1
|
Balasundaram A, Ramireddy S, S UK, D TK, Tayubi IA, Zayed H, C GPD. A new horizon in the phosphorylated sites of AGA: the structural impact of C163S mutation in aspartylglucosaminuria through molecular dynamics simulation. J Biomol Struct Dyn 2024; 42:4313-4324. [PMID: 37334725 DOI: 10.1080/07391102.2023.2220798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by insufficient aspartylglucosaminidase (AGA) activity leading to chronic neurodegeneration. We utilized the PhosphoSitePlus tool to identify the AGA protein's phosphorylation sites. The phosphorylation was induced on the specific residue of the three-dimensional AGA protein, and the structural changes upon phosphorylation were studied via molecular dynamics simulation. Furthermore, the structural behaviour of C163S mutation and C163S mutation with adjacent phosphorylation was investigated. We have examined the structural impact of phosphorylated forms and C163S mutation in AGA. Molecular dynamics simulations (200 ns) exposed patterns of deviation, fluctuation, and change in compactness of Y178 phosphorylated AGA protein (Y178-p), T215 phosphorylated AGA protein (T215-p), T324 phosphorylated AGA protein (T324-p), C163S mutant AGA protein (C163S), and C163S mutation with Y178 phosphorylated AGA protein (C163S-Y178-p). Y178-p, T215-p, and C163S mutation demonstrated an increase in intramolecular hydrogen bonds, leading to greater compactness of the AGA forms. Principle component analysis (PCA) and Gibbs free energy of the phosphorylated/C163S mutation structures exhibit transition in motion/orientation than Wild type (WT). T215-p may be more dominant among these than the other studied phosphorylated forms. It might contribute to hydrolyzing L-asparagine functioning as an asparaginase, thereby regulating neurotransmitter activity. This study revealed structural insights into the phosphorylation of Y178, T215, and T324 in AGA protein. Additionally, it exposed the structural changes of the C163S mutation and C163S-Y178-p of AGA protein. This research will shed light on a better understanding of AGA's phosphorylated mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sriroopreddy Ramireddy
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Iftikhar Aslam Tayubi
- Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Hua Z, Zhang J, Cheng W, Wang C, Zhao D. Ethanolic Extract from Seed Residues of Sea Buckthorn ( Hippophae rhamnoides L.) Ameliorates Oxidative Stress Damage and Prevents Apoptosis in Murine Cell and Aging Animal Models. Foods 2023; 12:3322. [PMID: 37685254 PMCID: PMC10487224 DOI: 10.3390/foods12173322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Hippophae rhamnoides L. has been widely used in research and application for almost two decades. While significant progress was achieved in the examination of its fruits and seeds, the exploration and utilization of its by-products have received relatively less attention. This study aims to address this research gap by investigating the effects and underlying mechanisms of sea buckthorn seed residues both in vitro and in vivo. The primary objective of this study is to assess the potential of the hydroalcoholic extract from sea buckthorn seed residues (HYD-SBSR) to prevent cell apoptosis and mitigate oxidative stress damage. To achieve this, an H2O2-induced B16F10 cell model and a D-galactose-induced mouse model were used. The H2O2-induced oxidative stress model using B16F10 cells was utilized to evaluate the cellular protective and reparative effects of HYD-SBSR. The results demonstrated the cytoprotective effects of HYD-SBSR, as evidenced by reduced apoptosis rates and enhanced resistance to oxidative stress alongside moderate cell repair properties. Furthermore, this study investigated the impact of HYD-SBSR on antioxidant enzymes and peroxides in mice to elucidate its reparative potential in vivo. The findings revealed that HYD-SBSR exhibited remarkable antioxidant performance, particularly at low concentrations, significantly enhancing antioxidant capacity under oxidative stress conditions. To delve into the mechanisms underlying HYD-SBSR, a comprehensive proteomics analysis was conducted to identify differentially expressed proteins (DEPs). Additionally, a Gene Ontology (GO) analysis and an Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis were performed to elucidate the functional roles of these DEPs. The outcomes highlighted crucial mechanistic pathways associated with HYD-SBSR, including the PPAR signaling pathway, fat digestion and absorption, glycerophospholipid metabolism, and cholesterol metabolism. The research findings indicated that HYD-SBSR, as a health food supplement, exhibits favorable effects by promoting healthy lipid metabolism, contributing to the sustainable and environmentally friendly production of sea buckthorn and paving the way for future investigations and applications in the field of nutraceutical and pharmaceutical research.
Collapse
Affiliation(s)
- Zhongjie Hua
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Jiachan Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Cheng
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| | - Dan Zhao
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Chen YH, Tian W, Yasuda M, Ye Z, Song M, Mandel U, Kristensen C, Povolo L, Marques ARA, Čaval T, Heck AJR, Sampaio JL, Johannes L, Tsukimura T, Desnick R, Vakhrushev SY, Yang Z, Clausen H. A universal GlycoDesign for lysosomal replacement enzymes to improve circulation time and biodistribution. Front Bioeng Biotechnol 2023; 11:1128371. [PMID: 36911201 PMCID: PMC9999025 DOI: 10.3389/fbioe.2023.1128371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Currently available enzyme replacement therapies for lysosomal storage diseases are limited in their effectiveness due in part to short circulation times and suboptimal biodistribution of the therapeutic enzymes. We previously engineered Chinese hamster ovary (CHO) cells to produce α-galactosidase A (GLA) with various N-glycan structures and demonstrated that elimination of mannose-6-phosphate (M6P) and conversion to homogeneous sialylated N-glycans prolonged circulation time and improved biodistribution of the enzyme following a single-dose infusion into Fabry mice. Here, we confirmed these findings using repeated infusions of the glycoengineered GLA into Fabry mice and further tested whether this glycoengineering approach, Long-Acting-GlycoDesign (LAGD), could be implemented on other lysosomal enzymes. LAGD-engineered CHO cells stably expressing a panel of lysosomal enzymes [aspartylglucosamine (AGA), beta-glucuronidase (GUSB), cathepsin D (CTSD), tripeptidyl peptidase (TPP1), alpha-glucosidase (GAA) or iduronate 2-sulfatase (IDS)] successfully converted all M6P-containing N-glycans to complex sialylated N-glycans. The resulting homogenous glycodesigns enabled glycoprotein profiling by native mass spectrometry. Notably, LAGD extended the plasma half-life of all three enzymes tested (GLA, GUSB, AGA) in wildtype mice. LAGD may be widely applicable to lysosomal replacement enzymes to improve their circulatory stability and therapeutic efficacy.
Collapse
Affiliation(s)
- Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,GlycoDisplay ApS, Copenhagen, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Song
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tomislav Čaval
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Julio Lopes Sampaio
- Institut Curie, PSL Research University, Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Takahiro Tsukimura
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Functional Bioanalysis, Meiji Pharmaceutical University, Tokyo, Japan
| | - Robert Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk AS, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Zárybnický T, Heikkinen A, Kangas SM, Karikoski M, Martínez-Nieto GA, Salo MH, Uusimaa J, Vuolteenaho R, Hinttala R, Sipilä P, Kuure S. Modeling Rare Human Disorders in Mice: The Finnish Disease Heritage. Cells 2021; 10:cells10113158. [PMID: 34831381 PMCID: PMC8621025 DOI: 10.3390/cells10113158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022] Open
Abstract
The modification of genes in animal models has evidently and comprehensively improved our knowledge on proteins and signaling pathways in human physiology and pathology. In this review, we discuss almost 40 monogenic rare diseases that are enriched in the Finnish population and defined as the Finnish disease heritage (FDH). We will highlight how gene-modified mouse models have greatly facilitated the understanding of the pathological manifestations of these diseases and how some of the diseases still lack proper models. We urge the establishment of subsequent international consortiums to cooperatively plan and carry out future human disease modeling strategies. Detailed information on disease mechanisms brings along broader understanding of the molecular pathways they act along both parallel and transverse to the proteins affected in rare diseases, therefore also aiding understanding of common disease pathologies.
Collapse
Affiliation(s)
- Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
| | - Anne Heikkinen
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
| | - Salla M. Kangas
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Marika Karikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
| | - Guillermo Antonio Martínez-Nieto
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Miia H. Salo
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Clinic for Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, P.O. Box 20, 90029 Oulu, Finland
| | - Reetta Vuolteenaho
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland; (A.H.); (S.M.K.); (M.H.S.); (R.V.)
- PEDEGO Research Unit, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland;
- Medical Research Center, Oulu University Hospital, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (M.K.); (G.A.M.-N.)
- Turku Center for Disease Modelling (TCDM), Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (R.H.); (P.S.); (S.K.)
| |
Collapse
|
5
|
Chen X, Snanoudj-Verber S, Pollard L, Hu Y, Cathey SS, Tikkanen R, Gray SJ. Pre-clinical Gene Therapy with AAV9/AGA in Aspartylglucosaminuria Mice Provides Evidence for Clinical Translation. Mol Ther 2020; 29:989-1000. [PMID: 33186692 PMCID: PMC7934581 DOI: 10.1016/j.ymthe.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disease caused by loss of the enzyme aspartylglucosaminidase (AGA), resulting in AGA substrate accumulation. AGU patients have a slow but progressive neurodegenerative disease course, for which there is no approved disease-modifying treatment. In this study, AAV9/AGA was administered to Aga−/− mice intravenously (i.v.) or intrathecally (i.t.), at a range of doses, either before or after disease pathology begins. At either treatment age, AAV9/AGA administration led to (1) dose dependently increased and sustained AGA activity in body fluids and tissues; (2) rapid, sustained, and dose-dependent elimination of AGA substrate in body fluids; (3) significantly rescued locomotor activity; (4) dose-dependent preservation of Purkinje neurons in the cerebellum; and (5) significantly reduced gliosis in the brain. Treated mice had no abnormal neurological phenotype and maintained body weight throughout the whole experiment to 18 months old. In summary, these results demonstrate that treatment of Aga−/− mice with AAV9/AGA is effective and safe, providing strong evidence that AAV9/AGA gene therapy should be considered for human translation. Further, we provide a direct comparison of the efficacy of an i.v. versus i.t. approach using AAV9, which should greatly inform the development of similar treatments for other related lysosomal storage diseases.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | | | | | - Yuhui Hu
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA
| | | | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - Steven J Gray
- Department of Pediatrics, UTSW Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Naumchik BM, Gupta A, Flanagan-Steet H, Steet RA, Cathey SS, Orchard PJ, Lund TC. The Role of Hematopoietic Cell Transplant in the Glycoprotein Diseases. Cells 2020; 9:cells9061411. [PMID: 32517081 PMCID: PMC7348849 DOI: 10.3390/cells9061411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The glycoprotein disorders are a group of lysosomal storage diseases (α-mannosidosis, aspartylglucosaminuria, β-mannosidosis, fucosidosis, galactosialidosis, sialidosis, mucolipidosis II, mucolipidosis III, and Schindler Disease) characterized by specific lysosomal enzyme defects and resultant buildup of undegraded glycoprotein substrates. This buildup causes a multitude of abnormalities in patients including skeletal dysplasia, inflammation, ocular abnormalities, liver and spleen enlargement, myoclonus, ataxia, psychomotor delay, and mild to severe neurodegeneration. Pharmacological treatment options exist through enzyme replacement therapy (ERT) for a few, but therapies for this group of disorders is largely lacking. Hematopoietic cell transplant (HCT) has been explored as a potential therapeutic option for many of these disorders, as HCT introduces functional enzyme-producing cells into the bone marrow and blood along with the engraftment of healthy donor cells in the central nervous system (presumably as brain macrophages or a type of microglial cell). The outcome of HCT varies widely by disease type. We report our institutional experience with HCT as well as a review of the literature to better understand HCT and outcomes for the glycoprotein disorders.
