1
|
Hu W, Tu H, Wadman MC, Li YL, Zhang D. Renal denervation achieves its antiarrhythmic effect through attenuating macrophage activation and neuroinflammation in stellate ganglia in chronic heart failure. Cardiovasc Res 2024:cvae196. [PMID: 39321201 DOI: 10.1093/cvr/cvae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS Renal denervation (RDN) is widely investigated in multiple studies of sympathetically driven cardiovascular diseases. While the therapeutic potential of RDN for ventricular arrhythmia has been reported, the mechanisms responsible for its antiarrhythmic effect are poorly understood. Our recent study showed that macrophage expansion-induced neuroinflammation in the stellate ganglion (SG) was a critical factor for cardiac sympathetic overactivation and ventricular arrhythmogenesis in chronic heart failure (CHF). This study investigates if and how RDN decreases ventricular arrhythmias by attenuating neuroinflammation in cardiac sympathetic postganglionic (CSP) neurons in CHF. METHODS AND RESULTS Rat CHF was induced by surgical ligation of the left anterior descending coronary artery (LAD). At 12 weeks after LAD ligation, completed bilateral RDN was achieved by surgically cutting all the visible renal nerves around the renal artery and vein, followed by applying of 70% ethanol around the vessels. Immunofluorescence staining and Western blot data showed that expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor-α subunit (GM-CSFRα) in SGs was increased in CHF rats. RDN not only reduced CHF-elevated GM-CSF levels in kidney, serum and SGs, but also attenuated macrophage expansion and neuroinflammation in SGs from CHF rats. Using flow cytometry, we confirmed that RDN reduced the percentage of macrophages in SGs, which is pathologically increased in CHF. RDN also decreased CHF-enhanced N-type Ca2+ currents in CSP neurons and attenuated CHF-elevated cardiac sympathetic nerve activity. ECG data from 24-hour continuous telemetry recording in conscious rats revealed that RDN improved CHF-induced heterogeneity of ventricular electrical activities and reduced the duration of spontaneous ventricular tachyarrhythmias in CHF rats. CONCLUSIONS RDN alleviates cardiac sympathetic overactivation and ventricular arrhythmogenesis through attenuating GM-CSF-induced macrophage activation and neuroinflammation within SGs in CHF. This suggests that manipulation of the GM-CSF signaling pathway could be a novel strategy for achieving the antiarrhythmic effect of RDN in CHF.
Collapse
Affiliation(s)
- Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Huang Y, Wang X, Wen C, Wang J, Zhou H, Wu L. Cancer-associated fibroblast-derived colony-stimulating factor 2 confers acquired osimertinib resistance in lung adenocarcinoma via promoting ribosome biosynthesis. MedComm (Beijing) 2024; 5:e653. [PMID: 39036343 PMCID: PMC11260172 DOI: 10.1002/mco2.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Acquired resistance is a major obstacle to the therapeutic efficacy of osimertinib in lung adenocarcinoma (LUAD), but the underlying mechanisms are still not fully understood. Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in LUAD tumor-microenvironment (TME) and have emerged as a key player in chemoresistance. However, the function of CAFs in osimertinib resistance is still unclear. Here, we showed that CAFs derived from osimertinib-resistant LUAD tissues (CAFOR) produced much more colony-stimulating factor 2 (CSF2) than those isolated from osimertinib-sensitive tissues. CAFOR-derived CSF2 activated the Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) signaling pathway and upregulated lnc-CSRNP3 in LUAD cells. Lnc-CSRNP3 then promoted the expression of nearby gene CSRNP3 by recruiting chromodomain helicase DNA binding protein 9 (CHD9) and inhibited the phosphatase activity of the serine/threonine protein phosphatase 1 catalytic subunit α (PP1α), thereby induced osimertinib resistance by enhancing ribosome biogenesis. Collectively, our study reveals a critical role for CAFs in the development of osimertinib resistance and identifies the CSF2 pathway as an attractive target for monitoring osimertinib efficacy and overcoming osimertinib resistance in LUAD.
