1
|
Prajapati SK, Pathak A, Samaiya PK. Alzheimer's disease: from early pathogenesis to novel therapeutic approaches. Metab Brain Dis 2024; 39:1231-1254. [PMID: 39046584 DOI: 10.1007/s11011-024-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
The mainstay behind Alzheimer's disease (AD) remains unknown due to the elusive pathophysiology of the disease. Beta-amyloid and phosphorylated Tau is still widely incorporated in various research studies while studying AD. However, they are not sufficient. Therefore, many scientists and researchers have dug into AD studies to deliver many innovations in this field. Many novel biomarkers, such as phosphoglycerate-dehydrogenase, clusterin, microRNA, and a new peptide ratio (Aβ37/Aβ42) in cerebral-spinal fluid, plasma glial-fibrillary-acidic-protein, and lipid peroxidation biomarkers, are mushrooming. They are helping scientists find breakthroughs and substantiating their research on the early detection of AD. Neurovascular unit dysfunction in AD is a significant discovery that can help us understand the relationship between neuronal activity and cerebral blood flow. These new biomarkers are promising and can take these AD studies to another level. There have also been big steps forward in diagnosing and finding AD. One example is self-administered-gerocognitive-examination, which is less expensive and better at finding AD early on than mini-mental-state-examination. Quantum brain sensors and electrochemical biosensors are innovations in the detection field that must be explored and incorporated into the studies. Finally, novel innovations in AD studies like nanotheranostics are the future of AD treatment, which can not only diagnose and detect AD but also offer treatment. Non-pharmacological strategies to treat AD have also yielded interesting results. Our literature review spans from 1957 to 2022, capturing research and trends in the field over six decades. This review article is an update not only on the recent advances in the search for credible biomarkers but also on the newer detection techniques and therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Bhavdiya Institute of Pharmaceutical Sciences and Research, Ayodhya, UP, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Arjit Pathak
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India
| | - Puneet K Samaiya
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India.
| |
Collapse
|
2
|
Ahmad S, Yang W, Orellana A, Frölich L, de Rojas I, Cano A, Boada M, Hernández I, Hausner L, Harms AC, Bakker MHM, Cabrera-Socorro A, Amin N, Ramírez A, Ruiz A, Van Duijn CM, Hankemeier T. Association of oxidative stress and inflammatory metabolites with Alzheimer's disease cerebrospinal fluid biomarkers in mild cognitive impairment. Alzheimers Res Ther 2024; 16:171. [PMID: 39080778 PMCID: PMC11287840 DOI: 10.1186/s13195-024-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Isoprostanes and prostaglandins are biomarkers for oxidative stress and inflammation. Their role in Alzheimer's disease (AD) pathophysiology is yet unknown. In the current study, we aim to identify the association of isoprostanes and prostaglandins with the Amyloid, Tau, Neurodegeneration (ATN) biomarkers (Aβ-42, p-tau, and t-tau) of AD pathophysiology in mild cognitive impairment (MCI) subjects. METHODS Targeted metabolomics profiling was performed using liquid chromatography-mass spectrometry (LCMS) in 147 paired plasma-CSF samples from the Ace Alzheimer Center Barcelona and 58 CSF samples of MCI patients from the Mannheim/Heidelberg cohort. Linear regression was used to evaluate the association of metabolites with CSF levels of ATN biomarkers in the overall sample and stratified by Aβ-42 pathology and APOE genotype. We further evaluated the role of metabolites in MCI to AD dementia progression. RESULTS Increased CSF levels of PGF2α, 8,12-iso-iPF2α VI, and 5-iPF2α VI were significantly associated (False discovery rate (FDR) < 0.05) with higher p-tau levels. Additionally, 8,12-iso-iPF2α VI was associated with increased total tau levels in CSF. In MCI due to AD, PGF2α was associated with both p-tau and total tau, whereases 8,12-iso-iPF2α VI was specifically associated with p-tau levels. In APOE stratified analysis, association of PGF2α with p-tau and t-tau was observed in only APOE ε4 carriers while 5-iPF2α VI showed association with both p-tau and t-tau in APOE ε33 carriers. CSF levels of 8,12- iso-iPF2α VI showed association with p-tau and t-tau in APOE ε33/APOE ε4 carriers and with t-tau in APOE ε3 carriers. None of the metabolites showed evidence of association with MCI to AD progression. CONCLUSIONS Oxidative stress (8,12-iso-iPF2α VI) and inflammatory (PGF2α) biomarkers are correlated with biomarkers of AD pathology during the prodromal stage of AD and relation of PGF2α with tau pathology markers may be influenced by APOE genotype.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
- Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wei Yang
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cano
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Hernández
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Amy C Harms
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Margot H M Bakker
- Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061, KnollstrasseLudwigshafen, Germany
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, , Headington-Oxford, OX3 7FZ, UK
| | - Alfredo Ramírez
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931, Cologne, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center On Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Cornelia M Van Duijn
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
- Nuffield Department of Population Health, University of Oxford, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, , Headington-Oxford, OX3 7FZ, UK.
| | - Thomas Hankemeier
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
- Metabolomics and Analytics Center, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
3
|
Yu N, Pasha M, Chua JJE. Redox changes and cellular senescence in Alzheimer's disease. Redox Biol 2024; 70:103048. [PMID: 38277964 PMCID: PMC10840360 DOI: 10.1016/j.redox.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The redox process and cellular senescence are involved in a range of essential physiological functions. However, they are also implicated in pathological processes underlying age-related neurodegenerative disorders, including Alzheimer's disease (AD). Elevated levels of reactive oxygen species (ROS) are generated as a result of abnormal accumulation of beta-amyloid peptide (Aβ), tau protein, and heme dyshomeostasis and is further aggravated by mitochondria dysfunction and endoplasmic reticulum (ER) stress. Excessive ROS damages vital cellular components such as proteins, DNA and lipids. Such damage eventually leads to impaired neuronal function and cell death. Heightened oxidative stress can also induce cellular senescence via activation of the senescence-associated secretory phenotype to further exacerbate inflammation and tissue dysfunction. In this review, we focus on how changes in the redox system and cellular senescence contribute to AD and how they are affected by perturbations in heme metabolism and mitochondrial function. While potential therapeutic strategies targeting such changes have received some attention, more research is necessary to bring them into clinical application.
Collapse
Affiliation(s)
- Nicole Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mazhar Pasha
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
4
|
Kelley CM, Maloney B, Beck JS, Ginsberg SD, Liang W, Lahiri DK, Mufson EJ, Counts SE. Micro-RNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders. Brain Commun 2024; 6:fcae082. [PMID: 38572270 PMCID: PMC10988646 DOI: 10.1093/braincomms/fcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S Beck
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
6
|
Makki BE, Rahman S. Alzheimer's Disease in Diabetic Patients: A Lipidomic Prospect. Neuroscience 2023; 530:79-94. [PMID: 37652288 DOI: 10.1016/j.neuroscience.2023.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Diabetes Mellitus (DM) and Alzheimer's disease (AD) have been two of the most common chronic diseases affecting people worldwide. Type 2 DM (T2DM) is a metabolic disease depicted by insulin resistance, dyslipidemia, and chronic hyperglycemia while AD is a neurodegenerative disease marked by Amyloid β (Aβ) accumulation, neurofibrillary tangles aggregation, and tau phosphorylation. Various clinical, epidemiological, and lipidomics studies have linked those diseases claiming shared pathological pathways raising the assumption that diabetic patients are at an increased risk of developing AD later in their lives. Insulin resistance is the tipping point beyond where advanced glycation end (AGE) products and free radicals are produced leading to oxidative stress and lipid peroxidation. Additionally, different types of lipids are playing a crucial role in the development and the relationship between those diseases. Lipidomics, an analysis of lipid structure, formation, and interactions, evidently exhibits these lipid changes and their direct and indirect effect on Aβ synthesis, insulin resistance, oxidative stress, and neuroinflammation. In this review, we have discussed the pathophysiology of T2DM and AD, the interconnecting pathological pathways they share, and the lipidomics where different lipids such as cholesterol, phospholipids, sphingolipids, and sulfolipids contribute to the underlying features of both diseases. Understanding their role can be beneficial for diagnostic purposes or introducing new drugs to counter AD.
