1
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
2
|
Kant R, Mishra N, Kandhari K, Saba L, Michel C, Reisdorph R, Tewari-Singh N, Pantcheva MB, Petrash JM, Agarwal C, Agarwal R. Dexamethasone targets actin cytoskeleton signaling and inflammatory mediators to reverse sulfur mustard-induced toxicity in rabbit corneas. Toxicol Appl Pharmacol 2024; 483:116834. [PMID: 38266871 PMCID: PMC10923037 DOI: 10.1016/j.taap.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Sulfur mustard (SM), a bi-functional alkylating agent, was used during World War I and the Iran-Iraq war. SM toxicity is ten times higher in eyes than in other tissues. Cornea is exceptionally susceptible to SM-injuries due to its anterior positioning and mucous-aqueous interphase. Ocular SM exposure induces blepharitis, photosensitivity, dry eye, epithelial defects, limbal ischemia and stem cell deficiency, and mustard gas keratopathy leading to temporary or permanent vision impairments. We demonstrated that dexamethasone (Dex) is a potent therapeutic intervention against SM-induced corneal injuries; however, its mechanism of action is not well known. Investigations employing proteomic profiling (LC-MS/MS) to understand molecular mechanisms behind SM-induced corneal injury and Dex efficacy were performed in the rabbit cornea exposed to SM and then received Dex treatment. PEAKS studio was used to extract, search, and summarize peptide identity. Ingenuity Pathway Analysis was used for pathway identification. Validation was performed using immunofluorescence. One-Way ANOVA (FDR < 0.05; p < 0.005) and Student's t-test (p < 0.05) were utilized for analyzing proteomics and IF data, respectively. Proteomic analysis revealed that SM-exposure upregulated tissue repair pathways, particularly actin cytoskeleton signaling and inflammation. Prominently dysregulated proteins included lipocalin2, coronin1A, actin-related protein2, actin-related protein2/3 complex subunit2, actin-related protein2/3 complex subunit4, cell division cycle42, ezrin, bradykinin/kininogen1, moesin, and profilin. Upregulated actin cytoskeleton signaling increases F-actin formation, dysregulating cell shape and motility. Dex reversed SM-induced increases in the aforementioned proteins levels to near control expression profiles. Dex aids corneal wound healing and improves corneal integrity via actin cytoskeletal signaling and anti-inflammatory effects following SM-induced injuries.
Collapse
Affiliation(s)
- Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Mina B Pantcheva
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - J Mark Petrash
- Department of Ophthalmology, School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Lekatz LA, Shukla P, Vasquez Hidalgo MA, O'Rourke S, Haring J, Dorsam GP, Grazul-Bilska AT, Vonnahme KA. Uterine kallikrein and arterial bradykinin activities and uterine arterial proliferation in response to acute estradiol-17β exposure in ovariectomized ewes. Domest Anim Endocrinol 2022; 81:106748. [PMID: 35842984 DOI: 10.1016/j.domaniend.2022.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Estradiol-17β (E2) increases kallikrein in rodent and human reproductive tissues. Kallikrein specific activity is increased in the porcine uterus when conceptus E2 is secreted at maternal recognition of pregnancy. When kallikrein acts on kininogen to liberate bradykinin, angiogenic and vasoactive factors are released. The uterus of ovariectomized ewes administered E2 undergoes rapid vascular changes via different patterns of angiogenic and vasoactive factors. Our hypothesis was that E2 would increase the specific activity and protein secretion of tissue kallikrein in endometrial explants culture media (ECM) and ewes exposed to E2 would have uterine arteries that would be more sensitive to the vasodilatory effects of bradykinin. Ovariectomized ewes received 100 mg of E2 implants for 0, 12, 24, or 48 h. After treatment, uterine weights were determined, and caruncles were processed for ECM. Uterine weights and uterine weight per ewe body weight were significantly greater in the 12 and 24 h ewes compared with the 0 h ewes, with the 48 h ewes being similar to the 24 h ewes. There were no statistically significant differences in caruncular tissue kallikrein protein secretion among the treatment groups. There was a tendency (P = 0.09) for duration of E2 exposure to influence tissue kallikrein specific activity where kallikrein activity was greater (P ≤ 0.05) in the 12 and 48 h ewes compared with the 0 h ewes, with 24 h ewes being intermediate (unprotected F test). Uterine arteries from ewes with E2 for 24 and 48 h had more sensitivity to bradykinin, via the bradykinin receptor 2, than uterine arteries from ewes with 0 or 12 h E2 exposure. We fail to reject our hypothesis as E2 did elicit a positive response in tissue kallikrein specific activity and bradykinin response. Further investigations are needed to determine how kallikrein and bradykinin may be involved in vascular remodeling of the ovine uterus.
Collapse
Affiliation(s)
- L A Lekatz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - P Shukla
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - M A Vasquez Hidalgo
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - S O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - J Haring
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - G P Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - K A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
4
|
Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells 2022; 11:cells11101720. [PMID: 35626756 PMCID: PMC9139415 DOI: 10.3390/cells11101720] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.
Collapse
|
5
|
Delta-9-tetrahydrocannabinol increases vascular endothelial growth factor (VEGF) secretion through a cyclooxygenase-dependent mechanism in rat granulosa cells. Reprod Toxicol 2022; 111:59-67. [PMID: 35588954 DOI: 10.1016/j.reprotox.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24hours. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.
Collapse
|
6
|
Ji L, Chen S, Gu G, Wang W, Ren J, Xu F, Li F, Wu J, Yang D, Zheng Y. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J Zhejiang Univ Sci B 2021; 22:733-745. [PMID: 34514753 DOI: 10.1631/jzus.b2000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2'-deoxy-D-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA.
Collapse
Affiliation(s)
- Lei Ji
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siliang Chen
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Guangchao Gu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Xu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
7
|
Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol 2021; 33:e12931. [PMID: 33506602 PMCID: PMC8166215 DOI: 10.1111/jne.12931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Increased brain microvascular permeability and disruption of blood-brain barrier (BBB) function are among hallmarks of several acute neurodegenerative disorders, including stroke. Numerous studies suggest the involvement of bradykinin (BK), neurotensin (NT) and substance P (SP) in BBB impairment and oedema formation after stroke; however, there is paucity of data in regard to the direct effects of these peptides on the brain microvascular endothelial cells (BMECs) and BBB. The present study aimed to evaluate the direct effects of BK, NT and SP on the permeability of BBB in an in vitro model based on human induced pluripotent stem cell (iPSC)-derived BMECs. Our data indicate that all three peptides increase BBB permeability in a concentration-dependent manner in an in vitro model formed from two different iPSC lines (CTR90F and CTR65M) and widely used hCMEC/D3 human BMECs. The combination of BK, NT and SP at a sub-effective concentration also resulted in increased BBB permeability in the iPSC-derived model indicating potentiation of their action. Furthermore, we observed abrogation of BK, NT and SP effects with pretreatment of pharmacological blockers targeting their specific receptors. Additional mechanistic studies indicate that the short-term effects of these peptides are not mediated through alteration of tight-junction proteins claudin-5 and occludin, but likely involve redistribution of F-actin and secretion of vascular endothelial growth factor. This is the first experimental study to document the increased permeability of the BBB in response to direct action of NT in an in vitro model. In addition, our study confirms the expected but not well-documented, direct effect of SP on BBB permeability and adds to the well-recognised actions of BK on BBB. Lastly, we demonstrate that peptidase neurolysin can neutralise the effects of these peptides on BBB, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
8
|
Peng Y, Liu D, Diao Z, Wang Z, Ding H, Cai B, Hu Y, Zhao G, Zheng M. Down-regulation of B2R contributes to preeclampsia by inhibiting human trophoblast cell invasion and angiogenesis. Pregnancy Hypertens 2020; 21:14-22. [DOI: 10.1016/j.preghy.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
|
9
|
Melatonin modulates airway smooth muscle cell phenotype by targeting the STAT3/Akt/GSK-3β pathway in experimental asthma. Cell Tissue Res 2019; 380:129-142. [PMID: 31867684 DOI: 10.1007/s00441-019-03148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Among the troika of clinicopathologic features of asthma, airway remodelling has gained sufficient attention for its contribution to progressive airway narrowing. Much effort has been directed at the management of airway smooth muscle cells (ASMCs), but few attempts have proven to prevent the progression of remodelling. Recently, accumulating data have shown the anti-inflammatory/anti-proliferative potency of melatonin (a crucial neurohormone involved in many physiological and pathological processes) in diverse cells. However, no evidence has confirmed its effect on ASMCs. The present study investigates the benefits of melatonin in asthma, with an emphasis on airway remodelling. The results indicated that melatonin significantly attenuated airway hyperresponsiveness (AHR), inflammation and remodelling in a house dust mite (HDM) model. Melatonin markedly alleviated goblet cell hyperplasia/metaplasia, collagen deposition and airway smooth muscle hyperplasia/hypertrophy, implying the achievement of remodelling remission. The data obtained in vitro further revealed that melatonin notably inhibited ASMCs proliferation, VEGF synthesis and cell migration induced by PDGF, which might depend on STAT3 signalling. Moreover, melatonin remarkably relieved ASMCs contraction and reversed ASMCs phenotype switching induced by TGF-β, probably via the Akt/GSK-3β pathway. Altogether, our findings illustrated for the first time that melatonin improves asthmatic airway remodelling by balancing the phenotypic proportions of ASMCs, thus highlighting a novel purpose for melatonin as a potent option for the management of asthma.
