1
|
Russo I, Brookles CG, Barale C, Melchionda E, Mousavi AH, Biolè C, Chinaglia A, Bianco M. Current Strategies to Guide the Antiplatelet Therapy in Acute Coronary Syndromes. Int J Mol Sci 2024; 25:3981. [PMID: 38612792 PMCID: PMC11011739 DOI: 10.3390/ijms25073981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The role of antiplatelet therapy in patients with acute coronary syndromes is a moving target with considerable novelty in the last few years. The pathophysiological basis of the treatment depends on platelet biology and physiology, and the interplay between these aspects and clinical practice must guide the physician in determining the best therapeutic options for patients with acute coronary syndromes. In the present narrative review, we discuss the latest novelties in the antiplatelet therapy of patients with acute coronary syndromes. We start with a description of platelet biology and the role of the main platelet signal pathways involved in platelet aggregation during an acute coronary syndrome. Then, we present the latest evidence on the evaluation of platelet function, focusing on the strengths and weaknesses of each platelet's function test. We continue our review by describing the role of aspirin and P2Y12 inhibitors in the treatment of acute coronary syndromes, critically appraising the available evidence from clinical trials, and providing current international guidelines and recommendations. Finally, we describe alternative therapeutic regimens to standard dual antiplatelet therapy, in particular for patients at high bleeding risk. The aim of our review is to give a comprehensive representation of current data on antiplatelet therapy in patients with acute coronary syndromes that could be useful both for clinicians and basic science researchers to be up-to-date on this complex topic.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Turin, Italy; (I.R.); (C.B.); (E.M.)
| | - Carola Griffith Brookles
- Cardiology Division, San Luigi Gonzaga University Hospital, I-10043 Orbassano, Italy; (C.G.B.); (A.H.M.); (C.B.); (A.C.)
- Department of Medical Sciences, University of Turin, I-10124 Turin, Italy
| | - Cristina Barale
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Turin, Italy; (I.R.); (C.B.); (E.M.)
| | - Elena Melchionda
- Department of Clinical and Biological Sciences, University of Turin, I-10043 Turin, Italy; (I.R.); (C.B.); (E.M.)
| | - Amir Hassan Mousavi
- Cardiology Division, San Luigi Gonzaga University Hospital, I-10043 Orbassano, Italy; (C.G.B.); (A.H.M.); (C.B.); (A.C.)
- Department of Medical Sciences, University of Turin, I-10124 Turin, Italy
| | - Carloalberto Biolè
- Cardiology Division, San Luigi Gonzaga University Hospital, I-10043 Orbassano, Italy; (C.G.B.); (A.H.M.); (C.B.); (A.C.)
| | - Alessandra Chinaglia
- Cardiology Division, San Luigi Gonzaga University Hospital, I-10043 Orbassano, Italy; (C.G.B.); (A.H.M.); (C.B.); (A.C.)
| | - Matteo Bianco
- Cardiology Division, San Luigi Gonzaga University Hospital, I-10043 Orbassano, Italy; (C.G.B.); (A.H.M.); (C.B.); (A.C.)
| |
Collapse
|
2
|
Tokuda H, Hori T, Mizutani D, Hioki T, Kojima K, Onuma T, Enomoto Y, Doi T, Matsushima-Nishiwaki R, Ogura S, Iida H, Iwama T, Sakurai T, Kozawa O. Inverse relationship between platelet Akt activity and hippocampal atrophy: A pilot case-control study in patients with diabetes mellitus. World J Clin Cases 2024; 12:302-313. [PMID: 38313640 PMCID: PMC10835682 DOI: 10.12998/wjcc.v12.i2.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Akt plays diverse roles in humans. It is involved in the pathogenesis of type 2 diabetes mellitus (T2DM), which is caused by insulin resistance. Akt also plays a vital role in human platelet activation. Furthermore, the hippocampus is closely associated with memory and learning, and a decrease in hippocampal volume is reportedly associated with an insulin-resistant phenotype in T2DM patients without dementia. AIM To investigate the relationship between Akt phosphorylation in unstimulated platelets and the hippocampal volume in T2DM patients. METHODS Platelet-rich plasma (PRP) was prepared from the venous blood of patients with T2DM or age-matched controls. The pellet lysate of the centrifuged PRP was subjected to western blotting to analyse the phosphorylation of Akt, p38 mitogen-activated protein (MAP) kinase and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Phosphorylation levels were quantified by densitometric analysis. Hippocampal volume was analysed using a voxel-based specific regional analysis system for Alzheimer's disease on magnetic resonance imaging, which proposes the Z-score as a parameter that reflects hippocampal volume. RESULTS The levels of phosphorylated Akt corrected with phosphorylated p38 MAP kinase were inversely correlated with the Z-scores in the T2DM subjects, whereas the levels of phosphorylated Akt corrected with GAPDH were not. However, this relationship was not observed in the control patients. CONCLUSION These results suggest that an inverse relationship may exist between platelet Akt activation and hippocampal atrophy in T2DM patients. Our findings provide insight into the molecular mechanisms underlying T2DM hippocampal atrophy.
Collapse
Affiliation(s)
- Haruhiko Tokuda
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takamitsu Hori
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Daisuke Mizutani
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoyuki Hioki
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Department of Dermatology, Central Japan International Medical Center, Minokamo 505-8510, Japan
| | - Kumi Kojima
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoaki Doi
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Emergency Medicine, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takashi Sakurai
- Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Osamu Kozawa
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
3
|
Schrottmaier WC, Kral-Pointner JB, Salzmann M, Mussbacher M, Schmuckenschlager A, Pirabe A, Brunnthaler L, Kuttke M, Maier B, Heber S, Datler H, Ekici Y, Niederreiter B, Heber U, Blomgren B, Gorki AD, Söderberg-Nauclér C, Payrastre B, Gratacap MP, Knapp S, Schabbauer G, Assinger A. Platelet p110β mediates platelet-leukocyte interaction and curtails bacterial dissemination in pneumococcal pneumonia. Cell Rep 2022; 41:111614. [PMID: 36351402 DOI: 10.1016/j.celrep.2022.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol 3-kinase catalytic subunit p110β is involved in tumorigenesis and hemostasis. However, it remains unclear if p110β also regulates platelet-mediated immune responses, which could have important consequences for immune modulation during anti-cancer treatment with p110β inhibitors. Thus, we investigate how platelet p110β affects inflammation and infection. Using a mouse model of Streptococcus pneumoniae-induced pneumonia, we find that both platelet-specific p110β deficiency and pharmacologic inhibition of p110β with TGX-221 exacerbate disease pathogenesis by preventing platelet-monocyte and neutrophil interactions, diminishing their infiltration and enhancing bacterial dissemination. Platelet p110β mediates neutrophil phagocytosis of S. pneumoniae in vitro and curtails bacteremia in vivo. Genetic deficiency or inhibition of platelet p110β also impairs macrophage recruitment in an independent model of sterile peritonitis. Our results demonstrate that platelet p110β dysfunction exacerbates pulmonary infection by impeding leukocyte functions. Thereby, our findings provide important insights into the immunomodulatory potential of PI3K inhibitors in bacterial infection.