Collapse
Affiliation(s)
| | - Sarah Rahman
- School of Medicine, Tehran University of Medical Sciences, Iran
| |
Collapse
|
7
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
8
|
Sergi D, Zauli E, Tisato V, Secchiero P, Zauli G, Cervellati C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int J Mol Sci 2023; 24:ijms24054403. [PMID: 36901834 PMCID: PMC10002119 DOI: 10.3390/ijms24054403] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cerebrovascular diseases and the subsequent brain hypoperfusion are at the basis of vascular dementia. Dyslipidemia, marked by an increase in circulating levels of triglycerides and LDL-cholesterol and a parallel decrease in HDL-cholesterol, in turn, is pivotal in promoting atherosclerosis which represents a common feature of cardiovascular and cerebrovascular diseases. In this regard, HDL-cholesterol has traditionally been considered as being protective from a cardiovascular and a cerebrovascular prospective. However, emerging evidence suggests that their quality and functionality play a more prominent role than their circulating levels in shaping cardiovascular health and possibly cognitive function. Furthermore, the quality of lipids embedded in circulating lipoproteins represents another key discriminant in modulating cardiovascular disease, with ceramides being proposed as a novel risk factor for atherosclerosis. This review highlights the role of HDL lipoprotein and ceramides in cerebrovascular diseases and the repercussion on vascular dementia. Additionally, the manuscript provides an up-to-date picture of the impact of saturated and omega-3 fatty acids on HDL circulating levels, functionality and ceramide metabolism.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Anti-Inflammatory and Antioxidant Effects Induced by Allium sativum L. Extracts on an Ex Vivo Experimental Model of Ulcerative Colitis. Foods 2022; 11:foods11223559. [PMID: 36429152 PMCID: PMC9689397 DOI: 10.3390/foods11223559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic and multifactorial inflammatory conditions of the colonic mucosa (ulcerative colitis), characterized by increased and unbalanced immune response to external stimuli. Garlic and its bioactive constituents were reported to exert various biological effects, including anti-inflammatory, antioxidant and immunomodulatory activities. We aimed to evaluate the protective effects of a hydroalcoholic (GHE) and a water (GWE) extract from a Sicilian variety of garlic, known as Nubia red garlic, on an ex vivo experimental model of ulcerative colitis, involving isolated LPS-treated mouse colon specimens. Both extracts were able to counteract LPS-induced cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, nuclear factor-kB (NF-kB), and interleukin (IL)-6 gene expression in mouse colon. Moreover, the same extracts inhibited prostaglandin (PG)E2, 8-iso-PGF2α, and increased the 5-hydroxyindoleacetic acid/serotonin ratio following treatment with LPS. In particular, GHE showed a better anti-inflammatory profile. The anti-inflammatory and antioxidant effects induced by both extracts could be related, at least partially, to their polyphenolic composition, with particular regards to catechin. Concluding, our results showed that GHE and GWE exhibited protective effects in colon, thus suggesting their potential use in the prevention and management of ulcerative colitis.
Collapse
|
10
|
The Relationship between Oxidative Stress and Subjective Sleep Quality in People with Coronary Artery Disease. Brain Sci 2022; 12:brainsci12081070. [PMID: 36009133 PMCID: PMC9406162 DOI: 10.3390/brainsci12081070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: (1) Sleep disorders are prevalent in coronary artery disease (CAD) patients and predict cardiac events and prognosis. While increased oxidative stress (OS) has been associated with sleep disorders, less is known about its relationship with sleep quality. Similarly, little is known of how this relationship might change with exercise, which can improve sleep quality. Factors of sleep quality, such as sleep duration and disturbances, are also important as they predict cardiovascular diseases better than a global score alone. This study investigated whether OS was associated with self-rated sleep quality and its factors before and after completing a 24-week exercise intervention. (2) Methods: CAD patients undergoing an exercise program were recruited. OS was measured at baseline by the concentrations of early- (lipid hydroperoxides, LPH) and late-stage (8-isoprostane, 8-ISO) lipid peroxidation products and their ratio. Sleep quality was measured by the self-reported Pittsburgh Sleep Quality Index (PSQI) instrument at baseline and termination. Three sleep factors—perceived sleep quality, sleep efficiency, and daily disturbances—were derived from the PSQI. (3) Results: Among CAD patients (n = 113, 85.0% male, age = 63.7 ± 6.4 years, global PSQI = 5.8 ± 4.0), those with poor sleep (PSQI ≥ 5) had higher baseline 8-ISO levels (F(1, 111) = 6.212, p = 0.014, ηp2 = 0.053) compared to those with normal sleep. Concentrations of LPH (F(1, 105) = 0.569, p = 0.453, ηp2 = 0.005) and 8-ISO/LPH ratios (F(1, 105) = 2.173, p = 0.143, ηp2 = 0.020) did not differ between those with poor sleep and normal sleep. Among factors, perceived sleep quality was associated with 8-ISO and 8-ISO/LPH, and daily disturbances were associated with 8-ISO. (4) Conclusions: A marker of late-stage lipid peroxidation is elevated in CAD patients with poor sleep and associated with daily disturbances, but not with other factors or with sleep quality and its factors after exercise intervention.
Collapse
|
11
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
12
|
Ali J, Aziz MA, Rashid MMO, Basher MA, Islam MS. Propagation of age‐related diseases due to the changes of lipid peroxide and antioxidant levels in elderly people: A narrative review. Health Sci Rep 2022; 5:e650. [PMID: 35620545 PMCID: PMC9125877 DOI: 10.1002/hsr2.650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Aims Lipid peroxidation end products are the major culprit for inducing chronic diseases in elderly people. Along with the elevated level of lipid peroxide biomarkers, there is a significant disruption of antioxidants balance, which combinedly propagate the diseases of elderly people. The aim of the present review is to bridge the connection of changes in lipid peroxides biomarkers and antioxidants level with age‐associated diseases in elderly people. Methods This narrative review was performed following a comprehensive search for suitable articles in multiple online databases, including PubMed, Google Scholar, EMBASE, Web of Science, Cochrane Library, and ScienceDirect using selected search terms. The most appropriate literature was included based on the selection criteria. Results From the review, it is found that many age‐related diseases propagated with an increased level of the end products of lipid peroxide and reduced levels of antioxidants in elderly people. When the end products of lipid peroxidation increase in the body, it creates oxidative stress, which ultimately leads to many complicated diseases, including cancers, cardiovascular and neurogenic diseases, and many other chronic inflammatory diseases. The oxidative stress induced by peroxidation can be assessed by different lipid peroxide end products such as malondialdehyde, oxidized low‐density lipoprotein, isoprostanes, neuroprostanes, lipoperoxides, oxysterols (7‐ketocholesterol, 7β‐hydroxycholesterol), and many more. Conclusions This study definitively answers the correlation between the changes in lipid peroxides and antioxidants level and age‐related diseases. Our narrative article recommends future investigations for elucidating the mechanisms rigorously to establish a compact correlation.