Collapse
|
10
|
Cañas JA, Sastre B, Rodrigo-Muñoz JM, Fernández-Nieto M, Barranco P, Quirce S, Sastre J, del Pozo V. Eosinophil-derived exosomes contribute to asthma remodelling by activating structural lung cells. Clin Exp Allergy 2018; 48:1173-1185. [DOI: 10.1111/cea.13122] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Affiliation(s)
- J. A. Cañas
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | - B. Sastre
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| | | | - M. Fernández-Nieto
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; IIS-Fundación Jiménez Díaz; Madrid Spain
| | - P. Barranco
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; Hospital La Paz-Institute for Health Research (IdiPAZ); Madrid Spain
| | - S. Quirce
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; Hospital La Paz-Institute for Health Research (IdiPAZ); Madrid Spain
| | - J. Sastre
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
- Department of Allergy; IIS-Fundación Jiménez Díaz; Madrid Spain
| | - V. del Pozo
- Department of Immunology; IIS-Fundación Jiménez Díaz; Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES); Madrid Spain
| |
Collapse
|
11
|
Rumzhum NN, Ammit AJ. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 2016; 46:397-410. [PMID: 26685098 DOI: 10.1111/cea.12697] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases.
Collapse
Affiliation(s)
- N N Rumzhum
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - A J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Deshpande DA, Guedes AGP, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. Pharmacol Ther 2016; 172:116-126. [PMID: 27939939 DOI: 10.1016/j.pharmthera.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD38 is an ectoenzyme that catalyzes the conversion of β-nicotinamide adenine dinucleotide (β-NAD) to cyclic adenosine diphosphoribose (cADPR) and adenosine diphosphoribose (ADPR) and NADP to nicotinic acid adenine dinucleotide phosphate (NAADP) and adenosine diphosphoribose-2'-phosphate (ADPR-P). The metabolites of NAD and NADP have roles in calcium signaling in different cell types including airway smooth muscle (ASM) cells. In ASM cells, inflammatory cytokines augment CD38 expression and to a greater magnitude in cells from asthmatics, indicating a greater capacity for the generation of cADPR and ADPR in ASM from asthmatics. CD38 deficient mice develop attenuated airway responsiveness to inhaled methacholine following allergen sensitization and challenge compared to wild-type mice indicating its potential role in asthma. Regulation of CD38 expression in ASM cells is achieved by mitogen activated protein kinases, specific isoforms of PI3 kinases, the transcription factors NF-κB and AP-1, and post-transcriptionally by microRNAs. This review will focus on the role of CD38 in intracellular calcium regulation in ASM, contribution to airway inflammation and airway hyperresponsiveness in mouse models of allergic airway inflammation, the transcriptional and post-transcriptional mechanisms of regulation of expression, and outline approaches to inhibit its expression and activity.
Collapse
Affiliation(s)
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota at Twin Cities, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota at Twin Cities, USA
| | - Mathur S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota at Twin Cities, USA.
| |
Collapse
|
13
|
Dileepan M, Sarver AE, Rao SP, Panettieri RA, Subramanian S, Kannan MS. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 2016; 11:e0150842. [PMID: 26998837 PMCID: PMC4801396 DOI: 10.1371/journal.pone.0150842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/19/2016] [Indexed: 01/25/2023] Open
Abstract
Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anne E. Sarver
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Reynold A. Panettieri
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subbaya Subramanian
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
14
|
Cho JY, Park KH, Hwang DY, Chanmuang S, Jaiswal L, Park YK, Park SY, Kim SY, Kim HR, Moon JH, Ham KS. Antihypertensive Effects of Artemisia scoparia Waldst in Spontaneously Hypertensive Rats and Identification of Angiotensin I Converting Enzyme Inhibitors. Molecules 2015; 20:19789-804. [PMID: 26540035 PMCID: PMC6332079 DOI: 10.3390/molecules201119657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
We investigated the antihypertensive effects of Artemisia scoparia (AS) in spontaneously hypertensive rats (SHR). The rats were fed diets containing 2% (w/w) hot water extracts of AS aerial parts for 6 weeks. The AS group had significantly lower systolic and diastolic blood pressure levels than the control group. The AS group also had lower angiotensin I converting enzyme (ACE) activity and angiotensin II content in serum compared to the control group. The AS group showed higher vascular endothelial growth factor and lower ras homolog gene family member A expression levels in kidney compared to the control group. The AS group had significantly lower levels of plasma lipid oxidation and protein carbonyls than the control group. One new and six known compounds were isolated from AS by guided purification. The new compound was determined to be 4'-O-β-D-glucopyranoyl (E)-4-hydroxy-3-methylbut-2-enyl benzoate, based on its nuclear magnetic resonance and electrospray ionization-mass spectroscopy data.
Collapse
Affiliation(s)
- Jeong-Yong Cho
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Kyung-Hee Park
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Do Young Hwang
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Saoraya Chanmuang
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Lily Jaiswal
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Yang-Kyun Park
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - Sun-Young Park
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| | - So-Young Kim
- Division of Functional Food & Nutrition, National Academy of Agricultural Sciences, Rural Development Administration (RDA), Jeonbuk 560-500, Korea.
| | - Haeng-Ran Kim
- Division of Functional Food & Nutrition, National Academy of Agricultural Sciences, Rural Development Administration (RDA), Jeonbuk 560-500, Korea.
| | - Jae-Hak Moon
- Department of Food Science & Technology, and Functional Food Research Center, Chonnam National University, Gwangju 500-757, Korea.
| | - Kyung-Sik Ham
- Department of Food Biotechnology and Solar Salt Research Center, Mokpo National University, Jeonnam 534-729, Korea.
| |
Collapse
|
15
|
Deshpande DA, Dileepan M, Walseth TF, Subramanian S, Kannan MS. MicroRNA Regulation of Airway Inflammation and Airway Smooth Muscle Function: Relevance to Asthma. Drug Dev Res 2015; 76:286-95. [PMID: 26587803 DOI: 10.1002/ddr.21267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic and environmental factors contribute to the onset and severity of asthma. Molecular pathogenesis of asthma involves changes in gene expression by a variety of inflammatory mediators acting in autocrine and paracrine fashion on effector cells of the airways. Transcriptional regulation of gene expression in resident airway cells has been studied extensively. However, protein function in a target cell can be regulated at multiple levels starting from transcription followed by post-transcription, translation, and post-translation steps. In this context, small noncoding RNAs known as microRNAs (miRNAs) have evolved as one of the key regulators of gene expression post-transcriptionally. Most importantly, miRNA expression is dynamic in nature and can be regulated by a variety of external stimuli. Altered expression of individual or a group of miRNAs is thought to contribute to human diseases. Recent studies have implicated differential expression of miRNAs in the lungs during inflammation. Most importantly, advanced biochemical and molecular tools could be used to manipulate miRNA expression thereby effecting functional changes in target cells and organ systems. This review summarizes the current understanding of miRNA in the regulation of airway function in health and disease, and highlights the potential clinical utility of mRNAs as biomarkers of airway diseases and as potential therapeutic targets.