Collapse
Affiliation(s)
- Waltraud Cornelia Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Julia Barbara Kral-Pointner
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Manuel Salzmann
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Marion Mussbacher
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Mario Kuttke
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Barbara Maier
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Datler
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Yasemin Ekici
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Heber
- Department of Pathology and Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Bo Blomgren
- Department of Clinical Sciences, Danderyd Hospital, Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna-Dorothea Gorki
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Centre for Molecular Medicine, Microbial Pathogenesis Unit, Karolinska University Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bernard Payrastre
- INSERM UMR1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 31024 Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM UMR1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 31024 Toulouse, France
| | - Sylvia Knapp
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Gernot Schabbauer
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 2022; 22:687-700. [PMID: 35322259 PMCID: PMC9922156 DOI: 10.1038/s41577-022-00701-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Li D, Li Y, Yang S, Yu Z, Xing Y, Wu M. Mechanism and Potential Target of Blood-Activating Chinese Botanical Drugs Combined With Anti-Platelet Drugs: Prevention and Treatment of Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2022; 13:811422. [PMID: 35721128 PMCID: PMC9204194 DOI: 10.3389/fphar.2022.811422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs) are the most important diseases that endanger people’s health, leading to high morbidity and mortality worldwide. In addition, various thrombotic events secondary to cardiovascular and cerebrovascular diseases need must be considered seriously. Therefore, the development of novel anti-platelet drugs with high efficiency, and fewer adverse effects has become a research focus for preventing of cardiovascular diseases (CVDs). Blood-activation and stasis-removal from circulation have been widely considered as principles for treating syndromes related to CVDs. Blood-activating Chinese (BAC botanical drugs, as members of traditional Chinese medicine (TCM), have shown to improve hemodynamics and hemorheology, and inhibit thrombosis and atherosclerosis. Modern medical research has identified that a combination of BAC botanical drugs and anti-platelet drugs, such as aspirin or clopidogrel, not only enhances the anti-platelet effects, but also reduces the risk of bleeding and protects the vascular endothelium. The anti-platelet mechanism of Blood-activating Chinese (BAC) botanical drugs and their compounds is not clear; therefore, their potential targets need to be explored. With the continuous development of bioinformatics and “omics” technology, some unconventional applications of BAC botanical drugs have been discovered. In this review, we will focus on the related targets and signaling pathways of anti-atherosclerotic treatments involving a combination of BAC botanical drugs and anti-platelet drugs reported in recent years.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Phosphoinositide 3-Kinases as Potential Targets for Thrombosis Prevention. Int J Mol Sci 2022; 23:ijms23094840. [PMID: 35563228 PMCID: PMC9105564 DOI: 10.3390/ijms23094840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
As integral parts of pathological arterial thrombi, platelets are the targets of pharmacological regimens designed to treat and prevent thrombosis. A detailed understanding of platelet biology and function is thus key to design treatments that prevent thrombotic cardiovascular disease without significant disruption of the haemostatic balance. Phosphoinositide 3-kinases (PI3Ks) are a group of lipid kinases critical to various aspects of platelet biology. There are eight PI3K isoforms, grouped into three classes. Our understanding of PI3K biology has recently progressed with the targeting of specific isoforms emerging as an attractive therapeutic strategy in various human diseases, including for thrombosis. This review will focus on the role of PI3K subtypes in platelet function and subsequent thrombus formation. Understanding the mechanisms by which platelet function is regulated by the various PI3Ks edges us closer toward targeting specific PI3K isoforms for anti-thrombotic therapy.
Collapse
|
8
|
Medical Gas Plasma—A Potent ROS-Generating Technology for Managing Intraoperative Bleeding Complications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cold medical gas plasmas are under pre-clinical investigation concerning their hemostatic activity and could be applied for intra-operative bleeding control in the future. The technological leap innovation was their generation at body temperature, thereby causing no thermal harm to the tissue and ensuring tissue integrity. This directly contrasts with current techniques such as electrocautery, which induces hemostasis by carbonizing the tissue using a heated electrode. However, the necrotized tissue is prone to fall, raising the risk of post-operative complications such as secondary bleedings or infection. In recent years, various studies have reported on the ability of medical gas plasmas to induce blood coagulation, including several suggestions concerning their mode of action. As non-invasive and gentle hemostatic agents, medical gas plasmas could be particularly eligible for vulnerable tissues, e.g., colorectal surgery and neurosurgery. Further, their usage could be beneficial regarding the prevention of post-operative bleedings due to the absence or sloughing of eschar. However, no clinical trials or individual healing attempts for medical gas plasmas have been reported to pave the way for clinical approvement until now, despite promising results in experimental animal models. In this light, the present mini-review aims to emphasize the potential of medical gas plasmas to serve as a hemostatic agent in clinical procedures. Providing a detailed overview of the current state of knowledge, feasible application fields are discussed, and possible obstacles are addressed.
Collapse
|
9
|
Schrottmaier WC, Mussbacher M, Salzmann M, Kral-Pointner JB, Assinger A. PI3K Isoform Signalling in Platelets. Curr Top Microbiol Immunol 2022; 436:255-285. [PMID: 36243848 DOI: 10.1007/978-3-031-06566-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Platelets are unique anucleated blood cells that constantly patrol the vasculature to seal and prevent injuries in a process termed haemostasis. Thereby they rapidly adhere to the subendothelial matrix and recruit further platelets, resulting in platelet aggregates. Apart from their central role in haemostasis, they also kept some of their features inherited by their evolutionary ancestor-the haemocyte, which was also involved in immune defences. Together with leukocytes, platelets fight pathogenic invaders and guide many immune processes. In addition, they rely on several signalling pathways which are also relevant to immune cells. Among these, one of the central signalling hubs is the PI3K pathway. Signalling processes in platelets are unique as they lack a nucleus and therefore transcriptional regulation is absent. As a result, PI3K subclasses fulfil distinct roles in platelets compared to other cells. In contrast to leukocytes, the central PI3K subclass in platelet signalling is PI3K class Iβ, which underlines the uniqueness of this cell type and opens new ways for potential platelet-specific pharmacologic inhibition. An overview of platelet function and signalling with emphasis on PI3K subclasses and their respective inhibitors is given in this chapter.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, USA
| | - Manuel Salzmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J 2021; 477:4327-4342. [PMID: 33242335 DOI: 10.1042/bcj20190402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, β, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2β), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.
Collapse
|
11
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
12
|
Jin R, Xiao AY, Li J, Wang M, Li G. PI3Kγ (Phosphoinositide 3-Kinase-γ) Inhibition Attenuates Tissue-Type Plasminogen Activator-Induced Brain Hemorrhage and Improves Microvascular Patency After Embolic Stroke. Hypertension 2019; 73:206-216. [PMID: 30571560 DOI: 10.1161/hypertensionaha.118.12001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic and pharmacological inhibition of the PI3Kγ (phosphoinositide 3-kinase-γ) exerts anti-inflammatory and protective effects in a number of inflammatory and autoimmune diseases. SHRs (spontaneously hypertensive rats) subjected to embolic middle cerebral occlusion were treated with AS605240 (30 mg/kg) at 2 or 4 hours, tPA (tissue-type plasminogen activator; 10 mg/kg) at 2 or 6 hours, or AS605240 at 4 hours plus tPA at 6 hours. Infarct volume, brain hemorrhage, neurological function, microvascular thrombosis, and cerebral microvessel patency were examined. We found that treatment with AS605240 alone at 2 hours or the combination treatment with AS605240 at 4 hours and tPA at 6 hours significantly reduced infarct volume and neurological deficits at 3 days after stroke compared with ischemic rats treated with saline, AS605240 alone at 4 hours, and tPA alone at 6 hours. Moreover, the combination treatment effectively prevented the delayed tPA-induced cerebral hemorrhage. These protective effects are associated with reduced disruption of the blood-brain barrier, reduced downstream microvascular thrombosis, and improved microvascular patency by AS605240. Inhibition of the NF-κB (nuclear transcription factor-κB)-dependent MMP (matrix metalloproteinase)-9 and PAI-1 (plasminogen activator inhibitor-1) in the ischemic brain endothelium may underlie the neurovascular protective effect of AS605240. In addition, the combination treatment significantly reduced circulating platelet P-selectin expression and platelet-leukocyte aggregation compared with ischemic rats treated with saline or tPA alone at 6 hours. In conclusion, inhibition of PI3Kγ with AS605240 reduces delayed tPA-induced intracerebral hemorrhage and improves microvascular patency, which likely contributes to neuroprotective effect of the combination treatment.
Collapse
Affiliation(s)
- Rong Jin
- From the Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA (R.J., M.W., G.L.)
| | - Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport (A.Y.X.)
| | | | - Min Wang
- From the Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA (R.J., M.W., G.L.)
| | - Guohong Li
- From the Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey, PA (R.J., M.W., G.L.)
| |
Collapse
|
13
|
Function, Regulation and Biological Roles of PI3Kγ Variants. Biomolecules 2019; 9:biom9090427. [PMID: 31480354 PMCID: PMC6770443 DOI: 10.3390/biom9090427] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositide 3-kinase (PI3K) γ is the only class IB PI3K member playing significant roles in the G-protein-dependent regulation of cell signaling in health and disease. Originally found in the immune system, increasing evidence suggest a wide array of functions in the whole organism. PI3Kγ occur as two different heterodimeric variants: PI3Kγ (p87) and PI3Kγ (p101), which share the same p110γ catalytic subunit but differ in their associated non-catalytic subunit. Here we concentrate on specific PI3Kγ features including its regulation and biological functions. In particular, the roles of its non-catalytic subunits serving as the main regulators determining specificity of class IB PI3Kγ enzymes are highlighted.