Collapse
Affiliation(s)
- Yutang Huang
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Xiaoqing Wang
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Chunjie Wen
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| | - Jingchan Wang
- School of StomatologyChongqing Medical UniversityChongqingChina
| | - Honghao Zhou
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
- Pharmacogenetics Research InstituteInstitute of Clinical PharmacologyCentral South UniversityChangshaChina
| | - Lanxiang Wu
- Institute of Life SciencesChongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Li H, Cao X, Gu X, Dong M, Huang L, Mao C, Xia S, Yang H, Bao X, Yang Y, Xu Y. GM-CSF Promotes the Development of Dysfunctional Vascular Networks in Moyamoya Disease. Neurosci Bull 2024; 40:451-465. [PMID: 38113014 PMCID: PMC11003948 DOI: 10.1007/s12264-023-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/28/2023] [Indexed: 12/21/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with the development of a network of abnormal vessels. Immune inflammation is associated with the occurrence and development of MMD. However, the mechanisms underlying the formation of the abnormal vascular network remain unclear. Twenty-eight patients with MMD, 26 ischemic stroke patients, and 26 unrelated healthy volunteers were enrolled in this study The data showed that the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) were higher in MMD patients than in healthy controls (P <0.01), and GM-CSF was mainly from Th1 and Th17 cells in MMD. We found that increased GM-CSF drove monocytes to secrete a series of cytokines associated with angiogenesis, inflammation, and chemotaxis. In summary, our findings demonstrate for the first time the important involvement of GM-CSF in MMD and that GM-CSF is an important factor in the formation of abnormal vascular networks in MMD.
Collapse
Affiliation(s)
- Huiqin Li
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
- Nanjing Neurology Medical Center, Nanjing, 210008, China
| | - Xinya Gu
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China
| | - Mengqi Dong
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Lili Huang
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Chenglu Mao
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yongbo Yang
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China.
- Department of Neurology and Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
4
|
Dergilev K, Zubkova E, Guseva A, Tsokolaeva Z, Goltseva Y, Beloglazova I, Ratner E, Andreev A, Partigulov S, Lepilin M, Menshikov M, Parfyonova Y. Tumor Necrosis Factor-Alpha Induces Proangiogenic Profiling of Cardiosphere-Derived Cell Secretome and Increases Its Ability to Stimulate Angiogenic Properties of Endothelial Cells. Int J Mol Sci 2023; 24:16575. [PMID: 38068898 PMCID: PMC10706276 DOI: 10.3390/ijms242316575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic heart disease and its complications, such as myocardial infarction and heart failure, are the leading causes of death in modern society. The adult heart innately lacks the capacity to regenerate the damaged myocardium after ischemic injury. Multiple lines of evidence indicated that stem-cell-based transplantation is one of the most promising treatments for damaged myocardial tissue. Different kinds of stem cells have their advantages for treating ischemic heart disease. One facet of their mechanism is the paracrine effect of the transplanted cells. Particularly promising are stem cells derived from cardiac tissue per se, referred to as cardiosphere-derived cells (CDCs), whose therapeutic effect is mediated by the paracrine mechanism through secretion of multiple bioactive molecules providing immunomodulatory, angiogenic, anti-fibrotic, and anti-inflammatory effects. Although secretome-based therapies are increasingly being used to treat various cardiac pathologies, many obstacles remain because of population heterogeneity, insufficient understanding of potential modulating compounds, and the principles of secretome regulation, which greatly limit the feasibility of this technology. In addition, components of the inflammatory microenvironment in ischemic myocardium may influence the secretome content of transplanted CDCs, thus altering the efficacy of cell therapy. In this work, we studied how Tumor necrosis factor alpha (TNFa), as a key component of the pro-inflammatory microenvironment in damaged myocardium from ischemic injury and heart failure, may affect the secretome content of CDCs and their angiogenic properties. We have shown for the first time that TNFa may act as a promising compound modulating the CDC secretome, which induces its profiling to enhance proangiogenic effects on endothelial cells. These results allow us to elucidate the underlying mechanisms of the impact of the inflammatory microenvironment on transplanted CDCs and may contribute to the optimization of CDC efficiency and the development of the technology for producing the CDC secretome with enhanced proangiogenic properties for cell-free therapy.
