1
|
Lichterfeld Y, Kalinski L, Schunk S, Schmakeit T, Feles S, Frett T, Herrmann H, Hemmersbach R, Liemersdorf C. Hypergravity Attenuates Reactivity in Primary Murine Astrocytes. Biomedicines 2022; 10:biomedicines10081966. [PMID: 36009513 PMCID: PMC9405820 DOI: 10.3390/biomedicines10081966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is the key modulator of nearly every aspect of behavior, affecting cognition, learning, and memory as well as motion. Hence, disturbances of the transmission of synaptic signals are the main cause of many neurological disorders. Lesions to nervous tissues are associated with phenotypic changes mediated by astrocytes becoming reactive. Reactive astrocytes form the basis of astrogliosis and glial scar formation. Astrocyte reactivity is often targeted to inhibit axon dystrophy and thus promote neuronal regeneration. Here, we aim to understand the impact of gravitational loading induced by hypergravity to potentially modify key features of astrocyte reactivity. We exposed primary murine astrocytes as a model system closely resembling the in vivo reactivity phenotype on custom-built centrifuges for cultivation as well as for live-cell imaging under hypergravity conditions in a physiological range (2g and 10g). We revealed spreading rates, migration velocities, and stellation to be diminished under 2g hypergravity. In contrast, proliferation and apoptosis rates were not affected. In particular, hypergravity attenuated reactivity induction. We observed cytoskeletal remodeling of actin filaments and microtubules under hypergravity. Hence, the reorganization of these key elements of cell structure demonstrates that fundamental mechanisms on shape and mobility of astrocytes are affected due to altered gravity conditions. In future experiments, potential target molecules for pharmacological interventions that attenuate astrocytic reactivity will be investigated. The ultimate goal is to enhance neuronal regeneration for novel therapeutic approaches.
Collapse
Affiliation(s)
- Yannick Lichterfeld
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Laura Kalinski
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Sarah Schunk
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Theresa Schmakeit
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Sebastian Feles
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Timo Frett
- Department of Muscle and Bone Metabolism, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University of Erlangen, 91054 Erlangen, Germany
| | - Ruth Hemmersbach
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Correspondence: ; Tel.: +49-176-811-09-333
| |
Collapse
|
2
|
Silvani G, Bradbury P, Basirun C, Mehner C, Zalli D, Poole K, Chou J. Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research. NPJ Microgravity 2022; 8:19. [PMID: 35662260 PMCID: PMC9166742 DOI: 10.1038/s41526-022-00207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
Collapse
Affiliation(s)
- Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Detina Zalli
- Institute of Continuing Education, University of Cambridge, Camridge, UK
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
3
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|
4
|
Barravecchia I, De Cesari C, Forcato M, Scebba F, Pyankova OV, Bridger JM, Foster HA, Signore G, Borghini A, Andreassi M, Andreazzoli M, Bicciato S, Pè ME, Angeloni D. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell Mol Life Sci 2021; 79:28. [PMID: 34936031 PMCID: PMC11072227 DOI: 10.1007/s00018-021-04025-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Chiara De Cesari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
- Department of Biology, University of Pisa, 56123, Pisa, Italy
| | - Mattia Forcato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Scebba
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Olga V Pyankova
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Centre of Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy
| | | | | | - Silvio Bicciato
- Center for Genome Research, Department of Life Science, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124, Pisa, Italy.
| |
Collapse
|
5
|
Sahana J, Corydon TJ, Wehland M, Krüger M, Kopp S, Melnik D, Kahlert S, Relja B, Infanger M, Grimm D. Alterations of Growth and Focal Adhesion Molecules in Human Breast Cancer Cells Exposed to the Random Positioning Machine. Front Cell Dev Biol 2021; 9:672098. [PMID: 34277614 PMCID: PMC8278480 DOI: 10.3389/fcell.2021.672098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we evaluated changes in focal adhesions (FAs) in two types of breast cancer cell (BCC) lines (differentiated MCF-7 and the triple-negative MDA-MB-231 cell line) exposed to simulated microgravity (s-μg) created by a random positioning machine (RPM) for 24 h. After exposure, the BCC changed their growth behavior and exhibited two phenotypes in RPM samples: one portion of the cells grew as a normal two-dimensional monolayer [adherent (AD) BCC], while the other portion formed three-dimensional (3D) multicellular spheroids (MCS). After 1 h and 30 min (MDA-MB-231) and 1 h 40 min (MCF-7), the MCS adhered completely to the slide flask bottom. After 2 h, MDA-MB-231 MCS cells started to migrate, and after 6 h, a large number of the cells had left the MCS and continued to grow in a scattered pattern, whereas MCF-7 cells were growing as a confluent monolayer after 6 h and 24 h. We investigated the genes associated with the cytoskeleton, the extracellular matrix and FAs. ACTB, TUBB, FN1, FAK1, and PXN gene expression patterns were not significantly changed in MDA-MB-231 cells, but we observed a down-regulation of LAMA3, ITGB1 mRNAs in AD cells and of ITGB1, TLN1 and VCL mRNAs in MDA-MB-231 MCS. RPM-exposed MCF-7 cells revealed a down-regulation in the gene expression of FAK1, PXN, TLN1, VCL and CDH1 in AD cells and PXN, TLN and CDH1 in MCS. An interaction analysis of the examined genes involved in 3D growth and adhesion indicated a central role of fibronectin, vinculin, and E-cadherin. Live cell imaging of eGFP-vinculin in MCF-7 cells confirmed these findings. β-catenin-transfected MCF-7 cells revealed a nuclear expression in 1g and RPM-AD cells. The target genes BCL9, MYC and JUN of the Wnt/β-catenin signaling pathway were differentially expressed in RPM-exposed MCF-7 cells. These findings suggest that vinculin and β-catenin are key mediators of BCC to form MCS during 24 h of RPM-exposure.
Collapse
Affiliation(s)
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto von Guericke University, Magdeburg, Germany
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto von Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Magdeburg, Germany.,Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen" (MARS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
A Protective Strategy to Counteract the Oxidative Stress Induced by Simulated Microgravity on H9C2 Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9951113. [PMID: 33986919 PMCID: PMC8079188 DOI: 10.1155/2021/9951113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Microgravity affects human cardiovascular function inducing heart rhythm disturbances and even cardiac atrophy. The mechanisms triggered by microgravity and the search for protection strategies are difficult to be investigated in vivo. This study is aimed at investigating the effects induced by simulated microgravity on a cardiomyocyte-like phenotype. The Random Positioning Machine (RPM), set in a CO2 incubator, was used to simulate microgravity, and H9C2 cell line was used as the cardiomyocyte-like model. H9C2 cells were exposed to simulated microgravity up to 96 h, showing a slower cell proliferation rate and lower metabolic activity in comparison to cell grown at earth gravity. In exposed cells, these effects were accompanied by increased levels of intracellular reactive oxygen species (ROS), cytosolic Ca2+, and mitochondrial superoxide anion. Protein carbonyls, markers of protein oxidation, were significantly increased after the first 48 h of exposition in the RPM. In these conditions, the presence of an antioxidant, the N-acetylcysteine (NAC), counteracted the effects induced by the simulated microgravity. In conclusion, these data suggest that simulated microgravity triggers a concomitant increase of intracellular ROS and Ca2+ levels and affects cell metabolic activity which in turn could be responsible for the slower proliferative rate. Nevertheless, the very low number of detectable dead cells and, more interestingly, the protective effect of NA, demonstrate that simulated microgravity does not have “an irreversible toxic effect” but, affecting the oxidative balance, results in a transient slowdown of proliferation.