Collapse
|
14
|
Nagy M, van Geffen JP, Stegner D, Adams DJ, Braun A, de Witt SM, Elvers M, Geer MJ, Kuijpers MJE, Kunzelmann K, Mori J, Oury C, Pircher J, Pleines I, Poole AW, Senis YA, Verdoold R, Weber C, Nieswandt B, Heemskerk JWM, Baaten CCFMJ. Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis. Front Cardiovasc Med 2019; 6:99. [PMID: 31417909 PMCID: PMC6682619 DOI: 10.3389/fcvm.2019.00099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6β1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis.
Collapse
Affiliation(s)
- Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - David Stegner
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Attila Braun
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Margitta Elvers
- Department of Vascular Surgery, Experimental Vascular Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Mitchell J Geer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Karl Kunzelmann
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Jun Mori
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Cécile Oury
- GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, and DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Irina Pleines
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Alastair W Poole
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Remco Verdoold
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Christian Weber
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Institute of Experimental Biomedicine, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| |
Collapse
|
15
|
Critical roles for the phosphatidylinositide 3-kinase isoforms p110β and p110γ in thrombopoietin-mediated priming of platelet function. Sci Rep 2019; 9:1468. [PMID: 30728366 PMCID: PMC6365529 DOI: 10.1038/s41598-018-37012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/27/2018] [Indexed: 12/17/2022] Open
Abstract
Thrombopoietin (TPO) enhances platelet activation through activation of the tyrosine kinase; JAK2 and the lipid kinase phosphatidylinositide 3-kinase (PI3K). The aim of our study was to identify the PI3K isoforms involved in mediating the effect of TPO on platelet function and elucidate the underlying mechanism. We found that p110β plays an essential role in TPO-mediated (i) priming of protease-activated receptor (PAR)-mediated integrin αIIbβ3 activation and α-granule secretion, (ii) synergistic enhancement of PAR-mediated activation of the small GTPase RAP1, a regulator of integrin activation and (iii) phosphorylation of the PI3K effector Akt. More importantly, the synergistic effect of TPO on phosphorylation of extracellular-regulated kinase (ERK1/2) and thromboxane (TxA2) synthesis was dependent on both p110β and p110γ. p110β inhibition/deletion, or inhibition of p110γ, resulted in a partial reduction, whereas inhibiting both p110β and p110γ completely prevented the synergistic effect of TPO on ERK1/2 phosphorylation and TxA2 synthesis. The latter was ablated by inhibition of MEK, but not p38, confirming a role for ERK1/2 in regulating TPO-mediated increases in TxA2 synthesis. In conclusion, the synergistic effect of TPO on RAP1 and integrin activation is largely mediated by p110β, whereas p110β and p110γ contribute to the effect of TPO on ERK1/2 phosphorylation and TxA2 formation.
Collapse
|
16
|
|
17
|
Gao Y, Yu C, Pi S, Mao L, Hu B. The role of P2Y 12 receptor in ischemic stroke of atherosclerotic origin. Cell Mol Life Sci 2019; 76:341-354. [PMID: 30302530 PMCID: PMC11105791 DOI: 10.1007/s00018-018-2937-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 12/29/2022]
Abstract
Atherosclerosis is a chronic and progressive disease of the arterial walls and a leading cause of non-cardioembolic ischemic stroke. P2Y12 is a well-recognized receptor that is expressed on platelets and is a target of thienopyridine-type antiplatelet drugs. In the last few decades, P2Y12 receptor inhibitors, such as clopidogrel, have been applied for the secondary prevention of non-cardioembolic ischemic stroke. Recent clinical studies have suggested that these P2Y12 receptor inhibitors may be more effective than other antiplatelet drugs in patients with ischemic stroke/transient ischemic attack of atherosclerotic origin. Moreover, animal studies have also shown that the P2Y12 receptor may participate in atherogenesis by promoting the proliferation and migration of vascular smooth muscle cells (VSMCs) and endothelial dysfunction, and affecting inflammatory cell activities in addition to amplifying and maintaining ADP-induced platelet activation and platelet aggregation. P2Y12 receptor inhibitors may also exert neuroprotective effects after ischemic stroke. Thus, P2Y12 receptor inhibitors may be a better choice for secondary prevention in patients with atherosclerotic ischemic stroke subtypes because of their triple functions (i.e., their anti-atherosclerotic, anti-platelet aggregation, and neuroprotective activities), and the P2Y12 receptor may also serve as a noval therapeutic target for atherosclerosis. In this review, we summarize the current knowledge on the P2Y12 receptor and its key roles in atherosclerosis and ischemic stroke of atherosclerotic origin.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Yu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
|
19
|
Maffei A, Lembo G, Carnevale D. PI3Kinases in Diabetes Mellitus and Its Related Complications. Int J Mol Sci 2018; 19:ijms19124098. [PMID: 30567315 PMCID: PMC6321267 DOI: 10.3390/ijms19124098] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that phosphoinositide 3-kinases (PI3Ks) have become the target of many pharmacological treatments, both in clinical trials and in clinical practice. PI3Ks play an important role in glucose regulation, and this suggests their possible involvement in the onset of diabetes mellitus. In this review, we gather our knowledge regarding the effects of PI3K isoforms on glucose regulation in several organs and on the most clinically-relevant complications of diabetes mellitus, such as cardiomyopathy, vasculopathy, nephropathy, and neurological disease. For instance, PI3K α has been proven to be protective against diabetes-induced heart failure, while PI3K γ inhibition is protective against the disease onset. In vessels, PI3K γ can generate oxidative stress, while PI3K β inhibition is anti-thrombotic. Finally, we describe the role of PI3Ks in Alzheimer’s disease and ADHD, discussing the relevance for diabetic patients. Given the high prevalence of diabetes mellitus, the multiple effects here described should be taken into account for the development and validation of drugs acting on PI3Ks.
Collapse
Affiliation(s)
- Angelo Maffei
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, Italy.
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
20
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
21
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
The importance of blood platelet lipid signaling in thrombosis and in sepsis. Adv Biol Regul 2017; 67:66-73. [PMID: 28993230 DOI: 10.1016/j.jbior.2017.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Blood platelets are the first line of defense against hemorrhages and are also strongly involved in the processes of arterial thrombosis, a leading cause of death worldwide. Besides their well-established roles in hemostasis, vascular wall repair and thrombosis, platelets are now recognized as important players in other processes such as inflammation, healing, lymphangiogenesis, neoangiogenesis or cancer. Evidence is accumulating they are key effector cells in immune and inflammatory responses to host infection. To perform their different functions platelets express a wide variety of membrane receptors triggering specific intracellular signaling pathways and largely use lipid signaling systems. Lipid metabolism is highly active in stimulated platelets including the phosphoinositide metabolism with the phospholipase C (PLC) and the phosphoinositide 3-kinase (PI3K) pathways but also other enzymatic systems producing phosphatidic acid, lysophosphatidic acid, platelet activating factor, sphingosine 1-phosphate and a number of eicosanoids. While several of these bioactive lipids regulate intracellular platelet signaling mechanisms others are released by activated platelets acting as autocrine and/or paracrine factors modulating neighboring cells such as endothelial and immune cells. These bioactive lipids have been shown to play important roles in hemostasis and thrombosis but also in vessel integrity and dynamics, inflammation, tissue remodeling and wound healing. In this review, we will discuss some important aspects of platelet lipid signaling in thrombosis and during sepsis that is an important cause of death in intensive care unit. We will particularly focus on the implication of the different isoforms of PI3Ks and on the generation of eicosanoids released by activated platelets.