Collapse
Affiliation(s)
- Brianna M. Naumchik
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA; (B.M.N.); (A.G.); (P.J.O.)
| | - Ashish Gupta
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA; (B.M.N.); (A.G.); (P.J.O.)
| | | | - Richard A. Steet
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (H.F.-S.); (R.A.S.); (S.S.C.)
| | - Sara S. Cathey
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (H.F.-S.); (R.A.S.); (S.S.C.)
| | - Paul J. Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA; (B.M.N.); (A.G.); (P.J.O.)
| | - Troy C. Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN 55455, USA; (B.M.N.); (A.G.); (P.J.O.)
- Correspondence: ; Tel.: +612-625-4185
| |
Collapse
|
7
|
Ou L, Przybilla MJ, Ahlat O, Kim S, Overn P, Jarnes J, O'Sullivan MG, Whitley CB. A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Mol Ther 2020; 28:1442-1454. [PMID: 32278382 PMCID: PMC7264433 DOI: 10.1016/j.ymthe.2020.03.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/06/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Our previous study delivered zinc finger nucleases to treat mice with mucopolysaccharidosis type I (MPS I), resulting in a phase I/II clinical trial (ClinicalTrials.gov: NCT02702115). However, in the clinical trial, the efficacy needs to be improved due to the low transgene expression level. To this end, we designed a proprietary system (PS) gene editing approach with CRISPR to insert a promoterless α-l-iduronidase (IDUA) cDNA sequence into the albumin locus of hepatocytes. In this study, adeno-associated virus 8 (AAV8) vectors delivering the PS gene editing system were injected into neonatal and adult MPS I mice. IDUA enzyme activity in the brain significantly increased, while storage levels were normalized. Neurobehavioral tests showed that treated mice had better memory and learning ability. Also, histological analysis showed efficacy reflected by the absence of foam cells in the liver and vacuolation in neuronal cells. No vector-associated toxicity or increased tumorigenesis risk was observed. Moreover, no off-target effects were detected through the unbiased genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) analysis. In summary, these results showed the safety and efficacy of the PS in treating MPS I and paved the way for clinical studies. Additionally, as a therapeutic platform, the PS has the potential to treat other lysosomal diseases.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Michael J Przybilla
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ozan Ahlat
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Sarah Kim
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paula Overn
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Jeanine Jarnes
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, University of Minnesota Masonic Cancer Center, Saint Paul, MN 55108, USA
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther 2020; 27:226-236. [PMID: 31896760 PMCID: PMC7260097 DOI: 10.1038/s41434-019-0120-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022]
Abstract
The GM2-gangliosidoses are neurological diseases causing premature death, thus developing effective treatment protocols is urgent. GM2-gangliosidoses result from deficiency of a lysosomal enzyme β-hexosaminidase (Hex) and subsequent accumulation of GM2 gangliosides. Genetic changes in HEXA, encoding the Hex α subunit, or HEXB, encoding the Hex β subunit, causes Tay-Sachs disease and Sandhoff disease, respectively. Previous studies have showed that a modified human Hex μ subunit (HEXM) can treat both Tay-Sachs and Sandhoff diseases by forming a homodimer to degrade GM2 gangliosides. To this end, we applied this HEXM subunit in our PS813 gene editing system to treat neonatal Sandhoff mice. Through AAV delivery of the CRISPR system, a promoterless HEXM cDNA will be integrated into the albumin safe harbor locus, and lysosomal enzyme will be expressed and secreted from edited hepatocytes. Four months after the i.v. of AAV vectors, plasma MUGS and MUG activities reached up to 144- and 17-fold of wildtype levels (n=10, p<0.0001), respectively. More importantly, MUGS and MUG activities in the brain also increased significantly compared with untreated Sandhoff mice (p<0.001). Further, HPLC-MS/MS analysis showed that GM2 gangliosides in multiple tissues, except the brain, of treated mice were reduced to normal levels. Rotarod analysis showed that coordination and motor memory of treated mice were improved (p<0.05). Histological analysis of H&E stained tissues showed reduced cellular vacuolation in the brain and liver of treated Sandhoff mice. These results demonstrate the potential of developing a treatment of in vivo genome editing for Tay-Sachs and Sandhoff patients.
Collapse
|
9
|
Gustavsson S, Ohlin Sjöström E, Tjernberg A, Janson J, Westermark U, Andersson T, Makower Å, Arnelöf E, Andersson G, Svartengren J, Ekholm C, Svensson Gelius S. Intravenous delivery of a chemically modified sulfamidase efficiently reduces heparan sulfate storage and brain pathology in mucopolysaccharidosis IIIA mice. Mol Genet Metab Rep 2019; 21:100510. [PMID: 31528541 PMCID: PMC6737345 DOI: 10.1016/j.ymgmr.2019.100510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) characterized by severe central nervous system (CNS) degeneration. The disease is caused by mutations in the SGSH gene coding for the lysosomal enzyme sulfamidase. Sulfamidase deficiency leads to accumulation of heparan sulfate (HS), which triggers aberrant cellular function, inflammation and eventually cell death. There is currently no available treatment against MPS IIIA. In the present study, a chemically modified recombinant human sulfamidase (CM-rhSulfamidase) with disrupted glycans showed reduced glycan receptor mediated endocytosis, indicating a non-receptor mediated uptake in MPS IIIA patient fibroblasts. Intracellular enzymatic activity and stability was not affected by chemical modification. After intravenous (i.v.) administration in mice, CM-rhSulfamidase showed a prolonged exposure in plasma and distributed to the brain, present both in vascular profiles and in brain parenchyma. Repeated weekly i.v. administration resulted in a dose- and time-dependent reduction of HS in CNS compartments in a mouse model of MPS IIIA. The reduction in HS was paralleled by improvements in lysosomal pathology and neuroinflammation. Behavioral deficits in the MPS IIIA mouse model were apparent in the domains of exploratory behavior, neuromuscular function, social- and learning abilities. CM-rhSulfamidase treatment improved activity in the open field test, endurance in the wire hanging test, sociability in the three-chamber test, whereas other test parameters trended towards improvements. The unique properties of CM-rhSulfamidase described here strongly support the normalization of clinical symptoms, and this candidate drug is therefore currently undergoing clinical studies evaluating safety and efficacy in patients with MPS IIIA.
Collapse
Key Words
- ADA, Anti-drug antibody
- AF, Autofluorescence
- BBB, Blood-brain barrier
- CHO, Chinese hamster ovarian
- CM-rhSulfamidase, Chemically modified recombinant human sulfamidase
- CNS, Central nervous system
- CPM, Chlorpheniramine maleate
- ECL, Electrochemiluminescence
- ERT, Recombinant enzyme replacement therapy
- Enzyme replacement therapy
- GFAP, Glial fibrillary acidic protein
- HS, Heparan sulfate
- Heparan sulfate
- LC-MS, Liquid chromatography-mass spectrometry
- LC-MS/MS, Liquid chromatography-tandem mass spectrometry
- LIMPII, Lysosomal integral membrane protein II
- LSD, Lysosomal storage disease
- M6P, Mannose 6-phosphate
- MPS IIIA, Mucopolysaccharidosis type IIIA
- MSD-ECL, Meso scale discovery electrochemiluminescence
- MTX, Methotrexate
- Mucopolysaccharidosis IIIA
- Neuroinflammation
- PBS, Phosphate buffered saline
- PFA, Paraformaldehyde
- PK, Pharmacokinetic
- RT, Room temperature
- SEC, Size exclusion chromatography
- SEM, Standard error of mean
- Sanfilippo
- Sulfamidase
- TFA, Trifluoroacetic acid
- WT, Wild type
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Stefan Svensson Gelius
- Research & Translational Science Unit, Swedish Orphan Biovitrum AB (publ), Stockholm, Sweden
| |
Collapse
|
10
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Stroobants S, Damme M, Van der Jeugd A, Vermaercke B, Andersson C, Fogh J, Saftig P, Blanz J, D'Hooge R. Long-term enzyme replacement therapy improves neurocognitive functioning and hippocampal synaptic plasticity in immune-tolerant alpha-mannosidosis mice. Neurobiol Dis 2017; 106:255-268. [PMID: 28720484 DOI: 10.1016/j.nbd.2017.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 01/22/2023] Open
Abstract
Alpha-mannosidosis is a glycoproteinosis caused by deficiency of lysosomal acid alpha-mannosidase (LAMAN), which markedly affects neurons of the central nervous system (CNS), and causes pathognomonic intellectual dysfunction in the clinical condition. Cognitive improvement consequently remains a major therapeutic objective in research on this devastating genetic error. Immune-tolerant LAMAN knockout mice were developed to evaluate the effects of enzyme replacement therapy (ERT) by prolonged administration of recombinant human enzyme. Biochemical evidence suggested that hippocampus may be one of the brain structures that benefits most from long-term ERT. In the present functional study, ERT was initiated in 2-month-old immune-tolerant alpha-mannosidosis mice and continued for 9months. During the course of treatment, mice were trained in the Morris water maze task to assess spatial-cognitive performance, which was related to synaptic plasticity recordings and hippocampal histopathology. Long-term ERT reduced primary substrate storage and neuroinflammation in hippocampus, and improved spatial learning after mid-term (10weeks+) and long-term (30weeks+) treatment. Long-term treatment substantially improved the spatial-cognitive abilities of alpha-mannosidosis mice, whereas the effects of mid-term treatment were more modest. Detailed analyses of spatial memory and spatial-cognitive performance indicated that even prolonged ERT did not restore higher cognitive abilities to the level of healthy mice. However, it did demonstrate marked therapeutic effects that coincided with increased synaptic connectivity, reflected by improvements in hippocampal CA3-CA1 long-term potentiation (LTP), expression of postsynaptic marker PSD-95 as well as postsynaptic density morphology. These experiments indicate that long-term ERT may hold promise, not only for the somatic defects of alpha-mannosidosis, but also to alleviate cognitive impairments of the disorder.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | - Ben Vermaercke
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| | | | - Jens Fogh
- Zymenex A/S, Roskildevej 12C, 3400 Hillerød, Denmark.
