1
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
2
|
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y, Guo ZN. Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater 2024; 19:032002. [PMID: 38471163 DOI: 10.1088/1748-605x/ad3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Siji Wang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun 130021, People's Republic of China
| |
Collapse
|
3
|
COVID-19 Plasma Extracellular Vesicles Increase the Density of Lipid Rafts in Human Small Airway Epithelial Cells. Int J Mol Sci 2023; 24:ijms24021654. [PMID: 36675169 PMCID: PMC9861961 DOI: 10.3390/ijms24021654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the COVID-19 disease. COVID-19 viral infection can affect many cell types, including epithelial cells of the lungs and airways. Extracellular vesicles (EVs) are released by virtually all cell types, and their packaged cargo allows for intercellular communication, cell differentiation, and signal transduction. Cargo from virus-infected cells may include virally derived metabolites, miRNAs, nucleic acids, and proteins. We hypothesized that COVID-19 plasma EVs can induce the formation of signaling platforms known as lipid rafts after uptake by normal human small airway epithelial cells (SAECs). Circulating EVs from patients with or without COVID-19 were characterized by nanoparticle tracking analysis, Western blotting using specific antibodies, and transmission electron microscopy. Primary cultures of normal human small airway epithelial cells were challenged with EVs from the two patient groups, and lipid raft formation was measured by fluorescence microscopy and assessed by sucrose density gradient analysis. Collectively, our data suggest that circulating EVs from COVID-19-infected patients can induce the formation of lipid rafts in normal human small airway epithelial cells. These results suggest the need for future studies aimed at investigating whether the increased density of lipid rafts in these cells promotes viral entry and alteration of specific signaling pathways in the recipient cells.
Collapse
|
4
|
Dapagliflozin Treatment Augments Bioactive Phosphatidylethanolamine Concentrations in Kidney Cortex Membrane Fractions of Hypertensive Diabetic db/db Mice and Alters the Density of Lipid Rafts in Mouse Proximal Tubule Cells. Int J Mol Sci 2023; 24:ijms24021408. [PMID: 36674924 PMCID: PMC9865226 DOI: 10.3390/ijms24021408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In addition to inhibiting renal glucose reabsorption and allowing for glucose excretion, the sodium/glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin may be efficacious in treating various comorbidities associated with type 2 diabetes mellitus (T2DM). The molecular mechanisms by which dapagliflozin exerts its beneficial effects are largely unknown. We hypothesized dapagliflozin treatment in the diabetic kidney alters plasma membrane lipid composition, suppresses extracellular vesicle (EV) release from kidney cells, and disrupts lipid rafts in proximal tubule cells. In order to test this hypothesis, we treated diabetic db/db mice with dapagliflozin (N = 8) or vehicle (N = 8) and performed mass spectrometry-based lipidomics to investigate changes in the concentrations of membrane lipids in the kidney cortex. In addition, we isolated urinary EVs (uEVs) from urine samples collected during the active phase and the inactive phase of the mice and then probed for changes in membrane proteins enriched in the EVs. Multiple triacylglycerols (TAGs) were enriched in the kidney cortex membrane fractions of vehicle-treated diabetic db/db mice, while the levels of multiple phosphatidylethanolamines were significantly higher in similar mice treated with dapagliflozin. EV concentration and size were lesser in the urine samples collected during the inactive phase of dapagliflozin-treated diabetic mice. In cultured mouse proximal tubule cells treated with dapagliflozin, the lipid raft protein caveolin-1 shifted from less dense fractions to more dense sucrose density gradient fractions. Taken together, these results suggest dapagliflozin may regulate lipid-mediated signal transduction in the diabetic kidney.
