1
|
Travers RL, Trim WV, Motta AC, Betts JA, Thompson D. Calorie restriction-induced leptin reduction and T-lymphocyte activation in blood and adipose tissue in men with overweight and obesity. Int J Obes (Lond) 2024; 48:993-1002. [PMID: 38538853 PMCID: PMC11216992 DOI: 10.1038/s41366-024-01513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND T-Lymphocyte activation is modulated by the adipokine leptin and serum concentrations of this hormone can be reduced with short-term calorie restriction. The aim of this study was to understand whether leptin per se is important in determining levels of T-lymphocyte activation in humans, by investigating whether the reduction in leptin concentration following calorie restriction is associated with a decrease in T-Lymphocyte activation in blood and adipose tissue. METHODS Twelve men with overweight and obesity (age 35-55 years, waist circumference 95-115 cm) reduced their calorie intake by 50% for 3 consecutive days. Blood and subcutaneous adipose tissue were obtained for isolation of immune cells and cytokine analysis. CD4+ and CD8 + T-Lymphocytes were identified and characterised according to their expression of activation markers CD25 and CD69 by flow cytometry. RESULTS Serum leptin was reduced by (mean ± SEM) 31 ± 16% (p < 0.001) following calorie restriction. The percentage of blood CD4 + CD25 + T-lymphocytes and level of CD25 expression on these lymphocytes were significantly reduced by 8 ± 10% (p = 0.016) and 8 ± 4% (p = 0.058), respectively. After calorie restriction, ex vivo leptin secretion from abdominal subcutaneous adipose tissue explants was not changed, and this corresponded with a lack of change in adipose tissue resident T-Lymphocyte activation. CONCLUSIONS Serum leptin was reduced after calorie restriction and this was temporally associated with a reduction in activation of blood CD4 + CD25 + T-Lymphocytes. In abdominal subcutaneous adipose tissue, however, leptin secretion was unaltered, and there were no observed changes in adipose resident T-Lymphocyte activation.
Collapse
Affiliation(s)
- Rebecca L Travers
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - William V Trim
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
- Department of Systems Biology, Harvard Medical School, Boston, MA, MA02115, USA
| | - Alexandre C Motta
- Unilever Food & Health Research Institute R&D, Vlaardingen, The Netherlands
- IMcoMET BV, Vlaardingen, The Netherlands
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism (CNEM), Department for Health, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
2
|
Fava M, De Dominicis N, Forte G, Bari M, Leuti A, Maccarrone M. Cellular and Molecular Effects of Microgravity on the Immune System: A Focus on Bioactive Lipids. Biomolecules 2024; 14:446. [PMID: 38672462 PMCID: PMC11048039 DOI: 10.3390/biom14040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Microgravity is one of the main stressors that astronauts are exposed to during space missions. This condition has been linked to many disorders, including those that feature dysfunctional immune homeostasis and inflammatory damage. Over the past 30 years, a significant body of work has been gathered connecting weightlessness-either authentic or simulated-to an inefficient reaction to pathogens, dysfunctional production of cytokines and impaired survival of immune cells. These processes are also orchestrated by a plethora of bioactive lipids, produced by virtually all cells involved in immune events, which control the induction, magnitude, outcome, compartmentalization and trafficking of immunocytes during the response to injury. Despite their crucial importance in inflammation and its modulation, however, data concerning the role of bioactive lipids in microgravity-induced immune dysfunctions are surprisingly scarce, both in quantity and in variety, and the vast majority of it focuses on two lipid classes, namely eicosanoids and endocannabinoids. The present review aims to outline the accumulated knowledge addressing the effects elicited by microgravity-both simulated and authentic-on the metabolism and signaling of these two prominent lipid groups in the context of immune and inflammatory homeostasis.
Collapse
Affiliation(s)
- Marina Fava
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Noemi De Dominicis
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giulia Forte
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
| | - Monica Bari
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; (M.F.); (G.F.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
3
|
Gallardo-Dodd CJ, Oertlin C, Record J, Galvani RG, Sommerauer C, Kuznetsov NV, Doukoumopoulos E, Ali L, Oliveira MMS, Seitz C, Percipalle M, Nikić T, Sadova AA, Shulgina SM, Shmarov VA, Kutko OV, Vlasova DD, Orlova KD, Rykova MP, Andersson J, Percipalle P, Kutter C, Ponomarev SA, Westerberg LS. Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells. SCIENCE ADVANCES 2023; 9:eadg1610. [PMID: 37624890 PMCID: PMC10456848 DOI: 10.1126/sciadv.adg1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+ T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity.
Collapse
Affiliation(s)
- Carlos J. Gallardo-Dodd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Christian Oertlin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Record
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Rômulo G. Galvani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
- Universidade Veiga de Almeida, Rio de Janeiro, Brazil
- Laboratory for Thymus Research (LPT), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Christian Sommerauer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nikolai V. Kuznetsov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | | | - Liaqat Ali
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Core Technology Platform, NYUAD, Abu Dhabi, United Arab Emirates
| | - Mariana M. S. Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Seitz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Percipalle
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tijana Nikić
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia A. Sadova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Sofia M. Shulgina
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Vjacheslav A. Shmarov
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Olga V. Kutko
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Daria D. Vlasova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Kseniya D. Orlova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Marina P. Rykova
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Piergiorgio Percipalle
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYUAD, Abu Dhabi, United Arab Emirates
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sergey A. Ponomarev
- Russian Federation State Research Center Institute of Biomedical Problems RAS, Moscow, Russia
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Jacob P, Oertlin C, Baselet B, Westerberg LS, Frippiat JP, Baatout S. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity. NPJ Microgravity 2023; 9:51. [PMID: 37380641 DOI: 10.1038/s41526-023-00294-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
Although we have sent humans into space for more than 50 years, crucial questions regarding immune response in space conditions remain unanswered. There are many complex interactions between the immune system and other physiological systems in the human body. This makes it difficult to study the combined long-term effects of space stressors such as radiation and microgravity. In particular, exposure to microgravity and cosmic radiation may produce changes in the performance of the immune system at the cellular and molecular levels and in the major physiological systems of the body. Consequently, abnormal immune responses induced in the space environment may have serious health consequences, especially in future long-term space missions. In particular, radiation-induced immune effects pose significant health challenges for long-duration space exploration missions with potential risks to reduce the organism's ability to respond to injuries, infections, and vaccines, and predispose astronauts to the onset of chronic diseases (e.g., immunosuppression, cardiovascular and metabolic diseases, gut dysbiosis). Other deleterious effects encountered by radiation may include cancer and premature aging, induced by dysregulated redox and metabolic processes, microbiota, immune cell function, endotoxin, and pro-inflammatory signal production1,2. In this review, we summarize and highlight the current understanding of the effects of microgravity and radiation on the immune system and discuss knowledge gaps that future studies should address.
Collapse
Affiliation(s)
- Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christian Oertlin
- Karolinska Institutet, Department of Microbiology Tumor and Cell biology, Stockholm, SE-17177, Sweden
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Lisa S Westerberg
- Karolinska Institutet, Department of Microbiology Tumor and Cell biology, Stockholm, SE-17177, Sweden
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium.