Collapse
Affiliation(s)
- Julfikar Ali
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy Noakhali Science and Technology University Noakhali Bangladesh
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences State University of Bangladesh Dhaka Bangladesh
| | - Md. Mamun Or Rashid
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Mohammad Anwarul Basher
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science Noakhali Science and Technology University Noakhali Bangladesh
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy Noakhali Science and Technology University Noakhali Bangladesh
| |
Collapse
|
13
|
Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev 2022; 77:101619. [PMID: 35395415 DOI: 10.1016/j.arr.2022.101619] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
As the number of patients with Alzheimer's disease (AD) increases, it brings great suffering to their families and causes a heavy socioeconomic burden to society. A vast amount of funds and a mass of research have been devoted to elucidating the pathology of AD. However, the main pathogenesis is still elusive, and its mechanism is not completely clear. Research on the mechanisms of AD mainly focuses on the amyloid cascade, tau protein, neuroinflammation, metal ions, and oxidative stress hypotheses. Oxidative stress is as a bridge that connects the different hypotheses and mechanisms of AD. It is a process that causes neuronal damage and occurs in various pathways. Oxidative stress plays a critical role in AD and can even be considered a crucial central factor in the pathogenesis of AD. Previous reviews have also summarized the role of oxidative stress in AD, but these mainly review a specific signaling pathway. Taking oxidative stress as the central point, this review comprehensively expands on the roles of oxidative stress that are involved in the pathogenesis of AD. The vivid and easy-to-understand figures systematically clarify the connected roles of oxidative stress in AD and allow readers to further understand oxidative stress and AD.
Collapse
Affiliation(s)
- Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jianan Guo
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
14
|
Nguyen TT, Hulme J, Vo TK, Van Vo G. The Potential Crosstalk Between the Brain and Visceral Adipose Tissue in Alzheimer's Development. Neurochem Res 2022; 47:1503-1512. [PMID: 35298764 DOI: 10.1007/s11064-022-03569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
The bidirectional communication between the brain and peripheral organs have been widely documented, but the impact of visceral adipose tissue (VAT) dysfunction and its relation to structural and functional brain changes have yet to be fully elucidated. This review initially examines the clinical evidence supporting associations between the brain and VAT before visiting the roles of the autonomic nervous system, fat and glucose metabolism, neuroinflammation, and metabolites. Finally, the possible effects and potential mechanisms of the brain-VAT axis on the pathogenesis of Alzheimer's disease are discussed, providing new insights regarding future prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, HUTECH University, Ho Chi Minh City, 700000, Vietnam
| | - John Hulme
- Department of BioNano Technology, Gachon University, Seongnam, 461-701, Republic of Korea.
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi, 100000, Vietnam.,Department of Sports Medicine, University of Medicine and Pharmacy (VNU-UMP), Vietnam National University Hanoi, Hanoi, 100000, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
15
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
16
|
Trares K, Chen LJ, Schöttker B. Association of F 2-isoprostane levels with Alzheimer's disease in observational studies: A systematic review and meta-analysis. Ageing Res Rev 2022; 74:101552. [PMID: 34954419 DOI: 10.1016/j.arr.2021.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The association between F2-isoprostanes and Alzheimer's disease (AD) has been controversially discussed in the literature since the 1990s. However, no systematic review has been performed so far. METHODS A systematic review of observational studies on the associations of F2-isoprostanes and the specific biomarker 8-iso-prostaglandin F2α with AD were conducted. Random-effects model meta-analyses were performed. RESULTS 29 studies were included in the systematic review, including four longitudinal studies. In an overall meta-analysis of the 25 cross-sectional studies, F2-isoprostane levels were statistically significantly associated with AD (Hedge's g [95% confidence interval]: 1.00 [0.69-1.32]). When studies were grouped by biomarker and sample specimen, F2-isoprostane and 8-iso-prostaglandin F2α levels were statistically significantly elevated in tissue samples of the frontal lobe of AD patients. Moreover, F2-isoprostane levels in cerebrospinal fluid and 8-iso-prostaglandin F2α levels in blood samples of AD patients were significantly increased. Meta-analyses of the few longitudinal studies did not reach statistical significance. DISCUSSION Increased concentrations of F2-isoprostanes were found in AD patients. However, due to the lack of adjustment in most cross-sectional case-control studies, results must be interpreted carefully. In addition, the causality of the association is uncertain because evidence from well-conducted longitudinal studies was conflicting, and further longitudinal studies are required to reinforce the results.
Collapse
Affiliation(s)
- Kira Trares
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115 Heidelberg, Germany; Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg
| | - Li-Ju Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Ben Schöttker
- Network Aging Research, Heidelberg University, Bergheimer Straße 20, 69115 Heidelberg, Germany; Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Effect of Hydroxyl Groups Esterification with Fatty Acids on the Cytotoxicity and Antioxidant Activity of Flavones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020420. [PMID: 35056733 PMCID: PMC8777613 DOI: 10.3390/molecules27020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022]
Abstract
Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.
Collapse
|
18
|
The Impact of Medium Chain and Polyunsaturated ω-3-Fatty Acids on Amyloid-β Deposition, Oxidative Stress and Metabolic Dysfunction Associated with Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10121991. [PMID: 34943094 PMCID: PMC8698946 DOI: 10.3390/antiox10121991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.
Collapse
|
19
|
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20:689-709. [PMID: 34194012 PMCID: PMC8243062 DOI: 10.1038/s41573-021-00233-1] [Citation(s) in RCA: 1075] [Impact Index Per Article: 358.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California Merced, Merced, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Buccellato FR, D’Anca M, Fenoglio C, Scarpini E, Galimberti D. Role of Oxidative Damage in Alzheimer's Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants (Basel) 2021; 10:antiox10091353. [PMID: 34572985 PMCID: PMC8471953 DOI: 10.3390/antiox10091353] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder accounting for over 50% of all dementia patients and representing a leading cause of death worldwide for the global ageing population. The lack of effective treatments for overt AD urges the discovery of biomarkers for early diagnosis, i.e., in subjects with mild cognitive impairment (MCI) or prodromal AD. The brain is exposed to oxidative stress as levels of reactive oxygen species (ROS) are increased, whereas cellular antioxidant defenses are decreased. Increased ROS levels can damage cellular structures or molecules, leading to protein, lipid, DNA, or RNA oxidation. Oxidative damage is involved in the molecular mechanisms which link the accumulation of amyloid-β and neurofibrillary tangles, containing hyperphosphorylated tau, to microglia response. In this scenario, microglia are thought to play a crucial role not only in the early events of AD pathogenesis but also in the progression of the disease. This review will focus on oxidative damage products as possible peripheral biomarkers in AD and in the preclinical phases of the disease. Particular attention will be paid to biological fluids such as blood, CSF, urine, and saliva, and potential future use of molecules contained in such body fluids for early differential diagnosis and monitoring the disease course. We will also review the role of oxidative damage and microglia in the pathogenesis of AD and, more broadly, in neurodegeneration.