Collapse
|
5
|
Lugo CI, Liu LP, Bala N, Morales AG, Gholam MF, Abchee JC, Elmoujahid N, Elshikha AS, Avdiaj R, Searcy LA, Denslow ND, Song S, Alli AA. Human Alpha-1 Antitrypsin Attenuates ENaC and MARCKS and Lowers Blood Pressure in Hypertensive Diabetic db/db Mice. Biomolecules 2022; 13:66. [PMID: 36671451 PMCID: PMC9856210 DOI: 10.3390/biom13010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Hypertension may develop before or after the onset of diabetes and it is known to increase the risk of developing diabetic nephropathy. Alpha-1 antitrypsin (AAT) is a multi-functional protein with beneficial effects in various diseases but its role in reducing blood pressure in the diabetic kidney has not been thoroughly studied. Like blood pressure, epithelial sodium channels (ENaC) and its adaptor protein myristoylated alanine-rich C-kinase substrate (MARCKS) are regulated by circadian rhythms. Our hypothesis is that administration of human AAT (hAAT) reduces blood pressure in hypertensive diabetic mice by attenuating membrane expression of ENaC and its association with the actin cytoskeleton. First, we show hAAT administration results in reduced blood pressure in diabetic db/db mice compared to vehicle treatment in both the inactive and active cycles. Western blotting and immunohistochemistry analyses showed a reduction of ENaC and the actin cytoskeleton protein, MARCKS in the kidneys of diabetic db/db mice treated with hAAT compared to vehicle. hAAT treatment resulted in elevated amounts of extracellular vesicles present in the urine of diabetic db/db mice compared to vehicle treatment both in the inactive and active cycles. Multiple hexosylceramides, among other lipid classes increased in urinary EVs released from hAAT treated hypertensive diabetic mice compared to vehicle treated mice. Taken together, these data suggest hAAT treatment could normalize blood pressure in the diabetic kidney in a mechanism involving attenuation of renal ENaC and MARCKS protein expression and possibly ceramide metabolism to hexosylceramide in kidney cells.
Collapse
Affiliation(s)
- Carlos I. Lugo
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Angelica G. Morales
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mohammed F. Gholam
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Julia C. Abchee
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Nasseem Elmoujahid
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ahmed Samir Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Rigena Avdiaj
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Louis A. Searcy
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Sihong Song
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
7
|
Ruiz-Hernández IM, Nouri MZ, Kozuch M, Denslow ND, Díaz-Gamboa RE, Rodríguez-Canul R, Collí-Dulá RC. Trace element and lipidomic analysis of bottlenose dolphin blubber from the Yucatan coast: Lipid composition relationships. CHEMOSPHERE 2022; 299:134353. [PMID: 35314180 DOI: 10.1016/j.chemosphere.2022.134353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Bottlenose dolphins (Tursiops truncatus) are found in coastal and estuarine ecosystems where they are in continuous contact with multiple abiotic and biotic stressors in the environment. Due to their role as predators, they can bioaccumulate contaminants and are considered sentinel organisms for monitoring the health of coastal marine ecosystems. The northern zonal coast of the Yucatan peninsula of Mexico has a high incidence of anthropogenic activities. The principal objectives of this study were two-fold: 1) to determine the presence of trace metals and their correlation with lipids in bottlenose dolphin blubber, and 2) to use a lipidomics approach to characterize their biological responses. Levels of trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Pb) were analyzed using ICP-MS and lipids were measured using a targeted lipidomics approach with LC-MS/MS. Spearman correlation analysis was used to identify associations between lipids and trace elements. The influences of gender, stranding codes, presence of stomach content, growth stages and body length were also analyzed. Blubber lipid composition was dominated by triacylglycerols (TAG). Our results demonstrated the presence of heavy-metal elements such as Cd and As, which were correlated with different lipid species, mainly the ceramides and glycerophospholipids, respectively. Organisms with Cd showed lower concentrations of ceramides (CER, HCER and DCER), TAG and cholesteryl esters (CE). Trace elements Cr, Co, As and Cd increased proportionately with body length. This study provides a novel insight of lipidomic characterization and correlations with trace elements in the bottlenose dolphin which might contribute to having a better understanding of the physiological functions and the risks that anthropogenic activities can bring to sentinel organisms from coastal regions.
Collapse
Affiliation(s)
- Ixchel M Ruiz-Hernández
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Antigua Carretera a Progreso km 6. Cordemex, Mérida, Yucatán, 97310, Mexico.
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology. University of Florida. PO Box 110885. 2187 Mowry Road. Gainesville, FL, 32611, USA.
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology. University of Florida. PO Box 110885. 2187 Mowry Road. Gainesville, FL, 32611, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology. University of Florida. PO Box 110885. 2187 Mowry Road. Gainesville, FL, 32611, USA.
| | - Raúl E Díaz-Gamboa
- Universidad Autónoma de Yucatán, Departamento de Biología Marina, Mérida, Yucatán, 97000, Mexico.