Collapse
Affiliation(s)
- Konstantin Dergilev
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Ekaterina Zubkova
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Alika Guseva
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Zoya Tsokolaeva
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 141534 Moscow, Russia
| | - Yulia Goltseva
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Irina Beloglazova
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Elizaveta Ratner
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Alexander Andreev
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Stanislav Partigulov
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Mikhail Lepilin
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Mikhail Menshikov
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Yelena Parfyonova
- Federal State Budgetary, Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
5
|
Sadanandan J, Sathyanesan M, Liu Y, Tiwari NK, Newton SS. Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation. Int J Mol Sci 2023; 24:11507. [PMID: 37511274 PMCID: PMC10380798 DOI: 10.3390/ijms241411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yutong Liu
- Radiology Research Division, Department of Radiology, Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
6
|
Li H, Zhong R, He C, Tang C, Cui H, Li R, Liu Y, Lan S, Cheng Y. Colony‑stimulating factor CSF2 mediates the phenotypic plasticity of small‑cell lung cancer by regulating the p‑STAT3/MYC pathway. Oncol Rep 2022; 48:122. [PMID: 35583004 PMCID: PMC9164265 DOI: 10.3892/or.2022.8333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Relapse and drug resistance are the main causes of mortality in patients with small-cell lung cancer (SCLC). Intratumoral heterogeneity (ITH) is a key biological mechanism that leads to relapse and drug resistance. Phenotypic plasticity is an important factor that leads to ITH in SCLC, although its mechanisms and key regulatory factors remain to be elucidated. In the present study, cell proliferation and cell switch assay were measured using trypan blue. Alamar Blue was used to test drug sensitivity. Differential genes were screened by RNA sequencing. Reverse transcription-quantitative PCR and western blotting were performed to assess the expressions of CSF2/p-STAT3/MYC pathway related molecules, neuroendocrine (NE)/non-neuroendocrine (non-NE), transcription factors and drug-related targets. The present study found that SCLC cell line NCI-H69 exhibited adherent (H69A) and suspensive (H69S) phenotypes, which could switch back and forth. The two phenotypic cells had significant differences in cellular NE and non-NE characteristics, drug sensitivity and expression of drug-related targets. RNA sequencing showed that granulocyte-macrophage colony-stimulating factor [i.e., colony-stimulating factor 2 (CSF2)] was the main differentially expressed gene between the two phenotypes and that H69A cells highly expressed CSF2. The inhibition of CSF2 promoted the transformation from H69A to H69S, increased drug sensitivity and NE marker expression and decreased the non-NE marker expression in H69A. The STRING, Pathway Commons and Reactome databases showed a potential regulatory relationship between CSF2 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/MYC. p-STAT3 and MYC expression was higher in H69A cells than in H69S cells and CSF2 silencing inhibited their expression. Taken together, these results indicated that CSF2 may regulate the phenotypic plasticity of SCLC through the phosphorylated STAT3/MYC pathway, thereby limiting the transformation between cell clones with different phenotypes and changing the sensitivity of specific cell clones to targeted drugs. Targeting CSF2 may be a potential therapeutic strategy to overcome drug resistance in SCLC treatment by influencing ITH.
Collapse
Affiliation(s)
- Hui Li
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rui Zhong
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chunying He
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Chenchen Tang
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Heran Cui
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Rixin Li
- Biobank, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Yan Liu
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Shaowei Lan
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Ying Cheng
- Translational Cancer Research Lab, Jilin Cancer Hospital, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
7
|
Hu Q, Dong X, Zhang K, Song H, Li C, Zhang T, Feng J, Ke X, Li H, Chen Y, Nie R, Chen X, Liu Y. Fluid Shear Stress Ameliorates Prehypertension-Associated Decline in Endothelium-Reparative Potential of Early Endothelial Progenitor Cells. J Cardiovasc Transl Res 2022; 15:1049-1063. [PMID: 35391709 DOI: 10.1007/s12265-022-10235-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of prehypertension and shear stress on the reendothelialization potential of human early EPCs and explored its potential mechanisms. Early EPCs from the prehypertensive patients showed reduced migration and adhesion in vitro and demonstrated a significantly impaired in vivo reendothelialization capacity. Shear stress pretreatment markedly promoted the in vivo reendothelialization capacity of EPCs. Although basal CXCR4 expression in early EPCs from prehypertensive donors was similar to that from healthy control, SDF-1-induced phosphorylation of CXCR4 was lower in prehypertensive EPCs. Shear stress up-regulated CXCR4 expression and increased CXCR4 phosphorylation, and restored the SDF-1/CXCR4-dependent JAK-2 phosphorylation in prehypertensive EPCs. CXCR4 knockdown or JAK-2 inhibitor treatment prevents against shear stress-induced increase in the migration, adhesion and reendothelialization capacity of the prehypertensive EPCs. Collectively, CXCR4 receptor profoundly modulates the reendothelialization potential of early EPCs. The abnormal CXCR4-mediated JAK-2 signaling may contribute to impaired functions of EPCs from patients with prehypertension.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Xiaobian Dong
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Kun Zhang
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huangfeng Song
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China
| | - Cuizhi Li
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China
| | - Tao Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Jianyi Feng
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.,Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, 518057, China
| | - Hairui Li
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China
| | - Yangxin Chen
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruqiong Nie
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoming Chen
- Department of Cardiology, First Affiliated Hospital of Jinan University, NO.603, Huangpu Big Road, Tianhe District, Guangzhou City, 510630, China.