Collapse
Affiliation(s)
- D A Deshpande
- Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, MN, USA
| | - T F Walseth
- Department of Pharmacology, University of Minnesota, MN, USA
| | - S Subramanian
- Department of Surgery, University of Minnesota, MN, USA
| | - M S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, MN, USA
| |
Collapse
|
16
|
Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L237-49. [PMID: 26047642 DOI: 10.1152/ajplung.00390.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production.
Collapse
Affiliation(s)
- Karl Deacon
- Division of Respiratory Medicine, Centre for Respiratory Research, University of Nottingham
| | - Alan J Knox
- Division of Respiratory Medicine, Centre for Respiratory Research, University of Nottingham
| |
Collapse
|
17
|
Shkumatov A, Thompson M, Choi KM, Sicard D, Baek K, Kim DH, Tschumperlin DJ, Prakash YS, Kong H. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1125-35. [PMID: 25724668 DOI: 10.1152/ajplung.00154.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/27/2015] [Indexed: 01/02/2023] Open
Abstract
Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs.
Collapse
Affiliation(s)
- Artem Shkumatov
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | | | - Kyoung M Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kwanghyun Baek
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Dong Hyun Kim
- Korea Institute of Industrial Technology, Ansan-si, South Korea
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Hyunjoon Kong
- Departments of Chemical and Biomolecular Engineering, Pathobiology, and Bioengineering, Institute of Genomic Biology, Univeristy of Illinois at Urbana-Champaign, Urbana, Illinois; and Deptartment of Chemical Engineering, Soongshil University, Seoul, Korea
| |
Collapse
|
18
|
Kawamura A, Miura SI, Matsuo Y, Tanigawa H, Saku K. Azelnidipine, Not Amlodipine, Induces Secretion of Vascular Endothelial Growth Factor From Smooth Muscle Cells and Promotes Endothelial Tube Formation. Cardiol Res 2014; 5:145-150. [PMID: 28348712 PMCID: PMC5358119 DOI: 10.14740/cr352w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 11/18/2022] Open
Abstract
Background We previously reported that the calcium channel blocker (CCB) nifedipine-induced secretion of vascular endothelial growth factor (VEGF) from human coronary smooth muscle cells (HCSMCs) promoted human coronary endothelial cell (HCEC) tube formation. Therefore, we analyzed whether other CCBs, azelnidipine and amlodipine, also induced the secretion of VEGF and promoted HCEC tube formation, and the underlying molecular mechanisms. Methods To evaluate the tube formation, HCECs were grown on Matrigel for 18 hours in the supernatants from HCSMCs that had been treated with different kinds of reagents. Concentrations of VEGF in cultured HCSMCs were determined by specific enzyme immunoassays. Nuclear extracts from HCSMCs were prepared, and nuclear factor-kappa B (NF-κB) activation was measured by EZ-DetectTM Transcription Factor Kits for NF-κB p50 or p65. Results Although azelnidipine dose-dependently stimulated the significant secretion of VEGF from HCSMCs and this stimulation was abolished by a protein kinase C inhibitor, amlodipine-induced secretion of VEGF was significantly lower than that induced by azelnidipine. The medium derived from azelnidipine (at up to 2 μM)-treated HCSMCs led to HCEC tube formation, whereas that obtained with amlodipine did not. Azelnidipine-induced tube formation was blocked by an inhibitor of kinase insert domain-containing receptor/fetal liver kinase-1 tyrosine kinase. Azelnidipine at up to 2 μM induced NF-κB activation. Conclusions Azelnidipine, but not amlodipine, stimulated the secretion of VEGF from HCSMCs and induced HCEC tube formation. This secretion is mediated at least in part via the activation of NF-κB. Azelnidipine may have a novel beneficial effect in improving coronary microvascular blood flow in addition to its main effect of lowering blood pressure.
Collapse
Affiliation(s)
- Akira Kawamura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Yoshino Matsuo
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Hiroyuki Tanigawa
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Keijiro Saku
- Department of Cardiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| |
Collapse
|
19
|
Nichols JE, Niles JA, Vega SP, Argueta LB, Eastaway A, Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med (Maywood) 2014; 239:1135-69. [PMID: 24962174 DOI: 10.1177/1535370214536679] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.
Collapse
Affiliation(s)
- Joan E Nichols
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Jean A Niles
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA
| | - Stephanie P Vega
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Lissenya B Argueta
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Adriene Eastaway
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Joaquin Cortiella
- University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX 77555-0435, USA
| |
Collapse
|
20
|
Alagappan VKT, de Boer WI, Misra VK, Mooi WJ, Sharma HS. Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochem Biophys 2014; 67:219-34. [PMID: 23975597 DOI: 10.1007/s12013-013-9713-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.
Collapse
|
21
|
Ahimastos AA, Latouche C, Natoli AK, Reddy-luthmoodoo M, Golledge J, Kingwell BA. Potential Vascular Mechanisms of Ramipril Induced Increases in Walking Ability in Patients With Intermittent Claudication. Circ Res 2014; 114:1144-55. [DOI: 10.1161/circresaha.114.302420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
We recently reported that ramipril more than doubled maximum walking times in patients with peripheral artery disease with intermittent claudication.
Objective:
Our aim was to conduct exploratory analyses of the effects of ramipril therapy on circulating biomarkers of angiogenesis/arteriogenesis, thrombosis, inflammation, and leukocyte adhesion in patients with intermittent claudication.
Methods and Results:
One hundred sixty-five patients with intermittent claudication (mean, 65.3 [SD, 6.7] years) were administered ramipril 10 mg per day (n=82) or matching placebo (n=83) for 24 weeks in a randomized, double-blind study. Plasma biomarkers of angiogenesis/arteriogenesis (vascular endothelial growth factor-A, fibroblast growth factor-2), thrombosis (D-dimer, von Willebrand factor, thrombin-antithrombin III), inflammation (high-sensitivity C-reactive protein, osteopontin), and leukocyte adhesion (soluble vascular cell adhesion molecule-1, soluble intracellular adhesion molecule-1) were measured at baseline and 24 weeks. Relative to placebo, ramipril was associated with increases in vascular endothelial growth factor-A by 38% (95% confidence interval [CI], 34%–42%) and fibroblast growth factor-2 by 64% (95% CI, 44–85%;
P
<0.001 for both), and reductions in D-dimer by 24% (95% CI, −30% to −18%), von Willebrand factor by 22% (95% CI, −35% to −9%), thrombin-antithrombin III by 16% (95% CI, −19% to −13%), high-sensitivity C-reactive protein by 13% (95% CI, −14% to −9%), osteopontin by 12% (95% CI, −14% to −10%), soluble vascular cell adhesion molecule-1 by 14% (95% CI, −18% to −10%), and soluble intracellular adhesion molecule-1 by 15% (95% CI, −17% to −13%; all
P
<0.001). With the exception of von Willebrand factor, all the above changes correlated significantly with the change in maximum walking time (
P
=0.02−0.001) in the group treated with ramipril.
Conclusions:
Ramipril is associated with an increase in the biomarkers of angiogenesis/arteriogenesis and reduction in the markers of thrombosis, inflammation, and leukocyte adhesion. This study informs strategies to improve mobility in patients with intermittent claudication.
Clinical Trial Registration Information:
URL:
http://clinicaltrials.gov
. Unique identifier: NCT00681226.