| | - Paul Saftig
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Judith Blanz
- Institute of Biochemistry, University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
White Matter Microstructure and Subcortical Gray Matter Structure Volumes in Aspartylglucosaminuria; a 5-Year Follow-up Brain MRI Study of an Adolescent with Aspartylglucosaminuria and His Healthy Twin Brother. JIMD Rep 2017; 35:105-115. [PMID: 28185224 DOI: 10.1007/8904_2016_36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Aspartylglucosaminuria is an inherited, lysosomal storage disease causing progressive decline in cognitive and motor functions. The aim of this study was to evaluate volumes of subcortical gray matter structures and white matter microstructure in aspartylglucosaminuria in adolescence in a longitudinal study for the first time. METHODS A boy with aspartylglucosaminuria and his healthy twin brother were imaged twice with a 3.0 T MRI scanner at the ages of 10 and 15 years. Subcortical gray matter structure volumes were measured using an atlas-based automatic method, and diffusion tensor imaging was used to evaluate the white matter microstructure of the corpus callosum and the thalamocortical pulvinar tracts. RESULTS The subcortical gray matter structures were smaller at onset and diminished at follow-up in the affected twin, with the exception of the amygdala which was larger and remained the size. The largest difference in volume between the twins was found in the thalami. The total gray and white matter volumes decreased in the affected twin. In diffusion tensor imaging analysis, the fractional anisotropy was decreased at onset in the affected twin compared to the healthy brother in the evaluated tracts. The axial, radial and mean diffusivity values were increased in the affected twin. The difference between the twins increased slightly at follow-up. INTERPRETATION The findings suggest that volumetric measurements and diffusion tensor imaging based microstructural analysis may be useful modalities for monitoring disease progression and response to emerging treatment in aspartylglucosaminuria, but further studies with more subjects are necessary to confirm the results.
Collapse
|
13
|
Abstract
Aspartylglucosaminuria (AGU), a recessively inherited lysosomal storage disease, is the most common disorder of glycoprotein degradation with a high prevalence in the Finnish population. It is a lifelong condition affecting on the patient's appearance, cognition, adaptive skills, physical growth, personality, body structure, and health. An infantile growth spurt and development of macrocephalia associated to hernias and respiratory infections are the key signs to an early identification of AGU. Progressive intellectual and physical disability is the main symptom leading to death usually before the age of 50 years.The disease is caused by the deficient activity of the lysosomal enzyme glycosylasparaginase (aspartylglucosaminidase, AGA), which leads to a disorder in the degradation of glycoasparagines - aspartylglucosamine or other glycoconjugates with an aspartylglucosamine moiety at their reducing end - and accumulation of these undegraded glycoasparagines in tissues and body fluids. A single nucleotide change in the AGA gene resulting in a cysteine to serine substitution (C163S) in the AGA enzyme protein causes the deficiency of the glycosylasparaginase activity in the Finnish population. Homozygosity for the single nucleotide change causing the C163S mutation is responsible for 98% of the AGU cases in Finland simplifying the carrier detection and prenatal diagnosis of the disorder in the Finnish population. A mouse strain, which completely lacks the Aga activity has been generated through targeted disruption of the Aga gene in embryonic stem cells. These Aga-deficient mice share most of the clinical, histopathologic and biochemical characteristics of human AGU disease. Treatment of AGU mice with recombinant AGA resulted in rapid correction of the pathophysiologic characteristics of AGU in non-neuronal tissues of the animals. The accumulation of aspartylglucosamine was reduced by up to 40% in the brain tissue of the animals depending on the age of the animals and the therapeutic protocol. Enzyme replacement trials on human AGU patients have not been reported so far. Allogenic stem cell transplantation has not proved effective in curing AGU.
Collapse
Affiliation(s)
- Maria Arvio
- Päijät-Häme Social Welfare & Healthcare Joint Municipal Board, Lahti, Finland. .,KTO, The Special Welfare District of Southwestern Finland, Paimio, Finland. .,PEDEGO Research Unit, Oulu University Hospital, Finland, Oulu, Finland.
| | - Ilkka Mononen
- Newborn Screening Center Finland, Saske, Turku University Central Hospital, Turku, Finland.,The Joint Clinical Chemistry Laboratory at Turku University Hospital, Turku, Finland.,Department of Clinical Chemistry, University of Turku, PO Box 52, FIN-20521, Turku, Finland
| |
Collapse
|
14
|
Urayama A, Grubb JH, Sly WS, Banks WA. Pharmacologic manipulation of lysosomal enzyme transport across the blood-brain barrier. J Cereb Blood Flow Metab 2016; 36:476-86. [PMID: 26661222 PMCID: PMC4794098 DOI: 10.1177/0271678x15614589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Abstract
The adult blood-brain barrier, unlike the neonatal blood-brain barrier, does not transport lysosomal enzymes into brain, making enzyme replacement therapy ineffective in treating the central nervous system symptoms of lysosomal storage diseases. However, enzyme transport can be re-induced with alpha-adrenergics. Here, we examined agents that are known to alter the blood-brain barrier transport of large molecules or to induce lysosomal enzyme transport across the blood-brain barrier ((±)epinephrine, insulin, retinoic acid, and lipopolysaccharide) in 2-week-old and adult mice. In 2-week-old adolescent mice, all these pharmacologic agents increased brain and heart uptake of phosphorylated human β-glucuronidase. In 8-week-old adult mice, manipulations with (±)epinephrine, insulin, and retinoic acid were significantly effective on uptake by brain and heart. The increased uptake of phosphorylated human β-glucuronidase was inhibited by mannose 6-phosphate for the agents (±)epinephrine and retinoic acid and by L-NG-nitroarginine methyl ester for the agent lipopolysaccharide in neonatal and adult mice. An in situ brain perfusion study revealed that retinoic acid directly modulated the transport of phosphorylated human β-glucuronidase across the blood-brain barrier. The present study indicates that there are multiple opportunities to at least transiently induce phosphorylated human β-glucuronidase transport at the adult blood-brain barrier.
Collapse
Affiliation(s)
- Akihiko Urayama
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX, USA
| | - Jeffrey H Grubb
- Lysosomal Research, Ultragenyx Pharmaceutical Inc., Novato, CA, USA Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
15
|
Tylki-Szymańska A, Jurecka A. Prospective therapies for mucopolysaccharidoses. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1089167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Cho SY, Lee J, Ko AR, Kwak MJ, Kim S, Sohn YB, Park SW, Jin DK. Effect of systemic high dose enzyme replacement therapy on the improvement of CNS defects in a mouse model of mucopolysaccharidosis type II. Orphanet J Rare Dis 2015; 10:141. [PMID: 26520066 PMCID: PMC4628320 DOI: 10.1186/s13023-015-0356-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Mucopolysaccharidosis type II (MPS II, Hunter syndrome), is caused by a deficiency of iduronate-2-sulfatase (IDS). Despite the therapeutic effect of intravenous enzyme replacement therapy (ERT), the central nervous system (CNS) defects persist because the enzyme cannot cross the blood-brain barrier (BBB). There have been several trials of direct infusion to the cerebrospinal space showing promising results; however, this approach may have limitations in clinical situations such as CNS infection. The objective of this study was to improve the CNS defect with systemic high-dose ERT. Methods Systemic ERT was performed using three doses (1, 5, and 10 mg/kg weekly) of IDS for three different durations (1, 3, and 6 months) in IDS knock out (KO) mice of two age groups (2 months, 8 months). GAG measurement in tissues, brain pathology, and behavioral assessment were analyzed. Results Brain IDS activities increased in parallel with the concentrations of IDS injected. The glycosaminoglycan (GAG) level and histopathology in the brains of the young mice improved in a dose- and duration-dependent manner; however, those were not improved in the old mice, even at higher doses of IDS. The spontaneous alternation behavior was recovered in young KO mice treated with ≥ 5 mg/kg IDS; however, no significant improvement was observed in old KO mice. Conclusions These results suggest that high-dose ERT given to mice of earlier ages may play a role in preventing GAG accumulation and preventing CNS damage in IDS KO mice. Therefore, ERT above the present standard dose, starting in early childhood, could be a promising treatment regimen for reducing neurological impairment in Hunter syndrome. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0356-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Ah-Ra Ko
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Min Jung Kwak
- Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Sujin Kim
- Department of Pediatrics, Myongji Hospital, Seonam Univeristy College of Medicine, Goyang, Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics, Ajou University Hospital, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Won Park
- Department of Pediatrics, Dankook University College of Medicine, Cheil General Hospital & Woman's Health Care Center, Seoul, Republic of Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| |
Collapse
|
17
|
Damme M, Stroobants S, Lüdemann M, Rothaug M, Lüllmann-Rauch R, Beck HC, Ericsson A, Andersson C, Fogh J, D'Hooge R, Saftig P, Blanz J. Chronic enzyme replacement therapy ameliorates neuropathology in alpha-mannosidosis mice. Ann Clin Transl Neurol 2015; 2:987-1001. [PMID: 26817023 PMCID: PMC4693626 DOI: 10.1002/acn3.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The lysosomal storage disease alpha-mannosidosis is caused by the deficiency of the lysosomal acid hydrolase alpha-mannosidase (LAMAN) leading to lysosomal accumulation of neutral mannose-linked oligosaccharides throughout the body, including the brain. Clinical findings in alpha-mannosidosis include skeletal malformations, intellectual disabilities and hearing impairment. To date, no curative treatment is available. We previously developed a beneficial enzyme replacement therapy (ERT) regimen for alpha-mannosidase knockout mice, a valid mouse model for the human disease. However, humoral immune responses against the injected recombinant human alpha-mannosidase (rhLAMAN) precluded long-term studies and chronic treatment. METHODS Here, we describe the generation of an immune-tolerant alpha-mannosidosis mouse model that allowed chronic injection of rhLAMAN by transgenic expression of a catalytically inactive variant of human LAMAN in the knockout background. RESULTS Chronic ERT of rhLAMAN revealed pronounced effects on primary substrate storage throughout the brain, normalization of lysosomal enzyme activities and morphology as well as a decrease in microglia activation. The positive effect of long-term ERT on neuronal lysosomal function was reflected by an improvement of cognitive deficits and exploratory activity. in vivo and in vitro uptake measurements indicate rapid clearance of rhLAMAN from circulation and a broad uptake into different cell types of the nervous system. INTERPRETATION Our data contribute to the understanding of neurological disorders treatment by demonstrating that lysosomal enzymes such as rhLAMAN can penetrate into the brain and is able to ameliorate neuropathology.