Collapse
|
23
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Liu Y, Hu M, Luo D, Yue M, Wang S, Chen X, Zhou Y, Wang Y, Cai Y, Hu X, Ke Y, Yang Z, Hu H. Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase. Arterioscler Thromb Vasc Biol 2017; 37:2075-2086. [PMID: 28882875 DOI: 10.1161/atvbaha.117.309751] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Class III phosphoinositide 3-kinase, also known as VPS34 (vacuolar protein sorting 34), is a highly conserved enzyme regulating important cellular functions such as NADPH oxidase (NOX) assembly, membrane trafficking, and autophagy. Although VPS34 is expressed in platelets, its involvement in platelet activation remains unclear. Herein, we investigated the role of VPS34 in platelet activation and thrombus formation using VPS34 knockout mice. APPROACH AND RESULTS Platelet-specific VPS34-deficient mice were generated and characterized. VPS34 deficiency in platelets did not influence tail bleeding time. In a ferric chloride-induced mesenteric arteriolar thrombosis model, VPS34-/- mice exhibited a prolonged vessel occlusion time compared with wild-type mice (42.05±4.09 versus 18.30±2.47 minutes). In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on collagen under arterial shear was significantly reduced for VPS34-/- platelets. VPS34-/- platelets displayed an impaired aggregation and dense granule secretion in response to low doses of collagen or thrombin. VPS34 deficiency delayed clot retraction but did not influence platelet spreading on fibrinogen. We also demonstrated that VPS34 deficiency altered the basal level of autophagy in resting platelets and hampered NOX assembly and mTOR (mammalian target of rapamycin) signaling during platelet activation. Importantly, we identified the NOX-dependent reactive oxygen species generation as the major downstream effector of VPS34, which in turn can mediate platelet activation. In addition, by using a specific inhibitor 3-methyladenine, VPS34 was found to operate through a similar NOX-dependent mechanism to promote human platelet activation. CONCLUSIONS Platelet VPS34 is critical for thrombosis but dispensable for hemostasis. VPS34 regulates platelet activation by influencing NOX assembly.
Collapse
Affiliation(s)
- Yangyang Liu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Mengjiao Hu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Dongjiao Luo
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Ming Yue
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Shuai Wang
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Xiaoyan Chen
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yangfan Zhou
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yi Wang
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yanchun Cai
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Xiaolan Hu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.)
| | - Zhongzhou Yang
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.).
| | - Hu Hu
- From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.).
| |
Collapse
|
25
|
Li KC, Yu SH, Zhuge BZ. PIK3CG single nucleotide polymorphisms are associated with poor responsiveness to clopidogrel and increased risk of ischemia in patients with coronary heart disease. Medicine (Baltimore) 2017; 96:e7566. [PMID: 28885323 PMCID: PMC6392743 DOI: 10.1097/md.0000000000007566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study explores the associations between PIK3CG single nucleotide polymorphisms (SNPs, rs1129293 and rs17398575) and patient responsiveness to clopidogrel to evaluate the risks of ischemia in patients with coronary heart disease (CHD). METHODS The study consisted of 513 CHD patients who received clopidogrel as part of antiplatelet therapy, after percutaneous coronary intervention. According to the patient responsiveness to clopidogrel, the subjects were assigned to either clopidogrel-resistant (CR) or clopidogrel-sensitive (CS) groups. CR group was determined by patients' platelet aggregation rate of ≥70% and poor responsiveness to clopidogrel, and CS group by patients' platelet aggregation rates of <70% and good responsiveness to clopidogrel. Polymerase chain reaction using TaqMan probe was employed to detect PIK3CG polymorphism. Haplotype and linkage disequilibrium analyses were performed. Prognosis analysis was performed using the Kaplan-Meier curve. RESULTS Significant difference was found in genotype and rs1129293 and rs17398575 allele frequency between the CR and CS groups. Haplotype analysis indicated that the frequency of TG allele was higher in the CR group compared with the CS group, and the frequency of CA allele was lower in the CR group compared with the CS group. Patients with rs1129293 CT + TT genotype and T allele, rs1129293 AG + GG genotype and G allele exhibited an increased CR risk. Logistic regression analysis determined hypertension history as an independent risk factor for CR. The Kaplan-Meier curve suggests that distribution curve of cumulative probability nonischemic events was different between patients with rs1129293 and rs17398575 alleles. Stable CHD patients with TT genotype of rs1129293 allele and GG genotype of rs17398575 allele showed poorer prognosis compared to those with other genotypes and patients with acute coronary syndromes. CONCLUSION A positive correlation may exist between PIK3CG SNPs (rs1129293 and rs17398575) and patients with poor responsiveness to clopidogrel. These findings show that this factor may contribute to an increased risk of ischemia in patients suffering from CHD.
Collapse
Affiliation(s)
- Ke-Cheng Li
- Department of Clinical Laboratory, People's Hospital of Rongcheng, Rongcheng
| | - Shu-Hong Yu
- Department of Blood Transfusion, Yantai Yuhuangding Hospital, Yantai
| | - Bao-Zhong Zhuge
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, P.R. China
| |
Collapse
|
26
|
Eicher JD, Xue L, Ben-Shlomo Y, Beswick AD, Johnson AD. Replication and hematological characterization of human platelet reactivity genetic associations in men from the Caerphilly Prospective Study (CaPS). J Thromb Thrombolysis 2016; 41:343-50. [PMID: 26519038 DOI: 10.1007/s11239-015-1290-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Platelet reactivity, an important factor in hemostasis and chronic disease, has widespread inter-individual variability with a substantial genetic contribution. Previously, our group performed a genome-wide association study of platelet reactivity identifying single nucleotide polymorphisms (SNPs) associated with ADP- and epinephrine- induced aggregation, including SNPs in MRVI1, PIK3CG, JMJD1C, and PEAR1, among others. Here, we assessed the association of these previously identified SNPs with ADP-, thrombin-, and shear- induced platelet aggregation. Additionally, we sought to expand the association of these SNPs with blood cell counts and hemostatic factors. To accomplish this, we examined the association of 12 SNPs with seven platelet reactivity and various hematological measures in 1300 middle-aged men in the Caerphilly Prospective Study. Nine of the examined SNPs showed at least suggestive association with platelet reactivity. The strongest associations were with rs12566888 in PEAR1 to ADP-induced (p = 1.51 × 10(-7)) and thrombin-induced (p = 1.91 × 10(-6)) reactivity in platelet rich plasma. Our results indicate PEAR1 functions in a relatively agonist independent manner, possibly through subsequent intracellular propagation of platelet activation. rs10761741 in JMJD1C showed suggestive association with ADP-induced reactivity (p = 1.35 × 10(-3)), but its strongest associations were with platelet-related cell counts (p = 1.30 × 10(-9)). These associations indicate variation in JMJD1C influences pathways that modulate platelet development as well as those that affect reactivity. Associations with other blood cell counts and hemostatic factors were generally weaker among the tested SNPs, indicating a specificity of these SNPs' function to platelets. Future genome-wide analyses will further assess association of these genes and identify new genes important to platelet biology.
Collapse
Affiliation(s)
- John D Eicher
- The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA, 01702, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Luting Xue
- The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA, 01702, USA.,Biostatistics Program, Boston University, Boston, MA, USA
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Andrew D Johnson
- The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA, 01702, USA. .,Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
27
|
Li T, Li D, Xu H, Zhang H, Tang D, Cao H. Wen-Xin Decoction ameliorates vascular endothelium dysfunction via the PI3K/AKT/eNOS pathway in experimental atherosclerosis in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:27. [PMID: 26803585 PMCID: PMC4724402 DOI: 10.1186/s12906-016-1002-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
Background Nitric oxide (NO) is the most powerful vasodilator that inhibits leukocyte adhesion, platelet aggregation, and vascular smooth muscle cell proliferation. However, excessive NO can cause lipid peroxidation and direct endothelial cell damage. Therefore, investigation of the role of NO in artherosclerosis development is important. Wen-Xin Decoction (WXD) has been shown to relieve myocardial ischemia reperfusion injury and prevent leukocyte adhesion and invasion; in addition, it can accelerate angiogenesis and prevent platelet activation and aggregation. In this study, we focused on the NO pathway to further clarify the protective effects of WXD on the vascular endothelium in rat models of artherosclerosis. Methods Wistar rats were randomly divided into a normal group (n = 10) and a model group (n = 75). Rat models of atherosclerosis were generated by intraperitoneal vitamin D3 (3 months) injections and administration of a high-fat diet (3 months with vitamin D3 and 2 months alone). The model rats were randomly divided into five groups (n = 15 each): model (saline), atorvastatin (4.8 mg/kg/d atorvastatin), high-dose WXD (9 g/kg/d), medium-dose WXD (4.5 g/kg/d), and low-dose WXD (2.25 g/kg/d) groups. Each group received continuous drug or saline administration (suspended liquid gavage) for 30 days, following which all animals were sacrificed. The ultrastructure and histopathological changes of vascular endothelial cells and the expression of PI3K/AKT/eNOS and iNOS in the thoracic aorta tissue were analyzed. Results WXD increased NO levels, modulated the NO/ET-1 ratio, and promoted repair of the injured vascular endothelium in a dose-dependent manner. At a high dose, WXD regulated the NO/ET-1 ratio as effectively as atorvastatin; furthermore, it increased NO levels within the physiological range to prevent endothelial damage caused by excessive NO expression. Real-time polymerase chain reaction and Western blot analysis showed that WXD significantly upregulated the mRNA and protein expressions of PI3K, AKT, and eNOS mRNA and significantly increased AKT and eNOS phosphorylation. Conclusions Our results suggest that WXD protects and maintains the integrity of the vascular endothelium by activating the PI3K/AKT/eNOS pathway, decreasing iNOS expression, and promoting the release of physiological NO levels.