- Department of Molecular Biotechnology, Gent University, Gent, Belgium.
| |
Collapse
|
5
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Dickerson BL, Sowinski R, Kreider RB, Wu G. Impacts of microgravity on amino acid metabolism during spaceflight. Exp Biol Med (Maywood) 2023; 248:380-393. [PMID: 36775855 PMCID: PMC10281620 DOI: 10.1177/15353702221139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Spaceflight exerts an extreme and unique influence on human physiology as astronauts are subjected to long-term or short-term exposure to microgravity. During spaceflight, a multitude of physiological changes, including the loss of skeletal muscle mass, bone resorption, oxidative stress, and impaired blood flow, occur, which can affect astronaut health and the likelihood of mission success. In vivo and in vitro metabolite studies suggest that amino acids are among the most affected nutrients and metabolites by microgravity (a weightless condition due to very weak gravitational forces). Moreover, exposure to microgravity alters gut microbial composition, immune function, musculoskeletal health, and consequently amino acid metabolism. Appropriate knowledge of daily protein consumption, with a focus on specific functional amino acids, may offer insight into potential combative and/or therapeutic effects of amino acid consumption in astronauts and space travelers. This will further aid in the successful development of long-term manned space mission and permanent space habitats.
Collapse
Affiliation(s)
- Broderick L Dickerson
- Department of Kinesiology and Sports
Management, Texas A&M University, College Station, TX 77840, USA
| | - Ryan Sowinski
- Department of Kinesiology and Sports
Management, Texas A&M University, College Station, TX 77840, USA
| | - Richard B Kreider
- Department of Kinesiology and Sports
Management, Texas A&M University, College Station, TX 77840, USA
| | - Guoyao Wu
- Department of Animal Science and
Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Dhar S, Kaeley DK, Kanan MJ, Yildirim-Ayan E. Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells. Life (Basel) 2021; 11:life11101043. [PMID: 34685414 PMCID: PMC8537592 DOI: 10.3390/life11101043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Of the most prevalent issues surrounding long-term spaceflight, the sustainability of human life and the maintenance of homeostasis in an extreme environment are of utmost concern. It has been observed that the human immune system is dysregulated in space as a result of gravitational unloading at the cellular level, leading to potential complications in astronaut health. A plethora of studies demonstrate intracellular changes that occur due to microgravity; however, these ultimately fall short of identifying the underlying mechanisms and dysfunctions that cause such changes. This comprehensive review covers the changes in human adaptive immunity due to microgravity. Specifically, there is a focus on uncovering the gravisensitive steps in T cell signaling pathways. Changes in gravitational force may lead to interrupted immune signaling cascades at specific junctions, particularly membrane and surface receptor-proximal molecules. Holistically studying the interplay of signaling with morphological changes in cytoskeleton and other cell components may yield answers to what in the T cell specifically experiences the consequences of microgravity. Fully understanding the nature of this problem is essential in order to develop proper countermeasures before long-term space flight is conducted.
Collapse
Affiliation(s)
- Sarit Dhar
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Dilpreet Kaur Kaeley
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Mohamad Jalal Kanan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (S.D.); (D.K.K.); (M.J.K.)
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
- Correspondence: ; Tel.: +1-419-530-8257; Fax: +1-419-530-8030
| |
Collapse
|
8
|
Rapid Transient Transcriptional Adaptation to Hypergravity in Jurkat T Cells Revealed by Comparative Analysis of Microarray and RNA-Seq Data. Int J Mol Sci 2021; 22:ijms22168451. [PMID: 34445156 PMCID: PMC8395121 DOI: 10.3390/ijms22168451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular responses to micro- and hypergravity are rapid and complex and appear within the first few seconds of exposure. Transcriptomic analyses are a valuable tool to analyze these genome-wide cellular alterations. For a better understanding of the cellular dynamics upon altered gravity exposure, it is important to compare different time points. However, since most of the experiments are designed as endpoint measurements, the combination of cross-experiment meta-studies is inevitable. Microarray and RNA-Seq analyses are two of the main methods to study transcriptomics. In the field of altered gravity research, both methods are frequently used. However, the generation of these data sets is difficult and time-consuming and therefore the number of available data sets in this research field is limited. In this study, we investigated the comparability of microarray and RNA-Seq data and applied the results to a comparison of the transcriptomics dynamics between the hypergravity conditions during two real flight platforms and a centrifuge experiment to identify temporal adaptation processes. We performed a comparative study on an Affymetrix HTA2.0 microarray and a paired-end RNA-Seq data set originating from the same Jurkat T cell RNA samples from a short-term hypergravity experiment. The overall agreeability was high, with better sensitivity of the RNA-Seq analysis. The microarray data set showed weaknesses on the level of single upregulated genes, likely due to its normalization approach. On an aggregated level of biotypes, chromosomal distribution, and gene sets, both technologies performed equally well. The microarray showed better performance on the detection of altered gravity-related splicing events. We found that all initially altered transcripts fully adapted after 15 min to hypergravity and concluded that the altered gene expression response to hypergravity is transient and fully reversible. Based on the combined multiple-platform meta-analysis, we could demonstrate rapid transcriptional adaptation to hypergravity, the differential expression of the ATPase subunits ATP6V1A and ATP6V1D, and the cluster of differentiation (CD) molecules CD1E, CD2AP, CD46, CD47, CD53, CD69, CD96, CD164, and CD226 in hypergravity. We could experimentally demonstrate that it is possible to develop methodological evidence for the meta-analysis of individual data.