Collapse
|
7
|
Monti N, Masiello MG, Proietti S, Catizone A, Ricci G, Harrath AH, Alwasel SH, Cucina A, Bizzarri M. Survival Pathways Are Differently Affected by Microgravity in Normal and Cancerous Breast Cells. Int J Mol Sci 2021; 22:ijms22020862. [PMID: 33467082 PMCID: PMC7829699 DOI: 10.3390/ijms22020862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness. These controversial results can be explained by considering the notion that the behavior of adherent cells dramatically diverges in respect to that of detached cells, organized into organoids-like, floating structures. We investigated both normal (MCF10A) and cancerous (MCF-7) breast cells and found that appreciable apoptosis occurs only after 72 h in MCF-7 cells growing in organoid-like structures, in which major modifications of cytoskeleton components were observed. Indeed, preserving cell attachment to the substrate allows cells to upregulate distinct Akt- and ERK-dependent pathways in MCF-7 and MCF-10A cells, respectively. These findings show that survival strategies may differ between cell types but cannot provide sufficient protection against weightlessness-induced apoptosis alone if adhesion to the substrate is perturbed.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Masiello
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Sara Proietti
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
| | - Angela Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.H.); (S.H.A.)
| | - Alessandra Cucina
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy; (M.G.M.); (S.P.); (A.C.)
- Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-4976-6606
| |
Collapse
|
8
|
Nassef MZ, Melnik D, Kopp S, Sahana J, Infanger M, Lützenberg R, Relja B, Wehland M, Grimm D, Krüger M. Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. Int J Mol Sci 2020; 21:ijms21197345. [PMID: 33027908 PMCID: PMC7582256 DOI: 10.3390/ijms21197345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer death in females. The incidence has risen dramatically during recent decades. Dismissed as an "unsolved problem of the last century", breast cancer still represents a health burden with no effective solution identified so far. Microgravity (µg) research might be an unusual method to combat the disease, but cancer biologists decided to harness the power of µg as an exceptional method to increase efficacy and precision of future breast cancer therapies. Numerous studies have indicated that µg has a great impact on cancer cells; by influencing proliferation, survival, and migration, it shifts breast cancer cells toward a less aggressive phenotype. In addition, through the de novo generation of tumor spheroids, µg research provides a reliable in vitro 3D tumor model for preclinical cancer drug development and to study various processes of cancer progression. In summary, µg has become an important tool in understanding and influencing breast cancer biology.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Ronald Lützenberg
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, 39120 Magdeburg, Germany;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark;
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.Z.N.); (D.M.); (S.K.); (M.I.); (R.L.); (M.W.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6757471
| |
Collapse
|
9
|
Sperm Motility of Mice under Simulated Microgravity and Hypergravity. Int J Mol Sci 2020; 21:ijms21145054. [PMID: 32709012 PMCID: PMC7404272 DOI: 10.3390/ijms21145054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
For deep space exploration, reproductive health must be maintained to preserve the species. However, the mechanisms underlying the effect of changes in gravity on male germ cells remain poorly understood. The aim of this study was to determine the effect of simulated micro- and hypergravity on mouse sperm motility and the mechanisms of this change. For 1, 3 and 6 h, mouse sperm samples isolated from the caudal epididymis were subjected to simulated microgravity using a random position machine and 2g hypergravity using a centrifuge. The experimental samples were compared with static and dynamic controls. The sperm motility and the percentage of motile sperm were determined using microscopy and video analysis, cell respiration was determined by polarography, the protein content was assessed by Western blotting and the mRNA levels were determined using qRT-PCR. The results indicated that hypergravity conditions led to more significant changes than simulated microgravity conditions: after 1 h, the speed of sperm movement decreased, and after 3 h, the number of motile cells began to decrease. Under the microgravity model, the speed of movement did not change, but the motile spermatozoa decreased after 6 h of exposure. These changes are likely associated with a change in the structure of the microtubule cytoskeleton, and changes in the energy supply are an adaptive reaction to changes in sperm motility.
Collapse
|
10
|
Bradbury P, Wu H, Choi JU, Rowan AE, Zhang H, Poole K, Lauko J, Chou J. Modeling the Impact of Microgravity at the Cellular Level: Implications for Human Disease. Front Cell Dev Biol 2020; 8:96. [PMID: 32154251 PMCID: PMC7047162 DOI: 10.3389/fcell.2020.00096] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
A lack of gravity experienced during space flight has been shown to have profound effects on human physiology including muscle atrophy, reductions in bone density and immune function, and endocrine disorders. At present, these physiological changes present major obstacles to long-term space missions. What is not clear is which pathophysiological disruptions reflect changes at the cellular level versus changes that occur due to the impact of weightlessness on the entire body. This review focuses on current research investigating the impact of microgravity at the cellular level including cellular morphology, proliferation, and adhesion. As direct research in space is currently cost prohibitive, we describe here the use of microgravity simulators for studies at the cellular level. Such instruments provide valuable tools for cost-effective research to better discern the impact of weightlessness on cellular function. Despite recent advances in understanding the relationship between extracellular forces and cell behavior, very little is understood about cellular biology and mechanotransduction under microgravity conditions. This review will examine recent insights into the impact of simulated microgravity on cell biology and how this technology may provide new insight into advancing our understanding of mechanically driven biology and disease.
Collapse
Affiliation(s)
- Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Hanjie Wu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Jung Un Choi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20133156. [PMID: 31261642 PMCID: PMC6651518 DOI: 10.3390/ijms20133156] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µg) conditions. We tested the effect of r-µg on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µg and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µg. Moreover, in a second mission we investigated changes in RNA transcription and morphology in breast cancer cells exposed to parabolic flight (PF) maneuvers (31st Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign). The MCF-7 cells showed a rearrangement of the F-actin and tubulin with holes, accumulations in the tubulin network, and the appearance of filopodia- and lamellipodia-like structures in the F-actin cytoskeleton shortly after the beginning of the r-µg period. PF maneuvers induced an early up-regulation of KRT8, RDX, TIMP1, CXCL8 mRNAs, and a down-regulation of VCL after the first parabola. E-cadherin protein was significantly reduced and is involved in cell adhesion processes, and plays a significant role in tumorigenesis. Changes in the E-cadherin protein synthesis can lead to tumor progression. Pathway analyses indicate that VCL protein has an activating effect on CDH1. In conclusion, live-cell imaging visualized similar changes as those occurring in thyroid cancer cells in r-µg. This result indicates the presence of a common mechanism of gravity perception and sensation.
Collapse
|
12
|
Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages. Int J Mol Sci 2019; 20:ijms20102402. [PMID: 31096581 PMCID: PMC6567851 DOI: 10.3390/ijms20102402] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.
Collapse
|
13
|
Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4894083. [PMID: 31073526 PMCID: PMC6470427 DOI: 10.1155/2019/4894083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/27/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
With the rapid development of modern medical technology and the deterioration of living environments, cancer, the most important disease that threatens human health, has attracted increasing concerns. Although remarkable achievements have been made in tumor research during the past several decades, a series of problems such as tumor metastasis and drug resistance still need to be solved. Recently, relevant physiological changes during space exploration have attracted much attention. Thus, space exploration might provide some inspiration for cancer research. Using on ground different methods in order to simulate microgravity, structure and function of cancer cells undergo many unique changes, such as cell aggregation to form 3D spheroids, cell-cycle inhibition, and changes in migration ability and apoptosis. Although numerous better experiments have been conducted on this subject, the results are not consistent. The reason might be that different methods for simulation have been used, including clinostats, random positioning machine (RPM) and rotating wall vessel (RWV) and so on. Therefore, we review the relevant research and try to explain novel mechanisms underlying tumor cell changes under weightlessness.