Collapse
Affiliation(s)
- Anna A. Ahimastos
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Celine Latouche
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Alaina K. Natoli
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Medini Reddy-luthmoodoo
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| | - Bronwyn A. Kingwell
- From Baker IDI Heart and Diabetes Institute and Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia (A.A.A., C.L., A.K.N., M.R., B.A.K.); Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia (J.G.); and Department of Vascular and Endovascular Surgery, Townsville Hospital, Queensland, Australia (J.G.)
| |
Collapse
|
22
|
Mackow ER, Dalrymple NA, Cimica V, Matthys V, Gorbunova E, Gavrilovskaya I. Hantavirus interferon regulation and virulence determinants. Virus Res 2014; 187:65-71. [PMID: 24412542 DOI: 10.1016/j.virusres.2013.12.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 12/24/2013] [Indexed: 01/11/2023]
Abstract
Hantaviruses predominantly replicate in primary human endothelial cells and cause 2 diseases characterized by altered barrier functions of vascular endothelium. Most hantaviruses restrict the early induction of interferon-β (IFNβ) and interferon stimulated genes (ISGs) within human endothelial cells to permit their successful replication. PHV fails to regulate IFN induction within human endothelial cells which self-limits PHV replication and its potential as a human pathogen. These findings, and the altered regulation of endothelial cell barrier functions by pathogenic hantaviruses, suggest that virulence is determined by the ability of hantaviruses to alter key signaling pathways within human endothelial cells. Our findings indicate that the Gn protein from ANDV, but not PHV, inhibits TBK1 directed ISRE, kB and IFNβ induction through virulence determinants in the Gn cytoplasmic tail (GnT) that inhibit TBK1 directed IRF3 phosphorylation. Further studies indicate that in response to hypoxia induced VEGF, ANDV infection enhances the permeability and adherens junction internalization of microvascular and lymphatic endothelial cells. These hypoxia/VEGF directed responses are rapamycin sensitive and directed by mTOR signaling pathways. These results demonstrate the presence of at least two hantavirus virulence determinants that act on endothelial cell signaling pathways: one that regulates antiviral IFN signaling responses, and a second that enhances normal hypoxia-VEGF-mTOR signaling pathways to facilitate endothelial cell permeability. These findings suggest signaling pathways as potential targets for therapeutic regulation of vascular deficits that contribute to hantavirus diseases and viral protein targets for attenuating pathogenic hantaviruses.
Collapse
Affiliation(s)
- Erich R Mackow
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States.
| | - Nadine A Dalrymple
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Velasco Cimica
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Valery Matthys
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Elena Gorbunova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| | - Irina Gavrilovskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5122, United States
| |
Collapse
|
23
|
A network-based systematic study for the mechanism of the treatment of zhengs related to cough variant asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:595924. [PMID: 24348708 PMCID: PMC3855943 DOI: 10.1155/2013/595924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/06/2023]
Abstract
Traditional Chinese medicine (TCM) has shown significant efficacy in the treatment of cough variant asthma (CVA), a special type of asthma. However, there is shortage of explanations for relevant mechanism of treatment. As Zhengs differentiation is a critical concept in TCM, it is necessary to explain the mechanism of treatment of Zhengs. Based on TCM clinical cases, this study illustrated the mechanism of the treatment of three remarkably relevant Zhengs for CVA: “FengXieFanFei,” “FeiQiShiXuan”, and “QiDaoLuanJi.” To achieve this goal, five steps were carried out: (1) determining feature Zhengs and corresponding key herbs of CVA by analyses of clinical cases; (2) finding out potential targets of the key herbs and clustering them based on their functional annotations; (3) constructing an ingredient-herb network and an ingredient network; (4) identifying modules of the ingredient network; (5) illustrating the mechanism of the treatment by further mining the latent biological implications within each module. The systematic study reveals that the treatment of “FengXieFanFei,” “FeiQiShiXuan,” and “QiDaoLuanJi” has effects on the regulation of multiple bioprocesses by herbs containing different ingredients with functions of steroid metabolism regulation, airway inflammation, and ion conduction and transportation. This network-based systematic study will be a good way to boost the scientific understanding of mechanism of the treatment of Zhengs.
Collapse
|
24
|
Hypoxia induces permeability and giant cell responses of Andes virus-infected pulmonary endothelial cells by activating the mTOR-S6K signaling pathway. J Virol 2013; 87:12999-3008. [PMID: 24067973 DOI: 10.1128/jvi.02103-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Andes virus (ANDV) is a South American hantavirus that causes a highly lethal hantavirus pulmonary syndrome (HPS) characterized by hypoxia, thrombocytopenia, and vascular leakage leading to acute pulmonary edema. ANDV infects human pulmonary microvascular and lymphatic endothelial cells (MECs and LECs, respectively) and nonlytically enhances the permeability of interendothelial cell adherence junctions in response to vascular endothelial growth factor (VEGF). Recent findings also indicate that ANDV causes the formation of giant endothelial cells. Here, we demonstrate that hypoxic conditions alone enhance permeability and giant cell responses of ANDV-infected MECs and LECs through activation of the mTOR signaling pathway. In contrast to infection of cells with nonpathogenic Tula virus (TULV), we observed that exposure of ANDV-infected MECs and LECs to hypoxic conditions resulted in a 3- to 6-fold increase in monolayer permeability and the formation of giant cells 3× to 5× normal size. ANDV infection in combination with hypoxic conditions resulted in the enhancement of hypoxia-inducible factor 1α (HIF1α)-directed VEGF A, angiopoietin 4, and EGLN3 transcriptional responses. Constitutive mTOR signaling induces the formation of giant cells via phosphorylation of S6K, and mTOR regulates hypoxia and VEGF A-induced cellular responses. We found that S6K was hyperphosphorylated in ANDV-infected, hypoxia-treated MECs and LECs and that rapamycin treatment for 1 h inhibited mTOR signaling responses and blocked permeability and giant cell formation in ANDV-infected monolayers. These findings indicate that ANDV infection and hypoxic conditions enhance mTOR signaling responses, resulting in enhanced endothelial cell permeability and suggest a role for rapamycin in therapeutically stabilizing the endothelium of microvascular and lymphatic vessels during ANDV infection.
Collapse
|
25
|
Ricciardolo FLM, Sabatini F, Sorbello V, Benedetto S, Defilippi I, Petecchia L, Usai C, Gnemmi I, Balbi B, De Rose V, Ten Hacken NHT, Postma DS, Timens W, Di Stefano A. Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax 2013; 68:803-11. [PMID: 23739138 DOI: 10.1136/thoraxjnl-2012-202741] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Vascular remodelling plays a central role in asthma and chronic obstructive pulmonary disease (COPD). Bradykinin (BK) is a vasoactive proinflammatory peptide mediating acute responses in asthma. We investigated the role of angiogenic factors in relation to BK receptors in asthma and COPD. METHODS Bronchial biopsies from 33 patients with COPD, 24 old (≥50 years) patients with (≥50 years) asthma, 18 old control smokers, 11 old control non-smokers, 15 young (≤40yrs) patients with (≤40 years) asthma and 10 young control non-smokers were immunostained for CD31, vascular endothelial growth factor-A (VEGF-A), angiogenin and BK receptors (B2R and B1R). Fibroblast and endothelial co-localisation of relevant molecules were performed by immunofluorescence. BK-induced VEGF-A and angiogenin release was studied (ELISA) in bronchial fibroblasts from subjects with asthma and COPD. RESULTS In bronchial lamina propria of old patients with asthma, CD31 and VEGF-A(+) cell numbers were higher than old control non-smokers (p<0.05). Angiogenin(+), B2R(+) and B1R(+) cell numbers in old patients with asthma were higher than in old control non-smokers, control smokers and patients with COPD (p<0.01). Angiogenin(+) cell numbers were higher in patients with COPD than both old control groups (p<0.05). In all patients with asthma the number of B2R(+) cells was positively related to the numbers of B1R(+) (rs=0.43), angiogenin(+) (rs=0.42) and CD31 cells (rs=0.46) (p<0.01). Angiogenin(+) cell numbers were negatively related to forced expiratory volume in 1 s (rs=-0.415, p=0.008). Double immunofluorescence revealed that CD31 cells of capillary vessels coexpressed B2R and that fibroblasts coexpressed B2R, VEGF-A and angiogenin. BK (10(-6)M) induced significant angiogenin release in fibroblasts from asthma and to a lesser extent in COPD. CONCLUSIONS Unlike COPD, this study suggests the involvement of BK receptors in bronchial vascular remodelling in asthma.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Division of Respiratory Disease, Department of Clinical and Biological Sciences, A.O.U. San Luigi Hospital, University of Torino, Orbassano, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bone morphogenetic protein 4 mediates estrogen-regulated sensory axon plasticity in the adult female reproductive tract. J Neurosci 2013; 33:1050-61a. [PMID: 23325243 DOI: 10.1523/jneurosci.1704-12.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral axons are structurally plastic even in the adult, and altered axon density is implicated in many disorders and pain syndromes. However, mechanisms responsible for peripheral axon remodeling are poorly understood. Physiological plasticity is characteristic of the female reproductive tract: vaginal sensory innervation density is low under high estrogen conditions, such as term pregnancy, whereas density is high in low-estrogen conditions, such as menopause. We exploited this system in rats to identify factors responsible for adult peripheral neuroplasticity. Calcitonin gene-related peptide-immunoreactive sensory innervation is distributed primarily within the vaginal submucosa. Submucosal smooth muscle cells express bone morphogenetic protein 4 (BMP4). With low estrogen, BMP4 expression was elevated, indicating negative regulation by this hormone. Vaginal smooth muscle cells induced robust neurite outgrowth by cocultured dorsal root ganglion neurons, which was prevented by neutralizing BMP4 with noggin or anti-BMP4. Estrogen also prevented axon outgrowth, and this was reversed by exogenous BMP4. Nuclear accumulation of phosphorylated Smad1, a primary transcription factor for BMP4 signaling, was high in vagina-projecting sensory neurons after ovariectomy and reduced by estrogen. BMP4 regulation of innervation was confirmed in vivo using lentiviral transduction to overexpress BMP4 in an estrogen-independent manner. Submucosal regions with high virally induced BMP4 expression had high innervation density despite elevated estrogen. These findings show that BMP4, an important factor in early nervous system development and regeneration after injury, is a critical mediator of adult physiological plasticity as well. Altered BMP4 expression may therefore contribute to sensory hyperinnervation, a hallmark of several pain disorders, including vulvodynia.