Collapse
|
9
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
10
|
Ludtka C, Silberman J, Moore E, Allen JB. Macrophages in microgravity: the impact of space on immune cells. NPJ Microgravity 2021; 7:13. [PMID: 33790288 PMCID: PMC8012370 DOI: 10.1038/s41526-021-00141-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The effects of a microgravity environment on the myriad types of immune cells present within the human body have been assessed both by bench-scale simulation and suborbital methods, as well as in true spaceflight. Macrophages have garnered increased research interest in this context in recent years. Their functionality in both immune response and tissue remodeling makes them a unique cell to investigate in regards to gravisensitive effects as well as parameters of interest that could impact astronaut health. Here, we review and summarize the literature investigating the effects of microgravity on macrophages and monocytes regarding the microgravity environment simulation/generation methods, cell sources, experiment durations, and parameters of interest utilized within the field. We discuss reported findings on the impacts of microgravity on macrophage/monocyte structure, adhesion and migration, proliferation, genetic expression, cytokine secretion, and reactive oxygen species production, as well as polarization. Based on this body of data, we make recommendations to the field for careful consideration of experimental design to complement existing reports, as the multitude of disparate study methods previously published can make drawing direct comparisons difficult. However, the breadth of different testing methodologies can also lend itself to attempting to identify the most robust and consistent responses to microgravity across various testing conditions.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Justin Silberman
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Erika Moore
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Josephine B Allen
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Turroni S, Magnani M, Kc P, Lesnik P, Vidal H, Heer M. Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Front Physiol 2020; 11:553929. [PMID: 33013480 PMCID: PMC7505921 DOI: 10.3389/fphys.2020.553929] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The upcoming exploration missions will imply a much longer duration than any of the missions flown so far. In these missions, physiological adaptation to the new environment leads to changes in different body systems, such as the cardiovascular and musculoskeletal systems, metabolic and neurobehavioral health and immune function. To keep space travelers healthy on their trip to Moon, Mars and beyond and their return to Earth, a variety of countermeasures need to be provided to maintain body functionality. From research on the International Space Station (ISS) we know today, that for instance prescribing an adequate training regime for each individual with the devices available in the respective spacecraft is still a challenge. Nutrient supply is not yet optimal and must be optimized in exploration missions. Food intake is intrinsically linked to changes in the gut microbiome composition. Most of the microbes that inhabit our body supply ecosystem benefit to the host-microbe system, including production of important resources, bioconversion of nutrients, and protection against pathogenic microbes. The gut microbiome has also the ability to signal the host, regulating the processes of energy storage and appetite perception, and influencing immune and neurobehavioral function. The composition and functionality of the microbiome most likely changes during spaceflight. Supporting a healthy microbiome by respective measures in space travelers might maintain their health during the mission but also support rehabilitation when being back on Earth. In this review we are summarizing the changes in the gut microbiome observed in spaceflight and analog models, focusing particularly on the effects on metabolism, the musculoskeletal and immune systems and neurobehavioral disorders. Since space travelers are healthy volunteers, we focus on the potential of countermeasures based on pre- and probiotics supplements.
Collapse
Affiliation(s)
- Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Pukar Kc
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France.,Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, Pierre-Benite, France
| | - Martina Heer
- International University of Applied Sciences, Bad Reichenhall, Germany.,Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
13
|
Crucian BE, Makedonas G, Sams CF, Pierson DL, Simpson R, Stowe RP, Smith SM, Zwart SR, Krieger SS, Rooney B, Douglas G, Downs M, Nelman-Gonzalez M, Williams TJ, Mehta S. Countermeasures-based Improvements in Stress, Immune System Dysregulation and Latent Herpesvirus Reactivation onboard the International Space Station - Relevance for Deep Space Missions and Terrestrial Medicine. Neurosci Biobehav Rev 2020; 115:68-76. [PMID: 32464118 DOI: 10.1016/j.neubiorev.2020.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
The International Space Station (ISS) has continued to evolve from an operational perspective and multiple studies have monitored both stress and the immune system of ISS astronauts. Alterations were ascribed to a potentially synergistic array of factors, including microgravity, radiation, psychological stress, and circadian misalignment. Comparing similar data across 12 years of ISS construction and operations, we report that immunity, stress, and the reactivation of latent herpesviruses have all improved in ISS astronauts. Major physiological improvements seem to have initiated approximately 2012, a period coinciding with improvements onboard ISS including cargo delivery and resupply frequency, personal communication, exercise equipment and protocols, food quality and variety, nutritional supplementation, and schedule management. We conclude that spaceflight associated immune dysregulation has been positively influenced by operational improvements and biomedical countermeasures onboard ISS. Although an operational challenge, agencies should therefore incorporate, within vehicle design limitations, these dietary, operational, and stress-relieving countermeasures into deep space mission planning. Specific countermeasures that have benefited astronauts could serve as a therapy augment for terrestrial acquired immunodeficiency patients.
Collapse
Affiliation(s)
| | | | | | | | - Richard Simpson
- Department of Nutritional Sciences, Department of Pediatrics, Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States
| | | | - Scott M Smith
- NASA Johnson Space Center, Houston, Texas, United States
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, Texas, United States
| | | | | | - Grace Douglas
- NASA Johnson Space Center, Houston, Texas, United States
| | - Meghan Downs
- NASA Johnson Space Center, Houston, Texas, United States
| | | | | | | |
Collapse
|
14
|
Morabito C, Lanuti P, Caprara GA, Marchisio M, Bizzarri M, Guarnieri S, Mariggiò MA. Physiological Responses of Jurkat Lymphocytes to Simulated Microgravity Conditions. Int J Mol Sci 2019; 20:ijms20081892. [PMID: 30999563 PMCID: PMC6515345 DOI: 10.3390/ijms20081892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
The presence of microgravity conditions deeply affects the human body functions at the systemic, organ and cellular levels. This study aimed to investigate the effects induced by simulated-microgravity on non-stimulated Jurkat lymphocytes, an immune cell phenotype considered as a biosensor of the body responses, in order to depict at the cellular level the effects of such a peculiar condition. Jurkat cells were grown at 1 g or on random positioning machine simulating microgravity. On these cells we performed: morphological, cell cycle and proliferation analyses using cytofluorimetric and staining protocols—intracellular Ca2+, reactive oxygen species (ROS), mitochondria membrane potential and O2− measurements using fluorescent probes—aconitase and mitochondria activity, glucose and lactate content using colorimetric assays. After the first exposure days, the cells showed a more homogeneous roundish shape, an increased proliferation rate, metabolic and detoxifying activity resulted in decreased intracellular Ca2+ and ROS. In the late exposure time, the cells adapted to the new environmental condition. Our non-activated proliferating Jurkat cells, even if responsive to altered external forces, adapted to the new environmental condition showing a healthy status. In order to define the cellular mechanism(s) triggered by microgravity, developing standardized experimental approaches and controlled cell culture and simulator conditions is strongly recommended.
Collapse
Affiliation(s)
- Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Paola Lanuti
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Marco Marchisio
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 06100 Rome, Italy.
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| | - Maria A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
- Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
15
|
Van Walleghem M, Tabury K, Fernandez-Gonzalo R, Janssen A, Buchheim JI, Choukèr A, Baatout S, Moreels M. Gravity-Related Immunological Changes in Human Whole Blood Cultured Under Simulated Microgravity Using an In Vitro Cytokine Release Assay. J Interferon Cytokine Res 2018; 37:531-540. [PMID: 29252128 DOI: 10.1089/jir.2017.0065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although immune dysfunction by space conditions has been reported postflight, as well as during ground-based experiments, the cause(s) and nature of the immunological changes are not completely understood. Microgravity has been suggested as one of the factors responsible for the observed immune dysregulation. The goal of this study was to assess immune changes in simulated microgravity (s-μG) using an in vitro cytokine release assay. The effect of s-μG provided by the desktop random positioning machine on cell-mediated immunity was examined by analyzing interleukin 2 (IL-2), interferon-γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin 10 (IL-10), in response to immune cell stimulation in whole blood samples (n = 10). Stimuli used were bacterial recall antigens, pokeweed mitogen (PWM), lipopolysaccharide (LPS), or heat-killed Listeria monocytogenes (HKLM). S-μG caused an overall inhibition of the IL-2 and IFN-γ responses to recall antigen and mitogen stimulation. More specifically, s-μG most strongly influenced the levels of all four cytokines elicited by bacterial recall antigen stimulation. In contrast, HKLM-induced TNF-α secretion was elevated. The average concentrations of TNF-α in response to PWM and LPS and IL-10 release stimulated by PWM, LPS, and HKLM were not significantly altered by s-μG. However, a variable response between individual subjects could be observed. In conclusion, our results demonstrate that the in vitro cytokine release assay can detect gravity-related immune alterations. Furthermore, the use of multiple stimuli and the associated changes in cytokine secretion has the potential to reveal information on the underlying mechanisms affected by s-μG.