Collapse
|
14
|
Ebnerasuly F, Hajebrahimi Z, Tabaie SM, Darbouy M. Simulated Microgravity Condition Alters the Gene Expression of some ECM and Adhesion Molecules in Adipose Derived Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:146-157. [PMID: 31565646 PMCID: PMC6744620 DOI: 10.22088/ijmcm.bums.7.3.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/27/2018] [Indexed: 01/05/2023]
Abstract
Adipose- derived stem cells (ADSCs) are widely used for tissue engineering and regenerative medicine. The beneficial effects of ADSCs on wound healing have already been reported. Remodeling of extracellular matrix (ECM) is the most important physiological event during wound healing. ECM is sensitive to mechanical stresses and the expression of its components can be therefore influenced. The aim of this study was to investigate the effect of simulated microgravity on gene expression of some ECM and adhesion molecules in human ADSCs. After isolation and characterization of ADSCs, cells were exposed to simulated microgravity for 1, 3 and 7 days. Real-time PCR, fluorescence immunocytochemistry, and MTT assay were performed to evaluate the alterations of integrin subunit beta 1 (ITGB1), collagen type 3 (ColIII), matrix metalloproteinase-1 (MMP1), CD44, fibrillin (FBN1), vimentin (VIM) genes, and ColIII protein levels as well as cells viability. Microgravity simulation increased the expression of ITGB1, ColIII, MMP1, and CD44 and declined the expression of FBN1 and VIM genes. ColIII protein levels also increased. There were no significant changes in the viability of cells cultured in microgravity. Since the high expression of ECM components is known as one of the fibroblast markers, our data suggest that pretreatment of ADSCs by simulated microgravity may increase their differentiation capacity towards fibroblastic cells. Microgravity had not adversely affected the viability of ADSCs, and it is likely to be used alone or in combination with biochemical inducers for cell manipulation.
Collapse
Affiliation(s)
- Farid Ebnerasuly
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Zahra Hajebrahimi
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Seyed Mehdi Tabaie
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Mojtaba Darbouy
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
15
|
Zhao T, Li R, Tan X, Zhang J, Fan C, Zhao Q, Deng Y, Xu A, Lukong KE, Genth H, Xiang J. Simulated Microgravity Reduces Focal Adhesions and Alters Cytoskeleton and Nuclear Positioning Leading to Enhanced Apoptosis via Suppressing FAK/RhoA-Mediated mTORC1/NF-κB and ERK1/2 Pathways. Int J Mol Sci 2018; 19:ijms19071994. [PMID: 29986550 PMCID: PMC6073227 DOI: 10.3390/ijms19071994] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022] Open
Abstract
Simulated-microgravity (SMG) promotes cell-apoptosis. We demonstrated that SMG inhibited cell proliferation/metastasis via FAK/RhoA-regulated mTORC1 pathway. Since mTORC1, NF-κB, and ERK1/2 signaling are important in cell apoptosis, we examined whether SMG-enhanced apoptosis is regulated via these signals controlled by FAK/RhoA in BL6-10 melanoma cells under clinostat-modelled SMG-condition. We show that SMG promotes cell-apoptosis, alters cytoskeleton, reduces focal adhesions (FAs), and suppresses FAK/RhoA signaling. SMG down-regulates expression of mTORC1-related Raptor, pS6K, pEIF4E, pNF-κB, and pNF-κB-regulated Bcl2, and induces relocalization of pNF-κB from the nucleus to the cytoplasm. In addition, SMG also inhibits expression of nuclear envelope proteins (NEPs) lamin-A, emerin, sun1, and nesprin-3, which control nuclear positioning, and suppresses nuclear positioning-regulated pERK1/2 signaling. Moreover, rapamycin, the mTORC1 inhibitor, also enhances apoptosis in cells under 1 g condition via suppressing the mTORC1/NF-κB pathway. Furthermore, the FAK/RhoA activator, toxin cytotoxic necrotizing factor-1 (CNF1), reduces cell apoptosis, restores the cytoskeleton, FAs, NEPs, and nuclear positioning, and converts all of the above SMG-induced changes in molecular signaling in cells under SMG. Therefore, our data demonstrate that SMG reduces FAs and alters the cytoskeleton and nuclear positioning, leading to enhanced cell apoptosis via suppressing the FAK/RhoA-regulated mTORC1/NF-κB and ERK1/2 pathways. The FAK/RhoA regulatory network may, thus, become a new target for the development of novel therapeutics for humans under spaceflight conditions with stressed physiological challenges, and for other human diseases.
Collapse
Affiliation(s)
- Tuo Zhao
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Rong Li
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Xin Tan
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Jun Zhang
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Cuihong Fan
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Qin Zhao
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology, Beijing 10081, China.
| | - Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Kiven Erique Lukong
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Harald Genth
- Institute of Toxicology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada.
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
16
|
Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Sci Rep 2018; 8:3769. [PMID: 29491429 PMCID: PMC5830577 DOI: 10.1038/s41598-018-20459-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
Simulated microgravity (SMG) was reported to affect tumor cell proliferation and metastasis. However, the underlying mechanism is elusive. In this study, we demonstrate that clinostat-modelled SMG reduces BL6-10 melanoma cell proliferation, adhesion and invasiveness in vitro and decreases tumor lung metastasis in vivo. It down-regulates metastasis-related integrin α6β4, MMP9 and Met72 molecules. SMG significantly reduces formation of focal adhesions and activation of focal adhesion kinase (FAK) and Rho family proteins (RhoA, Rac1 and Cdc42) and of mTORC1 kinase, but activates AMPK and ULK1 kinases. We demonstrate that SMG inhibits NADH induction and glycolysis, but induces mitochondrial biogenesis. Interestingly, administration of a RhoA activator, the cytotoxic necrotizing factor-1 (CNF1) effectively converts SMG-triggered alterations and effects on mitochondria biogenesis or glycolysis. CNF1 also converts the SMG-altered cell proliferation and tumor metastasis. In contrast, mTORC inhibitor, rapamycin, produces opposite responses and mimics SMG-induced effects in cells at normal gravity. Taken together, our observations indicate that SMG inhibits focal adhesions, leading to inhibition of signaling FAK and RhoA, and the mTORC1 pathway, which results in activation of the AMPK pathway and reduced melanoma cell proliferation and metastasis. Overall, our findings shed a new light on effects of microgravity on cell biology and human health.
Collapse
|
17
|
Ebnerasuly F, Hajebrahimi Z, Tabaie SM, Darbouy M. Effect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:241-251. [PMID: 29845076 DOI: 10.15171/ijb.1747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 06/14/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this study was investigate the simulated microgravity effect on differentiation of Adipose Derived Stem Cells (ADSCs) to fibroblasts. Materials and Methods: To fibroblast differentiation 100 ng.mL-1 of connective tissue growth factor (CTGF), and for simulation microgravity, 2D clinostat was used. After isolation the human ADSCs from adipose, cells were passaged, and at passages 3 they were used for characterization and subsequent steps. After 7 days of CTGF and simulated microgravity treatment, proliferation, and differentiation were analyzed collectively by MTT assay, quantitative PCR analyses, and Immunocytochemistry staining. Results: MTT assay revealed that CTGF stimulate the proliferation but simulated microgravity didn't have statistically significant effect on cell proliferation. In RNA level the expression of these genes are investigated: collagen type I (COLI), elastin (ELA), collagen type III (ColIII), Matrix Metalloproteinases I(MMP1), Fibronectin 1 (FN1), CD44, Fibroblast Specific protein (FSP-1), Integrin Subunit Beta 1 (ITGB1), Vimentin (VIM) and Fibrillin (FBN). We found that expression of ELN, FN1, FSP1, COL1A1, ITGB1, MMP1 and COL3A1 in both condition, and VIM and FBN1 just in differentiation medium in normal gravity increased. In protein level the expression of COL III and ELN in simulated microgravity increased. Conclusions: These findings collectively demonstrate that the simulated microgravity condition alters the marker fibroblast gene expression in fibroblast differentiation process.