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Antigua Carretera a Progreso km 6. Cordemex, Mérida, Yucatán, 97310, Mexico.
| | - Reyna C Collí-Dulá
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida. Antigua Carretera a Progreso km 6. Cordemex, Mérida, Yucatán, 97310, Mexico; CONACYT, CONACYT, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
9
|
Georgiev V, Avalos-Padilla Y, Fernàndez-Busquets X, Dimova R. Femtoliter Injection of ESCRT-III Proteins into Adhered Giant Unilamellar Vesicles. Bio Protoc 2022; 12:e4328. [DOI: 10.21769/bioprotoc.4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/02/2022] Open
|
10
|
Chacko KM, Nouri MZ, Schramm WC, Malik Z, Liu LP, Denslow ND, Alli AA. Tempol Alters Urinary Extracellular Vesicle Lipid Content and Release While Reducing Blood Pressure during the Development of Salt-Sensitive Hypertension. Biomolecules 2021; 11:biom11121804. [PMID: 34944449 PMCID: PMC8699083 DOI: 10.3390/biom11121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
Salt-sensitive hypertension resulting from an increase in blood pressure after high dietary salt intake is associated with an increase in the production of reactive oxygen species (ROS). ROS are known to increase the activity of the epithelial sodium channel (ENaC), and therefore, they have an indirect effect on sodium retention and increasing blood pressure. Extracellular vesicles (EVs) carry various molecules including proteins, microRNAs, and lipids and play a role in intercellular communication and intracellular signaling in health and disease. We investigated changes in EV lipids, urinary electrolytes, osmolality, blood pressure, and expression of renal ENaC and its adaptor protein, MARCKS/MARCKS Like Protein 1 (MLP1) after administration of the antioxidant Tempol in salt-sensitive hypertensive 129Sv mice. Our results show Tempol infusion reduces systolic blood pressure and protein expression of the alpha subunit of ENaC and MARCKS in the kidney cortex of hypertensive 129Sv mice. Our lipidomic data show an enrichment of diacylglycerols and monoacylglycerols and reduction in ceramides, dihydroceramides, and triacylglycerols in urinary EVs from these mice after Tempol treatment. These data will provide insight into our understanding of mechanisms involving strategies aimed to inhibit ROS to alleviate salt-sensitive hypertension.
Collapse
Affiliation(s)
- Kevin M. Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Whitney C. Schramm
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Zeeshan Malik
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Lauren P. Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA; (M.-Z.N.); (N.D.D.)
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA; (K.M.C.); (W.C.S.); (Z.M.); (L.P.L.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-273-7877
| |
Collapse
|
11
|
Nouri MZ, Yu L, Liu L, Chacko KM, Denslow ND, LaDisa JF, Alli AA. Increased endothelial sodium channel activity by extracellular vesicles in human aortic endothelial cells: Putative role of MLP1 and bioactive lipids. Am J Physiol Cell Physiol 2021; 321:C535-C548. [PMID: 34288724 DOI: 10.1152/ajpcell.00092.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) contain biological molecules and are secreted by cells into the extracellular milieu. The endothelial sodium channel (EnNaC) plays an important role in modulating endothelial cell stiffness. We hypothesized EVs secreted from human aortic endothelial cells (hAoEC) positively regulate EnNaC in an autocrine dependent manner. A comprehensive lipidomic analysis using targeted mass spectrometry was performed on multiple preparations of EVs isolated from the conditioned media of hAoEC or complete growth media of these cells. Cultured hAoEC challenged with EVs isolated from the conditioned media of these cells resulted in an increase in EnNaC activity when compared to the same concentration of media derived EVs or vehicle alone. EVs isolated from the conditioned media of hAoEC but not human fibroblast cells were enriched in MARCKS Like Protein 1 (MLP1). The pharmacological inhibition of the negative regulator of MLP1, protein kinase C, in cultured hAoEC resulted in an increase in EV size and release compared to vehicle or pharmacological inhibition of protein kinase D. The MLP1 enriched EVs increased the density of actin filaments in cultured hAoEC compared to EVs isolated from human fibroblast cells lacking MLP1. We quantified 141 lipids from glycerolipids, glycerophospholipids, and sphingolipids in conditioned media EVs that represented twice the number found in control media EVs. The concentrations of sphingomyelin, lysophosphatidylcholine and phosphatidylethanolamine were higher in conditioned media EVs. These results provide the first evidence for EnNaC regulation in hAoEC by EVs and provide insight into a possible mechanism involving MLP1, unsaturated lipids, and bioactive lipids.