Collapse
|
28
|
Valet C, Severin S, Chicanne G, Laurent PA, Gaits-Iacovoni F, Gratacap MP, Payrastre B. The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis. Adv Biol Regul 2015; 61:33-41. [PMID: 26714793 DOI: 10.1016/j.jbior.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
Blood platelets play a pivotal role in haemostasis and are strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their critical role in pathophysiology, platelets represent a valuable model to investigate, both in vitro and in vivo, the biological roles of different branches of the phosphoinositide metabolism, which is highly active in platelets. While the phospholipase C (PLC) pathway has a crucial role in platelet activation, it is now well established that at least one class I phosphoinositide 3-kinase (PI3K) is also mandatory for proper platelet functions. Except class II PI3Kγ, all other isoforms of PI3Ks (class I α, β, γ, δ; class II α, β and class III) are expressed in platelets. Class I PI3Ks have been extensively studied in different models over the past few decades and several isoforms are promising drug targets to treat cancer and immune diseases. In platelet activation, it has been shown that while class I PI3Kδ plays a minor role, class I PI3Kβ has an important function particularly in thrombus growth and stability under high shear stress conditions found in stenotic arteries. This class I PI3K is a potentially interesting target for antithrombotic strategies. The role of class I PI3Kα remains ill defined in platelets. Herein, we will discuss our recent data showing the potential impact of inhibitors of this kinase on thrombus formation. The role of class II PI3Kα and β as well as class III PI3K (Vps34) in platelet production and function is just emerging. Based on our data and those very recently published in the literature, we will discuss the impact of these three PI3K isoforms in platelet production and functions and in thrombosis.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Sonia Severin
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | | | | | | | - Bernard Payrastre
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059, Toulouse Cedex 03, France.
| |
Collapse
|
29
|
Lupieri A, Smirnova N, Malet N, Gayral S, Laffargue M. PI3K signaling in arterial diseases: Non redundant functions of the PI3K isoforms. Adv Biol Regul 2015; 59:4-18. [PMID: 26238239 DOI: 10.1016/j.jbior.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Cardiovascular diseases are the most common cause of death around the world. This includes atherosclerosis and the adverse effects of its treatment, such as restenosis and thrombotic complications. The development of these arterial pathologies requires a series of highly-intertwined interactions between immune and arterial cells, leading to specific inflammatory and fibroproliferative cellular responses. In the last few years, the study of phosphoinositide 3-kinase (PI3K) functions has become an attractive area of investigation in the field of arterial diseases, especially since inhibitors of specific PI3K isoforms have been developed. The PI3K family includes 8 members divided into classes I, II or III depending on their substrate specificity. Although some of the different isoforms are responsible for the production of the same 3-phosphoinositides, they each have specific, non-redundant functions as a result of differences in expression levels in different cell types, activation mechanisms and specific subcellular locations. This review will focus on the functions of the different PI3K isoforms that are suspected as having protective or deleterious effects in both the various immune cells and types of cell found in the arterial wall. It will also discuss our current understanding in the context of which PI3K isoform(s) should be targeted for future therapeutic interventions to prevent or treat arterial diseases.
Collapse
Affiliation(s)
- Adrien Lupieri
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Natalia Smirnova
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Nicole Malet
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Stéphanie Gayral
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France
| | - Muriel Laffargue
- INSERM, U1048, I2MC and Université Toulouse III, Toulouse, F-31300, France.
| |
Collapse
|
30
|
Guidetti GF, Canobbio I, Torti M. PI3K/Akt in platelet integrin signaling and implications in thrombosis. Adv Biol Regul 2015; 59:36-52. [PMID: 26159296 DOI: 10.1016/j.jbior.2015.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Blood platelets are anucleated circulating cells that play a critical role in hemostasis and are also implicated in arterial thrombosis, a major cause of death worldwide. The biological function of platelets strongly relies in their reactiveness to a variety of extracellular agonists that regulate their adhesion to extracellular matrix at the site of vascular injury and their ability to form rapidly growing cell aggregates. Among the membrane receptors expressed on the cell surface, integrins are crucial for both platelet activation, adhesion and aggregation. Integrin affinity for specific ligands is regulated by intracellular signaling pathways activated in stimulated platelets, and, once engaged, integrins themselves generate and propagate signals inside the cells to reinforce and consolidate platelet response and thrombus formation. Phosphatidylinositol 3-Kinases (PI3Ks) have emerged as crucial players in platelet activation, and they are directly implicated in the regulation of integrin function. This review will discuss the contribution of PI3Ks in platelet integrin signaling, focusing on the role of specific members of class I PI3Ks and their downstream effector Akt on both integrin inside-out and outside-in signaling. The contribution of the PI3K/Akt pathways stimulated by integrin engagement and platelet activation in thrombus formation and stabilization will also be discussed in order to highlight the possibility to target these enzymes in effective anti-thrombotic therapeutic strategies.
Collapse
Affiliation(s)
- Gianni F Guidetti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Laboratories of Biochemistry, University of Pavia, Pavia, Italy.
| |
Collapse
|
31
|
Platelet PI3Kγ Contributes to Carotid Intima-Media Thickening under Severely Reduced Flow Conditions. PLoS One 2015; 10:e0129265. [PMID: 26053836 PMCID: PMC4459692 DOI: 10.1371/journal.pone.0129265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/06/2015] [Indexed: 12/03/2022] Open
Abstract
Studies have begun to focus on the emerging function of platelets as immune and inflammatory cells that initiate and accelerate vascular inflammation. Phosphoinositide 3-kinase gamma (PI3Kγ) is critically involved in a number of inflammatory and autoimmune diseases. This study aims to investigate the contribution of platelet PI3Kγ to vascular remodeling under flow severely reduced conditions. Mouse partial left carotid artery ligation with adoptive transfer of activated, washed wild-type or PI3Kγ-/- platelets was used as the model. Intima-media area, leukocyte recruitment, and proinflammatory mediator expression were assessed. In vitro PI3Kγ-/- platelets were used to verify the effect of PI3Kγ on platelet activation, interaction with leukocytes, and endothelial cells. Mice injected with activated platelets showed a significant increase in intima-media thickening, recruitment of neutrophils (at 3 d) and macrophages (at 21 d), and intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor alpha, and interleukin-6 expression (at 3 d) in the flow-reduced area. These effects were abrogated by platelet PI3Kγ deficiency. Circulating platelet-leukocyte aggregates were reduced in PI3Kγ-/- mice after partial ligation. In vivo data confirmed that PI3Kγ mediated Adenine di-Phosphate -induced platelet activation through the Akt and p38 MAP kinase signaling pathways. Moreover, platelet PI3Kγ deficiency reduced platelet-leukocyte aggregation and platelet-endothelial cell (EC) interaction. These findings indicate that platelet PI3Kγ contributes to platelet-mediated vascular inflammation and carotid intima-media thickening after flow severely reduced. Platelet PI3Kγ may be a new target in the treatment of vascular diseases.