Collapse
Affiliation(s)
- Merel Van Walleghem
- 1 Radiobiology Unit, Belgian Nuclear Research Centre , SCK•CEN, Mol, Belgium .,2 Department of Molecular Biotechnology, Ghent University , Ghent, Belgium
| | - Kevin Tabury
- 1 Radiobiology Unit, Belgian Nuclear Research Centre , SCK•CEN, Mol, Belgium .,3 Department of Biomedical Engineering, University of South Carolina , Columbia, South Carolina
| | | | - Ann Janssen
- 1 Radiobiology Unit, Belgian Nuclear Research Centre , SCK•CEN, Mol, Belgium
| | - Judith-Irina Buchheim
- 4 Laboratory of Translational Research "Stress and Immunology," Department of Anesthesiology, Klinikum Großhadern, University of Munich , Munich, Germany
| | - Alexander Choukèr
- 4 Laboratory of Translational Research "Stress and Immunology," Department of Anesthesiology, Klinikum Großhadern, University of Munich , Munich, Germany
| | - Sarah Baatout
- 1 Radiobiology Unit, Belgian Nuclear Research Centre , SCK•CEN, Mol, Belgium .,2 Department of Molecular Biotechnology, Ghent University , Ghent, Belgium
| | - Marjan Moreels
- 1 Radiobiology Unit, Belgian Nuclear Research Centre , SCK•CEN, Mol, Belgium
| |
Collapse
|
16
|
Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts. Sci Rep 2017; 7:8142. [PMID: 28811532 PMCID: PMC5557884 DOI: 10.1038/s41598-017-08432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
The effects of spaceflight on human physiology is an increasingly studied field, yet the molecular mechanisms driving physiological changes remain unknown. With that in mind, this study was performed to obtain a deeper understanding of changes to the human proteome during space travel, by quantitating a panel of 125 proteins in the blood plasma of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station. The panel of labeled prototypic tryptic peptides from these proteins covered a concentration range of more than 5 orders of magnitude in human plasma. Quantitation was achieved by a well-established and highly-regarded targeted mass spectrometry approach involving multiple reaction monitoring in conjunction with stable isotope-labeled standards. Linear discriminant function analysis of the quantitative results revealed three distinct groups of proteins: 1) proteins with post-flight protein concentrations remaining stable, 2) proteins whose concentrations recovered slowly, or 3) proteins whose concentrations recovered rapidly to their pre-flight levels. Using a systems biology approach, nearly all of the reacting proteins could be linked to pathways that regulate the activities of proteases, natural immunity, lipid metabolism, coagulation cascades, or extracellular matrix metabolism.
Collapse
|
17
|
Bołkun Ł, Rusak M, Eljaszewicz A, Pilz L, Radzikowska U, Łapuć I, Łuksza E, Dąbrowska M, Bodzenta-Łukaszyk A, Kłoczko J, Moniuszko M. Enhanced pretreatment CD25 expression on peripheral blood CD4+ T cell predicts shortened survival in acute myeloid leukemia patients receiving induction chemotherapy. Pharmacol Rep 2016; 68:12-9. [DOI: 10.1016/j.pharep.2015.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
|
18
|
Wanke-Jellinek L, Keegan JW, Dolan JW, Guo F, Chen J, Lederer JA. Beneficial Effects of CpG-Oligodeoxynucleotide Treatment on Trauma and Secondary Lung Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:767-77. [PMID: 26673136 DOI: 10.4049/jimmunol.1500597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/09/2015] [Indexed: 12/26/2022]
Abstract
Although Streptococcus pneumoniae is usually found as a commensal in healthy individuals, it can act as a pathogen in trauma patients, causing such complications as early-onset pneumonia and sepsis. We discovered that treating mice with an A-class CpG-oligodeoxynucleotide (ODN) at 2 h after traumatic injury significantly improved mouse survival following early-onset secondary lung infection with S. pneumoniae. This study used mass cytometry (cytometry by time-of-flight) and Luminex technologies to characterize the cellular immune response to secondary S. pneumoniae lung infection at 1 and 3 d postinfection. We found increased expression of CD14, CD64, and PD-L1 on F4-80(+) and F4-80(+)CD11c(+) macrophages, CD11c(+) dendritic cells, and CD14(+)CD172a(+) cells after burn-injury and infection, supporting previous reports of innate immune cell activation in sepsis. CpG-ODN treatment at 2 h after burn-injury reversed these effects; improved pathogen clearance; and led to an increased expression of CD25, CD27, MHCII, and IL-17 on or in TCRγδ cells at 1 d postinfection. At 3 d postinfection, CpG-ODN treatment increased the expression of PD-L1 on innate cell subsets. Furthermore, we analyzed cytokine levels in lung-washout samples of TCRγδ cell-depleted (TCRγδ(-)) mice to demonstrate that the effects of CpG-ODN on cytokine expression after burn-injury and S. pneumoniae infection rely on functional TCRγδ cells. In summary, we demonstrate that cytometry by time-of-flight provides an effective strategy to systematically identify specific cellular phenotypic responses to trauma and bacterial pneumonia and to discover changes in immune system phenotypes associated with beneficial immunotherapy.
Collapse
Affiliation(s)
- Lorenz Wanke-Jellinek
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Department of Trauma Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Joshua W Keegan
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - James W Dolan
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Fei Guo
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China; and
| | - Jianfei Chen
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; Department of Cardiology, Xinquiao Hospital, The Third Military Medical University, Chongqing 400037, People's Republic of China
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
19
|
Crucian B, Stowe RP, Mehta S, Quiriarte H, Pierson D, Sams C. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 2015; 1:15013. [PMID: 28725716 PMCID: PMC5515498 DOI: 10.1038/npjmgrav.2015.13] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/26/2015] [Accepted: 07/13/2015] [Indexed: 01/25/2023] Open
Abstract
Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions.