Collapse
Affiliation(s)
- Farid Ebnerasuly
- Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Zahra Hajebrahimi
- Aerospace Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| | - Seyed Mehdi Tabaie
- Medical Laser Research Center, Iranian Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mojtaba Darbouy
- Department of Biology, Fars Science and Research Branch , Islamic Azad University, Marvdasht, Iran.,Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
18
|
Häder DP, Braun M, Grimm D, Hemmersbach R. Gravireceptors in eukaryotes-a comparison of case studies on the cellular level. NPJ Microgravity 2017; 3:13. [PMID: 28649635 PMCID: PMC5460273 DOI: 10.1038/s41526-017-0018-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/27/2017] [Accepted: 03/09/2017] [Indexed: 01/03/2023] Open
Abstract
We have selected five evolutionary very different biological systems ranging from unicellular protists via algae and higher plants to human cells showing responses to the gravity vector of the Earth in order to compare their graviperception mechanisms. All these systems use a mass, which may either by a heavy statolith or the whole content of the cell heavier than the surrounding medium to operate on a gravireceptor either by exerting pressure or by pulling on a cytoskeletal element. In many cases the receptor seems to be a mechanosensitive ion channel activated by the gravitational force which allows a gated ion flux across the membrane when activated. This has been identified in many systems to be a calcium current, which in turn activates subsequent elements of the sensory transduction chain, such as calmodulin, which in turn results in the activation of ubiquitous enzymes, gene expression activation or silencing. Naturally, the subsequent responses to the gravity stimulus differ widely between the systems ranging from orientational movement and directed growth to physiological reactions and adaptation to the environmental conditions.
Collapse
Affiliation(s)
- Donat-P. Häder
- Erlangen-Nürnberg, Dept. Biol. Neue Str. 9, Emeritus from Friedrich-Alexander Universität, Möhrendorf, 91096 Germany
| | - Markus Braun
- Gravitational Biology, Universität Bonn, Kirschallee 1, Bonn, 53115 Germany
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, DK 8000 Denmark
| | - Ruth Hemmersbach
- Institute of Aerospace Medicine, Gravitational Biology, DLR (German Aerospace Center), Cologne, Linder Höhe 51147 Germany
| |
Collapse
|
19
|
Tauber S, Lauber BA, Paulsen K, Layer LE, Lehmann M, Hauschild S, Shepherd NR, Polzer J, Segerer J, Thiel CS, Ullrich O. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 2017; 12:e0175599. [PMID: 28419128 PMCID: PMC5395169 DOI: 10.1371/journal.pone.0175599] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable "steady state" after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Beatrice A. Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Liliana E. Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Martin Lehmann
- Biozentrum der LMU München, Deptartment of Biology I–Botany, Grosshaderner Strasse 2–4, Planegg-Martinsried, Germany
| | - Swantje Hauschild
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Naomi R. Shepherd
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Jürgen Segerer
- Airbus Defense and Space, GmbH, Claude-Dornier-Strasse, Immenstaad, Germany
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rudimov EG, Buravkova LB. Gravisensitivity of endothelial cells: the role of cytoskeleton and adhesion molecules. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s0362119716060177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
|
22
|
Identifications of novel mechanisms in breast cancer cells involving duct-like multicellular spheroid formation after exposure to the Random Positioning Machine. Sci Rep 2016; 6:26887. [PMID: 27230828 PMCID: PMC4882535 DOI: 10.1038/srep26887] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 12/27/2022] Open
Abstract
Many cell types form three-dimensional aggregates (MCS; multicellular spheroids), when they are cultured under microgravity. MCS often resemble the organ, from which the cells have been derived. In this study we investigated human MCF-7 breast cancer cells after a 2 h-, 4 h-, 16 h-, 24 h- and 5d-exposure to a Random Positioning Machine (RPM) simulating microgravity. At 24 h few small compact MCS were detectable, whereas after 5d many MCS were floating in the supernatant above the cells, remaining adherently (AD). The MCS resembled the ducts formed in vivo by human epithelial breast cells. In order to clarify the underlying mechanisms, we harvested MCS and AD cells separately from each RPM-culture and measured the expression of 29 selected genes with a known involvement in MCS formation. qPCR analyses indicated that cytoskeletal genes were unaltered in short-term samples. IL8, VEGFA, and FLT1 were upregulated in 2 h/4 h AD-cultures. The ACTB, TUBB, EZR, RDX, FN1, VEGFA, FLK1 Casp9, Casp3, PRKCA mRNAs were downregulated in 5d-MCS-samples. ESR1 was upregulated in AD, and PGR1 in both phenotypes after 5d. A pathway analysis revealed that the corresponding gene products are involved in organization and regulation of the cell shape, in cell tip formation and membrane to membrane docking.
Collapse
|
23
|
Zhao T, Tang X, Umeshappa CS, Ma H, Gao H, Deng Y, Freywald A, Xiang J. Simulated Microgravity Promotes Cell Apoptosis Through Suppressing Uev1A/TICAM/TRAF/NF-κB-Regulated Anti-Apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-Controlled DNA-Damage Response Pathways. J Cell Biochem 2016; 117:2138-48. [PMID: 26887372 DOI: 10.1002/jcb.25520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/12/2016] [Indexed: 11/11/2022]
Abstract
Microgravity has been known to induce cell death. However, its underlying mechanism is less studied. In this study, BL6-10 melanoma cells were cultured in flasks under simulated microgravity (SMG). We examined cell apoptosis, and assessed expression of genes associated with apoptosis and genes regulating apoptosis in cells under SMG. We demonstrate that SMG induces cell morphological changes and microtubule alterations by confocal microscopy, and enhances apoptosis by flow cytometry, which was associated with up- and down-regulation of pro-apoptotic and anti-apoptotic genes, respectively. Moreover, up- and down-regulation of pro-apoptotic (Caspases 3, 7, 8) and anti-apoptotic (Bcl2 and Bnip3) molecules was confirmed by Western blotting analysis. Western blot analysis also indicates that SMG causes inhibition of an apoptosis suppressor, pNF-κB-p65, which is complemented by the predominant localization of NF-κB-p65 in the cytoplasm. SMG also reduces expression of molecules regulating the NF-κB pathway including Uev1A, TICAM, TRAF2, and TRAF6. Interestingly, 10 DNA repair genes are down-regulated in cells exposed to SMG, among which down-regulation of Parp, Ercc8, Rad23, Rad51, and Ku70 was confirmed by Western blotting analysis. In addition, we demonstrate a significant inhibition of molecules involved in the DNA-damage response, such as p53, PCNA, ATM/ATR, and Chk1/2. Taken together, our work reveals that SMG promotes the apoptotic response through a combined modulation of the Uev1A/TICAM/TRAF/NF-κB-regulated apoptosis and the p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. Thus, our investigation provides novel information, which may help us to determine the cause of negative alterations in human physiology occurring at spaceflight environment. J. Cell. Biochem. 117: 2138-2148, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuo Zhao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xin Tang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | | | - Hong Ma
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Haijun Gao
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Aerospace Institute of Medical Engineering and Biotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.,Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Alterations of the cytoskeleton in human cells in space proved by life-cell imaging. Sci Rep 2016; 6:20043. [PMID: 26818711 PMCID: PMC4730242 DOI: 10.1038/srep20043] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization.
Collapse
|
25
|
Kopp S, Warnke E, Wehland M, Aleshcheva G, Magnusson NE, Hemmersbach R, Corydon TJ, Bauer J, Infanger M, Grimm D. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity. Sci Rep 2015; 5:16691. [PMID: 26576504 PMCID: PMC4649336 DOI: 10.1038/srep16691] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3–1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity.
Collapse
Affiliation(s)
- Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Elisabeth Warnke
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Ganna Aleshcheva
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Nils E Magnusson
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Ruth Hemmersbach
- DLR German Aerospace Centre, Department of Gravitational Biology, 51147 Cologne, Köln, Germany
| | | | - Johann Bauer
- Max-Planck-Institute of Biochemistry Martinsried, 82152 Martinsried, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von Guericke-University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
26
|
Rudimov EG, Buravkov SV, Andreeva EP, Buravkova LB. Effect of proinflammatory activation on F-actin distribution in cultured human endothelial cells under conditions of experimental microgravity. Bull Exp Biol Med 2015; 158:573-80. [PMID: 25705044 DOI: 10.1007/s10517-015-2809-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 11/30/2022]
Abstract
We compared the state of actin cytoskeleton, morphology, and expression of VE-cadherin in endothelial cells of human umbilical cord vein under conditions of TNF-α-mediated activation and microgravity modeling and found that 3D-clinorotation for 24 h impaired the integrity of endothelial monolayer, altered cell morphology, induced cytoskeleton reorganization, and reduced the expression of VE-cadherin. The combination of experimental microgravity and proinflammatory activation led to more pronounced clearing of the perinuclear space from microfilaments and accumulation of depolymerized actin, which confirms additive effect of the studied factors on actin cytoskeleton of endothelial cells.