Collapse
Affiliation(s)
- Francesca Romana Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (E.S.); (D.G.)
- Correspondence: ; Tel.: +39-02 55033814
| | - Marianna D’Anca
- Fondazione IRCSS ca’ Granda, Ospedale Policlinico, 20122 Milano, Italy;
| | - Chiara Fenoglio
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Elio Scarpini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (E.S.); (D.G.)
- Fondazione IRCSS ca’ Granda, Ospedale Policlinico, 20122 Milano, Italy;
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (E.S.); (D.G.)
- Fondazione IRCSS ca’ Granda, Ospedale Policlinico, 20122 Milano, Italy;
| |
Collapse
|
21
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
22
|
Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation. Front Physiol 2021; 12:640374. [PMID: 34335286 PMCID: PMC8320392 DOI: 10.3389/fphys.2021.640374] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA2, PGA1, PGJ2, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.
Collapse
|
23
|
Recinella L, Chiavaroli A, Masciulli F, Fraschetti C, Filippi A, Cesa S, Cairone F, Gorica E, De Leo M, Braca A, Martelli A, Calderone V, Orlando G, Ferrante C, Menghini L, Di Simone SC, Veschi S, Cama A, Brunetti L, Leone S. Protective Effects Induced by a Hydroalcoholic Allium sativum Extract in Isolated Mouse Heart. Nutrients 2021; 13:nu13072332. [PMID: 34371842 PMCID: PMC8308751 DOI: 10.3390/nu13072332] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the possible protective effects of a garlic hydroalcoholic extract on the burden of oxidative stress and inflammation occurring on mouse heart specimens exposed to E. coli lipopolysaccharide (LPS), which is a well-established inflammatory stimulus. Headspace solid-phase microextraction combined with the gas chromatography-mass spectrometry (HS-SPME/GC-MS) technique was applied to determine the volatile fraction of the garlic powder, and the HS-SPME conditions were optimized for each of the most representative classes of compounds. CIEL*a*b* colorimetric analyses were performed on the powder sample at the time of delivery, after four and after eight months of storage at room temperature in the dark, to evaluate the color changing. Freshly prepared hydroalcoholic extract was also evaluated in its color character. Furthermore, the hydroalcoholic extract was analyzed through GC-MS. The extract was found to be able to significantly inhibit LPS-induced prostaglandin (PG) E2 and 8-iso-PGF2α levels, as well as mRNA levels of cyclooxygenase (COX)-2, interleukin (IL)-6, and nuclear factor-kB (NF-kB), in heart specimens. Concluding, our findings showed that the garlic hydroalcoholic extract exhibited cardioprotective effects on multiple inflammatory and oxidative stress pathways.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Fabrizio Masciulli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Caterina Fraschetti
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (C.F.); (A.F.); (S.C.); (F.C.)
| | - Antonello Filippi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (C.F.); (A.F.); (S.C.); (F.C.)
| | - Stefania Cesa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (C.F.); (A.F.); (S.C.); (F.C.)
| | - Francesco Cairone
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (C.F.); (A.F.); (S.C.); (F.C.)
| | - Era Gorica
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.G.); (M.D.L.); (A.B.); (A.M.); (V.C.)
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.G.); (M.D.L.); (A.B.); (A.M.); (V.C.)
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing of Pisa University, 56126 Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.G.); (M.D.L.); (A.B.); (A.M.); (V.C.)
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- CISUP, Centre for Instrumentation Sharing of Pisa University, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.G.); (M.D.L.); (A.B.); (A.M.); (V.C.)
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.G.); (M.D.L.); (A.B.); (A.M.); (V.C.)
- Interdepartmental Research Center “Nutrafood: Nutraceutica e Alimentazione per la Salute”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center “Biology and Pathology of Ageing”, University of Pisa, 56126 Pisa, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Claudio Ferrante
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Luigi Menghini
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| | - Luigi Brunetti
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
- Correspondence: ; Tel.: +39-0871-3554758
| | - Sheila Leone
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66013 Chieti, Italy; (L.R.); (A.C.); (F.M.); (G.O.); (C.F.); (L.M.); (S.C.D.S.); (S.V.); (A.C.); (S.L.)
| |
Collapse
|
24
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
25
|
Deng X, Teng J, Nong X, Yu B, Tang L, Liang J, Zou Z, Liu Q, Zhou L, Li Q, Zhao L. Characteristics of TCM Constitution and Related Biomarkers for Mild Cognitive Impairment. Neuropsychiatr Dis Treat 2021; 17:1115-1124. [PMID: 33907404 PMCID: PMC8068505 DOI: 10.2147/ndt.s290692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The incidence of Alzheimer's disease is on the rise, early detection of cognitive impairment of the elderly is very important. In traditional Chinese medicine, constitution is related to the susceptibility of the human body to diseases. Based on the theory of constitution of traditional Chinese medicine (TCM), the human population can be classified into 9 constitutions. However, little is known about the characteristics of medical constitution and related biomarkers in subjects with mild cognitive impairment (MCI). METHODS We measured the TCM Constitution of 214 subjects by using the Constitution in Chinese Medicine Questionnaire (CCMQ). MMSE and MoCA were used to assess cognitive function. The subjects were divided into mild cognitive impairment group (MCI, n = 152) and normal control group (NC, n = 62). The levels of serum Hcy and serum/urine 8-iso-PGF 2α were determined. RESULTS 1) It was found that there was a significant difference in constitution types between MCI and NC. There were significant differences in MMSE and MoCA score, serum Hcy and serum/urine 8-iso-PGF 2a levels between the two groups. 2) In logistic regression analysis, the variables with statistical significance were TCM Constitution of Yang-Deficient, Phlegm-Dampness, Blood-Stasis and abnormal increase of Hcy (OR>1). 3) The MoCA scores had a positive correlation with the MMSE. A statistically significant inverse association was found between serum Hcy, blood and urine 8-iso-PGF 2a and scores of cognitive assessment in MCI. CONCLUSION Constitution types (Yang-Deficient, Phlegm-Dampness and Blood-Stasis) and abnormal serum Hcy elevation can be used as risk factors for MCI. MoCA scores can serve to detect MCI at early stage. Serum/urine 8-iso-PGF 2α has a certain relationship with MCI. Higher levels of serum/urine 8-iso-PGF 2α are more likely to be associated with MCI risk.