Collapse
|
27
|
Markwick LJ, Clements D, Roberts ME, Ceresa CC, Knox AJ, Johnson SR. CCR3 induced-p42/44 MAPK activation protects against staurosporine induced-DNA fragmentation but not apoptosis in airway smooth muscle cells. Clin Exp Allergy 2012; 42:1040-50. [PMID: 22702503 DOI: 10.1111/j.1365-2222.2012.04019.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chemokine receptors (CCRs) are expressed on airway smooth muscle (ASM) cells. As their ligands are present in the airways in asthma, we hypothesized that ASM CCR activation could promote the increase in ASM mass seen in patients with chronic asthma. OBJECTIVE To determine which CCRs are expressed by ASM cells and their potential functional relevance to the chronic airway changes seen in asthma. METHODS CCR expression in primary ASM cell cultures and airway biopsies from patients with and without asthma was examined by RT-PCR, fluorescence-activated cell sorting and immunohistochemistry. ASM p42/44 MAPK activity, proliferation, migration and apoptosis were examined by western blotting, thymidine incorporation, transwell assay and TUNEL assay respectively. RESULTS CCR3 was the most frequently expressed CCR protein and was present on 79 ± 14% of cells. CX3CR1 and CXCR6 were present on 6% and 11% of cells respectively. CCR3 ligands CCL11 and CCL24 caused rapid activation of p42/44 MAPK but not Akt. CCR3 activation did not affect ASM proliferation, migration or VEGF secretion. DNA fragmentation detected by TUNEL staining could be induced by staurosporine and Fas activation although only Fas activation resulted in caspase 3 cleavage. CCL11 and CCL24 protected ASM cells against DNA fragmentation dependent upon p42/44 MAPK activity only via caspase 3 independent pathways. CCR3 was expressed in the smooth muscle and epithelium in the airways of patients with and without asthma. Smooth muscle cell DNA fragmentation in the airways of patients with stable asthma and controls was very uncommon. CONCLUSIONS AND CLINICAL RELEVANCE CCR3 is strongly expressed by ASM cells in vitro and in vivo. Protection against cell death by CCR3 activation is dependent on p42/44 MAPK but does not affect caspase 3 mediated apoptosis.
Collapse
Affiliation(s)
- L J Markwick
- Division of Therapeutics and Molecular Medicine and Nottingham NIHR Respiratory Biomedical Research Unit, University Hospital Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
28
|
Andrade D, Serra R, Svensjö E, Lima APC, Ramos ES, Fortes FS, Morandini ACF, Morandi V, Soeiro MDN, Tanowitz HB, Scharfstein J. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 2012; 165:1333-47. [PMID: 21797847 DOI: 10.1111/j.1476-5381.2011.01609.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ET(A)R and ET(B)R) and bradykinin B(2) receptors (B(2)R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B(2)R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B(2)R (HOE-140), ET(A)R (BQ-123) and ET(B)R (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ET(A)R or ET(B)R genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ET(A)R and ET(B)R antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B(2)R, whereas RNA interference of ET(A)R and ET(B)R genes conversely reduced parasite internalization. ETRs/B(2)R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Collapse
Affiliation(s)
- Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tefé-Silva C, Beneli CT, Celes MR, Machado ER, Ueta MT, Sorgi CA, Floriano EM, Faccioli LH, Ramos SG. Dexamethasone reduces bronchial wall remodeling during pulmonary migration of Strongyloides venezuelensis larvae in rats. Parasitol Int 2012; 61:425-30. [PMID: 22808527 DOI: 10.1016/j.parint.2012.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Strongyloidiasis is an intestinal parasitosis with an obligatory pulmonary cycle. A Th2-type immune response is induced and amplifies the cellular response through the secretion of inflammatory mediators. Although this response has been described as being similar to asthma, airway remodeling during pulmonary migration of larvae has not yet been established. The aim of this study was to identify the occurrence of airway remodeling during Strongyloides venezuelensis (S. v.) infection and to determine the ability of dexamethasone treatment to interfere with the mechanisms involved in this process. Rats were inoculated with 9,000 S. v. larvae, treated with dexamethasone (2 mg/kg) and killed at 1, 3, 5, 7, 14 and 21 days. Morphological and morphometric analyzes with routine stains and immunohistochemistry were conducted, and some inflammatory mediators were evaluated using ELISA. Goblet cell hyperplasia and increased bronchiolar thickness, characterized by edema, neovascularization, inflammatory infiltrate, collagen deposition and enlargement of the smooth muscle cell layer were observed. VEGF, IL1-β and IL-4 levels were elevated throughout the course of the infection. The morphological findings and the immunomodulatory response to the infection were drastically reduced in dexamethasone-treated rats. The pulmonary migration of S. venezuelensis larvae produced a transitory, but significant amount of airway remodeling with a slight residual bronchiolar fibrosis. The exact mechanisms involved in this process require further study.
Collapse
Affiliation(s)
- Cristiane Tefé-Silva
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy. PPAR Res 2012; 2012:809164. [PMID: 22966222 PMCID: PMC3431171 DOI: 10.1155/2012/809164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/12/2012] [Indexed: 01/22/2023] Open
Abstract
In asthma, the increase in airway smooth muscle (ASM) can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR). Targetting peroxisome proliferator-activated receptor γ (PPARγ), a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ) and pioglitazone (PGZ), inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.
Collapse
|
31
|
Park SJ, Lee KS, Kim SR, Chae HJ, Yoo WH, Kim DI, Jeon MS, Lee YC. AMPK activation reduces vascular permeability and airway inflammation by regulating HIF/VEGFA pathway in a murine model of toluene diisocyanate-induced asthma. Inflamm Res 2012; 61:1069-83. [PMID: 22692279 DOI: 10.1007/s00011-012-0499-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Occupational asthma is characterized by airway inflammation and hyperresponsiveness associated with increased vascular permeability. AMP-activated protein kinase (AMPK) has been suggested to be a novel signaling molecule modulating inflammatory responses. OBJECTIVE We sought to evaluate the involvement of AMPK in pathogenesis of occupational asthma and more specifically investigate the effect and molecular mechanisms of AMPK activation in regulating vascular permeability. METHODS The mechanisms of action and therapeutic potential of an AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) were tested in a murine model of toluene diisocyanate (TDI)-induced asthma. RESULTS AICAR attenuated airway inflammation and hyperresponsiveness increased by TDI inhalation. Moreover, TDI-induced increases in levels of hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGFA), and plasma exudation were substantially decreased by treatment with AICAR. Our results also showed that VEGFA expression was remarkably reduced by inhibition of HIF-1α and HIF-2α with 2-methoxyestradiol (2ME2) and that an inhibitor of VEGFA activity, CBO-P11 as well as 2ME2 significantly suppressed vascular permeability, airway infiltration of inflammatory cells, and airway hyperresponsiveness induced by TDI. In addition, AICAR reduced reactive oxygen species (ROS) generation and levels of malondialdehyde and T-helper type 2 cytokines (IL-4, IL-5, and IL-13), while this agent enhanced expression of an anti-inflammatory cytokine, IL-10. CONCLUSIONS These results suggest that AMPK activation ameliorates airway inflammatory responses by reducing vascular permeability via HIF/VEGFA pathway as well as by inhibiting ROS production and thus may be a possible therapeutic strategy for TDI-induced asthma and other airway inflammatory diseases.