Collapse
Affiliation(s)
- E G Rudimov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia,
| | | | | | | |
Collapse
|
27
|
Daily application of low magnitude mechanical stimulus inhibits the growth of MDA-MB-231 breast cancer cells in vitro. Cancer Cell Int 2014; 14:102. [PMID: 25349533 PMCID: PMC4209025 DOI: 10.1186/s12935-014-0102-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Mechanical loads can regulate cell proliferation and differentiation at various stages of development and homeostasis. However, the extension of this regulatory effect of mechanical loads on cancer cells is largely unknown. Increased physical compliance is one of the key features of cancer cells, which may hamper the transmission of mechanical loads to these cells within tumor microenvironment. Here we tested whether brief daily application of an external low magnitude mechanical stimulus (LMMS), would impede the growth of MDA-MB-231 aggressive type breast cancer cells in vitro for 3 wks of growth. METHODS The signal was applied in oscillatory form at 90 Hz and 0.15 g, a regimen that would induce mechanical loads on MDA-MB-231 cells via inertial properties of cells rather than matrix deformations. Experimental cells were exposed to LMMS 15 min/day, 5 days/week in ambient conditions while control cells were sham loaded. Cell proliferation, viability, cycle, apoptosis, morphology and migration were tested via Trypan Blue dye exclusion, MTT, PI, Annexin V, Calcein-AM and phalloidin stains and scratch wound assays. RESULTS Compared to sham controls, daily application of LMMS reduced the number and viability of cancerous MDA-MB-231 cells significantly after first week in the culture, while non-cancerous MCF10A cells were found to be unaffected. Flow cytomety analyses suggested that the observed decrease for the cancer cells in the LMMS group was due to a cell cycle arrest rather than apoptosis. LMMS further reduced cancer cell circularity and increased cytoskeletal actin in MDA-MB-231 cells. CONCLUSION Combined, results suggest that direct application of mechanical loads negatively regulate the proliferation of aggressive type cancer cells. If confirmed, this non-invasive approach may be integrated to the efforts for the prevention and/or treatment of cancer.
Collapse
|
28
|
Gravity sensing by cells: mechanisms and theoretical grounds. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2014. [DOI: 10.1007/s12210-013-0281-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Kang H, Fan Y, Sun A, Jia X, Deng X. Simulated microgravity exposure modulates the phenotype of cultured vascular smooth muscle cells. Cell Biochem Biophys 2013; 66:121-30. [PMID: 23097024 DOI: 10.1007/s12013-012-9460-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Evidence from ground-based animal studies using tail-suspended hindlimb unloaded rats model has clearly demonstrated that simulated microgravity-induced smooth muscle cell phenotype conversion, a characteristic vascular structural and functional remodeling, may be one of the key contributors to postspaceflight orthostatic intolerance. However, the rats model involves multiple collective effects of microgravity including cephalic fluid shift and postural muscle unloading on smooth muscle cells (SMCs). It cannot isolate a single factor from the collective ones and therefore is not ideal to study the effects of gravitational vector alteration alone on SMCs. To test the hypothesis that gravitational vector alteration per se might affect smooth muscle cell phenotype, a roller culture apparatus was employed to expose cultured rat aortic smooth muscle cells (RASMCs) to simulated microgravity. Cell proliferation, cell cycle distribution, apoptosis, migration, and nitric oxide production rates were measured and compared between the control and the simulated microgravity groups. Cell cytoskeleton reorganization induced by simulated microgravity was observed by confocal microscopy. Specific contractile and synthetic Gene expression at the mRNA level was quantified by reverse transcriptional polymerase chain reaction. It was observed that simulated microgravity suppressed RASMC proliferation and migration, enhanced cell apoptosis, stimulated NO release, and destroyed the original well-organized cytoskeleton. Moreover, at the mRNA level, long-time exposure (≥ 72 h) to simulated microgravity induced a contractile phenotype tendency by up-regulating smMHC expression. All these findings suggest that the phenotype modulation of vascular smooth muscle cells may be gravity dependent.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | | | | | | | | |
Collapse
|
30
|
Vorselen D, Roos WH, MacKintosh FC, Wuite GJL, van Loon JJWA. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J 2013; 28:536-47. [PMID: 24249634 DOI: 10.1096/fj.13-236356] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A large body of evidence indicates that single cells in vitro respond to changes in gravity, and that this response might play an important role for physiological changes at the organism level during spaceflight. Gravity can lead to changes in cell proliferation, differentiation, signaling, and gene expression. At first glance, gravitational forces seem too small to affect bodies with the size of a cell. Thus, the initial response to gravity is both puzzling and important for understanding physiological changes in space. This also offers a unique environment to study the mechanical response of cells. In the past 2 decades, important steps have been made in the field of mechanobiology, and we use these advances to reevaluate the response of single cells to changes in gravity. Recent studies have focused on the cytoskeleton as initial gravity sensor. Thus, we review the observed changes in the cytoskeleton in a microgravity environment, both during spaceflight and in ground-based simulation techniques. We also evaluate to what degree the current experimental evidence supports the cytoskeleton as primary gravity sensor. Finally, we consider how the cytoskeleton itself could be affected by changed gravity. To make the next step toward understanding the response of cells to altered gravity, the challenge will be to track changes quantitatively and on short timescales.
Collapse
Affiliation(s)
- Daan Vorselen
- 1Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Office 11N15, Gustav Mahler Laan 3004, 1081LA, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Benavides Damm T, Franco-Obregón A, Egli M. Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts. Cell Cycle 2013; 12:3001-12. [PMID: 23974110 PMCID: PMC3875675 DOI: 10.4161/cc.26029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading.
Collapse
Affiliation(s)
- Tatiana Benavides Damm
- CC Aerospace Biomedical Science & Technology; Space Biology Group; University of Applied Sciences and Arts; Hergiswil, Switzerland; Institute for Biomechanics; Eidgenössische Technische Hochschule Zürich; Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Abstract
Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.
Collapse
|
33
|
Chang D, Xu H, Guo Y, Jiang X, Liu Y, Li K, Pan C, Yuan M, Wang J, Li T, Liu C. Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line. In Vitro Cell Dev Biol Anim 2013; 49:170-7. [PMID: 23404217 DOI: 10.1007/s11626-013-9581-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Simulated microgravity (SM) has been implicated in affecting diverse cellular pathways. Although there is emerging evidence that SM can alter cellular functions, its effect in cancer metastasis has not been addressed. Here, we demonstrate that SM inhibits migration, gelatinolytic activity, and cell proliferation of an A549 human lung adenocarcinoma cell line in vitro. Expression of antigen MKI67 and matrix metalloproteinase-2 (MMP2) was reduced in A549 cells stimulated by clinorotation when compared with the 1×g control condition, while overexpression of each gene improves ability of proliferation and migration, respectively, under SM conditions. These findings suggest that SM reduced the metastatic potential of human lung adenocarcinoma cells by altering the expression of MKI67 and MMP2, thereby inhibiting cell proliferation, migration, and invasion, which may provide some clues to study cancer metastasis in the future.