Collapse
Affiliation(s)
- Xiangming Deng
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Jinlong Teng
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Xiucheng Nong
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Bihan Yu
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Liying Tang
- The Xinhu Outpatient Clinic of the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People’s Republic of China
| | - Jinsong Liang
- Department of Clinical Laboratory of the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Zhuocheng Zou
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Qiang Liu
- The Xinhu Outpatient Clinic of the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, People’s Republic of China
| | - Lu Zhou
- Medical Examination Center of the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Qirong Li
- Renai Branch of the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| | - Lihua Zhao
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, People’s Republic of China
| |
Collapse
|
26
|
Arrigoni F, Rizza F, Tisi R, De Gioia L, Zampella G, Bertini L. On the propagation of the OH radical produced by Cu-amyloid beta peptide model complexes. Insight from molecular modelling. Metallomics 2020; 12:1765-1780. [PMID: 33052996 DOI: 10.1039/d0mt00113a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress and metal dyshomeostasis are considered as crucial factors in the pathogenesis of Alzheimer's disease (AD). Indeed, transition metal ions such as Cu(ii) can generate Reactive Oxygen Species (ROS) via O2 Fenton-like reduction, catalyzed by Cu(ii) coordinated to the Amyloid beta (Aβ) peptide. Despite intensive effort, the mechanisms of ROS-induced molecular damage remain poorly understood. In the present paper, we investigate on the basis of molecular modelling computations the mechanism of OH radical propagation toward the Aβ peptide, starting from the end-product of OH radical generation by Cu(ii)·Aβ. We evaluate (i) the OH oxidative capacity, as well as the energetics of the possible Aβ oxidation target residues, by quantum chemistry Density Functional Theory (DFT) on coordination models of Cu(ii)/OH/Aβ and (ii) the motion of the OH˙ approaching the Aβ target residues by classical Molecular Dynamics (MD) on the full peptide Cu(ii)/OH/Aβ(1-16). The results show that the oxidative capacity of OH coordinated Cu(ii)Aβ is significantly lower than that of the free OH radical and that propagation toward Aβ Asp and His residues is favoured over Tyr residues. These results are discussed on the basis of the recent literature on in vitro Aβ metal-catalyzed oxidation and on the possible implications for the AD oxidative stress mechanism.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Dybos SA, Brustad ÅW, Rolfseng T, Kvam S, Olsen OE, Halgunset J, Skogseth H. RNA-Integrity and 8-Isoprostane Levels Are Stable in Prostate Tissue Samples Upon Long-Term Storage at -80°C. Biopreserv Biobank 2020; 19:2-10. [PMID: 32865438 PMCID: PMC7892308 DOI: 10.1089/bio.2019.0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sampling of prostate tissue (n = 97) was performed in conjunction with planned radical prostatectomies, in collaboration with Biobank1®. The tissue used in this study was collected during the period 2003-2016, quickly frozen, and kept at -80°C until assayed in 2018. RNA extraction was performed with two different protocols (miRNeasy and mirVana™), and RNA quality was determined by measuring the RNA Integrity Number (RIN). The level of isoprostanes is widely recognized as a specific indicator of lipid peroxidation both in vitro and in vivo. The level of 8-isoprostane was measured because it is the main oxidation product of arachidonic acid, the most abundant phospholipid fatty acid. The level of 8-isoprostane was measured using enzyme immunoassay. There was no statistically significant difference in yield between the samples isolated with the mirVana protocol compared to the miRNeasy protocol. Average RIN was 2.8 units higher with the mirVana extraction protocol compared to the miRNeasy protocol (p < 0.001). For miRNeasy extractions, RINs were 7.1 for prostatectomies in 2005-2007 and 6.2 for those in 2018 (p < 0.001). For mirVana extractions, the difference in RIN score between the two groups regarding years of collection was not statistically significant. There was no significant increase in the levels of 8-isoprostane between the 2005-2007 samples and the 2018. The conclusion is that there is no oxidation of phospholipids with increasing storage time up to 15 years.
Collapse
Affiliation(s)
- Sandra Amalie Dybos
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åge Winje Brustad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Toril Rolfseng
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Solveig Kvam
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Oddrun Elise Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jostein Halgunset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Haakon Skogseth
- Department of Research and Development, Biobank1, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
28
|
Cervellati C, Trentini A, Pecorelli A, Valacchi G. Inflammation in Neurological Disorders: The Thin Boundary Between Brain and Periphery. Antioxid Redox Signal 2020; 33:191-210. [PMID: 32143546 DOI: 10.1089/ars.2020.8076] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Accumulating evidence suggests that inflammation is a major contributor in the pathogenesis of several highly prevalent, but also rare, neurological diseases. In particular, the neurodegenerative processes of Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease (PD), and multiple sclerosis (MS) are fueled by neuroinflammation, which, in turn, is accompanied by a parallel systemic immune dysregulation. This cross-talk between periphery and the brain becomes substantial when the blood-brain barrier loses its integrity, as often occurs in the course of these diseases. It has been hypothesized that the perpetual bidirectional flux of inflammatory mediators is not a mere "static" collateral effect of the neurodegeneration, but represents a proactive phenomenon sparking and driving the neuropathological processes. However, the upstream/downstream relationship between inflammatory events and neurological pathology is still unclear. Recent Advances: Solid recent evidence clearly suggests that metabolic factors, systemic infections, Microbiota dysbiosis, and oxidative stress are implicated, although to a different extent, in the development in brain diseases. Critical Issues: Here, we reviewed the most solid published evidence supporting the implication of the axis systemic inflammation-neuroinflammation-neurodegeneration in the pathogenesis of AD, VAD, PD, and MS, highlighting the possible cause of the putative downstream component of the axis. Future Directions: Reaching a definitive clinical/epidemiological appreciation of the etiopathogenic significance of the connection between peripheral and brain inflammation in neurologic disorders is pivotal since it could open novel therapeutic avenues for these diseases.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Animal Science Department, Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070597. [PMID: 32650609 PMCID: PMC7402083 DOI: 10.3390/antiox9070597] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.
Collapse
Affiliation(s)
| | - Chiung-Mei Chen
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8347); Fax: +886-3-3288849
| |
Collapse
|
30
|
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the leading cause of dementia in the world whose aetiology is still unclear. AD was always related to ageing though there have been instances where people at an early age also succumb to this disease. With medical advancements, the mortality rate has significantly reduced which also makes people more prone to AD. AD is rare, yet the prominent disease has been widely studied with several hypotheses trying to understand the workings of its onset. The most recent and popular hypothesis in AD is the involvement of mitochondrial dysfunction and calcium homeostasis in the development of the disease though their exact roles are not known. With the sudden advent of the mitochondrial calcium uniporter (MCU), many previously known pathological hallmarks of AD may be better understood. Several studies have shown the effect of excess calcium in mitochondria and the influence of MCU complex in mitochondrial function. In this article, we discuss the possible involvement of MCU in AD by linking the uniporter to mitochondrial dysfunction, calcium homeostasis, reactive oxygen species, neurotransmitters and the hallmarks of AD - amyloid plaque formation and tau tangle formation.