Collapse
Affiliation(s)
- Brian Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | | | - Satish Mehta
- Biomedical Research and Environmental Sciences Division, Enterprise Advisory Services, Inc., Houston, TX, USA
| | - Heather Quiriarte
- Biomedical Research and Environmental Sciences Division, JES Tech, Houston, TX, USA
| | - Duane Pierson
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Clarence Sams
- Space and Clinical Operations Division, Houston, TX, USA
| |
Collapse
|
20
|
Chang TT, Spurlock SM, Candelario TLT, Grenon SM, Hughes-Fulford M. Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines. FASEB J 2015; 29:4122-32. [PMID: 26085131 DOI: 10.1096/fj.15-275073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
The health risks of a dysregulated immune response during spaceflight are important to understand as plans emerge for humans to embark on long-term space travel to Mars. In this first-of-its-kind study, we used adoptive transfer of T-cell receptor transgenic OT-II CD4 T cells to track an in vivo antigen-specific immune response that was induced during the course of spaceflight. Experimental mice destined for spaceflight and mice that remained on the ground received transferred OT-II cells and cognate peptide stimulation with ovalbumin (OVA) 323-339 plus the inflammatory adjuvant, monophosphoryl lipid A. Control mice in both flight and ground cohorts received monophosphoryl lipid A alone without additional OVA stimulation. Numbers of OT-II cells in flight mice treated with OVA were significantly increased by 2-fold compared with ground mice treated with OVA, suggesting that tolerance induction was impaired by spaceflight. Production of proinflammatory cytokines were significantly increased in flight compared with ground mice, including a 5-fold increase in IFN-γ and a 10-fold increase in IL-17. This study is the first to show that immune tolerance may be impaired in spaceflight, leading to excessive inflammatory responses.
Collapse
Affiliation(s)
- Tammy T Chang
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sandra M Spurlock
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - Tara Lynne T Candelario
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - S Marlene Grenon
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - Millie Hughes-Fulford
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| |
Collapse
|
21
|
|
22
|
Toprani SM, Das B. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation. Mutagenesis 2015; 30:663-76. [PMID: 25958388 DOI: 10.1093/mutage/gev032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response.
Collapse
Affiliation(s)
- Sneh M Toprani
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
23
|
Toprani SM, Das B. Role of base excision repair genes and proteins in gamma-irradiated resting human peripheral blood mononuclear cells. Mutagenesis 2014; 30:247-61. [DOI: 10.1093/mutage/geu065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Crescio C, Orecchioni M, Ménard-Moyon C, Sgarrella F, Pippia P, Manetti R, Bianco A, Delogu LG. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions. NANOSCALE 2014; 6:9599-9603. [PMID: 25029354 DOI: 10.1039/c4nr02711f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Spaceflights lead to dysregulation of the immune cell functionality affecting the expression of activation markers and cytokine production. Short oxidized multi-walled carbon nanotubes functionalized by 1,3-dipolar cycloaddition have been reported to activate immune cells. In this Communication we have performed surface marker assays and multiplex ELISA on primary monocytes and T cells under microgravity. We have discovered that carbon nanotubes, through their immunostimulatory properties, are able to fight spaceflight immune system dysregulations.
Collapse
Affiliation(s)
- Claudia Crescio
- Dipartimento di Scienze Biomediche, Università degli studi di Sassari, 07100 Sassari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun 2014; 39:23-32. [PMID: 24462949 DOI: 10.1016/j.bbi.2014.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 11/24/2022] Open
Abstract
Recent data indicates that dysregulation of the immune system occurs and persists during spaceflight. Impairment of immunity, especially in conjunction with elevated radiation exposure and limited clinical care, may increase certain health risks during exploration-class deep space missions (i.e. to an asteroid or Mars). Research must thoroughly characterize immune dysregulation in astronauts to enable development of a monitoring strategy and validate any necessary countermeasures. Although the International Space Station affords an excellent platform for on-orbit research, access may be constrained by technical, logistical vehicle or funding limitations. Therefore, terrestrial spaceflight analogs will continue to serve as lower cost, easier access platforms to enable basic human physiology studies. Analog work can triage potential in-flight experiments and thus result in more focused on-orbit studies, enhancing overall research efficiency. Terrestrial space analogs generally replicate some of the physiological or psychological stress responses associated with spaceflight. These include the use of human test subjects in a laboratory setting (i.e. exercise, bed rest, confinement, circadian misalignment) and human remote deployment analogs (Antarctica winterover, undersea, etc.) that incorporate confinement, isolation, extreme environment, physiological mission stress and disrupted circadian rhythms. While bed rest has been used to examine the effects of physical deconditioning, radiation and microgravity may only be simulated in animal or microgravity cell culture (clinorotation) analogs. This article will characterize the array of terrestrial analogs for spaceflight immune dysregulation, the current evidence base for each, and interpret the analog catalog in the context of acute and chronic stress.
Collapse
|
26
|
Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 2014; 9:e97257. [PMID: 24827152 PMCID: PMC4020785 DOI: 10.1371/journal.pone.0097257] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
HIV infection is not cleared by antiretroviral drugs due to the presence of latently infected cells that are not eliminated with current therapies and persist in the blood and organs of infected patients. New compounds to activate these latent reservoirs have been evaluated so that, along with HAART, they can be used to activate latent virus and eliminate the latently infected cells resulting in eradication of viral infection. Here we describe three novel diterpenes isolated from the sap of Euphorbia tirucalli, a tropical shrub. These molecules, identified as ingenols, were modified at carbon 3 and termed ingenol synthetic derivatives (ISD). They activated the HIV-LTR in reporter cell lines and human PBMCs with latent virus in concentrations as low as 10 nM. ISDs were also able to inhibit the replication of HIV-1 subtype B and C in MT-4 cells and human PBMCs at concentrations of EC50 0.02 and 0.09 µM respectively, which are comparable to the EC50 of some antiretroviral currently used in AIDS treatment. Control of viral replication may be caused by downregulation of surface CD4, CCR5 and CXCR4 observed after ISD treatment in vitro. These compounds appear to be less cytotoxic than other diterpenes such as PMA and prostratin, with effective dose versus toxic dose TI>400. Although the mechanisms of action of the three ISDs are primarily attributed to the PKC pathway, downregulation of surface receptors and stimulation of the viral LTR might be differentially modulated by different PKC isoforms.
Collapse
|
27
|
Crucian BE, Zwart SR, Mehta S, Uchakin P, Quiriarte HD, Pierson D, Sams CF, Smith SM. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res 2014; 34:778-86. [PMID: 24702175 DOI: 10.1089/jir.2013.0129] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected 3 times before flight, 3-5 times during flight (depending on mission duration), at landing, and 30 days after landing. Analysis was performed by bead array immunoassay. With few exceptions, minimal detectable mean plasma concentrations were observed at baseline (launch minus 180) for innate inflammatory cytokines or adaptive regulatory cytokines; however, interleukin (IL)-1ra and several chemokines and growth factors were constitutively present. An increase in the plasma concentration, tumor necrosis factor-α (TNFα), IL-8, IL-1ra, thrombopoietin (Tpo), vascular endothelial growth factor (VEGF), C-C motif chemokine ligand 2 (CCL2), chemokine ligand 4/macrophage inhibitory protein 1b (CCL4), and C-X-C motif chemokine 5/epithelial neutrophil-activating protein 78 (CXCL5) was observed associated with spaceflight. No significant alterations were observed during or following spaceflight for the inflammatory or adaptive/T-regulatory cytokines: IL-1α, IL-1β, IL-2, interferon-gamma (IFN-γ), IL-17, IL-4, IL-5, IL-10, G-CSF, GM-CSF, FGF basic, CCL3, or CCL5. This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis, and thrombocyte regulation.