Collapse
Affiliation(s)
- De Chang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, 100853, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dabertrand F, Porte Y, Macrez N, Morel JL. Spaceflight regulates ryanodine receptor subtype 1 in portal vein myocytes in the opposite way of hypertension. J Appl Physiol (1985) 2011; 112:471-80. [PMID: 22096120 DOI: 10.1152/japplphysiol.00733.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gravity has a structural role for living systems. Tissue development, architecture, and organization are modified when the gravity vector is changed. In particular, microgravity induces a redistribution of blood volume and thus pressure in the astronaut body, abolishing an upright blood pressure gradient, inducing orthostatic hypotension. The present study was designed to investigate whether isolated vascular smooth muscle cells are directly sensitive to altered gravitational forces and, second, whether sustained blood pressure changes act on the same molecular target. Exposure to microgravity during 8 days in the International Space Station induced the decrease of ryanodine receptor subtype 1 expression in primary cultured myocytes from rat hepatic portal vein. Identical results were found in portal vein from mice exposed to microgravity during an 8-day shuttle spaceflight. To evaluate the functional consequences of this physiological adaptation, we have compared evoked calcium signals obtained in myocytes from hindlimb unloaded rats, in which the shift of blood pressure mimics the one produced by the microgravity, with those obtained in myocytes from rats injected with antisense oligonucleotide directed against ryanodine receptor subtype 1. In both conditions, calcium signals implicating calcium-induced calcium release were significantly decreased. In contrast, in spontaneous hypertensive rat, an increase in ryanodine receptor subtype 1 expression was observed as well as the calcium-induced calcium release mechanism. Taken together, our results shown that myocytes were directly sensitive to gravity level and that they adapt their calcium signaling pathways to pressure by the regulation of the ryanodine receptor subtype 1 expression.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Universite de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Millie Hughes-Fulford
- Hughes-Fulford Laboratory, Department of Research, Department of Veterans Affairs Medical Center, San Francisco, California, USA.
| |
Collapse
|
36
|
Ulbrich C, Pietsch J, Grosse J, Wehland M, Schulz H, Saar K, Hübner N, Hauslage J, Hemmersbach R, Braun M, van Loon J, Vagt N, Egli M, Richter P, Einspanier R, Sharbati S, Baltz T, Infanger M, Ma X, Grimm D. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton. Cell Physiol Biochem 2011; 28:185-98. [PMID: 21865726 DOI: 10.1159/000331730] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions to hypergravity and/or vibrations. To determine the effects of real microgravity on human cells, we used four DLR parabolic flight campaigns and focused on the effects of short-term microgravity (22 s), hypergravity (1.8 g), and vibrations on ML-1 thyroid cancer cells. No signs of apoptosis or necrosis were detectable. Gene array analysis revealed 2,430 significantly changed transcripts. After 22 s microgravity, the F-actin and cytokeratin cytoskeleton was altered, and ACTB and KRT80 mRNAs were significantly upregulated after the first and thirty-first parabolas. The COL4A5 mRNA was downregulated under microgravity, whereas OPN and FN were significantly upregulated. Hypergravity and vibrations did not change ACTB, KRT-80 or COL4A5 mRNA. MTSS1 and LIMA1 mRNAs were downregulated/slightly upregulated under microgravity, upregulated in hypergravity and unchanged by vibrations. These data indicate that the graviresponse of ML-1 cells occurred very early, within the first few seconds. Downregulated MTSS1 and upregulated LIMA1 may be an adaptive mechanism of human cells for stabilizing the cytoskeleton under microgravity conditions.
Collapse
Affiliation(s)
- Claudia Ulbrich
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu C, Guo X, Wang F, Li X, Tian XC, Li L, Wu Z, Zhang S. Simulated microgravity compromises mouse oocyte maturation by disrupting meiotic spindle organization and inducing cytoplasmic blebbing. PLoS One 2011; 6:e22214. [PMID: 21765954 PMCID: PMC3135614 DOI: 10.1371/journal.pone.0022214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/20/2011] [Indexed: 01/03/2023] Open
Abstract
In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA's rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing.
Collapse
Affiliation(s)
- Changli Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xinzheng Guo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Fang Wang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoshuang Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - X. Cindy Tian
- Department of Animal Science, Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Li Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Zhenfang Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Shouquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
- * E-mail:
| |
Collapse
|
38
|
Grimm D, Wise P, Lebert M, Richter P, Baatout S. How and why does the proteome respond to microgravity? Expert Rev Proteomics 2011; 8:13-27. [PMID: 21329425 DOI: 10.1586/epr.10.105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For medical and biotechnological reasons, it is important to study mammalian cells, animals, bacteria and plants exposed to simulated and real microgravity. It is necessary to detect the cellular changes that cause the medical problems often observed in astronauts, cosmonauts or animals returning from prolonged space missions. In order for in vitro tissue engineering under microgravity conditions to succeed, the features of the cell that change need to be known. In this article, we summarize current knowledge about the effects of microgravity on the proteome in different cell types. Many studies suggest that the effects of microgravity on major cell functions depend on the responding cell type. Here, we discuss and speculate how and why the proteome responds to microgravity, focusing on proteomic discoveries and their future potential.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Århus C, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton (Hoboken) 2011; 68:125-37. [PMID: 21246756 DOI: 10.1002/cm.20499] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Certain functions of immune cells in returning astronauts are known to be altered. A dramatic depression of the mitogenic in vitro activation of human lymphocytes was observed in low gravity. T-cell activation requires the interaction of different type of immune cells as T-lymphocytes and monocytes. Cell motility based on a continuous rearrangement of the cytoskeletal network within the cell is essential for cell-cell contacts. In this investigation on the International Space Station we studied the influence of low gravity on different cytoskeletal structures in adherent monocytes and their ability to migrate. J-111 monocytes were incubated on a colloid gold substrate attached to a cover slide. Migrating cells removed the colloid gold, leaving a track recording cell motility. A severe reduction of the motility of J-111 cells was found in low gravity compared to 1g in-flight and ground controls. Cell shape appeared more contracted, whereas the control cells showed the typical morphology of migrating monocytes, i.e., elongated and with pseudopodia. A qualitative and quantitative analysis of the structures of F-actin, β-tubulin and vinculin revealed that exposure of J-111 cells to low gravity affected the distribution of the different filaments and significantly reduced the fluorescence intensity of F-actin fibers. Cell motility relies on an intact structure of different cytoskeletal elements. The highly reduced motility of monocytes in low gravity must be attributed to the observed severe disruption of the cytoskeletal structures and may be one of the reasons for the dramatic depression of the in vitro activation of human lymphocytes.
Collapse
Affiliation(s)
- Maria Antonia Meloni
- Department of Physiological, Biochemical and Cellular Science, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Kang CY, Zou L, Yuan M, Wang Y, Li TZ, Zhang Y, Wang JF, Li Y, Deng XW, Liu CT. Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur J Appl Physiol 2011; 111:2131-8. [PMID: 21287193 DOI: 10.1007/s00421-011-1844-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/18/2011] [Indexed: 01/22/2023]
Abstract
Cardiovascular deconditioning is known to occur in astronauts exposed to microgravity. Endothelial dysfunction at microcirculatory sites might contribute to cardiovascular deconditioning induced by weightlessness. Recent studies have reported changes in the morphology and gene expression of endothelial cells exposed to conditions of simulated microgravity. The present study was aimed at examining the effects of microgravity on the apoptosis of microvascular endothelial cells and the mechanism underlying these effects. We simulated a microgravity environment and found that microgravity induced microvascular endothelial cell apoptosis and that this effect was correlated with the downregulation of the PI3K/Akt pathway, increased expression of NF-κB, and depolymerization of F-actin. These findings may provide important insights into the origin of the adverse physiological changes occurring due to exposure to microgravity conditions.