Collapse
|
31
|
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041505. [PMID: 32098382 PMCID: PMC7073164 DOI: 10.3390/ijms21041505] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids, as the basic component of cell membranes, play an important role in human health as well as brain function. The brain is highly enriched in lipids, and disruption of lipid homeostasis is related to neurologic disorders as well as neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is associated with changes in lipid composition. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were found in the early stage of AD. Genetic and environmental factors such as apolipoprotein and lipid transporter carrying status and dietary lipid content are associated with AD. Insight into the connection between lipids and AD is crucial to unraveling the metabolic aspects of this puzzling disease. Recent advances in lipid analytical methodology have led us to gain an in-depth understanding on lipids. As a result, lipidomics have becoming a hot topic of investigation in AD, in order to find biomarkers for disease prediction, diagnosis, and prevention, with the ultimate goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
| | - Yuan-Kun Tu
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - I-Ming Jou
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-4254; Fax: +886-6-275-8781
| |
Collapse
|
32
|
Protective Effects Induced by Two Polyphenolic Liquid Complexes from Olive ( Olea europaea, mainly Cultivar Coratina) Pressing Juice in Rat Isolated Tissues Challenged with LPS. Molecules 2019; 24:molecules24163002. [PMID: 31430921 PMCID: PMC6720671 DOI: 10.3390/molecules24163002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
MOMAST(®) HY100 and MOMAST(®) HP30 are polyphenolic liquid complexes from olive pressing juice with a total polyphenolic content of 100 g/kg (at least 50% as hydroxytyrosol) and 36 g/kg (at least 30% as hydroxytyrosol), respectively. We investigated the potential protective role of MOMAST(®) HY100 and MOMAST(®) HP30 on isolated rat colon, liver, heart, and prefrontal cortex specimens treated with Escherichia coli lipopolysaccharide (LPS), a validated ex vivo model of inflammation, by measuring the production of prostaglandin (PG)E2, 8-iso-PGF2α, lactate dehydrogenase (LDH), as well as cyclooxygenase (COX)-2, tumor necrosis factor α (TNFα), and inducible nitric oxide synthase (iNOS) mRNA levels. MOMAST(®) HY100 decreased LPS-stimulated PGE2 and LDH levels in all tested tissues. Following treatment with MOMAST(®) HY100, we found a significant reduction in iNOS levels in prefrontal cortex and heart specimens, COX-2 and TNFα mRNA levels in heart specimens, and 8-iso-PGF2α levels in liver specimens. On the other hand, MOMAST(®) HP30 was found to blunt COX-2, TNFα, and iNOS mRNA levels, as well as 8-iso-PGF2α in cortex, liver, and colon specimens. MOMAST(®) HP30 was also found to decrease PGE2 levels in liver specimens, while it decreased iNOS mRNA, LDH, and 8-iso-PGF2α levels in heart specimens. Both MOMAST(®) HY100 and MOMAST(®) HP30 exhibited protective effects on multiple inflammatory and oxidative stress pathways.
Collapse
|
33
|
Hockenberry MJ, Pan W, Scheurer ME, Hooke MC, Taylor O, Koerner K, Montgomery D, Whitman S, Mitby P, Moore I. Influence of Inflammatory and Oxidative Stress Pathways on Longitudinal Symptom Experiences in Children With Leukemia. Biol Res Nurs 2019; 21:458-465. [PMID: 31315444 DOI: 10.1177/1099800419863160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE The purpose of this study was to explore the influence of oxidative stress (F2-isoprostanes) and inflammatory (interleukin [IL]-8) biomarkers on symptom trajectories during the first 18 months of childhood leukemia treatment. METHOD A repeated-measures design was used to evaluate symptoms experienced by 218 children during treatment. A symptom cluster (fatigue, pain, and nausea) was explored over four time periods: initiation of post-induction therapy, 4 and 8 months into post-induction therapy, and the beginning of maintenance therapy (12 months postinduction). F2-isoprostanes and IL-8 were evaluated in cerebrospinal fluid (CSF) samples collected at baseline (diagnosis) and then at the four time periods. The longitudinal relationships of these biomarkers with the symptom cluster were examined using the longitudinal parallel process. RESULTS Pain and fatigue levels were highest during the post-induction phases of treatment and decreased slightly during maintenance therapy, while nausea scores were relatively stable. Even in the later phases of treatment, children continued to experience symptoms. CSF levels of the biomarkers increased during the post-induction phases of treatment. Early increases in the biomarkers were associated with more severe symptoms during the same period; patients who had increased biomarkers over time also experienced more severe symptoms over time. CONCLUSIONS Findings reveal that children experienced symptoms throughout the course of leukemia treatment and support hypothesized longitudinal relationships of oxidative stress and inflammatory biomarkers with symptom severity. Activation of the biomarker pathways during treatment may explain underlying mechanisms of symptom experiences and identify which children are at risk for severe symptoms.
Collapse
Affiliation(s)
| | - Wei Pan
- 1 School of Nursing, Duke University, Durham, NC, USA
| | - Michael E Scheurer
- 2 Baylor College of Medicine, Houston, TX, USA.,3 Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Mary C Hooke
- 4 School of Nursing, University of Minnesota, Minneapolis, MN, USA
| | - Olga Taylor
- 2 Baylor College of Medicine, Houston, TX, USA.,3 Texas Children's Cancer and Hematology Centers, Houston, TX, USA
| | - Kari Koerner
- 5 College of Nursing, University of Arizona, Tucson, AZ, USA
| | | | - Susan Whitman
- 5 College of Nursing, University of Arizona, Tucson, AZ, USA
| | | | - Ida Moore
- 5 College of Nursing, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
34
|
Biringer RG. The Role of Eicosanoids in Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142560. [PMID: 31323750 PMCID: PMC6678666 DOI: 10.3390/ijerph16142560] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer's Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd., Bradenton, FL 34211, USA.
| |
Collapse
|
35
|
Foley TD. Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity. Cell Mol Neurobiol 2019; 39:577-590. [PMID: 30904976 DOI: 10.1007/s10571-019-00672-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Free radical-mediated oxidative stress, neuroinflammation, and excitotoxicity have long been considered insults relevant to the progression of Alzheimer's disease and other aging-related neurodegenerative disorders (NDD). Among these phenomena, the significance of oxidative stress and, more generally, redox perturbations, for NDD remain ill-defined and unsubstantiated. Here, I argue that (i) free radical-mediated oxidations of biomolecules can be dissociated from the progression of NDD, (ii) oxidative stress fails as a descriptor of cellular redox states under conditions relevant to disease, and (iii) aberrant upregulation of compensatory reducing activities in neural cells, resulting in reductive shifts in thiol-based redox potentials, may be an overlooked and paradoxical contributor to disease progression. In particular, I summarize evidence which supports the view that reductive shifts in the extracellular space can occur in response to oxidant and inflammatory signals and that these have the potential to reduce putative regulatory disulfide bonds in exofacial domains of the N-methyl-D-aspartate receptor, leading potentially to aberrant increases in neuronal excitability and, if sustained, excitotoxicity. The novel reductive reprogramming hypothesis of neurodegeneration presented here provides an alternative view of redox perturbations in NDD and links these to both neuroinflammation and excitotoxicity.
Collapse
Affiliation(s)
- Timothy D Foley
- Department of Chemistry and Neuroscience Program, University of Scranton, Scranton, PA, 18510, USA.
| |
Collapse
|
36
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
37
|
Yang J, Fernández-Galilea M, Martínez-Fernández L, González-Muniesa P, Pérez-Chávez A, Martínez JA, Moreno-Aliaga MJ. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019; 11:E872. [PMID: 31003450 PMCID: PMC6521137 DOI: 10.3390/nu11040872] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex phenomenon characterized by the progressive loss of tissue and organ function. The oxidative-stress theory of aging postulates that age-associated functional losses are due to the accumulation of ROS-induced damage. Liver function impairment and non-alcoholic fatty liver disease (NAFLD) are common among the elderly. NAFLD can progress to non-alcoholic steatohepatitis (NASH) and evolve to hepatic cirrhosis or hepatic carcinoma. Oxidative stress, lipotoxicity, and inflammation play a key role in the progression of NAFLD. A growing body of evidence supports the therapeutic potential of omega-3 polyunsaturated fatty acids (n-3 PUFA), mainly docosahaexenoic (DHA) and eicosapentaenoic acid (EPA), on metabolic diseases based on their antioxidant and anti-inflammatory properties. Here, we performed a systematic review of clinical trials analyzing the efficacy of n-3 PUFA on both systemic oxidative stress and on NAFLD/NASH features in adults. As a matter of fact, it remains controversial whether n-3 PUFA are effective to counteract oxidative stress. On the other hand, data suggest that n-3 PUFA supplementation may be effective in the early stages of NAFLD, but not in patients with more severe NAFLD or NASH. Future perspectives and relevant aspects that should be considered when planning new randomized controlled trials are also discussed.