| | - Youbin Liu
- Department of Cardiology, The Guangzhou Eighth People's Hospital, Guangzhou Medical University, NO.8 Huaying road, Baiyun district, Guangzhou city, 510000, Guangdong, China.
| |
Collapse
|
8
|
Zhu L, Wu H, Ma Z, Dong D, Yang Z, Tian J. Astaxanthin ameliorates lipopolysaccharide-induced acute lung injury via inhibition of inflammatory reactions and modulation of the SOCS3/JAK2/STAT3 signaling pathways in mice. Food Funct 2022; 13:11638-11651. [DOI: 10.1039/d2fo02182j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results showed that astaxanthin had a protective effect on LPS-induced acute lung injury in mice, and its protective mechanism was through activating the SOCS3/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Li Zhu
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Huihui Wu
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Zhenbo Ma
- Medical Imaging Center, Taian City Central Hospital, No. 29, Longtan Road, Taian 271000, China
| | - Decheng Dong
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Ze Yang
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Jing Tian
- The Department of Blood Transfusion, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| |
Collapse
|
9
|
CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 2022; 41:159-172. [PMID: 34716430 DOI: 10.1038/s41388-021-02087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.
Collapse
|
10
|
Gadepalli A, Akhilesh, Uniyal A, Modi A, Chouhan D, Ummadisetty O, Khanna S, Solanki S, Allani M, Tiwari V. Multifarious Targets and Recent Developments in the Therapeutics for the Management of Bone Cancer Pain. ACS Chem Neurosci 2021; 12:4195-4208. [PMID: 34723483 DOI: 10.1021/acschemneuro.1c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bone cancer pain (BCP) is a distinct pain state showing characteristics of both neuropathic and inflammatory pain. On average, almost 46% of cancer patients exhibit BCP with numbers flaring up to as high as 76% for terminally ill patients. Patients suffering from BCP experience a compromised quality of life, and the unavailability of effective therapeutics makes this a more devastating condition. In every individual cancer patient, the pain is driven by different mechanisms at different sites. The mechanisms behind the manifestation of BCP are very complex and poorly understood, which creates a substantial barrier to drug development. Nevertheless, some of the key mechanisms involved have been identified and are being explored further to develop targeted molecules. Developing a multitarget approach might be beneficial in this case as the underlying mechanism is not fixed and usually a number of these pathways are simultaneously dysregulated. In this review, we have discussed the role of recently identified novel modulators and mechanisms involved in the development of BCP. They include ion channels and receptors involved in sensing alteration of temperature and acidic microenvironment, immune system activation, sodium channels, endothelins, protease-activated receptors, neurotrophins, motor proteins mediated trafficking of glutamate receptor, and some bone-specific mechanisms. Apart from this, we have also discussed some of the novel approaches under preclinical and clinical development for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Khanna
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Shreya Solanki
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh India
| |
Collapse
|
11
|
Karagiannidis I, Salataj E, Said Abu Egal E, Beswick EJ. G-CSF in tumors: Aggressiveness, tumor microenvironment and immune cell regulation. Cytokine 2021; 142:155479. [PMID: 33677228 DOI: 10.1016/j.cyto.2021.155479] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine most well-known for maturation and mobilization of bone marrow neutrophils. Although it is used therapeutically to treat chemotherapy induced neutropenia, it is also highly expressed in some tumors. Case reports suggest that tumors expressing high levels of G-CSF are aggressive, more difficult to treat, and present with poor prognosis and high mortality rates. Research on this topic suggests that G-CSF has tumor-promoting effects on both tumor cells and the tumor microenvironment. G-CSF has a direct effect on tumor cells to promote tumor stem cell longevity and overall tumor cell proliferation and migration. Additionally, it may promote pro-tumorigenic immune cell phenotypes such as M2 macrophages, myeloid-derived suppressor cells, and regulatory T cells. Overall, the literature suggests a plethora of pro-tumorigenic activity that should be balanced with the therapeutic use. In this review, we present an overview of the multiple complex roles of G-CSF and G-CSFR in tumors and their microenvironment and discuss how clinical advances and strategies may open new therapeutic avenues.