Collapse
Affiliation(s)
- Chun-Yan Kang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Effects of oriented substrates on cell morphology, the cell cycle, and the cytoskeleton in Ros 17/2.8 cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1085-91. [PMID: 21104368 DOI: 10.1007/s11427-010-4057-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 12/12/2009] [Indexed: 10/18/2022]
Abstract
Absence of gravity or microgravity influences the cellular functions of bone forming osteoblasts. The underlying mechanism, however, of cellular sensing and responding to the gravity vector is poorly understood. This work quantified the impact of vector-directional gravity on the biological responses of Ros 17/2.8 cells grown on upward-, downward- or edge-on-oriented substrates. Cell morphology and nuclear translocation, cell proliferation and the cell cycle, and cytoskeletal reorganization were found to vary significantly in the three orientations. All of the responses were duration-dependent. These results provide a new insight into understanding how osteoblasts respond to static vector-directional gravity.
Collapse
|
42
|
Herranz R, Benguría A, Laván DA, López-Vidriero I, Gasset G, Javier Medina F, van Loon JJWA, Marco R. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome. Mol Ecol 2010; 19:4255-64. [PMID: 20819157 DOI: 10.1111/j.1365-294x.2010.04795.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genome-wide transcriptional profiling shows that reducing gravity levels during Drosophila metamorphosis in the International Space Station (ISS) causes important alterations in gene expression: a large set of differentially expressed genes (DEGs) are observed compared to 1g controls. However, the preparation procedures for spaceflight and the nonideal environmental conditions on board the ISS subject the organisms to additional environmental stresses that demonstrably affect gene expression. Simulated microgravity experiments performed on the ground, under ideal conditions for the flies, using the random position machine (RPM), show much more subtle effects on gene expression. However, when the ground experiments are repeated under conditions designed to reproduce the additional environmental stresses imposed by spaceflight procedures, 79% of the DEGs detected in the ISS are reproduced by the RPM experiment. Gene ontology analysis of them shows they are genes that affect respiratory activity, developmental processes and stress-related changes. Here, we analyse the effects of microgravity on gene expression in relation to the environmental stresses imposed by spaceflight. Analysis using 'gene expression dynamics inspector' (GEDI) self-organizing maps reveals a subtle response of the transcriptome to microgravity. Remarkably, hypergravity simulation induces similar response of the transcriptome, but in the opposite direction, i.e. the genes promoted under microgravity are usually suppressed under hypergravity. These results suggest that the transcriptome is finely tuned to normal gravity and that microgravity, together with environmental constraints associated with space experiments, can have profound effects on gene expression.
Collapse
Affiliation(s)
- Raul Herranz
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas 'Alberto Sols' (UAM-CSIC), C/Arzobispo Morcillo, 4 Madrid, 28029 SpainCentro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040, Madrid, SpainCentro Nacional de Biotecnología (UAM-CSIC), Madrid, SpainGenomics Unit. Centro Nacional de Investigaciones Cardiovasculares, C/Melchor Fernández Almagro, 3. Madrid, SpainGSBMS, Université Paul Sabatier, Toulouse, FranceDutch Experiment Support Center, DESC at OCB-ACTA, VU-University and Univ. of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Zhang S, Chen J, Du T, Wang Y, Wang Z. Modeled microgravity causes changes in the cytoskeleton and focal adhesions, and decreases in migration in malignant human MCF-7 cells. PROTOPLASMA 2009; 238:23-33. [PMID: 19730978 DOI: 10.1007/s00709-009-0068-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/08/2009] [Indexed: 05/28/2023]
Abstract
Because cells are sensitive to mechanical forces,microgravity might act on stress-dependent cell changes. Regulation of focal adhesions (FAs) and cytoskeletal activity plays a role in cell maintenance, cell movement,and migration. Human MCF-7 cells were exposed to modeled microgravity (MMG) to test the hypothesis that migration responsiveness to microgravity is associated with cytoskeleton and FA anomalies. MMG acts on MCF-7 cells by disorganizing cytoskeleton filaments (microfilaments and microtubules). Microfilaments in MMG did not display their typical radial array. Likewise, microtubules were disrupted in MCF-7 cells within 4 h of initiation of MMG and were partly reestablished by 48 h. FAs generated inmicrogravity were less mature than those established in controls, shown by reduced FAs number and clustering. In parallel, MMG decreased kinases activity (such as FAK,PYK2, and ILK) of FAs in MCF-7 cells. The expression of both integrinbeta1 and integrinbeta4 were downregulated by MMG. We conclude that cytoskeletal alterations and FAs changes in MMG are concomitant with cell invasion and migration retardation. We suggest that reduced migration response in MCF-7 cells following MMG is linked to changes of cytoskeleton and FAs.
Collapse
Affiliation(s)
- Jing Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
44
|
Sieberer BJ, Kieft H, Franssen-Verheijen T, Emons AMC, Vos JW. Cell proliferation, cell shape, and microtubule and cellulose microfibril organization of tobacco BY-2 cells are not altered by exposure to near weightlessness in space. PLANTA 2009; 230:1129-40. [PMID: 19756725 PMCID: PMC2764053 DOI: 10.1007/s00425-009-1010-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/13/2009] [Indexed: 05/18/2023]
Abstract
The microtubule cytoskeleton and the cell wall both play key roles in plant cell growth and division, determining the plant's final stature. At near weightlessness, tubulin polymerizes into microtubules in vitro, but these microtubules do not self-organize in the ordered patterns observed at 1g. Likewise, at near weightlessness cortical microtubules in protoplasts have difficulty organizing into parallel arrays, which are required for proper plant cell elongation. However, intact plants do grow in space and therefore should have a normally functioning microtubule cytoskeleton. Since the main difference between protoplasts and plant cells in a tissue is the presence of a cell wall, we studied single, but walled, tobacco BY-2 suspension-cultured cells during an 8-day space-flight experiment on board of the Soyuz capsule and the International Space Station during the 12S mission (March-April 2006). We show that the cortical microtubule density, ordering and orientation in isolated walled plant cells are unaffected by near weightlessness, as are the orientation of the cellulose microfibrils, cell proliferation, and cell shape. Likely, tissue organization is not essential for the organization of these structures in space. When combined with the fact that many recovering protoplasts have an aberrant cortical microtubule cytoskeleton, the results suggest a role for the cell wall, or its production machinery, in structuring the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Björn J. Sieberer
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present Address: Laboratoire des Interactions Plantes Micro-organismes, UMR INRA-CNRS 2594/441, 31320 Castanet-Tolosan, France
| | - Henk Kieft
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tiny Franssen-Verheijen
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anne Mie C. Emons
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Biomolecular Systems, FOM Institute for Atomic and Molecular Physics, Science Park 113, 1098 SG Amsterdam, The Netherlands
| | - Jan W. Vos
- Laboratory of Plant Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
45
|
van Loon JJWA, van Laar MC, Korterik JP, Segerink FB, Wubbels RJ, de Jong HAA, van Hulst NF. An atomic force microscope operating at hypergravity for in situ measurement of cellular mechano-response. J Microsc 2009; 233:234-43. [PMID: 19220689 DOI: 10.1111/j.1365-2818.2009.03113.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a novel atomic force microscope (AFM) system, operational in liquid at variable gravity, dedicated to image cell shape changes of cells in vitro under hypergravity conditions. The hypergravity AFM is realized by mounting a stand-alone AFM into a large-diameter centrifuge. The balance between mechanical forces, both intra- and extracellular, determines both cell shape and integrity. Gravity seems to be an insignificant force at the level of a single cell, in contrast to the effect of gravity on a complete (multicellular) organism, where for instance bones and muscles are highly unloaded under near weightless (microgravity) conditions. However, past space flights and ground based cell biological studies, under both hypogravity and hypergravity conditions have shown changes in cell behaviour (signal transduction), cell architecture (cytoskeleton) and proliferation. Thus the role of direct or indirect gravity effects at the level of cells has remained unclear. Here we aim to address the role of gravity on cell shape. We concentrate on the validation of the novel AFM for use under hypergravity conditions. We find indications that a single cell exposed to 2 to 3 x g reduces some 30-50% in average height, as monitored with AFM. Indeed, in situ measurements of the effects of changing gravitational load on cell shape are well feasible by means of AFM in liquid. The combination provides a promising technique to measure, online, the temporal characteristics of the cellular mechano-response during exposure to inertial forces.