Collapse
Affiliation(s)
- Seoung Ju Park
- Department of Internal Medicine, Chonbuk National University Medical School, San 2-20 Geumam-dong, Deokjin-gu, Jeonju, Jeonbuk 561-180, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165a secretion from airway smooth muscle cells in asthma. THE JOURNAL OF IMMUNOLOGY 2012; 189:819-31. [PMID: 22689881 DOI: 10.4049/jimmunol.1103641] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF), a key angiogenic molecule, is aberrantly expressed in several diseases including asthma where it contributes to bronchial vascular remodeling and chronic inflammation. Asthmatic human airway smooth muscle cells hypersecrete VEGF, but the mechanism is unclear. In this study, we defined the mechanism in human airway smooth muscle cells from nonasthmatic and asthmatic patients. We found that asthmatic cells lacked a repression complex at the VEGF promoter, which was present in nonasthmatic cells. Recruitment of G9A, trimethylation of histone H3 at lysine 9 (H3K9me3), and a resultant decrease in RNA polymerase II at the VEGF promoter was critical to repression of VEGF secretion in nonasthmatic cells. At the asthmatic promoter, H3K9me3 was absent because of failed recruitment of G9a; RNA polymerase II binding, in association with TATA-binding protein-associated factor 1, was increased; H3K4me3 was present; and Sp1 binding was exaggerated and sustained. In contrast, DNA methylation and histone acetylation were similar in asthmatic and nonasthmatic cells. This is the first study, to our knowledge, to show that airway cells in asthma have altered epigenetic regulation of remodeling gene(s). Histone methylation at genes such as VEGF may be an important new therapeutic target.
Collapse
|
33
|
Rehn M, Diener M. Cysteinyl leukotrienes mediate the response of submucosal ganglia from rat colon to bradykinin. Eur J Pharmacol 2012; 681:100-6. [PMID: 22366210 DOI: 10.1016/j.ejphar.2012.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to find out the mechanism by which the inflammatory mediator, bradykinin, induces an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in enteric neurons. For this purpose, ganglia in the isolated submucosa from rat colon were loaded with the Ca(2+)-sensitive dye, fura-2, and were exposed to bradykinin (2·10(-8)mol/l). Under control conditions, the kinin evoked a transient increase in [Ca(2+)](i). Preincubation with quinacrine or arachidonyltrifluoromethylketone (AACOCF(3)), i.e. blockers of cytosolic phospholipase A(2), prevented the raise of [Ca(2+)](i). This inhibition was mimicked by 5,8,11,14-eicosatetrayonic acid (ETYA), an inhibitor of cyclooxygenases as well as lipoxygenases, and by BWA4C, a selective inhibitor of lipoxygenases, whereas indomethacin was ineffective, suggesting the mediation of the kinin response by a lipoxygenase metabolite. Indeed, a leukotriene, leukotriene D(4) (LTD(4)), mimicked the effect of bradykinin. The LTD(4) receptor blocker, MK-571, inhibited the increase in [Ca(2+)](i) evoked by LTD(4) and by bradykinin. Consequently, bradykinin receptors in submucosal ganglia from rat colon are coupled to a stimulation of phospholipase A(2), the release of arachidonic acid and the production of LTD(4), which seems to be finally responsible for the change in the cytosolic Ca(2+) concentration.
Collapse
Affiliation(s)
- Matthias Rehn
- Institute for Veterinary Physiology and Biochemistry, University of Giessen, Germany
| | | |
Collapse
|
34
|
The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy (Cairo) 2011; 2011:742710. [PMID: 22220184 PMCID: PMC3246780 DOI: 10.1155/2011/742710] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/30/2011] [Indexed: 12/13/2022] Open
Abstract
Asthma is characterized by the association of airway hyperresponsiveness (AHR), inflammation, and remodelling. The aim of the present article is to review the pivotal role of airway smooth muscle (ASM) in the pathophysiology of asthma. ASM is the main effector of AHR. The mechanisms of AHR in asthma may involve a larger release of contractile mediators and/or a lower release of relaxant mediators, an improved ASM cell excitation/contraction coupling, and/or an alteration in the contraction/load coupling. Beyond its contractile function, ASM is also involved in bronchial inflammation and remodelling. Whereas ASM is a target of the inflammatory process, it can also display proinflammatory and immunomodulatory functions, through its synthetic properties and the expression of a wide range of cell surface molecules. ASM remodelling represents a key feature of asthmatic bronchial remodelling. ASM also plays a role in promoting complementary airway structural alterations, in particular by its synthetic function.
Collapse
|
35
|
Expression, localization and systemic concentration of vascular endothelial growth factor (VEGF) and its receptors in patients with ulcerative colitis. Int Immunopharmacol 2010; 11:220-5. [PMID: 21115119 DOI: 10.1016/j.intimp.2010.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Vascular endothelial grow factor (VEGF) promotes angiogenesis by activating the specific receptors KDR and Flt-1. We investigate the expression of genes encoding VEGF and its receptors KDR and Flt- 1 by RT-QPCR reaction using Quanti Tect SYBR Green RT-PCR in patients with active and inactive ulcerative colitis (UC) and control subjects. The localization and level of VEGF protein and its receptors protein in intestinal tissue were estimated by immunohistochemistry. VEGF concentration in serum and plasma was determined by ELISA. We found a significant increase of VEGF gene expression and increase expression of genes encoding receptor Flt-1 in patients with active UC when compared with controls, but KDR was present in trace amount. VEGF and Flt-1 proteins were colocalized in enterocytes as well as in endothelium and muscularis layer of the intestine. The specific staining reaction for VEGF protein as well as for Flt-1 protein was significantly higher in active UC compared with controls. Serum level of VEGF was significantly higher in active UC patients as compared with inactive UC patients as well as with controls. The plasma VEGF level was found to be significantly higher in active UC patients as compared with controls. The increase of gene expression as well as protein level for VEGF and its receptor in UC - inflamed colon, and VEGF action via Flt-1 receptor may have a functional role in UC. Increased VEGF levels in both serum and plasma in active UC patients may reflect VEGF overexpression in intestinal inflammatory tissue.
Collapse
|
36
|
Detoraki A, Granata F, Staibano S, Rossi FW, Marone G, Genovese A. Angiogenesis and lymphangiogenesis in bronchial asthma. Allergy 2010; 65:946-58. [PMID: 20415716 DOI: 10.1111/j.1398-9995.2010.02372.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neovascularization plays a prominent role in inflammation and tissue remodeling in several chronic inflammatory disorders. Vessel number and size, vascular surface area and vascular leakage are all increased in biopsies from patients with asthma. High levels of VEGF and other angiogenic factors have been detected in tissues and biological samples of patients with asthma and correlate with disease activity and inversely with airway hyper-responsiveness. Inflammation in the lung stimulates the growth of new blood vessels and these contribute to the airway obstruction or airway hyper-responsiveness, or both. Effector cells of inflammation (human lung mast cells, basophils, eosinophils, macrophages, etc.) are major sources of a vast array of angiogenic and lymphangiogenic factors. Inhaled corticosteroids reduce vascularity and growth factor expression and might modulate bronchial vascular remodeling in asthma. Specific antagonists to VEGF and other angiogenic factors and their receptors might help to control chronic airway inflammation and vascular remodeling and offer a novel approach for the treatment of chronic inflammatory lung disorders.