Collapse
Affiliation(s)
- Ioannis Karagiannidis
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Eralda Salataj
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Erika Said Abu Egal
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, United States.
| |
Collapse
|
12
|
Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X, Xu J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif 2020; 54:e12974. [PMID: 33382511 PMCID: PMC7848963 DOI: 10.1111/cpr.12974] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of seven STAT family members involved with the regulation of cellular growth, differentiation and survival. STAT proteins are conserved among eukaryotes and are important for biological functions of embryogenesis, immunity, haematopoiesis and cell migration. STAT3 is widely expressed and located in the cytoplasm in an inactive form. STAT3 is rapidly and transiently activated by tyrosine phosphorylation by a range of signalling pathways, including cytokines from the IL‐6 family and growth factors, such as EGF and PDGF. STAT3 activation and subsequent dimer formation initiates nuclear translocation of STAT3 for the regulation of target gene transcription. Four STAT3 isoforms have been identified, which have distinct biological functions. STAT3 is considered a proto‐oncogene and constitutive activation of STAT3 is implicated in the development of various cancers, including multiple myeloma, leukaemia and lymphomas. In this review, we focus on recent progress on STAT3 and osteosarcoma (OS). Notably, STAT3 is overexpressed and associated with the poor prognosis of OS. Constitutive activation of STAT3 in OS appears to upregulate the expression of target oncogenes, leading to OS cell transformation, proliferation, tumour formation, invasion, metastasis, immune evasion and drug resistance. Taken together, STAT3 is a target for cancer therapy, and STAT3 inhibitors represent potential therapeutic candidates for the treatment of OS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Liao
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.,Department of Trauma Orthopedic and Hand Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Haijun Tang
- Department of Orthopedic, Guangxi hospital for nationalities, Nanning, Guangxi, China
| | - Dezhi Song
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xinli Zhan
- Department of Spine and Osteopathic Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Liu Y, Wang L, Liu J, Xie X, Hu H, Luo F. Anticancer Effects of ACT001 via NF-κB Suppression in Murine Triple-Negative Breast Cancer Cell Line 4T1. Cancer Manag Res 2020; 12:5131-5139. [PMID: 32617021 PMCID: PMC7326172 DOI: 10.2147/cmar.s244748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE ACT001 is a novel sesquiterpene lactone derivative with anticancer effects, including the reversal of tamoxifen resistance in estrogen receptor-positive breast cancer cells. However, few studies have investigated the anticancer effects of ACT001 in triple-negative breast cancer (TNBC), a highly aggressive cancer with a poor prognosis. This study aimed to investigate the effects of ACT001 on TNBC and the potential mechanism underlying these effects. MATERIALS AND METHODS The anticancer effects of ACT001 on the murine TNBC cell line 4T1 were evaluated by Cell Counting Kit-8 assay, animal experiments, TUNEL staining, flow cytometry, immunofluorescence, enzyme-linked immunosorbent assay, and Western blotting analysis. RESULTS ACT001 induced apoptosis in 4T1 cells by upregulating B cell lymphoma 2-associated X protein expression. Moreover, ACT001 markedly decreased levels of secretory granulocyte-macrophage colony stimulating factor (GM-CSF) in 4T1 tumors, decreased the number of myeloid-derived suppressor cells (MDSCs), and reduced angiogenesis. Furthermore, GM-CSF promoted angiogenesis and the proliferation of MDSCs in a dose-dependent manner. Finally, ACT001 suppressed phospho-NF-κB and IκB-α levels in 4T1 cells, thereby further decreasing GM-CSF levels. CONCLUSION Our results suggest that ACT001 exerts its anticancer effects by inducing apoptosis in murine TNBC cell line 4T1 and regulates the tumor microenvironment by attenuating angiogenesis and accumulation of MDSCs in 4T1 tumors. The underlying mechanism may involve the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Xiaoxiao Xie
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Haoyue Hu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, Sichuan, People’s Republic of China
| |
Collapse
|
14
|
Cid MC, Ríos-Garcés R, Terrades-García N, Espígol-Frigolé G. Treatment of giant-cell arteritis: from broad spectrum immunosuppressive agents to targeted therapies. Rheumatology (Oxford) 2020; 59:iii17-iii27. [DOI: 10.1093/rheumatology/kez645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
For decades, the treatment of GCA has relied on glucocorticoids. Work over the past two decades has supported a modest efficacy of MTX but no clear benefit from anti-TNF-based therapies. More recently, the therapeutic armamentarium for GCA has expanded. The availability of agents targeting specific cytokines, cytokine receptors or signalling pathways, along with a better, although still limited, understanding of the immunopathology of GCA, are opening further therapeutic possibilities. Blocking IL-6 receptor with tocilizumab has been effective in maintaining remission and reducing glucocorticoid exposure and tocilizumab has been approved for the treatment of GCA. However, nearly half of the patients do not benefit from tocilizumab and additional options need to be investigated. This review focuses on standard therapeutic approaches and on targeted therapies that have been or are currently under investigation.