Collapse
Affiliation(s)
- Markus Damme
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| | - Stijn Stroobants
- Laboratory of Biological Psychology University of Leuven B-3000 Leuven Belgium
| | - Meike Lüdemann
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| | | | | | - Hans Christian Beck
- Department of Biochemistry and Pharmacology Centre for Clinical Proteomics Odense University Hospital Sdr Boulevard 29 DK-5000 Odense C Denmark
| | | | | | - Jens Fogh
- Zymenex A/S Roskildevej 12C 3400 Hillerød Denmark
| | - Rudi D'Hooge
- Laboratory of Biological Psychology University of Leuven B-3000 Leuven Belgium
| | - Paul Saftig
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| | - Judith Blanz
- Biochemical Institute University of Kiel D-24098 Kiel Germany
| |
Collapse
|
18
|
Abstract
Developing therapies for the brain is perhaps the greatest challenge facing modern medicine today. While a great many potential therapies show promise in animal models, precious few make it to approval or are even studied in human patients. The particular challenges to the translation of neurotherapeutics to the clinic are many, but a major barrier is difficulty in delivering therapeutics into the brain. The goal of this workshop was to present ways to deliver therapeutics to the brain, including the limitations of each method, and describe ways to track their delivery, safety, and efficacy. Solving the problem of delivery will aid translation of therapeutics for patients suffering from neurodegeneration and other disorders of the brain.
Collapse
Affiliation(s)
- Patricia I Dickson
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, HH1, Torrance, CA, 90502, USA,
| |
Collapse
|
19
|
Ou L, Herzog T, Koniar BL, Gunther R, Whitley CB. High-dose enzyme replacement therapy in murine Hurler syndrome. Mol Genet Metab 2014; 111:116-22. [PMID: 24100243 PMCID: PMC4014311 DOI: 10.1016/j.ymgme.2013.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/21/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disease that is systemic, including progressive neurodegeneration, mental retardation and death before the age of 10 years. MPS I results from deficiency of α-L-iduronidase (IDUA) in lysosomes and subsequent accumulation of glycosaminoglycans (GAG). Clinical enzyme replacement therapy (ERT) with intravenous laronidase reverses some aspects of MPS I disease (e.g., hepatomegaly, splenomegaly, glycosaminoglycanuria) and ameliorates others (e.g., pulmonary function, cardiac disease, arthropathy, exercise tolerance). However, neurologic benefits are thought to be negligible because the blood-brain barrier (BBB) blocks enzyme from reaching the central nervous system (CNS). We considered the possibility that a very high dose of intravenous laronidase might be able to traverse the BBB in small quantities, and provide some metabolic correction in the brain. To address this question, high-dose laronidase was administered (11.6 mg/kg, once per week, 4 weeks) to adult MPS I mice. IDUA enzyme activity in the cortex of treated mice increased to 97% of that in wild type mice (p<0.01). GAG levels in cortex were reduced by 63% of that from untreated MPS I mice (p<0.05). Further, immunohistochemical analysis showed that treatment reduced secondary GM3-ganglioside accumulation in treated MPS I mice. Water T-maze tests showed that the learning abnormality in MPS I mice was reduced (p<0.0001). In summary, repeated, high-dose ERT facilitated laronidase transit across the BBB, reduced GAG accumulation within the CNS, and rescued cognitive impairment.
Collapse
Affiliation(s)
- Li Ou
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA
| | - Tyler Herzog
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA
| | - Brenda L Koniar
- Research Animal Resources, University of Minnesota, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA
| | - Roland Gunther
- Research Animal Resources, University of Minnesota, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA
| | - Chester B Whitley
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA.
| |
Collapse
|
20
|
Urayama A. Toward the successful delivery of lysosomal enzymes across the blood-brain barrier. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akihiko Urayama
- Department of Neurology; University of Texas Medical School at Houston; Houston; TX; USA
| |
Collapse
|
21
|
Algahim MF, Almassi GH. Current and emerging management options for patients with Morquio A syndrome. Ther Clin Risk Manag 2013; 9:45-53. [PMID: 23413237 PMCID: PMC3572824 DOI: 10.2147/tcrm.s24771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Morquio A syndrome is a lysosomal storage disease associated with mucopolysaccharidosis. It is caused by a deficiency of the lysosomal enzyme, N-acetylgalactosamine-6-sulfate sulfatase, which leads to accumulation of keratan sulfate and condroitin-6 sulfate in multiple organs. Patients present with multisystemic complications involving the musculoskeletal, respiratory, cardiovascular, and digestive systems. Presently, there is no definitive cure, and current management options are palliative. Enzyme replacement therapy and hematopoietic stem cell therapy have been proven effective in certain lysosomal storage diseases, and current investigations are underway to evaluate the effectiveness of these therapies and others for the treatment of Morquio A syndrome. This review discusses the current and emerging treatment options for Morquio A syndrome, citing examples of the treatment of other mucopolysaccharidoses.
Collapse
Affiliation(s)
- Mohamed F Algahim
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
22
|
Biochemical evidence for superior correction of neuronal storage by chemically modified enzyme in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A 2012; 109:17022-7. [PMID: 23027951 DOI: 10.1073/pnas.1214779109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzyme replacement therapy has been used successfully in many lysosomal storage diseases. However, correction of brain storage has been limited by the inability of infused enzyme to cross the blood-brain barrier (BBB). We recently reported that PerT-GUS, a form of β-glucuronidase (GUS) chemically modified to eliminate its uptake and clearance by carbohydrate-dependent receptors, crossed the BBB and cleared neuronal storage in an immunotolerant model of murine mucopolysaccharidosis (MPS) type VII. In this respect, the chemically modified enzyme was superior to native β-glucuronidase. Chemically modified enzyme was also delivered more effectively to heart, kidney, and muscle. However, liver and spleen, which express high levels of carbohydrate receptors, received nearly fourfold lower levels of PerT-GUS compared with native GUS. A recent report on PerT-treated sulfamidase in murine MPS IIIA confirmed enhanced delivery to other tissues but failed to observe clearance of storage in neurons. To confirm and extend our original observations, we compared the efficacy of 12 weekly i.v. infusions of PerT-GUS versus native GUS on (i) delivery of enzyme to brain; (ii) improvement in histopathology; and (iii) correction of secondary elevations of other lysosomal enzymes. Such correction is a recognized biomarker for correction of neuronal storage. PerT-GUS was superior to native GUS in all three categories. These results provide additional evidence that long-circulating enzyme, chemically modified to escape carbohydrate-mediated clearance, may offer advantages in treating MPS VII. The relevance of this approach to treat other lysosomal storage diseases that affect brain awaits confirmation.
Collapse
|
23
|
Rowan DJ, Tomatsu S, Grubb JH, Haupt B, Montaño AM, Oikawa H, Sosa C, Chen A, Sly WS. Long circulating enzyme replacement therapy rescues bone pathology in mucopolysaccharidosis VII murine model. Mol Genet Metab 2012; 107:161-72. [PMID: 22902520 PMCID: PMC3444660 DOI: 10.1016/j.ymgme.2012.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Mucopolysaccharidosis (MPS) type VII is a lysosomal storage disease caused by deficiency of the lysosomal enzyme β-glucuronidase (GUS), leading to accumulation of glycosaminoglycans (GAGs). Enzyme replacement therapy (ERT) effectively clears GAG storage in the viscera. Recent studies showed that a chemically modified form of GUS (PerT-GUS), which escaped clearance by mannose 6-phosphate and mannose receptors and showed prolonged circulation, reduced CNS storage more effectively than native GUS. Clearance of storage in bone has been limited due to the avascularity of the growth plate. To evaluate the effectiveness of long-circulating PerT-GUS in reducing the skeletal pathology, we treated MPS VII mice for 12 weeks beginning at 5 weeks of age with PerT-GUS or native GUS and used micro-CT, radiographs, and quantitative histopathological analysis for assessment of bones. Micro-CT findings showed PerT-GUS treated mice had a significantly lower BMD. Histopathological analysis also showed reduced storage material and a more organized growth plate in PerT-GUS treated mice compared with native GUS treated mice. Long term treatment with PerT-GUS from birth up to 57 weeks also significantly improved bone lesions demonstrated by micro-CT, radiographs and quantitative histopathological assay. In conclusion, long-circulating PerT-GUS provides a significant impact to rescue of bone lesions and CNS involvement.
Collapse
Affiliation(s)
- Daniel J. Rowan
- School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Shunji Tomatsu
- Departments of Biomedical Research and Orthopedic Surgery, Alfred I. duPont Hospital for Children
| | - Jeffrey H. Grubb
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Bisong Haupt
- Department of Pathology, Saint Louis University, St. Louis, Missouri, USA
| | - Adriana M. Montaño
- Department of Pediatrics, Saint Louis University, St. Louis, Missouri, USA
| | - Hirotaka Oikawa
- Department of Pediatrics, Saint Louis University, St. Louis, Missouri, USA
| | - Catalina Sosa
- Department of Pediatrics, Saint Louis University, St. Louis, Missouri, USA
| | - Anping Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Hemsley KM, Hopwood JJ. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality. J Inherit Metab Dis 2011; 34:1003-12. [PMID: 21584766 DOI: 10.1007/s10545-011-9341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/10/2011] [Accepted: 04/12/2011] [Indexed: 12/12/2022]
Abstract
Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the 'research pipeline'. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.