Collapse
|
28
|
Luo H, Wang C, Feng M, Zhao Y. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int J Med Sci 2014; 11:87-96. [PMID: 24396290 PMCID: PMC3880995 DOI: 10.7150/ijms.7651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decline immune function is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. Though T cell immune response was inhibited by microgravity, it is not clearly whether activation would be inhibited after a pre-exposure of microgravity on T lymphocytes at the resting state. METHODS We herein investigated the response ability of resting CD4⁺ and CD8⁺ T cells experiencing pre-exposure of modeled microgravity (MMg) for 0, 8, 16 and 24 hrs to concanavalin A (ConA) stimulation. The phenotypes and subsets of immune cells were determined by flow cytometry. RESULTS Both CD4⁺ and CD8⁺ T cells with an MMg pre-exposure exhibited decreased expressions of activation-markers including CD25, CD69 and CD71, inflammatory cytokine secretion and cell proliferation in response to ConA compared with T cells with 1g controls in an MMg exposure time- dependent manner. Moreover, short term MMg treatment caused more severe decreased proliferation in CD4⁺ T cells than in CD8⁺ T cells. CONCLUSIONS MMg can directly impact on resting T cell subsets. CD4⁺ T cells were more sensitive to the microgravity inhibition than CD8⁺ T cells in respect of cell proliferation. These results offered new insights for the MMg-caused T cell functional defects.
Collapse
Affiliation(s)
- Haiying Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chongzhen Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meifu Feng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Wan Q, Cho E, Yokota H, Na S. RhoA GTPase interacts with beta-catenin signaling in clinorotated osteoblasts. J Bone Miner Metab 2013; 31:520-32. [PMID: 23529802 PMCID: PMC4030391 DOI: 10.1007/s00774-013-0449-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/22/2013] [Indexed: 01/16/2023]
Abstract
Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. The β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss. In this study, we addressed a question: Does unloading suppress an activation level of RhoA GTPase and β-catenin signaling in osteoblasts? If yes, what is the role of RhoA GTPase and actin filaments in osteoblasts in regulating β-catenin signaling? Using a fluorescence resonance energy transfer (FRET) technique with a biosensor for RhoA together with a fluorescent T cell factor/lymphoid enhancer factor (TCF/LEF) reporter, we examined the effects of clinostat-driven simulated unloading. The results revealed that both RhoA activity and TCF/LEF activity were downregulated by unloading. Reduction in RhoA activity was correlated to a decrease in cytoskeletal organization of actin filaments. Inhibition of β-catenin signaling blocked unloading-induced RhoA suppression, and dominant negative RhoA inhibited TCF/LEF suppression. On the other hand, a constitutively active RhoA enhanced unloading-induced reduction of TCF/LEF activity. The TCF/LEF suppression by unloading was enhanced by co-culture with osteocytes, but it was independent on the organization of actin filaments, myosin II activity, or a myosin light chain kinase. Collectively, the results suggest that β-catenin signaling is required for unloading-driven regulation of RhoA, and RhoA, but not actin cytoskeleton or intracellular tension, mediates the responsiveness of β-catenin signaling to unloading.
Collapse
Affiliation(s)
| | | | | | - Sungsoo Na
- Corresponding author. Sungsoo Na, PhD, Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL220G, Indianapolis, IN 46202, USA, Phone: 1-317-278-2384, Fax: 1-317-278-2455,
| |
Collapse
|
30
|
Chapes SK, Ortega MT. Understanding macrophage differentiation during space flight: The importance of ground-based experiments before space flight. ACTA ACUST UNITED AC 2013; 3:40-47. [PMID: 24432200 DOI: 10.2174/18776116112029990011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In preparation for a space flight on STS-126, two in vitro culture systems were used to investigate macrophage colony stimulating factor-dependent macrophage differentiation from mouse primary bone marrow cells. The patented Techshot Cell Cult Bioreactor and the BioServe Fluid Processing Apparatus (FPA) were operated in different orientations to determine their impact on macrophage growth and differentiation. Bone marrow cell parameters were determined after cells were grown in FPAs incubated at 37°C in vertical or horizontal orientations, and macrophage cell recovery was significantly higher from FPAs that were incubated in the horizontal orientation compared to "vertical" FPAs. Similarly, when bone marrow cells were grown in the Techshot bioreactor, there were significant differences in the numbers of macrophages recovered after 7 days, depending on movement and orientation of the bioreactor. Macrophage recovery was highest when the patented bioreactor was rotated in the horizontal, x-axis plane (merry-go-round fashion) compared to static and vertically, y-axis plane rotated (Ferris wheel fashion) bioreactors. In addition, the expression of F4/80 and other differentiation markers varied depending on whether macrophages differentiated in FPAs or in bioreactors. After 7 days, significant differences in size, granularity and molecule expression were seen even when the same primary bone marrow cells were used to seed the cultures. These data show that culture outcomes are highly dependent on the culture device and device orientation. Moreover, the impact of the culture system needs to be understood in order to interpret space flight data.
Collapse
|
31
|
Shikonin Suppresses Human T Lymphocyte Activation through Inhibition of IKK β Activity and JNK Phosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:379536. [PMID: 23762128 PMCID: PMC3670545 DOI: 10.1155/2013/379536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/30/2013] [Indexed: 11/24/2022]
Abstract
The key role of T cells has been elaborated in mediating immune responses and pathogenesis of human inflammatory and autoimmune conditions. In the current study the effect of shikonin, a compound isolated from a medicinal plant, on inhibition of T-cell activation was firstly examined by using primary human T lymphocytes isolated from buffy coat. Results showed that shikonin dose dependently suppressed T-cell proliferation, IL-2 and IFN-γ secretion, CD69 and CD25 expression, as well as cell cycle arrest activated by costimulation of PMA/ionomycin or OKT-3/CD28 monoclonal antibodies. Moreover, these inhibitory responses mediated by shikonin were found to be associated with suppression of the NF-κB signaling pathway via inhibition of the IKKα/β phosphorylation, IκB-α phosphorylation and degradation, and NF-κB nuclear translocation by directly decreasing IKKβ activity. Moreover, shikonin suppressed JNK phosphorylation in the MAPKs pathway of T cells. In this connection, we conclude that shikonin could suppress T lymphocyte activation through suppressing IKKβ activity and JNK signaling, which suggests that shikonin is valuable for further investigation as a potential immunosuppressive agent.