Collapse
|
32
|
Abstract
The platelet P2Y12 receptor (P2Y12R) for adenosine 5'diphosphate (ADP) plays a central role in platelet function, hemostasis, and thrombosis. Patients with inherited P2Y12R defects display mild-to-moderate bleeding diatheses. Defects of P2Y12R should be suspected when ADP, even at high concentrations (≥ 10 μm), is unable to induce full, irreversible platelet aggregation. P2Y12R also plays a role in inflammation: its role in the pathogenesis of allergic asthma has been well characterized. In addition, inhibition or genetic deficiency of P2Y12R has antitumor effects. Drugs inhibiting P2Y12R are potent antithrombotic drugs. Clopidogrel is the P2Y12R antagonist that is most widely used in the clinical setting. Its most important drawback is its inability to inhibit adequately P2Y12R-dependent platelet function in about one-third of patients. New drugs, such as prasugrel and ticagrelor, which effectively inhibit P2Y12R in the vast majority of patients, have proved to be more efficacious than clopdidogrel in preventing major adverse cardiovascular events.
Collapse
Affiliation(s)
- M Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Unità di Medicina 3, Ospedale San Paolo, Milan, Italy
| |
Collapse
|
33
|
Manganaro D, Consonni A, Guidetti GF, Canobbio I, Visconte C, Kim S, Okigaki M, Falasca M, Hirsch E, Kunapuli SP, Torti M. Activation of phosphatidylinositol 3-kinase β by the platelet collagen receptors integrin α2β1 and GPVI: The role of Pyk2 and c-Cbl. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1879-88. [PMID: 25960397 DOI: 10.1016/j.bbamcr.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/23/2015] [Accepted: 05/02/2015] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 3-kinaseβ (PI3Kβ) plays a predominant role in integrin outside-in signaling and in platelet activation by GPVI engagement. We have shown that the tyrosine kinase Pyk2 mediates PI3Kβ activation downstream of integrin αIIbβ3, and promotes the phosphorylation of the PI3K-associated adaptor protein c-Cbl. In this study, we compared the functional correlation between Pyk2 and PI3Kβ upon recruitment of the two main platelet collagen receptors, integrin α2β1 and GPVI. PI3Kβ-mediated phosphorylation of Akt was inhibited in Pyk2-deficient platelets adherent to monomeric collagen through integrin α2β1, but occurred normally upon GPVI ligation. Integrin α2β1 engagement led to Pyk2-independent association of c-Cbl with PI3K. However, c-Cbl was not phosphorylated in adherent platelets, and phosphorylation of Akt occurred normally in c-Cbl-deficient platelets, indicating that the c-Cbl is dispensable for Pyk2-mediated PI3Kβ activation. Stimulation of platelets with CRP, a selective GPVI ligand, induced c-Cbl phosphorylation in the absence of Pyk2, but failed to promote its association with PI3K. Pyk2 activation was completely abrogated in PI3KβKD, but not in PI3KγKD platelets, and was strongly inhibited by Src kinases and phospholipase C inhibitors, and by BAPTA-AM. The absence of PI3Kβ activity also hampered GPVI-induced tyrosine-phosphorylation and activation of PLCγ2, preventing intracellular Ca2+ increase and phosphorylation of pleckstrin. Moreover, GPVI-induced intracellular Ca2+ increase and pleckstrin phosphorylation were also strongly inhibited in human platelets treated with the PI3Kβ inhibitor TGX-221. These results outline important differences in the regulation of PI3Kβ by GPVI and integrin α2β1 and suggest that inhibition of Pyk2 may target PI3Kβ activation in a selective context of platelet stimulation.
Collapse
Affiliation(s)
- Daria Manganaro
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Alessandra Consonni
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Gianni F Guidetti
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy
| | - Soochong Kim
- Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Mitsuhiko Okigaki
- Department of Cardiovascular Medicine, Kyoto Prefectural University, Japan
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia, Australia
| | - Emilio Hirsch
- Molecular Biotechnology Center, University of Turin, Italy
| | - Satya P Kunapuli
- Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Mauro Torti
- Department of Biology and Biotechnology, Division of Biochemistry, University of Pavia, Italy.
| |
Collapse
|
34
|
Moschonas I, Goudevenos J, Tselepis A. Protease-activated receptor-1 antagonists in long-term antiplatelet therapy. Current state of evidence and future perspectives. Int J Cardiol 2015; 185:9-18. [DOI: 10.1016/j.ijcard.2015.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/23/2015] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
|
35
|
Phosphatidylinositol-3,4,5-trisphosphate stimulates Ca(2+) elevation and Akt phosphorylation to constitute a major mechanism of thromboxane A2 formation in human platelets. Cell Signal 2015; 27:1488-98. [PMID: 25797048 DOI: 10.1016/j.cellsig.2015.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022]
Abstract
Phosphatidylinositol trisphosphate (PIP3) has been implicated in many platelet functions however many of the mechanisms need clarification. We have used cell permeable analogues of PIP3,1-O-(1,2-di-palmitoyl-sn-glyero-3-O-phosphoryl)-D-myo-inositol-3,4,5-trisphosphate (DiC16-PIP3) or 1-O-(1,2-di-octanoyl-sn-glyero-3-O-phosphoryl)-D-myo-inositol-3,4,5-trisphosphate (DiC8-PIP3) to study their effects on activation on washed human platelets. Addition of either DiC8- or DiC16-PIP3 to human platelets induced aggregation in the presence of extracellular Ca(2+). This was reduced by the presence of indomethacin, the phospholipase C inhibitor U73122 and apyrase. DiC8-PIP3 induced the phosphorylation of Akt-Ser(473) which was reduced by the Akt inhibitor IV, wortmannin and EGTA (suggesting a dependence on Ca(2+) entry). In Fura2 loaded platelets DiC8-PIP3 was effective at increasing intracellular Ca(2+) in a distinct and transient manner that was reduced in the presence of indomethacin, U73122 and 2-aminoethyl diphenylborinate (2APB). Ca(2+) elevation was reduced by the non-SOCE inhibitor LOE908 and also by the SOCE inhibitor BTP2. DiC8-PIP3 induced the release of Ca(2+) from stores which was not affected by the proton dissipating agent bafilomycin A1 and was more potent than the two-pore channel agonist DiC8-PI[3,5]P2 suggesting release from an endoplasmic reticulum type store. DiC8-PIP3 weakly induced the tyrosine phosphorylation of Syk but not of PLCγ2. Finally like thrombin DiC8-PIP3 induced the formation of thromboxane B2 that was inhibited by the Akt inhibitor IV. These studies suggest that PIP3 via Ca(2+) elevation and Akt phosphorylation forms a central role in thromboxane A2 formation and the amplification of platelet activation.
Collapse
|
36
|
Moroi AJ, Watson SP. Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol 2015; 94:186-94. [PMID: 25698506 DOI: 10.1016/j.bcp.2015.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 01/16/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated in response to various stimulants, and they regulate many processes including inflammation; the stress response; gene transcription; and cell proliferation, differentiation, and death. Increasing reports have shown that the PI3Ks and their downstream effector Akt are activated by several platelet receptors that regulate platelet activation and haemostasis. Platelets express two immunoreceptor tyrosine based activation motif (ITAM) receptors, collagen receptor glycoprotein VI (GPVI) and Fcγ receptor IIA (FcγRIIA), which are characterized by two YxxL sequences separated by 6-12 amino acids. Activation of an ITAM receptor initiates a reaction cascade via its YxxL sequence in which signaling molecules such as spleen tyrosine kinase (Syk), linker for activation of T cells (LAT) and phospholipase C γ2 (PLCγ2) become activated, leading to platelet activation. Platelets also express another receptor, C-type lectin 2 (CLEC-2), which has a single YxxL sequence, so it is appropriately called a hemITAM receptor. ITAM receptors and the hemITAM receptor share many signaling features. Here we will summarize our current knowledge about how the PI3K/Akt pathway regulates (hem)ITAM receptor-mediated platelet activation and haemostasis and discuss the possible benefits of targeting PI3K/Akt as an antithrombotic therapy.