Collapse
Affiliation(s)
- Kim M Hemsley
- Lysosomal Diseases Research Unit, 4th Floor Rogerson Building, SA Pathology, Women's and Children's Hospital campus, 72 King William Road, North Adelaide, SA, 5006, Australia.
| | | |
Collapse
|
25
|
Miyamoto BE, Kakkis ED. The potential investment impact of improved access to accelerated approval on the development of treatments for low prevalence rare diseases. Orphanet J Rare Dis 2011; 6:49. [PMID: 21733145 PMCID: PMC3149566 DOI: 10.1186/1750-1172-6-49] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Over 95% of rare diseases lack treatments despite many successful treatment studies in animal models. To improve access to treatments, the Accelerated Approval (AA) regulations were implemented allowing the use of surrogate endpoints to achieve drug approval and accelerate development of life-saving therapies. Many rare diseases have not utilized AA due to the difficulty in gaining acceptance of novel surrogate endpoints in untreated rare diseases. METHODS To assess the potential impact of improved AA accessibility, we devised clinical development programs using proposed clinical or surrogate endpoints for fifteen rare disease treatments. RESULTS We demonstrate that better AA access could reduce development costs by approximately 60%, increase investment value, and foster development of three times as many rare disease drugs for the same investment. CONCLUSION Our research brings attention to the need for well-defined and practical qualification criteria for the use of surrogate endpoints to allow more access to the AA approval pathway in clinical trials for rare diseases.
Collapse
Affiliation(s)
- Brigitta E Miyamoto
- Kakkis EveryLife Foundation For Rare Diseases, 77 Digital Drive, Suite 210, Novato, CA 94949, USA
| | - Emil D Kakkis
- Kakkis EveryLife Foundation For Rare Diseases, 77 Digital Drive, Suite 210, Novato, CA 94949, USA
| |
Collapse
|
26
|
Rozaklis T, Beard H, Hassiotis S, Garcia AR, Tonini M, Luck A, Pan J, Lamsa JC, Hopwood JJ, Hemsley KM. Impact of high-dose, chemically modified sulfamidase on pathology in a murine model of MPS IIIA. Exp Neurol 2011; 230:123-30. [PMID: 21515264 DOI: 10.1016/j.expneurol.2011.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/29/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a neurodegenerative lysosomal storage disorder that results from a deficiency of sulfamidase (N-sulfoglucosamine sulfohydrolase), with consequential accumulation of its substrate, partially degraded heparan sulfate. Conventional doses (e.g. 1mg/kg) of intravenously delivered recombinant human sulfamidase (rhSGSH) do not improve neuropathology in MPS IIIA mice due to an inability to traverse the blood-brain barrier; however high-dose treatment or administration of enzyme that has been chemically modified to remove mannose-6-phosphate glycans has been shown to reduce neuropathology in related animal models. We have combined these approaches to evaluate the ability of 1, 5, 10 or 20mg/kg of similarly chemically modified or unmodified rhSGSH to reduce neuropathology following repeated intravenous delivery to adult MPS IIIA mice. rhSGSH was detected in brain homogenates from mice treated with all doses of modified rhSGSH and those receiving the two higher doses of unmodified rhSGSH, albeit at significantly lower levels. Immunohistochemically, rhSGSH visualized in the brain was localized to the endothelium, meninges and choroid plexus, with no convincing punctate intra-neuronal staining seen. This presumably underlies the failure of the treatment to reduce the relative level of a heparan sulfate-derived oligosaccharide (GlcNS-UA), or secondarily stored substrates that accumulate in MPS IIIA brain cells. However, modification of rhSGSH significantly increased its effectiveness in degrading GlcNS-UA in non-CNS tissues, potentially as a result of its reduced plasma clearance. If this observation is generally applicable, chemical modification may permit the use of significantly lower doses of lysosomal enzymes in patients currently receiving intravenous enzyme replacement therapy.
Collapse
Affiliation(s)
- Tina Rozaklis
- Lysosomal Diseases Research Unit, SA Pathology, Women's and Children's Hospital Campus, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matthes F, Wölte P, Böckenhoff A, Hüwel S, Schulz M, Hyden P, Fogh J, Gieselmann V, Galla HJ, Matzner U. Transport of arylsulfatase A across the blood-brain barrier in vitro. J Biol Chem 2011; 286:17487-94. [PMID: 21454621 DOI: 10.1074/jbc.m110.189381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzyme replacement therapy is an option to treat lysosomal storage diseases caused by functional deficiencies of lysosomal hydrolases as intravenous injection of therapeutic enzymes can correct the catabolic defect within many organ systems. However, beneficial effects on central nervous system manifestations are very limited because the blood-brain barrier (BBB) prevents the transfer of enzyme from the circulation to the brain parenchyma. Preclinical studies in mouse models of metachromatic leukodystrophy, however, showed that arylsulfatase A (ASA) is able to cross the BBB to some extent, thus reducing lysosomal storage in brain microglial cells. The present study aims to investigate the routing of ASA across the BBB and to improve the transfer in vitro using a well established cell culture model consisting of primary porcine brain capillary endothelial cells cultured on Transwell filter inserts. Passive apical-to-basolateral ASA transfer was observed, which was not saturable up to high ASA concentrations. No active transport could be determined. The passive transendothelial transfer was, however, charge-dependent as reduced concentrations of negatively charged monosaccharides in the N-glycans of ASA or the addition of polycations increased basolateral ASA levels. Adsorptive transcytosis is therefore considered to be the major transport pathway. Partial inhibition of the transcellular ASA transfer by mannose 6-phosphate indicated a second route depending on the insulin-like growth factor II/mannose 6-phosphate receptor, MPR300. We conclude that cationization of ASA and an increase of the mannose 6-phosphate content of the enzyme may promote blood-to-brain transfer of ASA, thus leading to an improved therapeutic efficacy of enzyme replacement therapy behind the BBB.
Collapse
Affiliation(s)
- Frank Matthes
- Rheinische Friedrich-Wilhelms Universität, Institut für Biochemie und Molekularbiologie, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dierenfeld AD, McEntee MF, Vogler CA, Vite CH, Chen AH, Passage M, Le S, Shah S, Jens JK, Snella EM, Kline KL, Parkes JD, Ware WA, Moran LE, Fales-Williams AJ, Wengert JA, Whitley RD, Betts DM, Boal AM, Riedesel EA, Gross W, Ellinwood NM, Dickson PI. Replacing the enzyme alpha-L-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med 2011; 2:60ra89. [PMID: 21123810 DOI: 10.1126/scitranslmed.3001380] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by loss of activity of α-l-iduronidase and attendant accumulation of the glycosaminoglycans dermatan sulfate and heparan sulfate. Current treatments are suboptimal and do not address residual disease including corneal clouding, skeletal deformities, valvular heart disease, and cognitive impairment. We treated neonatal dogs with MPS I with intravenous recombinant α-l-iduronidase replacement therapy at the conventional 0.58 mg/kg or a higher 1.57 mg/kg weekly dose for 56 to 81 weeks. In contrast to previous results in animals and patients treated at a later age, the dogs failed to mount an antibody response to enzyme therapy, consistent with the induction of immune tolerance in neonates. The higher dose of enzyme led to complete normalization of lysosomal storage in the liver, spleen, lung, kidney, synovium, and myocardium, as well as in the hard-to-treat mitral valve. Cardiac biochemistry and function were restored, and there were improvements in skeletal disease as shown by clinical and radiographic assessments. Glycosaminoglycan levels in the brain were normalized after intravenous enzyme therapy, in the presence or absence of intrathecal administration of recombinant α-l-iduronidase. Histopathological evidence of glycosaminoglycan storage in the brain was ameliorated with the higher-dose intravenous therapy and was further improved by combining intravenous and intrathecal therapy. These findings argue that neonatal testing and early treatment of patients with MPS I may more effectively treat this disease.
Collapse
Affiliation(s)
- Ashley D Dierenfeld
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011-3150, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dunder U, Valtonen P, Kelo E, Mononen I. Early initiation of enzyme replacement therapy improves metabolic correction in the brain tissue of aspartylglycosaminuria mice. J Inherit Metab Dis 2010; 33:611-7. [PMID: 20607610 DOI: 10.1007/s10545-010-9158-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 06/09/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022]
Abstract
Aspartylglycosaminuria (AGU) is a lysosomal storage disease caused by deficient activity of glycosylasparaginase (AGA), and characterized by motor and mental retardation. Enzyme replacement therapy (ERT) in adult AGU mice with AGA removes the accumulating substance aspartylglucosamine from and reverses pathology in many somatic tissues, but has only limited efficacy in the brain tissue of the animals. In the current work, ERT of AGU mice was initiated at the age of 1 week with three different dosage schedules of recombinant glycosylasparaginase. The animals received either 3.4 U of AGA/kg every second day for 2 weeks (Group 1), 1.7 U/kg every second day for 9 days followed by an enzyme injection once a week for 4 weeks (Group 2) or 17 U/kg at the age of 7 and 9 days (Group 3). In the Group 1 and Group 3 mice, ERT reduced the amount of aspartylglucosamine by 34 and 41% in the brain tissue, respectively. No therapeutic effect was observed in the brain tissue of Group 2 mice. As in the case of adult AGU mice, the AGA therapy was much more effective in the somatic tissues than in the brain tissue of the newborn AGU mice. The combined evidence demonstrates that a high dose ERT with AGA in newborn AGU mice is up to twofold more effective in reducing the amount of the accumulated storage material from the brain tissue than ERT in adult AGU animals, indicating the importance of early detection and treatment of the disease.