Collapse
|
32
|
Tauber S, Hauschild S, Crescio C, Secchi C, Paulsen K, Pantaleo A, Saba A, Buttron I, Thiel CS, Cogoli A, Pippia P, Ullrich O. Signal transduction in primary human T lymphocytes in altered gravity - results of the MASER-12 suborbital space flight mission. Cell Commun Signal 2013; 11:32. [PMID: 23651740 PMCID: PMC3653714 DOI: 10.1186/1478-811x-11-32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/18/2013] [Indexed: 01/03/2023] Open
Abstract
We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation / dephosphorylation of signal molecules and surface receptor dynamics.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Simons DM, Gardner EM, Lelkes PI. Sub-mitogenic phorbol myristate acetate co-stimulation rescues the PHA-induced activation of both naïve and memory T cells cultured in the rotating-wall vessel bioreactor. Cell Biol Int 2013; 33:882-6. [DOI: 10.1016/j.cellbi.2009.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 04/29/2009] [Indexed: 11/27/2022]
|
34
|
Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol 2012; 33:456-65. [PMID: 23100144 DOI: 10.1007/s10875-012-9824-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/11/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Post-flight data suggests immunity is dysregulated immediately following spaceflight, however this data may be influenced by the stress effects of high-G entry and readaptation to terrestrial gravity. It is unknown if immunity is altered during spaceflight. METHODS Blood samples were collected from 19 US Astronauts onboard the Space Shuttle ~24 h prior to landing and returned for terrestrial analysis. Assays consisted of leukocyte distribution, T cell blastogenesis and cytokine production profiles. RESULTS Most bulk leukocyte subsets (WBC, differential, lymphocyte subsets) were unaltered during spaceflight, but were altered following landing. CD8+ T cell subsets, including cytotoxic, central memory and senescent were altered during spaceflight. T cell early blastogenesis varied by culture mitogen. Functional responses to staphylococcal enterotoxin were reduced during and following spaceflight, whereas response to anti-CD3/28 antibodies was elevated post-flight. The level of virus specific T cells were generally unaltered, however virus specific T cell function was depressed both during and following flight. Plasma levels of IFNα, IFNγ, IL-1β, IL-4, IL-10, IL-12, and TNFα were significantly elevated in-flight, while IL-6 was significantly elevated at R + 0. Cytokine production profiles following mitogenic stimulation were significantly altered both during, and following spaceflight. Specifically, production of IFNγ, IL-17 and IL-10 were reduced, but production of TNFα and IL-8 were elevated during spaceflight. CONCLUSIONS This study indicates that specific parameters among leukocyte distribution, T cell function and cytokine production profiles are altered during flight. These findings distinguish in-flight dysregulation from stress-related alterations observed immediately following landing.
Collapse
|
35
|
Chang TT, Walther I, Li CF, Boonyaratanakornkit J, Galleri G, Meloni MA, Pippia P, Cogoli A, Hughes-Fulford M. The Rel/NF-κB pathway and transcription of immediate early genes in T cell activation are inhibited by microgravity. J Leukoc Biol 2012; 92:1133-45. [PMID: 22750545 DOI: 10.1189/jlb.0312157] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study tested the hypothesis that transcription of immediate early genes is inhibited in T cells activated in μg. Immunosuppression during spaceflight is a major barrier to safe, long-term human space habitation and travel. The goals of these experiments were to prove that μg was the cause of impaired T cell activation during spaceflight, as well as understand the mechanisms controlling early T cell activation. T cells from four human donors were stimulated with Con A and anti-CD28 on board the ISS. An on-board centrifuge was used to generate a 1g simultaneous control to isolate the effects of μg from other variables of spaceflight. Microarray expression analysis after 1.5 h of activation demonstrated that μg- and 1g-activated T cells had distinct patterns of global gene expression and identified 47 genes that were significantly, differentially down-regulated in μg. Importantly, several key immediate early genes were inhibited in μg. In particular, transactivation of Rel/NF-κB, CREB, and SRF gene targets were down-regulated. Expression of cREL gene targets were significantly inhibited, and transcription of cREL itself was reduced significantly in μg and upon anti-CD3/anti-CD28 stimulation in simulated μg. Analysis of gene connectivity indicated that the TNF pathway is a major early downstream effector pathway inhibited in μg and may lead to ineffective proinflammatory host defenses against infectious pathogens during spaceflight. Results from these experiments indicate that μg was the causative factor for impaired T cell activation during spaceflight by inhibiting transactivation of key immediate early genes.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thiel CS, Paulsen K, Bradacs G, Lust K, Tauber S, Dumrese C, Hilliger A, Schoppmann K, Biskup J, Gölz N, Sang C, Ziegler U, Grote KH, Zipp F, Zhuang F, Engelmann F, Hemmersbach R, Cogoli A, Ullrich O. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 2012; 10:1. [PMID: 22273506 PMCID: PMC3275513 DOI: 10.1186/1478-811x-10-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/24/2012] [Indexed: 02/02/2023] Open
Abstract
In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ. Spaceflight transcriptomes: unique responses to a novel environment. ASTROBIOLOGY 2012; 12:40-56. [PMID: 22221117 PMCID: PMC3264962 DOI: 10.1089/ast.2011.0696] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/08/2011] [Indexed: 05/20/2023]
Abstract
The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock-related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, Florida
| | | | | | | | - Yijun Sun
- University of Florida, Gainesville, Florida
| | | | | | | | | | - Robert J. Ferl
- Interdisciplinary Center for Biotechnology and Research, Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
38
|
Paul AL, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. ASTROBIOLOGY 2011; 11:743-58. [PMID: 21970703 DOI: 10.1089/ast.2011.0659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
39
|
Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton (Hoboken) 2011; 68:125-37. [PMID: 21246756 DOI: 10.1002/cm.20499] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Certain functions of immune cells in returning astronauts are known to be altered. A dramatic depression of the mitogenic in vitro activation of human lymphocytes was observed in low gravity. T-cell activation requires the interaction of different type of immune cells as T-lymphocytes and monocytes. Cell motility based on a continuous rearrangement of the cytoskeletal network within the cell is essential for cell-cell contacts. In this investigation on the International Space Station we studied the influence of low gravity on different cytoskeletal structures in adherent monocytes and their ability to migrate. J-111 monocytes were incubated on a colloid gold substrate attached to a cover slide. Migrating cells removed the colloid gold, leaving a track recording cell motility. A severe reduction of the motility of J-111 cells was found in low gravity compared to 1g in-flight and ground controls. Cell shape appeared more contracted, whereas the control cells showed the typical morphology of migrating monocytes, i.e., elongated and with pseudopodia. A qualitative and quantitative analysis of the structures of F-actin, β-tubulin and vinculin revealed that exposure of J-111 cells to low gravity affected the distribution of the different filaments and significantly reduced the fluorescence intensity of F-actin fibers. Cell motility relies on an intact structure of different cytoskeletal elements. The highly reduced motility of monocytes in low gravity must be attributed to the observed severe disruption of the cytoskeletal structures and may be one of the reasons for the dramatic depression of the in vitro activation of human lymphocytes.