Collapse
Affiliation(s)
- Jinchunzi Yang
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Marta Fernández-Galilea
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
| | - Leyre Martínez-Fernández
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - Pedro González-Muniesa
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Adriana Pérez-Chávez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| | - Maria J Moreno-Aliaga
- Centre for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
- IDISNA, Navarra's Health Research Institute, 31008 Pamplona, Spain.
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
38
|
Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med 2019; 133:130-143. [PMID: 30268886 PMCID: PMC6368883 DOI: 10.1016/j.freeradbiomed.2018.09.043] [Citation(s) in RCA: 625] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The term ferroptosis was coined in 2012 to describe an iron-dependent regulated form of cell death caused by the accumulation of lipid-based reactive oxygen species; this type of cell death was found to have molecular characteristics distinct from other forms of regulated cell death. Features of ferroptosis have been observed periodically over the last several decades, but these molecular features were not recognized as evidence of a distinct form of cell death until recently. Here, we describe the history of observations consistent with the current definition of ferroptosis, as well as the advances that contributed to the emergence of the concept of ferroptosis. We also discuss recent implications and applications of manipulations of the ferroptotic death pathway.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Bhatia S, Kim WS, Shepherd CE, Halliday GM. Apolipoprotein D Upregulation in Alzheimer's Disease but Not Frontotemporal Dementia. J Mol Neurosci 2018; 67:125-132. [PMID: 30467822 PMCID: PMC6344390 DOI: 10.1007/s12031-018-1217-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer’s disease (AD) are the two common forms of dementia. FTD syndromes are characterized by lobar atrophy (frontotemporal lobar degeneration or FTLD) and the presence of either cellular TDP43 (FTLD-TDP), tau (FTLD-tau), or FUS aggregates, while extracellular β-amyloid plaques and hyperphosphorylated tau tangles develop in AD. Oxidative stress can induce these pathological modifications in disease models, and is thought to play a role in these syndromes. Apolipoprotein D (apoD) is a glial-expressed lipocalin known to protect against oxidative stress, with increased levels in AD, supporting a protective role. The expression of apoD has not been studied in FTLD. This study assesses apoD expression in FTLD-TDP and FTLD-tau in comparison to AD and controls. It also analyzes the effect of apoD on TARDBP (TDP43 gene) and β-amyloid precursor protein (APP). The expression of apoD was analyzed by Western blotting in FTLD-TDP, FTLD-tau, AD, and control post-mortem brain tissue. An apoD-overexpressing cell model was used to study the impact of increased apoD on APP and TARDBP expression. We confirm that apoD expression was increased in AD but surprisingly it was not affected in either of the two main pathological forms of FTLD. Under oxidative stress conditions, apoD had no effect on TDP43 expression but it did decrease APP expression. This suggests that apoD does not act as a neuroprotective factor in FTLD in the same way as in AD. This could contribute to the more rapid degeneration observed in FTLD.
Collapse
Affiliation(s)
- Surabhi Bhatia
- Central Clinical School and Brain and Mind Centre, Faculty of Medicine and Health Sciences, The University of Sydney, 94 Mallet Street, Camperdown, NSW, Australia.
| | - Woojin Scott Kim
- Central Clinical School and Brain and Mind Centre, Faculty of Medicine and Health Sciences, The University of Sydney, 94 Mallet Street, Camperdown, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- Central Clinical School and Brain and Mind Centre, Faculty of Medicine and Health Sciences, The University of Sydney, 94 Mallet Street, Camperdown, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
40
|
Chang KH, Cheng ML, Chiang MC, Chen CM. Lipophilic antioxidants in neurodegenerative diseases. Clin Chim Acta 2018; 485:79-87. [DOI: 10.1016/j.cca.2018.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
|
41
|
Watts ME, Pocock R, Claudianos C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front Mol Neurosci 2018; 11:216. [PMID: 29988368 PMCID: PMC6023993 DOI: 10.3389/fnmol.2018.00216] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic metabolic changes occurring in neurons are critically important in directing brain plasticity and cognitive function. In other tissue types, disruptions to metabolism and the resultant changes in cellular oxidative state, such as increased reactive oxygen species (ROS) or induction of hypoxia, are associated with cellular stress. In the brain however, where drastic metabolic shifts occur to support physiological processes, subsequent changes to cellular oxidative state and induction of transcriptional sensors of oxidative stress likely play a significant role in regulating physiological neuronal function. Understanding the role of metabolism and metabolically-regulated genes in neuronal function will be critical in elucidating how cognitive functions are disrupted in pathological conditions where neuronal metabolism is affected. Here, we discuss known mechanisms regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during normal and disrupted neuronal function. We also summarize recent studies implicating a role for metabolism in regulating neuronal plasticity as an emerging neuroscience paradigm.
Collapse
Affiliation(s)
- Michelle E Watts
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Mental Health Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Hartmann S, Ledur Kist TB. A review of biomarkers of Alzheimer's disease in noninvasive samples. Biomark Med 2018; 12:677-690. [PMID: 29896987 DOI: 10.2217/bmm-2017-0388] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The discovery of biomarkers that confer high confidence of presymptomatic Alzheimer's disease (AD) diagnosis would be a valuable tool to study the etiology of the disease, to find risk factors, to discover more treatments and medicines. The present work reviews the potential biomarkers of AD based on the concentration changes of small molecules and chemical elements in noninvasive samples (urine, saliva, hair and others). An updated table with 74 target compounds is produced and ranked. Until the present date, there are a few biomarkers, present in urine, with the most promising potential: isoprostane 8,12-iso-iPF2a-VI, total free amino acids, 8-hydroxy-2'-deoxyguanosine, glycine and enzymatic activity of NaCl-stimulated PON1. All show increased levels in AD carriers, with the exception of NaCl-stimulated PON1.
Collapse
Affiliation(s)
- Samuel Hartmann
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, 91.501-970, Porto Alegre, RS, Brazil
| | - Tarso B Ledur Kist
- Laboratory of Methods, Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul, 91.501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
43
|
Furman R, Lee JV, Axelsen PH. Analysis of eicosanoid oxidation products in Alzheimer brain by LC-MS with uniformly 13C-labeled internal standards. Free Radic Biol Med 2018; 118:108-118. [PMID: 29476920 PMCID: PMC5884722 DOI: 10.1016/j.freeradbiomed.2018.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 01/24/2023]
Abstract
The quantitative analysis of polyunsaturated fatty acyl (PUFA) chain oxidation products in tissue samples by mass spectrometry is hindered by the lack of durable internal standards for the large number of possible products. To address this problem in a study of oxidative PUFA degradation in Alzheimer's disease (AD) brain, uniformly 13C-labeled arachidonic acid (ARA) was produced biosynthetically, and allowed to oxidize under controlled conditions into a mixture of U-13C-labeled ARA oxidation products. The components of this mixture were characterized with respect to their partitioning behavior during lipid extraction, their durability during saponification, trends in mouse brain tissue concentrations during post mortem intervals, and their overall suitability as internal standards for multiple-reaction monitoring tandem mass spectrometry. This mixture has now been used as a set of internal standards to determine the relative abundance of ARA and 54 non-stereospecific oxidation products in milligram samples of brain tissue. Many of these oxidation products were recovered from both healthy mouse and healthy human brain, although some of them were unique to each source, and some have not heretofore been described. The list of oxidation products detected in AD brain tissue was the same as in healthy human brain, although simple hydroxy-eicosanoids were significantly increased in AD brain. while more complex oxidation products were not. These results are consistent with an increased level of chemically-mediated oxidative ARA degradation in Alzheimer's disease. However, they also point to the existence of processes that selectively produce or eliminate specific oxidation products, and those processes may account for some of the inconsistencies in previously reported results.