Collapse
Affiliation(s)
- Alyssa J Moroi
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Steve P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
37
|
Falasca M, Maffucci T. Targeting p110gamma in gastrointestinal cancers: attack on multiple fronts. Front Physiol 2014; 5:391. [PMID: 25360116 PMCID: PMC4197894 DOI: 10.3389/fphys.2014.00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/21/2014] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions that are critical for cancer progression and development, including cell survival, proliferation and migration. Three classes of PI3Ks exist with the class I PI3K encompassing four isoforms of the catalytic subunit known as p110α, p110β, p110γ, and p110δ. Although for many years attention has been mainly focused on p110α recent evidence supports the conclusion that p110β, p110γ, and p110δ can also have a role in cancer. Amongst these, accumulating evidence now indicates that p110γ is involved in several cellular processes associated with cancer and indeed this specific isoform has emerged as a novel important player in cancer progression. Studies from our laboratory have identified a specific overexpression of p110γ in human pancreatic ductal adenocarcinoma (PDAC) and in hepatocellular carcinoma (HCC) tissues compared to their normal counterparts. Our data have further established that selective inhibition of p110γ is able to block PDAC and HCC cell proliferation, strongly suggesting that pharmacological inhibition of this enzyme can directly affect growth of these tumors. Furthermore, increasing evidence suggests that p110γ plays also a key role in the interactions between cancer cells and tumor microenvironment and in particular in tumor-associated immune response. It has also been reported that p110γ can regulate invasion of myeloid cells into tumors and tumor angiogenesis. Finally p110γ has also been directly involved in regulation of cancer cell migration. Taken together these data indicate that p110γ plays multiple roles in regulation of several processes that are critical for tumor progression and metastasis. This review will discuss the role of p110γ in gastrointestinal tumor development and progression and how targeting this enzyme might represent a way to target very aggressive tumors such as pancreatic and liver cancer on multiple fronts.
Collapse
Affiliation(s)
- Marco Falasca
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Tania Maffucci
- Inositide Signalling Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
38
|
Effect of 2-arachidonoylglycerol on myosin light chain phosphorylation and platelet activation: The role of phosphatidylinositol 3 kinase/AKT pathway. Biochimie 2014; 105:182-91. [DOI: 10.1016/j.biochi.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/14/2014] [Indexed: 11/22/2022]
|
39
|
Yi W, Li Q, Shen J, Ren L, Liu X, Wang Q, He S, Wu Q, Hu H, Mao X, Zhu L. Modulation of platelet activation and thrombus formation using a pan-PI3K inhibitor S14161. PLoS One 2014; 9:e102394. [PMID: 25115838 PMCID: PMC4130470 DOI: 10.1371/journal.pone.0102394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
The phosphatidylinositol 3–kinase (PI3K) signaling pathway is critical in modulating platelet functions. In the present study, we evaluated the effect of S14161, a recently identified pan-class I PI3K inhibitor, on platelet activation and thrombus formation. Results showed that S14161 inhibited human platelet aggregation induced by collagen, thrombin, U46619, and ADP in a dose-dependent manner. Flow cytometric studies showed that S14161 inhibited convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that S14161 decreased platelet adhesion on collagen-coated surface by about 80%. Western blot showed that S14161 inhibited phosphorylation of Akt at both Ser473 and Thr308 sites, and GSK3β at Ser9 in response to collagen, thrombin, or U46619. Comparable studies showed that S14161 has a higher potential bioavailability than LY294002, a prototypical inhibitor of pan-class I PI3K. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2 mg/kg) to male C57BL/6 mice significantly extended the first occlusion time (5.05±0.99 min, n = 9) compared to the vehicle controls (3.72±0.95 min, n = 8) (P<0.05), but did not prolong the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation without significant bleeding tendency and toxicity, and considering its potential higher bioavailability, it may be developed as a novel therapeutic agent for the prevention of thrombotic disorders.
Collapse
Affiliation(s)
- Wenxiu Yi
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qiang Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jian Shen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Lijie Ren
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiaohui Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qi Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Sudan He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University, Hangzhou, China
| | - Xinliang Mao
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
- * E-mail: (XM); (LZ)
| | - Li Zhu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
- * E-mail: (XM); (LZ)
| |
Collapse
|
40
|
Blachly JS, Baiocchi RA. Targeting PI3-kinase (PI3K), AKT and mTOR axis in lymphoma. Br J Haematol 2014; 167:19-32. [PMID: 25100567 DOI: 10.1111/bjh.13065] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Targeted therapy represents a transformation in oncology, a field that has relied primarily on non-selective cytotoxic therapies. Phosphatidylinositol 3-kinase (PI3K) is a family of ubiquitous signalling molecules involved in a wide variety of cellular processes and likewise, in a broad selection of human cancers. The discovery that the p110-δ form of PI3K is differentially expressed in normal and malignant lymphocytes has led to the development of specific inhibitors that are currently in clinical trials for lymphoma. Downstream effectors of PI3K, including v-akt murine thymoma viral oncogene homolog 1 (AKT; also termed AKT1) and mechanistic target of rapamycin (serine/threonine kinase) (mTOR) are similarly important in lymphoma, and agents targeting these components of the PI3K-AKT-mTOR axis are also underway, although at earlier stages of development. In this review we examine the role of PI3K-AKT-mTOR in normal and malignant lymphocytes, as well as the preclinical and clinical status of a number of inhibitors of this pathway.
Collapse
Affiliation(s)
- James S Blachly
- Division of Hematology, Department of Internal Medicine and The Ohio State University James Comprehensive Cancer, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
41
|
O'Donnell VB, Murphy RC, Watson SP. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ Res 2014; 114:1185-203. [PMID: 24677238 PMCID: PMC4021279 DOI: 10.1161/circresaha.114.301597] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipids are diverse families of biomolecules that perform essential structural and signaling roles in platelets. Their formation and metabolism are tightly controlled by enzymes and signal transduction pathways, and their dysregulation leads to significant defects in platelet function and disease. Platelet activation is associated with significant changes to membrane lipids, and formation of diverse bioactive lipids plays essential roles in hemostasis. In recent years, new generation mass spectrometry analysis of lipids (termed lipidomics) has begun to alter our understanding of how these molecules participate in key cellular processes. Although the application of lipidomics to platelet biology is still in its infancy, seminal earlier studies have shaped our knowledge of how lipids regulate key aspects of platelet biology, including aggregation, shape change, coagulation, and degranulation, as well as how lipids generated by platelets influence other cells, such as leukocytes and the vascular wall, and thus how they regulate hemostasis, vascular integrity, and inflammation, as well as contribute to pathologies, including arterial/deep vein thrombosis and atherosclerosis. This review will provide a brief historical perspective on the characterization of lipids in platelets, then an overview of the new generation lipidomic approaches, their recent application to platelet biology, and future perspectives for research in this area. The major platelet-regulatory lipid families, their formation, metabolism, and their role in health and disease, will be summarized.
Collapse
Affiliation(s)
- Valerie B O'Donnell
- From the Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom (V.B.O'D.); Department of Pharmacology, University of Colorado at Denver, Aurora (R.C.M.); and Birmingham Platelet Group, Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, Birmingham, United Kingdom (S.P.W.)
| | | | | |
Collapse
|
42
|
Abstract
Akt is a Ser-Thr kinase with pleiotropic effects on cell survival, growth and metabolism. Recent evidence from gene-deletion studies in mice, and analysis of human platelets treated with Akt inhibitors, suggest that Akt regulates platelet activation, with potential consequences for thrombosis. Akt activation is regulated by the level of phosphoinositide 3-phosphates, and proteins that regulate concentrations of this lipid also regulate Akt activation and platelet function. Although the effectors through which Akt contributes to platelet activation are not definitively known, several candidates are discussed, including endothelial nitric oxide synthase, glycogen synthase kinase 3β, phosphodiesterase 3A and the integrin β(3) tail. Selective inhibitors of Akt isoforms or of proteins that contribute to its activation, such as individual PI3K isoforms, may make attractive targets for antithrombotic therapy. This review summarizes the current literature describing Akt activity and its regulation in platelets, including speculation regarding the future of Akt or its regulatory pathways as targets for the development of antithrombotic therapies.
