kinase A-mediated activation of VOCCs. Quercetin induced a rapid and marked increase in both the transient (143.1+/-4.2%) and delayed (198.8+/-10.0%) Ca2+ currents, measured by the whole cell patch clamp technique. The onset of the inhibitory effect of octyl gallate was slow, but resulted in an almost complete inhibition of both Ca2+ currents.
Collapse
Affiliation(s)
- J Summanen
- Division of Pharmacognosy, Department of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res 2000; 19:271-95. [PMID: 10749378 DOI: 10.1016/s1350-9462(99)00015-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Current models of aqueous humor outflow no longer treat trabecular meshwork (TM) as an inert tissue passively distended by the ciliary muscle (CM). Instead, ample evidence supports the theory that trabecular meshwork possess smooth muscle-like properties and is actively involved in the regulation of aqueous humor outflow and intraocular pressure. In this model, trabecular meshwork and ciliary muscle appear as functional antagonists, with ciliary muscle contraction leading to a distension of trabecular meshwork with subsequent reduction in outflow. and with trabecular meshwork contraction leading to the opposite effect. Smooth-muscle relaxing substances would therefore appear to be ideal candidates for glaucoma therapy with the dual goal of reducing intraocular pressure via the trabecular meshwork and of improving vascular perfusion of the optic nerve head. However, for such substances to effectively lower intraocular pressure, the effect on the ciliary muscle would have to he minimal. For this reason, more information is needed on the signalling processes involved in regulating trabecular meshwork and ciliary muscle contractility. This review attempts to outline current knowledge of signal transduction pathways leading to relaxation and contraction of ciliary muscle and trabecular meshwork. Pathways can be classified as involving or not involving changes of membrane voltage and of requiring or not requiring external calcium: possibly, other pathways exist. These different pathways involve different ion channels and isoforms of PKC and are expressed to a differing degree in ciliary muscle and trabecular meshwork, leading to differential responses when exposed to relaxing or contracting pharmacological agents. Some of these agents. like tyrosine kinase inhibitors and inhibitors of PKC. have been shown to relax trabecular meshwork while leaving ciliary muscle comparatively unaffected. This profile makes these substances appear as ideal drugs for simultaneously improving ocular outflow and retinal circulation, parameters that determine the time course of visual deterioration in glaucoma.
Collapse
Affiliation(s)
- M Wiederholt
- Institut für Klinische Physiologie, Universitätskliniknm Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
30
|
Strauss O, Buss F, Rosenthal R, Fischer D, Mergler S, Stumpff F, Thieme H. Activation of neuroendocrine L-type channels (alpha1D subunits) in retinal pigment epithelial cells and brain neurons by pp60(c-src). Biochem Biophys Res Commun 2000; 270:806-10. [PMID: 10772906 DOI: 10.1006/bbrc.2000.2513] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study is to characterize the subtype of tyrosine kinase-regulated L-type Ca(2+) channels in retinal pigment epithelial (RPE) cells. Ca(2+) channel alpha1D-subunits were enriched by immunoprecipitation from membrane proteins isolated from rat RPE cells. Western blot analysis of the precipitates revealed coprecipitation of pp60(c-src). In addition, in precipitates obtained with antibodies against pp60(c-src), alpha1D-subunits were identified. The same was observed in immunoprecipitations from rat brain neurons. Tyrosine phosphorylation of alpha1D-subunits was confirmed using anti-phosphotyrosine antibodies. Ba(2+) currents through L-type channels in cultured rat RPE cells were increased by intracellular application of active pp60(c-src) (30 U/ml) (heat-inactivated pp60(c-src) had no effect). Thus, L-type channels of the neuroendocrine subtype can be expressed in epithelial cells and are activated by tyrosine kinase of the src subtype. This kind of regulation is also suggested for brain-derived neurons.