Collapse
Affiliation(s)
- Maria C Cid
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Nekane Terrades-García
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
15
|
Arshad S, Naveed M, Ullia M, Javed K, Butt A, Khawar M, Amjad F. Targeting STAT-3 signaling pathway in cancer for development of novel drugs: Advancements and challenges. Genet Mol Biol 2020; 43:e20180160. [PMID: 32167126 PMCID: PMC7198026 DOI: 10.1590/1678-4685-gmb-2018-0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Signal transducers and activators of transcription 3 (STAT-3) is a transcription
factor that regulates the gene expression of several target genes. These factors
are activated by the binding of cytokines and growth factors with STAT-3
specific receptors on cell membrane. Few years ago, STAT-3 was considered an
acute phase response element having several cellular functions such as
inflammation, cell survival, invasion, metastasis and proliferation, genetic
alteration, and angiogenesis. STAT-3 is activated by several types of
inflammatory cytokines, carcinogens, viruses, growth factors, and oncogenes.
Thus, the STAT3 pathway is a potential target for cancer therapeutics. Abnormal
STAT-3 activity in tumor development and cellular transformation can be targeted
by several genomic and pharmacological methodologies. An extensive review of the
literature has been conducted to emphasize the role of STAT-3 as a unique cancer
drug target. This review article discusses in detail the wide range of STAT-3
inhibitors that show antitumor effects both in vitro and
in vivo. Thus, targeting constitutive STAT-3 signaling is a
remarkable therapeutic methodology for tumor progression. Finally, current
limitations, trials and future perspectives of STAT-3 inhibitors are also
critically discussed.
Collapse
Affiliation(s)
- Sundas Arshad
- University of Lahore, Department of Allied Health Sciences, Gujrat Campus, Pakistan
| | - Muhammad Naveed
- University of Central Punjab, Faculty of life sciences, Department of Biotechnology, Lahore, Pakistan
| | - Mahad Ullia
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Khadija Javed
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Ayesha Butt
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Masooma Khawar
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Fazeeha Amjad
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| |
Collapse
|
16
|
Wang M, Wang W, Ding J, Wang J, Zhang J. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling. Thorac Cancer 2019; 11:379-388. [PMID: 31841274 PMCID: PMC6997001 DOI: 10.1111/1759-7714.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rab GTPases play a key role in regulating intercellular vesicle trafficking in both exo- and endocytic pathways. Recent studies have reported that Rab small GTPases and the associated regulatory proteins and effectors are involved in many cancers. The purpose of this study was to investigate the biological role of Rab17 in non-small cell lung cancer (NSCLC) and the relative mechanism. METHODS Rab17 expression in human NSCLC cell lines and tissues was evaluated using real-time PCR (RT-PCR), western blot and immunohistochemical (IHC) staining. NSCLC cell lines with RAB17 stable knockdown were generated to explore its function in vitro and in vivo. Additionally, we investigated the potential mechanism of Rab17 by identifying the expression levels of STAT3/HIF-1α/VEGF pathway using western blot analysis. RESULTS Decreased Rab17 expression was correlated with poor overall survival in NSCLC patients. The functional assays showed that knockdown of Rab17 could promote tumorigenic properties of NSCLC cells in vitro and in vivo, including enhanced cell proliferation, colony formation, invasion and migration, angiogenesis and tumor xenograft growth, and suppressed apoptosis. Moreover, Rab17 downregulation decreased epithelial marker E-cadherin and increased mesenchymal markers Vimentin and β-catenin, suggesting knockdown of Rab17 induced epithelial-mesenchymal transition (EMT). CONCLUSION Downregulation of Rab17 promotes cell invasion and enhances tumorigenicity in part through the STAT3/HIF-1α/VEGF pathway, which may represent a novel potential therapeutic target.