Collapse
Affiliation(s)
- Donna S Woulfe
- Thomas Jefferson University, Philadelphia, PA 19107, USA Tel.: +1 215 503 5152
| |
Collapse
|
43
|
Laurent PA, Severin S, Gratacap MP, Payrastre B. Class I PI 3-kinases signaling in platelet activation and thrombosis: PDK1/Akt/GSK3 axis and impact of PTEN and SHIP1. Adv Biol Regul 2014; 54:162-174. [PMID: 24095650 DOI: 10.1016/j.jbior.2013.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Class I phosphoinositide 3-kinases (PI3K) have been extensively studied in different models these last years and several isoforms are now promising drug targets to treat cancer and immune diseases. Blood platelets are non-nucleated cells critical for hemostasis and strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their role in hemostasis and thrombosis, platelets provide an interesting model to characterize the implication of the different isoforms of PI3K in signaling. They are specialized for regulated adhesion, particularly under high shear stress conditions found in arteries and use highly regulated signaling mechanisms to form and stabilize a thrombus. In this review we will highlight the role of class I PI3K in these processes and the pertinence of targeting them in the context of antithrombotic strategies but also the potential consequences on the bleeding risk of inhibiting the PI3K signaling in cancer therapy. The implication of upstream regulators of the most important isoforms of PI3K in platelets and their downstream effectors such as protein kinase B (PKB or Akt) and its target glycogen synthase kinase 3 (GSK3) will be discussed as well as the impact of PTEN and SHIP phosphatases as modulators of this pathway.
Collapse
Affiliation(s)
| | - Sonia Severin
- Inserm U1048, I2MC and Université Paul Sabatier, 31024 Toulouse Cedex 03, France
| | | | - Bernard Payrastre
- Inserm U1048, I2MC and Université Paul Sabatier, 31024 Toulouse Cedex 03, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France.
| |
Collapse
|
44
|
Ryu SY, Kim S. Evaluation of CK2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) in regulation of platelet function. Eur J Pharmacol 2013; 720:391-400. [DOI: 10.1016/j.ejphar.2013.09.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 11/25/2022]
|
45
|
Wymann MP, Solinas G. Inhibition of phosphoinositide 3-kinase γ attenuates inflammation, obesity, and cardiovascular risk factors. Ann N Y Acad Sci 2013; 1280:44-7. [PMID: 23551103 DOI: 10.1111/nyas.12037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) plays a central role in inflammation, allergy, cardiovascular, and metabolic disease. Obesity is accompanied by chronic, low-grade inflammation. As PI3Kγ plays a major role in leukocyte recruitment, targeting of PI3Kγ has been considered to be a strategy for attenuating progression of obesity to insulin resistance and type 2 diabetes. Indeed, PI3Kγ null mice are protected from high fat diet-induced obesity, metabolic inflammation, fatty liver, and insulin resistance. The lean phenotype of the PI3Kγ-null mice has been linked to increased thermogenesis and energy expenditure. Surprisingly, the increase in fat mass and metabolic aberrations were not linked to PI3Kγ activity in the hematopoietic compartment. Thermogenesis and oxygen consumption are modulated by PI3Kγ lipid kinase-dependent and -independent signaling mechanisms. PI3Kγ signaling controls metabolic and inflammatory stress, and may provide an entry point for therapeutic strategies in metabolic disease, inflammation, and cardiovascular disease.
Collapse
|
46
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
47
|
Abstract
Phosphatidylinositol and its phosphorylated derivatives, phosphoinositides, are minor constituents of phospholipids at the cellular membrane level. Nevertheless, phosphatidylinositol and phosphoinositides represent essential components of intracellular signaling that regulate diverse cellular processes, including platelet plug formation. Accumulating evidence indicates that the metabolism of phosphoinositides is temporally and spatially modulated by the opposing effects of specific phosphoinositide-metabolizing enzymes, including lipid kinases, lipid phosphatases, and phospholipases. Each of these enzymes generates a selective phosphoinositide or second messenger within precise cellular compartments. Intriguingly, phosphoinositide-metabolizing enzymes exist in different isoforms, which all produce the same phosphoinositide products. Recent studies using isoform-specific mouse models and chemical inhibitors have elucidated that the different isoforms of phosphoinositide-metabolizing enzymes have nonredundant functions and provide an additional layer of complexity to the temporo-spatial organization of intracellular signaling events. In this review, we will discuss recent advances in our understanding of phosphoinositide organization during platelet activation.
Collapse
|
48
|
Jiang L, Xu C, Yu S, Liu P, Luo D, Zhou Q, Gao C, Hu H. A critical role of thrombin/PAR-1 in ADP-induced platelet secretion and the second wave of aggregation. J Thromb Haemost 2013; 11:930-40. [PMID: 23406164 DOI: 10.1111/jth.12168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/03/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The stable or second wave of platelet aggregation often observed in ADP-stimulated platelet-rich plasma (PRP) with an artificially lowered extracellular calcium level has been attributed to enhanced thromboxane A2 (TXA2 ) generation and inhibition of ectonucleotidase activity. However, the role of thrombin in ADP-induced platelet secretion and the second wave of aggregation is unknown. OBJECTIVES AND METHODS We employed aggregometry, flow cytometry, immunoblotting and ELISA to determine whether and how thrombin participates in ADP-induced platelet secretion and the second wave of aggregation. RESULTS ADP induces a phosphoinositide 3-kinase (PI3K) pathway-dependent thrombin generation, presumably resulting from the cleavage of αII b β3 -associated prothrombin. Generated thrombin subsequently activates protease-activated receptor-1 (PAR-1) and mediates dense granule secretion and the second wave of platelet aggregation in ADP-stimulated citrated PRP. Thus, ADP-induced dense granule secretion and the second wave of platelet aggregation in PRP were similarly and non-additively blocked by thrombin inhibitor hirudin, PAR-1 antagonist SCH-79797 or PI3K inhibitor wortmannin. Moreover, ADP stimulation caused the dissociation of prothrombin from αII b β3 and an increased plasma thrombin level; both were prevented by wortmannin. Furthermore, the wortmannin-inhibited second wave of platelet aggregation by ADP was restored by a subaggregation concentration of PAR-1 activating peptide SFLLRN. Blocking TXA2 production with indomethacin or restoring extracellular calcium to physiological concentration did not influence this thrombin/PAR-1 dependence. CONCLUSIONS A PI3K-dependent thrombin generation and the resultant PAR-1 activation serve as an indispensable mechanism to relay the platelet activation process induced by ADP.
Collapse
Affiliation(s)
- L Jiang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Stolla MC, Li D, Lu L, Woulfe DS. Enhanced platelet activity and thrombosis in a murine model of type I diabetes are partially insulin-like growth factor 1-dependent and phosphoinositide 3-kinase-dependent. J Thromb Haemost 2013; 11:919-29. [PMID: 23406214 DOI: 10.1111/jth.12170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/29/2013] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To determine whether dysregulation of platelet signaling mechanisms contributes to the increased risk of thrombosis associated with diabetes, using a type I diabetes mouse model. METHODS AND RESULTS Type I diabetes was induced in C57Bl6 mice following streptozotocin injection. Arterial thrombosis, platelet signaling and function were assessed 4 weeks later in comparison with non-diabetic control mice. Fifty-seven per cent of diabetic mice (glucose level of > 250 mg dL(-1) ) developed stable occlusive thrombi after FeCl3 injury, as compared with 5% of their non-diabetic counterparts, suggesting that diabetic mice are more sensitive to arterial injury (P ≤ 0.02). Platelets from diabetic mice were more sensitive to protease-activated receptor 4 (PAR4) agonist-induced fibrinogen binding than platelets from non-diabetic mice, and the average Akt phosphorylation induced by PAR4 agonist peptide was greater (P ≤ 0.01) in platelets from diabetic mice. Recent studies suggest that insulin-like growth factor 1 (IGF-1) potentiates Akt phosphorylation in platelets. To determine whether IGF-1 signaling contributes to the increase in PAR4 sensitivity in platelets from diabetic mice, platelet signaling and function were evaluated in the presence of inhibitors of the IGF-1 receptor. IGF-1 receptor inhibition reduced Akt phosphorylation and fibrinogen binding in platelets from diabetic mice to levels consistent with those seen in normoglycemic platelets, but had no significant effect on platelets from non-diabetic mice. CONCLUSIONS The results suggest that platelets from mice with streptozotocin-induced diabetes show enhanced platelet Akt phosphorylation and activity resulting from IGF-1-dependent mechanisms. Increases in platelet Akt activation may explain the enhanced sensitivity to thrombotic insult seen in diabetic mice.
Collapse
Affiliation(s)
- M C Stolla
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
50
|
|