Collapse
Affiliation(s)
- Ulla Dunder
- Eastern Finland Laboratory Centre, Kuopio, Finland
| | | | | | | |
Collapse
|
30
|
Grubb JH, Vogler C, Sly WS. New strategies for enzyme replacement therapy for lysosomal storage diseases. Rejuvenation Res 2010; 13:229-36. [PMID: 20345279 DOI: 10.1089/rej.2009.0920] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enzyme replacement therapy is an established means of treating lysosomal storage diseases. Infused enzymes are normally targeted to the lysosomes of affected cells by interactions with cell-surface receptors that recognize carbohydrate moieties such as mannose and mannose 6-phosphate on the enzymes. Therefore, we have investigated alternative strategies to deliver the lysosomal enzyme beta-glucuronidase in the enzyme-deficient mucopolysaccharidosis type VII mouse model. Here we summarize our recent efforts to use nontraditional ways to deliver beta-glucuronidase. First, we used a chimeric protein of the insulin-like growth factor II (IGF-II) fused to beta-glucuronidase to deliver enzyme via the IGF-II binding site on the bifunctional IGF-II/mannose 6-phosphate receptor. Second, we used the 11-amino-acid human immunodeficiency virus (HIV) Tat domain fused to beta-glucuronidase to mediate uptake by absorptive endocytosis. Interaction with heparan sulfate on the cell surface internalizes and delivers the Tat-tagged enzyme to the lysosome via plasma membrane recycling. Third, we created a chimeric beta-glucuronidase fused to the Fc portion of human immunoglobulin G (IgG) Fc, which was transported by the neonatal Fc receptor from the maternal circulation across the placenta to sites of storage in fetal tissues. Finally, periodate treatment was used to eliminate interaction with carbohydrate receptors, creating an enzyme with increased plasma half-life, resulting in transport across the blood-brain barrier and clearance of storage in neurons. These strategies for delivering lysosomal enzymes could also be used to target nonlysosomal proteins or enzymes identified for bioremediation of other conditions.
Collapse
Affiliation(s)
- Jeffrey H Grubb
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
31
|
Schiffmann R. Therapeutic approaches for neuronopathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:373-9. [PMID: 20162366 DOI: 10.1007/s10545-010-9047-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/30/2009] [Accepted: 01/03/2010] [Indexed: 01/21/2023]
Abstract
Therapy of the central nervous system (CNS) manifestations of lysosomal storage diseases (LSDs) has remained a major challenge because of its inability to deliver therapeutic agents efficiently across the intact blood-brain barrier. Non-specific therapies such as hematopoietic stem cell transplantation have been useful in globoid cell leukodystrophy (Krabbe disease) and in some mucopolysaccharidoses. Anti-inflammatory agents also show promise as adjuvant therapy. High doses of replacement therapy with native or modified enzyme show renewed promise for correction of CNS cells. Alternatively, small molecules can enter the brain relatively easily and promote reduction of accumulated substrate or function as pharmacological chaperones to enhance the level of the deficient enzyme. Gene therapy is still being developed and tested in patients. It is therefore likely that, thanks to a better understanding of disease mechanism, a variety of therapeutic approaches, used alone or in combination, will be useful to treat the devastating neurological complications of LSDs.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, USA.
| |
Collapse
|
32
|
Tomatsu S, Montaño AM, Dung VC, Ohashi A, Oikawa H, Oguma T, Orii T, Barrera L, Sly WS. Enhancement of drug delivery: enzyme-replacement therapy for murine Morquio A syndrome. Mol Ther 2010; 18:1094-102. [PMID: 20332769 DOI: 10.1038/mt.2010.32] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA, Morquio A disease) is an inherited lysosomal storage disorder that features skeletal chondrodysplasia caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Human GALNS was bioengineered with the N-terminus extended by the hexaglutamate sequence (E6) to improve targeting to bone (E6-GALNS). We initially assessed blood clearance and tissue distribution. Next, to assess the effectiveness of storage clearance and reversal of pathological phenotype, a dose of 250 U/g of enzyme was given weekly to Morquio A mice (adults: 12 or 24 weeks, newborn: 8 weeks). Sulfatase modifier factor 1 (SUMF1) was co-transfected to activate the enzyme fully. The E6-GALNS tagged enzyme had markedly prolonged clearance from circulation, giving over 20 times exposure time in blood, compared to untagged enzyme. The tagged enzyme was retained longer in bone, with residual enzyme activity demonstrable at 48 hours after infusion. The pathological findings in adult mice treated with tagged enzyme showed substantial clearance of the storage materials in bone, bone marrow, and heart valves, especially after 24 weekly infusions. Mice treated from the newborn period showed marked reduction of storage materials in tissues investigated. These findings indicate the feasibility of using tagged enzyme to enhance delivery and pathological effectiveness in Morquio A mice.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Saint Louis University, St Louis, Missouri 63104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Widespread biochemical correction of murine mucopolysaccharidosis type VII pathology by liver hydrodynamic plasmid delivery. Gene Ther 2009; 16:746-56. [PMID: 19357715 DOI: 10.1038/gt.2009.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a deficiency of the acid hydrolase beta-glucuronidase. MPS VII mice develop progressive lysosomal accumulation of glycosaminoglycans (GAGs) within multiple organs, including the brain. Using this animal model, we compared two plasmid gene administration techniques: muscle electrotransfer and liver-directed transfer using hydrodynamic injection. We have evaluated both the expression kinetics and the biodistribution of beta-glucuronidase activity after gene transfer, as well as the correction of biochemical abnormalities in various organs. This study shows that MPS VII mice treated with a plasmid-bearing mouse beta-glucuronidase cDNA, acquire the ability to produce the beta-glucuronidase enzyme for an extended period of time. The liver seemed to be more appropriate than the muscle as a target organ to enable enzyme secretion into the systemic circulation. A beneficial effect on the MPS VII pathology was also observed, as liver-directed gene transfer led to the correction of secondary enzymatic elevations and to the reduction of GAGs storage in peripheral tissues and brain, as well as to histological correction in many tissues. This work is one of the first examples showing that non-viral plasmid DNA delivery can lead to improvements in both peripheral and brain manifestations of MPS VII disease. It confirms the potential of non-viral systemic gene transfer strategy in neurological lysosomal disorders.
Collapse
|
34
|
Enzyme replacement improves ataxic gait and central nervous system histopathology in a mouse model of metachromatic leukodystrophy. Mol Ther 2009; 17:600-6. [PMID: 19174759 DOI: 10.1038/mt.2008.305] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inherited deficiencies of lysosomal hydrolases cause lysosomal storage diseases (LSDs) that are characterized by a progressive multisystemic pathology and premature death. Repeated intravenous injection of the active counterpart of the deficient enzyme, a treatment strategy called enzyme replacement therapy (ERT), evolved as a clinical option for several LSDs without central nervous system (CNS) involvement. To assess the efficacy of long-term ERT in metachromatic leukodystrophy (MLD), an LSD with prevailing nervous system disease, we treated immunotolerant arylsulfatase A (ASA) knockout mice with 52 doses of either 4 or 50 mg/kg recombinant human ASA (rhASA). ERT was tolerated without side effects and improved disease manifestations in a dose-dependent manner. Dosing of 4 mg/kg diminished sulfatide storage in kidney and peripheral nervous system (PNS) but not the CNS, whereas treatment with 50 mg/kg was also effective in the CNS in reducing storage in brain and spinal cord by 34 and 45%, respectively. Histological analyses revealed regional differences in sulfatide clearance. While 70% less storage profiles were detectable, for example, in the hippocampal fimbria, the histopathology of the brain stem was unchanged. Both enzyme doses normalized the ataxic gait of ASA knockout mice, demonstrating prevention of nervous system dysfunctions that dominate early stages of MLD.
Collapse
|
35
|
Kelo E, Noronkoski T, Mononen I. Depletion of L-asparagine supply and apoptosis of leukemia cells induced by human glycosylasparaginase. Leukemia 2009; 23:1167-71. [DOI: 10.1038/leu.2008.387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Blanz J, Stroobants S, Lüllmann-Rauch R, Morelle W, Lüdemann M, D'Hooge R, Reuterwall H, Michalski JC, Fogh J, Andersson C, Saftig P. Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in α-mannosidosis mice. Hum Mol Genet 2008; 17:3437-45. [DOI: 10.1093/hmg/ddn237] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Samoylova TI, Martin DR, Morrison NE, Hwang M, Cochran AM, Samoylov AM, Baker HJ, Cox NR. Generation and characterization of recombinant feline beta-galactosidase for preclinical enzyme replacement therapy studies in GM1 gangliosidosis. Metab Brain Dis 2008; 23:161-73. [PMID: 18421424 DOI: 10.1007/s11011-008-9086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 01/08/2008] [Indexed: 11/28/2022]
Abstract
Lysosomal beta-galactosidase is required for the degradation of GM1 ganglioside and other glycolipids and glycoproteins with a terminal galactose moiety. Deficiency of this enzyme leads to the lysosomal storage disorder, GM1 gangliosidosis, marked by severe neurodegeneration resulting in premature death. As a step towards preclinical studies for enzyme replacement therapy in an animal model of GM1 gangliosidosis, a feline beta-galactosidase cDNA was cloned into a mammalian expression vector and subsequently expressed in Chinese hamster ovary (CHO-K1) cells. The enzyme secreted into culture medium exhibited specific activity on two synthetic substrates as well as on the native beta-galactosidase substrate, GM1 ganglioside. The enzyme was purified from transfected CHO-K1 cell culture medium by chromatography on PATG-agarose. The affinity-purified enzyme preparation consisted mainly of the protein with approximate molecular weight of 94 kDa and displayed immunoreactivity with antibodies raised against a 16-mer synthetic peptide corresponding to C-terminal amino acid sequence deduced from the feline beta-galactosidase cDNA.
Collapse
Affiliation(s)
- Tatiana I Samoylova
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Montaño AM, Oikawa H, Tomatsu S, Nishioka T, Vogler C, Gutierrez MA, Oguma T, Tan Y, Grubb JH, Dung VC, Ohashi A, Miyamoto KI, Orii T, Yoneda Y, Sly WS. Acidic amino acid tag enhances response to enzyme replacement in mucopolysaccharidosis type VII mice. Mol Genet Metab 2008; 94:178-89. [PMID: 18359257 DOI: 10.1016/j.ymgme.2008.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 11/21/2022]
Abstract
We have tested an acidic oligopeptide-based targeting system for delivery of enzymes to tissues, especially bone and brain, in a murine mucopolysaccharidosis type VII (MPS VII) model. This strategy is based upon tagging a short peptide consisting of acidic amino acids (AAA) to N terminus of human beta-glucuronidase (GUS). The pharmacokinetics, biodistribution, and the pathological effect on MPS VII mouse after 12 weekly infusions were determined for recombinant human untagged and tagged GUS. The tagged GUS was taken up by MPS VII fibroblasts in a mannose 6-phosphate receptor-dependent manner. Intravenously injected AAA-tagged enzyme had five times more prolonged blood clearance compared with the untagged enzyme. The tagged enzyme was delivered effectively to bone, bone marrow, and brain in MPS VII mice and was effective in reversing the storage pathology. The storage in osteoblasts was cleared similarly with both enzyme types. However, cartilage showed a little response to any of the enzymes. The tagged enzyme reduced storage in cortical neurons, hippocampus, and glia cells. A highly sensitive method of tandem mass spectrometry on serum indicated that the concentration of serum dermatan sulfate and heparan sulfate in mice treated with the tagged enzyme decreased more than the untagged enzyme. These preclinical studies suggest that this AAA-based targeting system may enhance enzyme-replacement therapy.