Collapse
Affiliation(s)
- A Detoraki
- Department of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples
| | | | | | | | | | | |
Collapse
|
37
|
Jorge L, Rodrigues B, Rosa KT, Malfitano C, Loureiro TCA, Medeiros A, Curi R, Brum PC, Lacchini S, Montano N, De Angelis K, Irigoyen MC. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality. Eur Heart J 2010; 32:904-12. [DOI: 10.1093/eurheartj/ehq244] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
38
|
Kininogens: More than cysteine protease inhibitors and kinin precursors. Biochimie 2010; 92:1568-79. [PMID: 20346387 DOI: 10.1016/j.biochi.2010.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/10/2010] [Indexed: 12/13/2022]
Abstract
Two kininogens are found in mammalian sera: HK (high molecular weight kininogen) and LK (low molecular weight kininogen) with the exception of the rat which encompasses a third kininogen, T-Kininogen (TK). Kininogens are multifunctional glycosylated molecules related to cystatins (clan IH, family I25). They harbor three cystatin domains but only two of them are tight-binding inhibitors of cysteine cathepsins. HK and LK, but not TK, are precursors of potent peptide hormones, the kinins, which are released proteolytically by tissue and plasma kallikreins. Besides these classical features novel functions of kininogens have been recently discovered; they are described in the second part of this review. HKa, which corresponds to the kinin-free two-chain HK and its isolated domain D5 (kininostatin), possesses angiostatic and pro-apoptotic properties, inhibits the proliferation of endothelial cells and participates in the regulation of angiogenesis. Moreover, some HK-derived peptides display potent and broad-spectrum microbicidal properties against both Gram-positive and Gram-negative bacteria, and thus may offer a promising alternative to conventional antibiotic therapy. Of seminal interest, a kininogen-derived peptide inhibits activation of the contact phase system of coagulation and protects mice with invasive Streptococcus pyogenes infection from pulmonary lesions. On the other hand, TK is a biomarker of aging at the end of lifespan of elderly rats. However, although TK has been initially identified as an acute phase reactant, and earlier known as alpha-l-acute phase globulin, the increase of TK in liver and plasma is not known to relate to any inflammatory event during the senescence process.
Collapse
|
39
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
40
|
Roscioni SS, Kistemaker LEM, Menzen MH, Elzinga CRS, Gosens R, Halayko AJ, Meurs H, Schmidt M. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respir Res 2009; 10:88. [PMID: 19788733 PMCID: PMC2764632 DOI: 10.1186/1465-9921-10-88] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 09/29/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8). IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP) effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. METHODS IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases), U0126 (extracellular signal-regulated kinases ERK1/2) and Rp-8-CPT-cAMPS (PKA). The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. RESULTS The beta2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP-loading of Rap1, but not of Rap2. Treatment of the cells with toxin B-1470 and U0126 significantly reduced bradykinin-induced IL-8 release alone or in combination with the activators of PKA and Epac. Interestingly, inhibition of PKA by Rp-8-CPT-cAMPS and silencing of Epac1 and Epac2 expression by specific siRNAs largely decreased activation of Rap1 and the augmentation of bradykinin-induced IL-8 release by both PKA and Epac. CONCLUSION Collectively, our data suggest that PKA, Epac1 and Epac2 act in concert to modulate inflammatory properties of airway smooth muscle via signaling to the Ras-like GTPase Rap1 and to ERK1/2.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamaji-Kegan K, Su Q, Angelini DJ, Johns RA. IL-4 is proangiogenic in the lung under hypoxic conditions. THE JOURNAL OF IMMUNOLOGY 2009; 182:5469-76. [PMID: 19380795 DOI: 10.4049/jimmunol.0713347] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL-4-mediated proangiogenic and proinflammatory vascular responses have been implicated in the pathogenesis of chronic lung diseases such as asthma. Although it is well known that hypoxia induces pulmonary angiogenesis and vascular alterations, the underlying mechanism of IL-4 on the pulmonary vasculature under hypoxic conditions remains unknown. In this context, we designed the present study to determine the functional importance of IL-4 for pulmonary angiogenesis under hypoxic conditions using IL-4 knockout (KO) animals. Our results show that hypoxia significantly increased IL-4R alpha expression in wild-type (WT) control lungs. Even though hypoxia significantly up-regulated vascular endothelial growth factor (VEGF) receptor expression in the lungs of both genotypes, hypoxia-induced VEGF, VCAM-1, HIF-1alpha, and ERK phosphorylation were significantly diminished in IL-4 KO lungs as compared with WT control lungs. In addition, hypoxia-induced pulmonary angiogenesis and proliferating activities in the airway and pulmonary artery were significantly suppressed in IL-4 KO lungs as compared with WT control lungs. We also isolated primary lung fibroblasts from these genotypes and stimulated these cells with hypoxia. Hypoxia-induced VEGF production was significantly suppressed in lung fibroblasts from IL-4 KO mice. These in vitro results are in accordance with the in vivo data. Furthermore, we observed a significant increase of hypoxia-induced pulmonary angiogenesis in STAT6 KO mice similar to that in WT controls. In conclusion, IL-4 has proangiogenic properties in the lung under hypoxic conditions via the VEGF pathway, and this is independent of the STAT6 pathway.
Collapse
Affiliation(s)
- Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
42
|
Bailey SR, Boustany S, Burgess JK, Hirst SJ, Sharma HS, Simcock DE, Suravaram PR, Weckmann M. Airway vascular reactivity and vascularisation in human chronic airway disease. Pulm Pharmacol Ther 2009; 22:417-25. [PMID: 19409504 DOI: 10.1016/j.pupt.2009.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular permeability, oedema formation, and inflammatory cell recruitment) and structural changes (tissue and vascular remodelling) in the airways. These changes in airway vascular reactivity and vascularisation have significant pathophysiological consequences, which are manifest in the clinical symptoms of airway disease. Airway vascular reactivity is regulated by a wide variety of neurotransmitters and inflammatory mediators. Similarly, multiple growth factors are implicated in airway angiogenesis, with vascular endothelial growth factor amongst the most important. Increasing attention is focused on the complex interplay between angiogenic growth factors, airway smooth muscle and the various collagen-derived fragments that exhibit anti-angiogenic properties. The balance of these dynamic influences in airway neovascularisation processes and their therapeutic implications is just beginning to be elucidated. In this review article, we provide an account of recent developments in the areas of vascular reactivity and airway angiogenesis in chronic airway diseases.
Collapse
Affiliation(s)
- Simon R Bailey
- Faculty of Veterinary Science, University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hossny E, El-Awady H, Bakr S, Labib A. Vascular endothelial growth factor overexpression in induced sputum of children with bronchial asthma. Pediatr Allergy Immunol 2009; 20:89-96. [PMID: 18298425 DOI: 10.1111/j.1399-3038.2008.00730.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vascular endothelial growth factor (VEGF) induces angiogenesis and increases vascular permeability participating in narrowing of the airway lumen that follows lung injury. We sought to investigate the expression of VEGF in induced sputum during and after recovery from acute episodes of bronchial asthma in children. Eighteen asthmatic children with acute attacks of varying severity were subjected to VEGF estimation by an enzymatic immunoassay in induced sputum. They were followed up till complete remission of symptoms and signs and were then retested. VEGF was also estimated in sputum induced from age 34 and sex-matched healthy children enrolled as a control group. The sputum VEGF levels during acute asthma [median = 71 ng/ml; mean (s.d.) = 114.6 (121.8) ng/ml] were significantly higher than the levels estimated during remission [median = 50 ng/ml; mean (s.d.) = 45.7 (24.2) ng/ml] and both were higher than the corresponding levels of the control group [median = 36 ng/ml; mean (s.d.) = 31.3 (17.2) ng/ml]. VEGF levels during asthmatic episodes correlated positively to the recovery levels (r = 0.6, p = 0.009). The patients' VEGF expression did not vary with asthma severity, serum total IgE concentration, peripheral blood eosinophil count, or erythrocyte sedimentation rate of patients. Children on corticosteroids inhalation therapy at enrollment had sputum VEGF levels that were comparable to those on other therapies. The increased expression of sputum VEGF in asthmatic children reinforces the concept that it might have a pathogenetic role in bronchial asthma and may represent a biomarker of airway inflammation.