Collapse
Affiliation(s)
- Mingliang Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wendong Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingmin Ding
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiashun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Transcriptional Regulation of Voltage-Gated Sodium Channels Contributes to GM-CSF-Induced Pain. J Neurosci 2019; 39:5222-5233. [PMID: 31015342 DOI: 10.1523/jneurosci.2204-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the production of granulocyte and macrophage populations from the hematopoietic progenitor cells; it is one of the most common growth factors in the blood. GM-CSF is also involved in bone cancer pain development by regulating tumor-nerve interactions, remodeling of peripheral nerves, and sensitization of damage-sensing (nociceptive) nerves. However, the precise mechanism for GM-CSF-dependent pain is unclear. In this study, we found that GM-CSF is highly expressed in human malignant osteosarcoma. Female Sprague Dawley rats implanted with bone cancer cells develop mechanical and thermal hyperalgesia, but antagonizing GM-CSF in these animals significantly reduced such hypersensitivity. The voltage-gated Na+ channels Nav1.7, Nav1.8, and Nav1.9 were found to be selectively upregulated in rat DRG neurons treated with GM-CSF, which resulted in enhanced excitability. GM-CSF activated the Janus kinase 2 (Jak2)-signal transducer and activator of transcription protein 3 (Stat3) signaling pathway, which promoted the transcription of Nav1.7-1.9 in DRG neurons. Accordingly, targeted knocking down of either Nav1.7-1.9 or Jak2/Stat3 in DRG neurons in vivo alleviated the hyperalgesia in male Sprague Dawley rats. Our findings describe a novel bone cancer pain mechanism and provide a new insight into the physiological and pathological functions of GM-CSF.SIGNIFICANCE STATEMENT It has been reported that granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a key role in bone cancer pain, yet the underlying mechanisms involved in the GM-CSF-mediated signaling pathway in nociceptors is not fully understood. Here, we showed that GM-CSF promotes bone cancer-associated pain by enhancing the excitability of DRG neurons via the Janus kinase 2 (Jak2)-signal transducer and activator of transcription protein 3 (Stat3)-mediated upregulation of expression of nociceptor-specific voltage-gated sodium channels. Our study provides a detailed understanding of the roles that sodium channels and the Jak2/Stat3 pathway play in the GM-CSF-mediated bone cancer pain; our data also highlight the therapeutic potential of targeting GM-CSF.
Collapse
|
18
|
Platelet Lysate Inhibits NF-κB Activation and Induces Proliferation and an Alert State in Quiescent Human Umbilical Vein Endothelial Cells Retaining Their Differentiation Capability. Cells 2019; 8:cells8040331. [PMID: 30970613 PMCID: PMC6523925 DOI: 10.3390/cells8040331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Injured blood vessel repair and blood circulation re-establishment are crucial events for tissue repair. We investigated in primary cultures of human umbilical vein endothelial cells (HUVEC), the effects of platelet lysate (PL), a cocktail of factors released by activated platelets following blood vessel disruption and involved in the wound-healing process triggering. PL exerted a protective effect on HUVEC in an inflammatory milieu by inhibiting IL-1α-activated NF-κB pathway and by inducing the secretion of PGE2, a pro-resolving molecule in the wound microenvironment. Moreover, PL enhanced HUVEC proliferation, without affecting their capability of forming tube-like structures on matrigel, and activated resting quiescent cells to re-enter cell cycle. In agreement with these findings, proliferation-related pathways Akt and ERK1/2 were activated. The expression of the cell-cycle activator Cyclin D1 was also enhanced, as well as the expression of the High Mobility Group Box-1 (HMGB1), a protein of the alarmin group involved in tissue homeostasis, repair, and remodeling. These in vitro data suggest a possible in vivo contribution of PL to new vessel formation after a wound by activation of cells resident in vessel walls. Our biochemical study provides a rationale for the clinical use of PL in the treatment of wound healing-related pathologies.