Collapse
Affiliation(s)
- Adriana M Montaño
- Department of Pediatrics, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
✓ Most lysosomal storage disorders are characterized by progressive central nervous system impairment, with or without systemic involvement. Affected individuals have an array of symptoms related to brain dysfunction, the most devastating of which is neurodegeneration following a period of normal development. The blood–brain barrier has represented a significant impediment to developing therapeutic approaches to treat brain disease, but novel approaches—including enzyme replacement, small-molecule, gene, and cell-based therapies—have given children afflicted by these conditions and those who care for them hope for the future.
Collapse
Affiliation(s)
- Gregory M. Enns
- 1Division of Medical Genetics, Department of Pediatrics, and
| | - Stephen L. Huhn
- 2Department of Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford; and
- 3StemCells, Inc., Palo Alto, California
| |
Collapse
|
40
|
Chemically modified beta-glucuronidase crosses blood-brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A 2008; 105:2616-21. [PMID: 18268347 DOI: 10.1073/pnas.0712147105] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzyme replacement therapy has been used successfully in many lysosomal storage diseases. However, correction of brain storage has been limited by the inability of infused enzyme to cross the blood-brain barrier. The newborn mouse is an exception because recombinant enzyme is delivered to neonatal brain after mannose 6-phosphate receptor-mediated transcytosis. Access to this route is very limited after 2 weeks of age. Recently, several studies showed that multiple infusions of high doses of enzyme partially cleared storage in adult brain. These results raised the question of whether correction of brain storage by repeated high doses of enzyme depends on mannose 6-phosphate receptor-mediated uptake or whether enzyme gains access to brain storage by another route when brain capillaries are exposed to prolonged, high levels of circulating enzyme. To address this question, we used an enzyme whose carbohydrate-dependent receptor-mediated uptake was inactivated by chemical modification. Treatment of human beta-glucuronidase (GUS) with sodium metaperiodate followed by sodium borohydride reduction (PerT-GUS) eliminated uptake by mannose 6-phosphate and mannose receptors in cultured cells and dramatically slowed its plasma clearance from a t(1/2) of <10 min to 18 h. Surprisingly, PerT-GUS infused weekly for 12 weeks was more effective in clearing central nervous system storage than native GUS at the same dose. In fact, PerT-GUS resulted in almost complete reversal of storage in neocortical and hippocampal neurons. This enhanced correction of neuronal storage by long-circulating enzyme, which targets no known receptor, suggests a delivery system across the blood-brain barrier that might be exploited therapeutically.
Collapse
|
41
|
Matzner U, Matthes F, Herbst E, Lüllmann-Rauch R, Callaerts-Vegh Z, D'Hooge R, Weigelt C, Eistrup C, Fogh J, Gieselmann V. Induction of tolerance to human arylsulfatase A in a mouse model of metachromatic leukodystrophy. Mol Med 2007; 13:471-9. [PMID: 17660863 PMCID: PMC1933260 DOI: 10.2119/2007-00063.matzner] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/09/2007] [Indexed: 01/08/2023] Open
Abstract
A deficiency of arylsulfatase A (ASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disorder characterized by accumulation of sulfatide, a severe neurological phenotype and early death. The efficacy of enzyme replacement therapy (ERT) has previously been determined in ASA knockout (ASA-/-) mice representing the only available animal model for MLD. Repeated intravenous injection of human ASA (hASA) improved the nervous system pathology and function, but also elicited a progressive humoral immune response leading to treatment resistance, anaphylactic reactions, and high mortality. In contrast to ASA-/- mice, most MLD patients express mutant hASA which may entail immunological tolerance to substituted wildtype hASA and thus protect from immunological complications. To test this notion, a cysteine-to-serine substitution was introduced into the active site of the hASA and the resulting inactive hASA-C69S variant was constitutively expressed in ASA-/- mice. Mice with sub-to supranormal levels of mutant hASA expression were analyzed. All mice, including those showing transgene expression below the limit of detection, were immunologically unresponsive to injected hASA. More than 100-fold overexpression did not induce an overt new phenotype except occasional intralysosomal deposition of minor amounts of glycogen in hepatocytes. Furthermore, long-term, low-dose ERT reduced sulfatide storage in peripheral tissues and the central nervous system indicating that high levels of extracellular mutant hASA do not prevent cellular uptake and lysosomal targeting of substituted wildtype hASA. Due to the tolerance to hASA and maintenance of the MLD-like phenotype, the novel transgenic strain may be particularly advantageous to assess the benefit and risk of long-term ERT.
Collapse
Affiliation(s)
- Ulrich Matzner
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-5315 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Davies EH, Erikson A, Collin-Histed T, Mengel E, Tylki-Szymanska A, Vellodi A. Outcome of type III Gaucher disease on enzyme replacement therapy: review of 55 cases. J Inherit Metab Dis 2007; 30:935-42. [PMID: 17994286 DOI: 10.1007/s10545-007-0577-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 08/20/2007] [Accepted: 09/20/2007] [Indexed: 11/27/2022]
Abstract
The European Task Force for Neuronopathic Gaucher Disease (NGD) met in 2006 to review its 2001 guidelines. Fifty-five patients from five European countries were reviewed; 29 were male and 26 female. The majority of the patients were homozygous for the L444P mutation. All had been on enzyme replacement therapy (ERT). However, there was considerable variation in the dose of ERT, as well as an uneven distribution of risk factors. Thus, the oldest patients were on the lowest doses, and several had had a total splenectomy, while the youngest patients had a high proportion of compound heterozygosity and were on the highest doses, and very few had had a splenectomy. This heterogeneity rendered analysis very difficult. However, some observations were possible. The older patients appeared to remain relatively stable despite a low dose of ERT. In the younger patients, there was no clear effect of high-dose ERT. However, the period of follow-up was too short in many patients to draw valid conclusions. These data will be used to draw up revised guidelines.
Collapse
Affiliation(s)
- E H Davies
- Metabolic Unit, Great Ormond Street Children's Hospital NHS Trust, Great Ormond Street, London, WC1N 3JH, UK
| | | | | | | | | | | |
Collapse
|
43
|
Urayama A, Grubb JH, Banks WA, Sly WS. Epinephrine enhances lysosomal enzyme delivery across the blood brain barrier by up-regulation of the mannose 6-phosphate receptor. Proc Natl Acad Sci U S A 2007; 104:12873-8. [PMID: 17646643 PMCID: PMC1937559 DOI: 10.1073/pnas.0705611104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Delivering therapeutic levels of lysosomal enzymes across the blood-brain barrier (BBB) has been a pivotal issue in treating CNS storage diseases, including the mucopolysaccharidoses. An inherited deficiency of beta-glucuronidase (GUS) causes mucopolysaccharidosis type VII that is characterized by increased systemic and CNS storage of glycosaminoglycans. We previously showed that the neonate uses the mannose 6-phosphate (M6P) receptor to transport phosphorylated GUS (P-GUS) across the BBB and that this transporter is lost with maturation. Induction of expression of this BBB transporter would make enzyme replacement therapy in the adult possible. Here, we tested pharmacological manipulation with epinephrine to restore functional transport of P-GUS across the adult BBB. Epinephrine (40 nmol) coinjected i.v. with (131)I-P-GUS induced the transport across the BBB in 8-week-old mice. The brain influx rate of (131)I-P-GUS (0.29 mul/g per min) returned to the level seen in neonates. Capillary depletion showed that 49% of the (131)I-P-GUS in brain was in brain parenchyma. No increases of influx rate or the vascular space for (125)I-albumin, a vascular marker, was observed with epinephrine (40 nmol), showing that enhanced passage was not caused by disruption of the BBB. Brain uptake of (131)I-P-GUS was significantly inhibited by M6P in a dose-dependent manner, whereas epinephrine failed to increase brain uptake of nonphosphorylated GUS. Thus, the effect of epinephrine on the transport of (131)I-P-GUS was ligand specific. These results indicate that epinephrine restores the M6P receptor-mediated functional transport of (131)I-P-GUS across the BBB in adults to levels seen in the neonate.