Collapse
Affiliation(s)
- O Strauss
- Institut für Klinische Physiologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin, 12200, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Steinhausen K, Stumpff F, Strauss O, Thieme H, Wiederholt M. Influence of muscarinic agonists and tyrosine kinase inhibitors on L-type Ca(2+)Channels in human and bovine trabecular meshwork cells. Exp Eye Res 2000; 70:285-93. [PMID: 10712815 DOI: 10.1006/exer.1999.0785] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Trabecularmeshwork (TM), a smooth muscle-like tissue with contractile properties, is involved in the regulation of aqueous humor outflow. However, little is known about the regulation of Ca(2+)influx in trabecular meshwork cells. We investigated the influence of acetylcholine and tyrosine kinases on Ca(2+)conductances of bovine TM (BTM) and human TM (HTM) cells using the perforated-patch configuration of the patch-clamp technique and measurements of intracellular free Ca(2+)([Ca(2+)](i)). Depolarization of the cells in the presence of 10 m m Ba(2+)or Ca(2+)led to an activation of inward currents at potentials positive to -30 mV with characteristics typical of L-type Ca(2+)currents: when using 10 m m Ba(2+), maximal inward current and inactivation time constant (tau) increased; the L-type Ca(2+)channel blocker nifedipine (1 microm) reduced and the L-type Ca(2+)channel agonist BayK8644 (5 microm) enhanced maximal inward current. Acetylcholine (100 microm) and carbachol (1 microm) led to an increase in inward Ba(2+)current whereas application of the tyrosine kinase inhibitors genistein (50 microm) and lavendustin A (20 microm) resulted in a decrease in inward current. The application of daidzein (10 microm), an inactive analog of genistein had no effect. Depolarization of the cells with 135 m m K(+)or direct stimulation of L-type channels by application of BayK 8644 led to an increase in [Ca(2+)](i). Carbachol (1 microm) induced an increase in [Ca(2+)](i)which was decreased by application of the tyrosine kinase inhibitor genistein (50 microm). We conclude that HTM and BTM cells express voltage-dependent L-type Ca(2+)channels that influence intracellular Ca(2+)concentration and thus may modulate TM contractility. The activity of L-type Ca(2+)currents is influenced by muscarinic agonists and tyrosine kinases.
Collapse
Affiliation(s)
- K Steinhausen
- Institut für Klinische Physiologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin, 12200, Germany.
| | | | | | | | | |
Collapse
|
32
|
Oriji GK. Endothelin-induced prostacyclin production in rat aortic endothelial cells: role of calcium. Prostaglandins Leukot Essent Fatty Acids 1999; 61:45-9. [PMID: 10477042 DOI: 10.1054/plef.1999.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endothelin (ET) is a potent vasoconstrictor peptide, released from endothelial cells, which is associated with prostaglandin (PG) release. The mechanism by which ET causes the release of PG is not clearly understood. We used rat aortic endothelial cells to investigate the role of calcium (Ca2+) in ET-1-induced prostacyclin (PGI2) release. ET-1 (10(-9) M) produced a significant increase in PGI2 release. Pretreatment of rat aortic endothelial cells with different doses (10(-9) M and 10(-6) M) of diltiazem (voltage-sensitive L-type calcium channel blocker) produced significant inhibition of ET-1- and PDBu-induced PGI2 release. Inhibition was first noted at 10(-9) M and was complete at 10(-6) M. Conversely, pretreatment of rat aortic endothelial cells with different doses (10(-9) M and 10(-6) M) of calcium channel blockers (thapsigargin, an intracellular calcium channel blocker or conotoxin, a voltage-sensitive N-type calcium channel blocker) produced no changes on ET-1- or PDBu-induced PGI2 release. These results provide further support for the concept that PKC mediates ET-induced PGI2 release in rat aortic endothelial cells via an increase in intracellular calcium and this increase is due to the influx of extracellular calcium and not to the release of calcium from the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- G K Oriji
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|