Collapse
Affiliation(s)
- E Hossny
- Departments of Pediatrics, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|
44
|
Burgess JK. The role of the extracellular matrix and specific growth factors in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 2009; 122:19-29. [PMID: 19141302 DOI: 10.1016/j.pharmthera.2008.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 12/12/2022]
Abstract
Asthma is a disease characterised by persistent inflammation and structural changes in the airways, referred to as airway remodelling. The mechanisms underlying these processes may be interdependent or they may be separate processes that are driven by common factors. The levels of a variety of growth factors (including transforming growth factor beta, granulocyte macrophage colony stimulating factor, and vascular endothelial growth factor) are known to be changed in the asthmatic airway. These and other growth factors can contribute to the development and persistence of inflammation and remodelling. One of the prominent features of the structural changes of the airways is the increased deposition and alterations in the composition of the extracellular matrix proteins. These proteins include fibronectin, many different collagen types and hyaluronan. There is a dynamic relationship between the extracellular matrix proteins and the airway mesenchymal cells such that the changes in the extracellular matrix proteins can also contribute to the persistence of inflammation and the airway remodelling. This review aims to summarise the role growth factors and extracellular matrix proteins play in the regulation of inflammation and airway remodelling in the asthmatic airway.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, The University of Sydney, Woolcock Institute of Medical Research and the Cooperative Research Centre for Asthma and Airways, Sydney, NSW Australia.
| |
Collapse
|
45
|
Ammit AJ, Burgess JK, Hirst SJ, Hughes JM, Kaur M, Lau JY, Zuyderduyn S. The effect of asthma therapeutics on signalling and transcriptional regulation of airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:446-54. [PMID: 19022391 DOI: 10.1016/j.pupt.2008.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/02/2008] [Accepted: 10/22/2008] [Indexed: 01/11/2023]
Abstract
SCOPE OF THE REVIEW Our knowledge of the multifunctional nature of airway smooth muscle (ASM) has expanded rapidly in the last decade, but the underlying molecular mechanisms and how current therapies for obstructive airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), affect these are still being elucidated. Our current knowledge has built on the pharmacology of human ASM contraction and relaxation established prior to that and which is reviewed in detail elsewhere in this issue. The advent of methods to isolate and culture ASM cells, especially human ASM cells, has made it possible to study how they may contribute to airway remodelling through their synthetic, proliferative, and migratory capacities. Now the underlying molecular mechanisms of ASM growth factor secretion, extracellular matrix (ECM) production, proliferation and migration, as well as contraction and relaxation, are being determined. A complex network of signalling pathways leading to gene transcription in ASM cells permits this functional plasticity in healthy and diseased airways. This review is an overview of the effects of current therapies, and some of those in development, on key signalling pathways and transcription factors involved in these ASM functions.
Collapse
Affiliation(s)
- Alaina J Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Clifford RL, Deacon K, Knox AJ. Novel regulation of vascular endothelial growth factor-A (VEGF-A) by transforming growth factor (beta)1: requirement for Smads, (beta)-CATENIN, AND GSK3(beta). J Biol Chem 2008; 283:35337-53. [PMID: 18952601 DOI: 10.1074/jbc.m803342200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a vital angiogenic effector, regulating key angiogenic processes. Vascular development relies on numerous signaling pathways, of which those induced by transforming growth factor-beta (TGFbeta) are critical. The Wnt/beta-catenin signaling pathway is emerging as necessary for vascular development. Although VEGF, TGFbeta, and Wnt signal transductions are well studied individually, it has not been demonstrated previously that all three can interact or be dependent on each other. We show that regulation of VEGF by TGFbeta(1), in human pulmonary artery smooth muscle cells (PASMCs), depends on a direct interaction between TGFbeta signaling proteins, Smads, and members of the Wnt/beta-catenin signaling family. VEGF promoter reporter constructs identified a region of the VEGF promoter containing two T cell factor (TCF)-binding sites as necessary for TGFbeta(1)-induced VEGF transcription. Mutation of TCF sites and expression of dominant negative TCF4 abolished TGFbeta(1)-induced VEGF promoter activity. Studies in Smad2 and Smad3 knock-out mouse embryonic fibroblasts demonstrated that one or both are required for VEGF regulation by TGFbeta(1), with transfection of dominant negative Smad2 or Smad3 into PASMCs confirming this. Chromatin immunoprecipitation assays showed in cell interactions of Smad2 and Smad3 with TCF4 and beta-catenin at the VEGF promoter, whereas co-immunoprecipitation showed a direct physical interaction between Smad2 and beta-catenin in the nucleus of PASMCs. Finally, we demonstrate that TGFbeta(1) regulates TCF by modifying beta-catenin phosphorylation via regulation of glycogen synthase kinase 3beta. These results provide new insight into the molecular regulation of VEGF by two interacting pathways necessary for vascular development, maintenance, and disease.
Collapse
Affiliation(s)
- Rachel L Clifford
- Centre for Respiratory Research, Clinical Sciences Building, University of Nottingham, Nottingham NG5 1PB, United Kingdom
| | | | | |
Collapse
|
47
|
|
48
|
Hershenson MB, Brown M, Camoretti-Mercado B, Solway J. Airway smooth muscle in asthma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:523-55. [PMID: 18039134 DOI: 10.1146/annurev.pathmechdis.1.110304.100213] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle plays a multifaceted role in the pathogenesis of asthma. We review the current understanding of the contribution of airway myocytes to airway inflammation, airway wall remodeling, and airflow obstruction in this prevalent disease syndrome. Together, these roles make airway smooth muscle an attractive target for asthma therapy.
Collapse
Affiliation(s)
- Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
49
|
Issa R, Sorrentino R, Sukkar MB, Sriskandan S, Chung KF, Mitchell JA. Differential regulation of CCL-11/eotaxin-1 and CXCL-8/IL-8 by gram-positive and gram-negative bacteria in human airway smooth muscle cells. Respir Res 2008; 9:30. [PMID: 18380907 PMCID: PMC2324089 DOI: 10.1186/1465-9921-9-30] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 04/01/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bacterial infections are a cause of exacerbation of airway disease. Airway smooth muscle cells (ASMC) are a source of inflammatory cytokines/chemokines that may propagate local airway inflammatory responses. We hypothesize that bacteria and bacterial products could induce cytokine/chemokine release from ASMC. METHODS Human ASMC were grown in culture and treated with whole bacteria or pathogen associated molecular patterns (PAMPs) for 24 or 48 h. The release of eotaxin-1, CXCL-8 or GMCSF was measured by ELISA. RESULTS Gram-negative E. coli or gram-positive S. aureus increased the release of CXCL-8, as did IL-1beta, LPS, FSL-1 and Pam3CSK4, whereas FK565, MODLys18 or Poly I:C did not. E. coli inhibited eotaxin-1 release under control conditions and after stimulation with IL-1beta. S. aureus tended to inhibit eotaxin-1 release stimulated with IL-1beta. E. coli or LPS, but not S. aureus, induced the release of GMCSF. CONCLUSION Gram-positive or gram-negative bacteria activate human ASMC to release CXCL-8. By contrast gram-negative bacteria inhibited the release of eotaxin-1 from human ASMCs. E. coli, but not S. aureus induced GMCSF release from cells. Our findings that ASMC can respond directly to gram-negative and gram-positive bacteria by releasing the neutrophil selective chemokine, CXCL-8, is consistent with what we know about the role of neutrophil recruitment in bacterial infections in the lung. Our findings that bacteria inhibit the release of the eosinophil selective chemokine, eotaxin-1 may help to explain the mechanisms by which bacterial immunotherapy reduces allergic inflammation in the lung.
Collapse
Affiliation(s)
- Razao Issa
- Experimental Studies, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, SW3 6LY, UK
- Novartis, Horsham, West Sussex, RH12 5AB, UK
| | - Rosalinda Sorrentino
- Cardiothoracic Pharmacology, Unit of Critical Care Medicine, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Maria B Sukkar
- Experimental Studies, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Shiranee Sriskandan
- Department of Infectious Diseases & Immunity, Division of Investigative Science, Hammersmith Campus, Imperial College London, London, W12 ONN, UK
| | - Kian Fan Chung
- Experimental Studies, Airway Disease Section, National Heart & Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, Unit of Critical Care Medicine, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
50
|
Alagappan VKT, Willems-Widyastuti A, Seynhaeve ALB, Garrelds IM, ten Hagen TLM, Saxena PR, Sharma HS. Vasoactive peptides upregulate mRNA expression and secretion of vascular endothelial growth factor in human airway smooth muscle cells. Cell Biochem Biophys 2008; 47:109-18. [PMID: 17406064 DOI: 10.1385/cbb:47:1:109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/23/2023]
Abstract
Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10 nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two- to threefold) and secretion (1.8- to 2.8-fold) of VEGF reaching maximal levels between 4-8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma.
Collapse
Affiliation(s)
- Vijay K T Alagappan
- Department of Pharmacology, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|