Collapse
Affiliation(s)
- Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Ling Yu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Lauren Liu
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Kevin M Chacko
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - John F LaDisa
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States.,Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Donoso‐Quezada J, Ayala‐Mar S, González‐Valdez J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic 2021; 22:204-220. [PMID: 34053166 PMCID: PMC8361711 DOI: 10.1111/tra.12803] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Exosomes are extracellular vesicles that in recent years have received special attention for their regulatory functions in numerous biological processes. Recent evidence suggests a correlation between the composition of exosomes in body fluids and the progression of some disorders, such as cancer, diabetes and neurodegenerative diseases. In consequence, numerous studies have been performed to evaluate the composition of these vesicles, aiming to develop new biomarkers for diagnosis and to find novel therapeutic targets. On their part, lipids represent one of the most important components of exosomes, with important structural and regulatory functions during exosome biogenesis, release, targeting and cellular uptake. Therefore, exosome lipidomics has emerged as an innovative discipline for the discovery of novel lipid species with biomedical applications. This review summarizes the current knowledge about exosome lipids and their roles in exosome biology and intercellular communication. Furthermore, it presents the state-of-the-art analytical procedures used in exosome lipidomics while emphasizing how this emerging discipline is providing new insights for future applications of exosome lipids in biomedicine.
Collapse
Affiliation(s)
| | - Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| |
Collapse
|
13
|
Li Y, Qu H, Ji J, Wang Y, Liu T, He J, Wang J, Shu D, Luo C. Characterization of the exosomes in the allantoic fluid of the chicken embryo. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The embryo stage is critical for chicken development. Numerous studies have been conducted to clarify the dynamic changes and functions of various proteins and the composition of amino acids during embryo development. However, the physiological characteristics of extraembryonic fluid (allantoic and amniotic), especially allantoic fluid (AF), remain largely unexplored; furthermore, how information is transmitted from embryonic fluid is unknown. In this study, AF-derived exosomes ranging from 60 to 160 nm in diameter from fertilized eggs at 13 d of incubation of fast-growth chickens (WG chicken), medium-growth chickens (Silky N4 chicken), and slow-growth chickens (Huiyang Beard chicken) were isolated and purified by different ultra-centrifugations and further verified by transmission electron microscopy and a flow nano-analyzer. Expression of the exosomal positive biomarkers of ALIX and HSP70 as well as lack of the epithelium marker GRP78 was observed by Western blotting. In addition, small RNA sequencing revealed that AF-derived exosomes at 13 d of incubation contained a large number of known miRNAs (32.62%–65.83%). The top 10 most abundant and co-expressed miRNAs were primarily related to development, growth, and immunity. In addition, AF-derived exosomes promoted DF-1 cell migration. These findings broadened our understanding of the characteristic of AF-derived exosomes.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Hao Qu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jian Ji
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Yan Wang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Tianfei Liu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jingyi He
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jie Wang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Dingming Shu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Chenglong Luo
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| |
Collapse
|
14
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
15
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
16
|
Yan H, Li Y, Cheng S, Zeng Y. Advances in Analytical Technologies for Extracellular Vesicles. Anal Chem 2021; 93:4739-4774. [PMID: 33635060 DOI: 10.1021/acs.analchem.1c00693] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- He Yan
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yutao Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shibo Cheng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Health Cancer Center, Gainesville, Florida 32610, United States
| |
Collapse
|
17
|
Dreier DA, Nouri MZ, Denslow ND, Martyniuk CJ. Lipidomics reveals multiple stressor effects (temperature × mitochondrial toxicant) in the zebrafish embryo toxicity test. CHEMOSPHERE 2021; 264:128472. [PMID: 33039916 DOI: 10.1016/j.chemosphere.2020.128472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 05/27/2023]
Abstract
Aquatic organisms are exposed to multiple stressors in the environment, including contaminants and rising temperatures due to climate change. The objective of this study was to characterize the effect of increased temperature on chemical-induced toxicity and lipid profiles during embryonic development and hatch in fish. This is important because temperature and many environmental chemicals modulate cellular metabolism and lipids, both of which play integral roles for normal embryonic development. As such, we employed the zebrafish embryo toxicity test for multiple stressor exposures, using the mitochondrial toxicant 2,4-Dinitrophenol (DNP; 6-30 μM) in conjunction with different temperature treatments (28 °C and 33 °C). We found a positive relationship between temperature and lethality at lower DNP concentrations, suggesting temperature stress can increase toxicant sensitivity. Next, we used LC-MS/MS for lipidomics following exposure to sublethal stressor combinations. It was determined that temperature stress at 33 °C augmented DNP-induced effects on the lipidome, including the upregulation of bioactive lipids involved in apoptosis (e.g., ceramides). These data reveal potential implications for climate change and sensitivity to environmental pollution and demonstrate the utility of lipidomics to characterize metabolic pathways underlying toxicity. Data such as these are expected to advance adverse outcome pathways by establishing multiple stressor networks that include intermediate lipid responses.