Collapse
Affiliation(s)
- Maria Antonia Meloni
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Bai S, Li Y, Wang J, Zhai D, Kong Q, Liu Y, Liu X, Sun B, Xu J, Wang D, Wang G, Mu L, Xu X, Li H. Modeled Microgravity Suppressed Expansion of the MBP-specific T Lymphocytes of Rats with Experimental Autoimmune Encephalomyelitis. Immunol Invest 2011; 40:535-51. [DOI: 10.3109/08820139.2011.568032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Bascove M, Guéguinou N, Schaerlinger B, Gauquelin‐Koch G, Frippiat J. Decrease in antibody somatic hypermutation frequency under extreme, extended spaceflight conditions. FASEB J 2011; 25:2947-55. [DOI: 10.1096/fj.11-185215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Bascove
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| | - Nathan Guéguinou
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| | - Bérénice Schaerlinger
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| | | | - Jean‐Pol Frippiat
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| |
Collapse
|
42
|
Simons DM, Gardner EM, Lelkes PI. Intact T cell receptor signaling by CD4(+) T cells cultured in the rotating wall-vessel bioreactor. J Cell Biochem 2010; 109:1201-9. [PMID: 20127722 DOI: 10.1002/jcb.22502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T lymphocytes fail to proliferate or secrete cytokines in response to T cell receptor (TCR) agonists during culture in spaceflight or ground-based microgravity analogs such as rotating wall-vessel (RWV) bioreactors. In RWVs, these responses can be rescued by co-stimulation with sub-mitogenic doses of the diacyl glycerol (DAG) mimetic phorbol myristate acetate. Based on this result we hypothesized that TCR activation is abrogated in the RWV due to impaired DAG signaling downstream of the TCR. To test this hypothesis we compared TCR-induced signal transduction by primary, human, CD4(+) T cells in RWV, and static culture. Surprisingly, we found little evidence of impaired DAG signaling in the RWV. Upstream of DAG, the tyrosine phosphorylation of several key components of the TCR-proximal signal was not affected by culture in the RWV. Similarly, the phosphorylation and compartmentalization of ERK and the degradation of IkappaB were unchanged by culture in the RWV indicating that RAS- and PKC-mediated signaling downstream of DAG are also unaffected by simulated microgravity. We conclude from these data that TCR signaling through DAG remains intact during culture in the RWV, and that the loss of functional T cell activation in this venue derives from the affect of simulated microgravity on cellular processes that are independent of the canonical TCR pathway.
Collapse
Affiliation(s)
- D M Simons
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Bossone Bldg. Rm. 707, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J Leukoc Biol 2009; 86:1027-38. [DOI: 10.1189/jlb.0309167] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Martinelli L, Russomano T, dos Santos M, Falcao F, Bauer M, Machado A, Sundaresan A. Effect of microgravity on immune cell viability and proliferation. ACTA ACUST UNITED AC 2009; 28:85-90. [DOI: 10.1109/memb.2009.933572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Monici M, Fusi F, Paglierani M, Marziliano N, Cogoli A, Pratesi R, Bernabei PA. Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells. J Cell Biochem 2009; 98:65-80. [PMID: 16365883 DOI: 10.1002/jcb.20747] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gravity acts permanently on organisms as either static or dynamic stimulation. Understanding the influence of gravitational and mechanical stimuli on biological systems is an intriguing scientific problem. More than two decades of life science studies in low g, either real or modeled by clinostats, as well as experimentation with devices simulating different types of controlled mechanical stimuli, have shown that important biological functions are altered at the single cell level. Here, we show that the human leukemic line FLG 29.1, characterized as an osteoclastic precursor model, is directly sensitive to gravitational unloading, modeled by a random positioning machine (RPM). The phenotypic expression of cytoskeletal proteins, osteoclastic markers, and factors regulating apoptosis was investigated using histochemical and immunohistochemical methods, while the expression of the corresponding genes was analyzed using RT-PCR. A quantitative bone resorption assay was performed. Autofluorescence spectroscopy and imaging were applied to gain information on cell metabolism. The results show that modeled hypogravity may trigger both differentiation and apoptosis in FLG 29.1 cells. Indeed, when comparing RPM versus 1 x g cultures, in the former we found cytoskeletal alterations and a marked increase in apoptosis, but the surviving cells showed an osteoclastic-like morphology, overexpression of osteoclastic markers and the ability to resorb bone. In particular, the overexpression of both RANK and its ligand RANKL, maintained even after return to 1 x g conditions, is consistent with the firing of a differentiation process via a paracrine/autocrine mechanism.
Collapse
Affiliation(s)
- Monica Monici
- CEO--Center of Excellence in Optronics, L. Enrico Fermi 6, I-50125 Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Buravkova LB, Grigor'eva OV, Rykova MP, Grigor'ev AI. Cytotoxic activity of natural killer cells in vitro under microgravity. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2008; 421:275-7. [PMID: 18841814 DOI: 10.1134/s0012496608040169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe sh. 76 a, Moscow, 123007 Russia
| | | | | | | |
Collapse
|
47
|
Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS, Ferguson VL, Pecaut MJ. Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol (1985) 2008; 106:194-202. [PMID: 18988762 DOI: 10.1152/japplphysiol.91126.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3-6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3(+) T and CD19(+) B cell counts were low in spleens from the FLT group, whereas the number of NK1.1(+) natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-gamma, and macrophage inflammatory protein-1alpha were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Signal transduction in cells of the immune system in microgravity. Cell Commun Signal 2008; 6:9. [PMID: 18957108 PMCID: PMC2583999 DOI: 10.1186/1478-811x-6-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/28/2008] [Indexed: 01/03/2023] Open
Abstract
Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.
Collapse
|
49
|
Wabnitz GH, Köcher T, Lohneis P, Stober C, Konstandin MH, Funk B, Sester U, Wilm M, Klemke M, Samstag Y. Costimulation induced phosphorylation of L-plastin facilitates surface transport of the T cell activation molecules CD69 and CD25. Eur J Immunol 2007; 37:649-62. [PMID: 17294403 DOI: 10.1002/eji.200636320] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rearrangements in the actin cytoskeleton play a pivotal role for costimulation-induced formation of the immunological synapse and T cell activation. Yet, little is known about the actin-binding proteins that link costimulation to rearrangements in the actin cytoskeleton. Here we demonstrate that phosphorylation of the actin bundling protein L-plastin in response to costimulation through TCR/CD3 plus CD2 or CD28, respectively, is important for the activation of human peripheral blood T lymphocytes (PBT). Mass spectrometry and site-directed mutagenesis revealed that Ser5 represents the only phospho-acceptor site of L-plastin in PBT. Wild-type L-plastin (wt-LPL) and a non-phosphorylatable 5A-L-plastin (5A-LPL) equally relocalized to the immunological synapse between PBT and APC. Yet importantly, cells expressing 5A-LPL showed a significantly lower expression of the T cell activation molecules CD25 and CD69 on the cell surface than cells expressing wt-LPL. This effect is due to a failure in the transport of CD25 and CD69 to the cell surface since the total amount of these proteins within the cells remained unchanged. In conclusion, phosphorylation of the actin bundling protein L-plastin represents a so-far-unknown mechanism by which costimulation controls the transport of activation receptors to the T cell surface.
Collapse
Affiliation(s)
- Guido H Wabnitz
- Institute for Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Grimm D, Bauer J, Infanger M, Cogoli A. The use of the random positioning machine for the study of gravitational effects on signal transduction in mammalian cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|