Collapse
Affiliation(s)
- Akihiko Urayama
- *Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, St. Louis, MO 63106; and
- Department of Internal Medicine, Division of Geriatric Medicine, and
| | - Jeffrey H. Grubb
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - William A. Banks
- *Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, St. Louis, MO 63106; and
- Department of Internal Medicine, Division of Geriatric Medicine, and
- To whom correspondence may be addressed. E-mail: or
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
44
|
Tomatsu S, Montaño AM, Gutierrez M, Grubb JH, Oikawa H, Dung VC, Ohashi A, Nishioka T, Yamada M, Yamada M, Tosaka Y, Trandafirescu GG, Orii T. Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab 2007; 91:69-78. [PMID: 17336563 DOI: 10.1016/j.ymgme.2007.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 01/06/2007] [Indexed: 11/25/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The aims of this study were to establish Chinese hamster ovary (CHO) cells overexpressing recombinant human GALNS (rhGALNS) and to assess pharmacokinetics and tissue distribution of purified enzymes by using MPS IVA knock-out mouse (Galns(-/-)). The CHO-cell derived rhGALNS was purified from the media by a two-step affinity chromatography procedure. The rhGALNS was administered intravenously to 3-month-old Galns(-/-) mice at a single dose of 250U/g of body weight. The treated mice were examined by assaying the GALNS activity at baseline and up to 240min to assess clearance of the enzyme from blood circulation. The mice were sacrificed 4h after infusion of the enzyme to study the enzyme distribution in tissues. The rhGALNS was purified 1317-fold with 71% yield. The enzyme was taken up by Galns(-/-) chondrocytes (150U/mg/15h). The uptake was inhibited by mannose-6-phosphate. The enzyme activity disappeared from circulation with a half-life of 2.9min. After enzyme infusion, the enzyme was taken up and detected in multiple tissues (40.7% of total infused enzymes in liver). Twenty-four hours after a single infusion of the fluorescence-labeled enzymes into MPS IVA mice, biodistribution pattern showed the amount of tagged enzyme retained in bone, bone marrow, liver, spleen, kidney, and heart. In conclusion, we have shown that the phosphorylated rhGALNS is delivered to multiple tissues, including bone, and that it functions bioactively in Galns(-/-) chondrocytes implying a potential enzyme replacement treatment.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Pediatrics, Saint Louis University, Pediatric Research Institute, St Louis, MO 63110-2586, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sevin C, Aubourg P, Cartier N. Enzyme, cell and gene-based therapies for metachromatic leukodystrophy. J Inherit Metab Dis 2007; 30:175-83. [PMID: 17347913 DOI: 10.1007/s10545-007-0540-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 12/11/2022]
Abstract
Metachromatic leukodystrophy (MLD) is a demyelinating storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ARSA). Lack of ARSA activity leads to the accumulation of galactosylceramide-3-O-sulfate (sulfatide) in the central and peripheral nervous systems. Based on the age at onset, the disease is usually classified into three forms: the late-infantile form, which manifests in the second year of life; the juvenile variants (onset between 4 and 12 years), which are subdivided into early-juvenile (EJ, onset before 6 years) and late-juvenile (LJ, onset after 6 years); and the adult form (onset after 12 years of age). Currently, there is no efficient therapy for the late-infantile form of MLD (50% of the patients), death occurring within a few years after onset of neurological symptoms. Allogeneic haematopoietic cell transplantation (HCT), when performed at a very early stage of the disease, may improve selected patients with juvenile or adult forms of MLD. As with other lysosomal storage diseases, the physiopathology of MLD is poorly understood. Demyelination is the main pathological finding, but substantial storage of sulfatides in neurons also occurs, and may contribute to the clinical phenotype. The physiopathological process leading to neuronal and glial cell degeneration and apoptosis involves accumulation of undegraded sulfatides but also secondary abnormalities (storage/mislocalization of unrelated lipids, inflammatory processes). This review summarizes the recent advances in the understanding of the physiopathology of MLD and the new therapeutic perspectives currently under preclinical investigation, including enzyme replacement therapy, gene therapy and cell therapy.
Collapse
Affiliation(s)
- C Sevin
- University René-Descartes Paris 5, INSERM U745, Paris, France
| | | | | |
Collapse
|
46
|
Sly WS, Vogler C, Grubb JH, Levy B, Galvin N, Tan Y, Nishioka T, Tomatsu S. Enzyme therapy in mannose receptor-null mucopolysaccharidosis VII mice defines roles for the mannose 6-phosphate and mannose receptors. Proc Natl Acad Sci U S A 2006; 103:15172-7. [PMID: 17015822 PMCID: PMC1622795 DOI: 10.1073/pnas.0607053103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzyme replacement therapy (ERT) is available for several lysosomal storage diseases. Except for Gaucher disease, for which an enzyme with exposed mannosyl residues targets mannose receptors (MR) on macrophages, ERT targets primarily the mannose 6-phosphate receptor (MPR). Most recombinant lysosomal enzymes contain oligosaccharides with both terminal mannosyl and mannose 6-phosphate residues. Effective MPR-mediated delivery may be compromised by rapid clearance of infused enzyme by the MR on fixed tissue macrophages, especially Kupffer cells. To evaluate the impact of this obstacle to ERT, we introduced the MR-null mutation onto the mucopolysaccharidosis type VII (MPS VII) background and produced doubly deficient MR-/- MPS VII mice. The availability of both MR+/+ and MR-/- mice allowed us to study the effects of eliminating the MR on MR- and MPR-mediated plasma clearance and tissue distribution of infused phosphorylated (P) and nonphosphorylated (NP) forms of human beta-glucuronidase (GUS). In MR+/+ MPS VII mice, the MR clearance system predominated at doses up to 6.4 mg/kg P-GUS. Genetically eliminating the MR slowed plasma clearance of both P- and NP-GUS and enhanced the effectiveness of P-GUS in clearing storage in kidney, bone, and retina. Saturating the MR clearance system by high doses of enzyme also improved targeting to MPR-containing tissues such as muscle, kidney, heart, and hepatocytes. Although ablating the MR clearance system genetically is not practical clinically, blocking the MR-mediated clearance system with high doses of enzyme is feasible. This approach delivers a larger fraction of enzyme to MPR-expressing tissues, thus enhancing the effectiveness of MPR-targeted ERT.
Collapse
MESH Headings
- Animals
- Glucuronidase/deficiency
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Glucuronidase/therapeutic use
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/physiology
- Mannose Receptor
- Mannose-Binding Lectins/deficiency
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/physiology
- Mannosephosphates/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mucopolysaccharidosis VII/drug therapy
- Mucopolysaccharidosis VII/enzymology
- Mucopolysaccharidosis VII/genetics
- Phosphorylation
- Receptor, IGF Type 2/physiology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
Collapse
Affiliation(s)
- William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Bone marrow transplantation for lysosomal storage disorders has been used for the past 25 years. The early allure of a promising new therapy has given way to more realistic expectations, as it has become clear that bone marrow transplantation is not a cure, but merely ameliorates the clinical phenotype. The results in some disorders are more acceptable than in others. Significant challenges have emerged, particularly the poor mesenchymal and neurological responses. Important recent advances in lysosomal biology, both in health and disease, have helped us to better understand the results of bone marrow transplantation, and to rationalize its role in the treatment of lysosomal storage disorders alongside newer therapies. At the same time, they have helped researchers to explore new therapeutic applications of bone marrow cells, such as gene and stem cell therapy.
Collapse
Affiliation(s)
- Ashok Vellodi
- a Consultant Paediatrician and Honorary Reader, Great Ormond Street Hospital for Children, Metabolic Unit, NHS Trust, Great Ormond Street, London WC1N 3JH, UK.
| |
Collapse
|
48
|
Vogler C, Levy B, Grubb JH, Galvin N, Tan Y, Kakkis E, Pavloff N, Sly WS. Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A 2005; 102:14777-82. [PMID: 16162667 PMCID: PMC1253584 DOI: 10.1073/pnas.0506892102] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzyme replacement therapy (ERT) effectively reverses storage in several lysosomal storage diseases. However, improvement in brain is limited by the blood-brain barrier except in the newborn period. In this study, we asked whether this barrier could be overcome by higher doses of enzyme than are used in conventional trials. We measured the distribution of recombinant human beta-glucuronidase (hGUS) and reduction in storage by weekly doses of 0.3-40 mg/kg administered i.v. over 1-13 weeks to mucopolysaccharidosis type VII mice immunotolerant to recombinant hGUS. Mice given up to 5 mg/kg enzyme weekly over 3 weeks had moderate reduction in meningeal storage but no change in neo-cortical neurons. Mice given 20-40 mg/kg three times over 1 week showed no reduction in storage in any area of the CNS except the meninges. In contrast, mice receiving 4 mg/kg per week for 13 weeks showed clearance not only in meninges but also in parietal neocortical and hippocampal neurons and glia. Mice given 20 mg/kg once weekly for 4 weeks also had decreased neuronal, glial, and meningeal storage and averaged 2.5% of wild-type hGUS activity in brain. These results indicate that therapeutic enzyme can be delivered across the blood-brain barrier in the adult mucopolysaccharidosis type VII mouse if administered at higher doses than are used in conventional ERT trials and if the larger dose of enzyme is administered over a sufficient period. These results may have important implications for ERT for lysosomal storage diseases with CNS involvement.
Collapse
Affiliation(s)
- Carole Vogler
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee WC, Courtenay A, Troendle FJ, Stallings-Mann ML, Dickey CA, DeLucia MW, Dickson DW, Eckman CB. Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J 2005; 19:1549-51. [PMID: 15987783 DOI: 10.1096/fj.05-3826fje] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe disease is a devastating, degenerative neurological disorder caused by mutations in the galactosylceramidase (GALC) gene that severely affect enzyme activity. Currently, treatment options for this disorder are very limited. Enzyme replacement therapy (ERT) has been shown to be effective in lysosomal storage disorders with predominantly peripheral manifestations such as type I Gaucher's and Fabry's disease. Little however is known about the possible benefit of ERT in GLD, which has a substantial central nervous system component. In this study, we examined the effect of peripheral GALC injections in the twitcher mouse model of the disease. Although we were unable to block the precipitous decline that normally occurs just before death, we did observe significant early improvements in motor performance, a substantial attenuation in the initial failure to thrive, and an increase in life span. Immunohistochemical and activity analyses demonstrated GALC uptake in multiple tissues, including the brain. This was associated with a decrease in the abnormal accumulation of the GALC substrate psychosine, which is thought to play a pivotal role in disease pathology. These results indicate that peripheral ERT is likely to be beneficial in GLD.
Collapse
Affiliation(s)
- Wing C Lee
- Mayo Clinic College of Medicine, Department of Pharmacology, Jacksonville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Matzner U, Herbst E, Hedayati KK, Lüllmann-Rauch R, Wessig C, Schröder S, Eistrup C, Möller C, Fogh J, Gieselmann V. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Mol Genet 2005; 14:1139-52. [PMID: 15772092 DOI: 10.1093/hmg/ddi126] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy, which is characterized by accumulation of the sphingolipid 3-O-sulfogalactosylceramide (sulfatide). Sphingolipid storage results in progressive demyelination and severe neurologic symptoms. The disease is lethal, and curative therapy is not available. To assess the therapeutic potential of enzyme replacement therapy (ERT), ASA knockout mice were treated by intravenous injection of recombinant human ASA. Plasma levels of ASA declined with a half-time of approximately 40 min, and enzyme was detectable in tissues within minutes after injection. The uptake of injected enzyme was high into liver, moderate into peripheral nervous system (PNS) and kidney and very low into brain. The apparent half-life of endocytosed enzyme was approximately 4 days. A single injection led to a time- and dose-dependent decline of the excess sulfatide in PNS and kidney by up to 70%, but no reduction was seen in brain. Four weekly injections with 20 mg/kg body weight not only reduced storage in peripheral tissues progressively, but also were surprisingly effective in reducing sulfatide storage in brain and spinal cord. The histopathology of kidney and central nervous system was ameliorated. Improved neuromotor coordination capabilities and normalized peripheral compound motor action potential demonstrate the benefits of ERT on the nervous system function. Enzyme replacement may therefore be a promising therapeutic option in this devastating disease.
Collapse
Affiliation(s)
- Ulrich Matzner
- Institut Für Physiologische Chemi, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|