Collapse
Affiliation(s)
- J J W A van Loon
- DESC@OCB-ACTA, UVA-VU, van der Boechorststraat 7, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Szewczyk N, Tillman J, Conley C, Granger L, Segalat L, Higashitani A, Honda S, Honda Y, Kagawa H, Adachi R, Higashibata A, Fujimoto N, Kuriyama K, Ishioka N, Fukui K, Baillie D, Rose A, Gasset G, Eche B, Chaput D, Viso M. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST). ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2008; 42:1072-1079. [PMID: 22146801 PMCID: PMC2493420 DOI: 10.1016/j.asr.2008.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Traveling, living and working in space is now a reality. The number of people and length of time in space is increasing. With new horizons for exploration it becomes more important to fully understand and provide countermeasures to the effects of the space environment on the human body. In addition, space provides a unique laboratory to study how life and physiologic functions adapt from the cellular level to that of the entire organism. Caenorhabditis elegans is a genetic model organism used to study physiology on Earth. Here we provide a description of the rationale, design, methods, and space culture validation of the ICE-FIRST payload, which engaged C. elegans researchers from four nations. Here we also show C. elegans growth and development proceeds essentially normally in a chemically defined liquid medium on board the International Space Station (10.9 day round trip). By setting flight constraints first and bringing together established C. elegans researchers second, we were able to use minimal stowage space to successfully return a total of 53 independent samples, each containing more than a hundred individual animals, to investigators within one year of experiment concept. We believe that in the future, bringing together individuals with knowledge of flight experiment operations, flight hardware, space biology, and genetic model organisms should yield similarly successful payloads.
Collapse
Affiliation(s)
- N.J. Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- School of Graduate Entry Medicine and Health, University of Nottingham, Derby City Hospital, Derby DE22 3DT, UK
- Corresponding author. Address: School of Graduate Entry Medicine and Health, University of Nottingham, Derby City Hospital, Derby DE22 3DT, UK. Tel.: +44 1332 724615. E-mail address: (N.J. Szewczyk)
| | - J. Tillman
- Lockheed Martin, Moffett Field, CA 94035, USA
| | - C.A. Conley
- National Aeronautics and Space Administration, Moffett Field, CA 94035, USA
| | - L. Granger
- CGMC, CNRS-UMR 5534, Universite Lyon1, 43 bld du 11 Novembre, 69622 Villeurbanne Cedex, France
| | - L. Segalat
- CGMC, CNRS-UMR 5534, Universite Lyon1, 43 bld du 11 Novembre, 69622 Villeurbanne Cedex, France
| | - A. Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai 980−8557, Japan
| | - S. Honda
- Tokyo Metropolitan Institute of Gerontology, Tokyo 173−0015, Japan
| | - Y. Honda
- Tokyo Metropolitan Institute of Gerontology, Tokyo 173−0015, Japan
| | - H. Kagawa
- Graduate School of Natural Science and Technology, Okayama University, 3−1−1, Tsushima Naka, Okayama City 700−8530, Japan
| | - R. Adachi
- Graduate School of Natural Science and Technology, Okayama University, 3−1−1, Tsushima Naka, Okayama City 700−8530, Japan
| | - A. Higashibata
- Japan Aerospace Exploration Agency, Tsukuba 305−8505, Japan
| | - N. Fujimoto
- Japan Aerospace Exploration Agency, Tsukuba 305−8505, Japan
| | - K. Kuriyama
- Japan Aerospace Exploration Agency, Tsukuba 305−8505, Japan
| | - N. Ishioka
- Japan Aerospace Exploration Agency, Tsukuba 305−8505, Japan
| | - K. Fukui
- Japan Space Forum, Tokyo 100−0004, Japan
| | - D. Baillie
- University of British Columbia, Vancouver, BC, Canada
| | - A. Rose
- University of British Columbia, Vancouver, BC, Canada
| | - G. Gasset
- Groupement Scientifique en Biologie et Medecine Spatiales, Universite Paul Sabatier, 31062 Toulouse Cedex, France
| | - B. Eche
- Groupement Scientifique en Biologie et Medecine Spatiales, Universite Paul Sabatier, 31062 Toulouse Cedex, France
| | - D. Chaput
- Centre National d'Estudes Spatiales, Paris Cedex 01, France
| | - M. Viso
- Centre National d'Estudes Spatiales, Paris Cedex 01, France
| |
Collapse
|
47
|
Yang F, Li Y, Ding B, Nie J, Wang H, Zhang X, Wang C, Ling S, Ni C, Dai Z, Tan Y, Wan Y. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Infanger M, Ulbrich C, Baatout S, Wehland M, Kreutz R, Bauer J, Grosse J, Vadrucci S, Cogoli A, Derradji H, Neefs M, Küsters S, Spain M, Paul M, Grimm D. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J Cell Biochem 2008; 101:1439-55. [PMID: 17340622 DOI: 10.1002/jcb.21261] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many space missions have shown that prolonged space flights may increase the risk of cardiovascular problems. Using a three-dimensional clinostat, we investigated human endothelial EA.hy926 cells up to 10 days under conditions of simulated microgravity (microg) to distinguish transient from long-term effects of microg and 1g. Maximum expression of all selected genes occurred after 10 min of clinorotation. Gene expression (osteopontin, Fas, TGF-beta(1)) declined to slightly upregulated levels or rose again (caspase-3) after the fourth day of clinorotation. Caspase-3, Bax, and Bcl-2 protein content was enhanced for 10 days of microgravity. In addition, long-term accumulation of collagen type I and III and alterations of the cytoskeletal alpha- and beta-tubulins and F-actin were detectable. A significantly reduced release of soluble factors in simulated microgravity was measured for brain-derived neurotrophic factor, tissue factor, vascular endothelial growth factor (VEGF), and interestingly for endothelin-1, which is important in keeping cardiovascular balances. The gene expression of endothelin-1 was suppressed under microg conditions at days 7 and 10. Alterations of the vascular endothelium together with a decreased release of endothelin-1 may entail post-flight health hazards for astronauts.
Collapse
Affiliation(s)
- Manfred Infanger
- Department of Trauma and Reconstructive Surgery, Charité-University Medical School, Benjamin Franklin Medical Center, Center of Space Medicine, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ricci G, Esposito R, Catizone A, Galdieri M. Direct effects of microgravity on testicular function: analysis of hystological, molecular and physiologic parameters. J Endocrinol Invest 2008; 31:229-37. [PMID: 18401205 DOI: 10.1007/bf03345595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spaceflight experiments carried out in microgravity environments have revealed that exposure to altered gravity condition results in alteration of several cellular functions and, consequently, of several apparatuses. There is some evidence in the literature indicating that spaceflight affects the physiology of the testis. The data on effects of spaceflight or simulated microgravity on testicular function, however, sometimes appear contradictory. In the present study we used an in vitro experimental model in order to investigate the direct effects of microgravity on testicular tissue. We generated a microgravity environment using the Rotating Wall Vessel and performed experiments on testicular fragments isolated from pre-pubertal rats. In this model we then analyzed several parameters such as histological integrity, cell proliferation, cell apoptosis, occludin distribution pattern, and hormonal secretions. The emerging picture shows some alterations of testicular tissue physiology. Interestingly, we also demonstrate for the first time that, in organ culture, Leydig cell survival is severely affected by simulated microgravity.
Collapse
Affiliation(s)
- G Ricci
- Department of Experimental Medicine, Histology and Embryology Laboratory, School of Medicine, Second University of Naples, Naples, Italy
| | | | | | | |
Collapse
|
50
|
Loesberg WA, Walboomers XF, van Loon JJWA, Jansen JA. Simulated microgravity activates MAPK pathways in fibroblasts cultured on microgrooved surface topography. ACTA ACUST UNITED AC 2008; 65:116-29. [DOI: 10.1002/cm.20248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|