Collapse
Affiliation(s)
- Ran Furman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Jin V Lee
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Paul H Axelsen
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States; Departments of Biochemistry and Biophysics, and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
44
|
Abstract
Oxygenated lipid products of non-cyclooxygenase derivatives, namely, prostanoids such as, isoprostanes and isofurans, are formed in vivo through lipid autoxidation. Insofar it has been marked as novel biomarkers of oxidative stress in the biological systems. Elevations of these oxidized products are associated with several diseases. This chapter describes the preparation and measurement of the products, including newly identified F2-dihomo-isoprostanes and dihomo-isofurans, from plasma and tissue samples using the liquid chromatography-tandem mass spectrometry approach.
Collapse
Affiliation(s)
- Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
45
|
Urinary F2-Isoprostane Concentration as a Poor Prognostic Factor After Subarachnoid Hemorrhage. World Neurosurg 2017; 107:185-193. [DOI: 10.1016/j.wneu.2017.07.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
|
46
|
Chmatalova Z, Vyhnalek M, Laczo J, Hort J, Pospisilova R, Pechova M, Skoumalova A. Relation of plasma selenium and lipid peroxidation end products in patients with Alzheimer's disease. Physiol Res 2017; 66:1049-1056. [PMID: 28937243 DOI: 10.33549/physiolres.933601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Increased oxidative stress in the brain during the course of Alzheimer's disease (AD) leads to an imbalance of antioxidants and formation of free radical reaction end-products which may be detected in blood as fluorescent lipofuscin-like pigments (LFPs). The aim of this study was to evaluate and compare LFPs with plasma selenium concentrations representing an integral part of the antioxidant system. Plasma samples from subjects with AD dementia (ADD; n=11), mild cognitive impairment (MCI; n=17) and controls (n=12), were collected. The concentration of selenium was measured using atomic absorption spectroscopy. LFPs were analyzed by fluorescence spectroscopy and quantified for different fluorescent maxima and then correlated with plasma selenium. Lower levels of selenium were detected in MCI and ADD patients than in controls (P=0.003 and P=0.049, respectively). Additionally, higher fluorescence intensities of LFPs were observed in MCI patients than in controls in four fluorescence maxima and higher fluorescence intensities were also observed in MCI patients than in ADD patients in three fluorescence maxima, respectively. A negative correlation between selenium concentrations and LFPs fluorescence was observed in the three fluorescence maxima. This is the first study focused on correlation of plasma selenium with specific lipofuscin-like products of oxidative stress in plasma of patients with Alzheimer´s disease and mild cognitive impairment.
Collapse
Affiliation(s)
- Z Chmatalova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
47
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
48
|
Ademowo OS, Dias HKI, Milic I, Devitt A, Moran R, Mulcahy R, Howard AN, Nolan JM, Griffiths HR. Phospholipid oxidation and carotenoid supplementation in Alzheimer's disease patients. Free Radic Biol Med 2017; 108:77-85. [PMID: 28315450 PMCID: PMC5488966 DOI: 10.1016/j.freeradbiomed.2017.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/07/2017] [Accepted: 03/11/2017] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease, characterised by decline of memory, cognitive function and changes in behaviour. Generic markers of lipid peroxidation are increased in AD and reactive oxygen species have been suggested to be involved in the aetiology of cognitive decline. Carotenoids are depleted in AD serum, therefore we have compared serum lipid oxidation between AD and age-matched control subjects before and after carotenoid supplementation. The novel oxidised phospholipid biomarker 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) was analysed using electrospray ionisation tandem mass spectrometry (MS) with multiple reaction monitoring (MRM), 8-isoprostane (IsoP) was measured by ELISA and ferric reducing antioxidant potential (FRAP) was measured by a colorimetric assay. AD patients (n=21) and healthy age-matched control subjects (n=16) were supplemented with either Macushield™ (10mg meso-zeaxanthin, 10mg lutein, 2mg zeaxanthin) or placebo (sunflower oil) for six months. The MRM-MS method determined serum POVPC sensitively (from 10µl serum) and reproducibly (CV=7.9%). At baseline, AD subjects had higher serum POVPC compared to age-matched controls, (p=0.017) and cognitive function was correlated inversely with POVPC (r=-0.37; p=0.04). After six months of carotenoid intervention, serum POVPC was not different in AD patients compared to healthy controls. However, POVPC was significantly higher in control subjects after six months of carotenoid intervention compared to their baseline (p=0.03). Serum IsoP concentration was unrelated to disease or supplementation. Serum FRAP was significantly lower in AD than healthy controls but was unchanged by carotenoid intervention (p=0.003). In conclusion, serum POVPC is higher in AD patients compared to control subjects, is not reduced by carotenoid supplementation and correlates with cognitive function.
Collapse
Affiliation(s)
- O S Ademowo
- Life & Health Sciences, Aston University, Birmingham, UK
| | - H K I Dias
- Life & Health Sciences, Aston University, Birmingham, UK
| | - I Milic
- Life & Health Sciences, Aston University, Birmingham, UK
| | - A Devitt
- Life & Health Sciences, Aston University, Birmingham, UK
| | - R Moran
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - R Mulcahy
- Waterford University Hospital, Age-related Care Unit, Waterford, Ireland
| | - A N Howard
- Howard Foundation, Cambridge, UK; Downing College, University of Cambridge, Cambridge, UK
| | - J M Nolan
- Nutrition Research Centre Ireland, Health Science, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - H R Griffiths
- Life & Health Sciences, Aston University, Birmingham, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
49
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
50
|
El Gaamouch F, Jing P, Xia J, Cai D. Alzheimer's Disease Risk Genes and Lipid Regulators. J Alzheimers Dis 2017; 53:15-29. [PMID: 27128373 DOI: 10.3233/jad-160169] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain lipid homeostasis plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Aggregation of amyloid-β peptide is one of the major events in AD. The complex interplay between lipids and amyloid-β accumulation has been intensively investigated. The proportions of lipid components including phospholipids, sphingolipids, and cholesterol are roughly similar across different brain regions under physiological conditions. However, disruption of brain lipid homeostasis has been described in AD and implicated in disease pathogenesis. Moreover, studies suggest that analysis of lipid composition in plasma and cerebrospinal fluid could improve our understanding of the disease development and progression, which could potentially serve as disease biomarkers and prognostic indicators for AD therapies. Here, we summarize the functional roles of AD risk genes and lipid regulators that modulate brain lipid homeostasis including different lipid species, lipid complexes, and lipid transporters, particularly their effects on amyloid processing, clearance, and aggregation, as well as neuro-toxicities that contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Farida El Gaamouch
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Jing
- The Central Hospital of Wuhan, China
| | | | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Central Hospital of Wuhan, China
| |
Collapse
|