Collapse
Affiliation(s)
- David A Dreier
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammad-Zaman Nouri
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nancy D Denslow
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Center for Environmental & Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Ultrafiltration combing with phospholipid affinity-based isolation for metabolomic profiling of urinary extracellular vesicles. J Chromatogr A 2021; 1640:461942. [PMID: 33588274 DOI: 10.1016/j.chroma.2021.461942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent years have seen the field of extracellular vesicle (EV) studies burgeoning. This is mainly because EV constituents including nucleic acid, proteins, lipids, and metabolites are promising sources towards disease biomarker discovery. However, EV study remains challenging due to the complexity of biofluids as well as technical limitations during sample preparation. Here, we proposed a simple method combing ultrafiltration (UF) and phospholipid affinity to collect high purity EVs from 30 mL of urine sample for their metabolomic profiling. Ultracentrifugation (UC) for EV isolation was applied as a reference method. Western blot (WB) analysis, nanoparticles tracking analysis (NTA) and electron microscopy (EM) were used to assess EV protein markers and to characterize vesicle size and morphology. The results revealed that more than 1010 EV particles could be isolated from a 30 mL urine sample by the proposed method, and the resulting EVs carry specific protein markers and had a typical "cup shape" morphology. This suggests that our method is suitable for EV isolation and can provide sufficient EV quantity to ensure downstream analysis. Further untargeted metabolomic profiling of isolated EVs by UHPLC-QTOF-MS detected 433 metabolites by our methods and 432 metabolites by UC with a MS/MS similarity score greater than 0.7. We then applied the lipid metabolites-targeted method using UHPLC-QTrap-MS with the MRM mode, which successfully detected 467 compounds from urine EVs. This indicates that UF integrating phospholipid affinity is a reliable method for metabolic analysis of urinary EVs, which holds the potential for EV clinical application towards biomarker investigation from their metabolites.
Collapse
|
19
|
Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159:308-321. [PMID: 32151658 DOI: 10.1016/j.addr.2020.03.002] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/02/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles contain a lipid bilayer membrane that protects the encapsulated material, such as proteins, nucleic acids, lipids and metabolites, from the extracellular environment. These vesicles are released from cells via different mechanisms. During recent years extracellular vesicles have been studied as possible biomarkers for different diseases, as biological nanoparticles for drug delivery, and in basic studies as a tool to understand the structure of biological membranes and the mechanisms involved in vesicular trafficking. Lipids are essential molecular components of extracellular vesicles, but at the moment our knowledge about the lipid composition and the function of lipids in these vesicles is limited. However, the interest of the research community in these molecules is increasing as their role in extracellular vesicles is starting to be acknowledged. In this review, we will present the status of the field and describe what is needed to bring it forward.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
20
|
Glover SC, Nouri MZ, Tuna KM, Mendoza Alvarez LB, Ryan LK, Shirley JF, Tang Y, Denslow ND, Alli AA. Lipidomic analysis of urinary exosomes from hereditary α-tryptasemia patients and healthy volunteers. FASEB Bioadv 2019; 1:624-638. [PMID: 31803861 PMCID: PMC6892164 DOI: 10.1096/fba.2019-00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exosomes are nano‐sized vesicles that are involved in various biological processes including cell differentiation, proliferation, signaling, and intercellular communication. Urinary exosomes were isolated from a cohort of hereditary α‐tryptasemia (HαT) patients and from healthy volunteers. There was a greater number of exosomes isolated from the urine in the HαT group compared to the control volunteers. Here, we investigated the differences in both lipid classes and lipid species within urinary exosomes of the two groups. Lipids were extracted from urinary exosomes and subjected to liquid chromatography mass spectrometry using a targeted approach. Various molecular species of glycerophospholipids, glycerolipids, and sterols were significantly reduced in HαT patients. Out of a possible 1127 lipids, 521 lipid species were detected, and relative quantities were calculated. Sixty‐four lipids were significantly reduced in urinary exosomes of HαT patients compared to controls. All significantly reduced sphingolipids and most of the phospholipids were saturated or mono‐unsaturated lipids. These results suggest exosome secretion is augmented in HαT patients and the lipids within these exosomes may be involved in various biological processes. The unique lipid composition of urinary exosomes from HαT patients will contribute to our understanding of the biochemistry of this disease.
Collapse
Affiliation(s)
- Sarah C Glover
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL
| | - Kubra M Tuna
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, College of Medicine, Gainesville, FL
| | - Lybil B Mendoza Alvarez
- Department of Pediatrics, Pediatric Gastroenterology, University of Florida, Gainesville, FL
| | - Lisa K Ryan
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - James F Shirley
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Ying Tang
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, College of Medicine, Gainesville, FL
| |
Collapse
|