Collapse
|
19
|
Dual functions of STAT3 in LPS-induced angiogenesis of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:566-574. [DOI: 10.1016/j.bbamcr.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
|
20
|
Paris JL, Lafuente-Gómez N, Cabañas MV, Román J, Peña J, Vallet-Regí M. Fabrication of a nanoparticle-containing 3D porous bone scaffold with proangiogenic and antibacterial properties. Acta Biomater 2019; 86:441-449. [PMID: 30654210 PMCID: PMC6667335 DOI: 10.1016/j.actbio.2019.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
3D porous scaffolds based on agarose and nanocrystalline apatite, two structural components that act as a temporary mineralized extracellular matrix, were prepared by the GELPOR3D method. This shaping technology allows the introduction of thermally-labile molecules within the scaffolds during the fabrication procedure. An angiogenic protein, Vascular Endothelial Growth Factor, and an antibiotic, cephalexin, loaded in mesoporous silica nanoparticles, were included to design multifunctional scaffolds for bone reconstruction. The dual release of both molecules showed a marked increase in the number of blood vessels on embryonic day 14 in chicken embryos grown ex ovo, while, at the same time providing an antibiotic local concentration capable of inhibiting Staphylococcus aureus bacterial growth. In this sense, different release patterns, monitored by UV-spectroscopy, could be tailored as a function of the cephalexin loading strategy, either releasing all the loaded cephalexin in the first 4 h or less than 50% after 24 h. The scaffold surface was characterized by a high hydrophilicity, with contact angles between 50° and 63°, which enabled the adhesion and proliferation of preosteoblastic cells. STATEMENT OF SIGNIFICANCE: The localized delivery of bioactive molecules has attracted significant attention due to the potential for dose reduction as well as reduced side effects compared to systemic delivery. In this article multifunctional 3D porous scaffolds with a designed porosity have been fabricated. The method also enables the controlled loading of an antibiotic drug and an angiogenic protein into the scaffold. These scaffolds, whose composition resembles the extracellular matrix are suitable for the adhesion of preosteoblast cells, exhibit a sustained cephalexin delivery adequate for inhibiting bacterial growth as well as release the proangiogenic molecule which induces blood vessel formation in chicken embryos grown ex ovo.
Collapse
Affiliation(s)
- Juan L Paris
- Dpto. Química en Ciencias Farmacéuticas (Unidad de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Nuria Lafuente-Gómez
- Dpto. Química en Ciencias Farmacéuticas (Unidad de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - M Victoria Cabañas
- Dpto. Química en Ciencias Farmacéuticas (Unidad de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain.
| | - Jesús Román
- Dpto. Química en Ciencias Farmacéuticas (Unidad de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Juan Peña
- Dpto. Química en Ciencias Farmacéuticas (Unidad de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas (Unidad de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
21
|
Papp KA, Gooderham M, Jenkins R, Vender R, Szepietowski JC, Wagner T, Hunt B, Souberbielle B. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as a therapeutic target in psoriasis: randomized, controlled investigation using namilumab, a specific human anti-GM-CSF monoclonal antibody. Br J Dermatol 2018; 180:1352-1360. [PMID: 30207587 PMCID: PMC7379964 DOI: 10.1111/bjd.17195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The relevance of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the management of psoriasis has not been studied previously. GM-CSF is important in the initiation and maintenance of chronic inflammatory processes. OBJECTIVES To investigate the clinical use of GM-CSF neutralization by evaluating the efficacy and safety of namilumab (AMG203), a monoclonal antibody GM-CSF inhibitor, in patients with moderate-to-severe plaque psoriasis. METHODS A phase II, multicentre, randomized, double-blind, placebo-controlled, parallel-group, dose-finding, proof-of-concept study (NEPTUNE) was conducted. Four doses of namilumab (20, 50, 80 and 150 mg, via subcutaneous injection) were compared with placebo. Assessment of the primary end point - the proportion of patients achieving ≥ 75% reduction in Psoriasis Area and Severity Index (PASI 75 treatment response) - was performed at week 12. Exploratory investigation at the tissue level was conducted in a subset of the overall study population. The trial was registered with the number NCT02129777. RESULTS In total, 122 patients were enrolled and 106 (86·9%) completed the double-blind treatment; 16 (13·1%) prematurely discontinued study medication. Serum concentration-time profiles were as expected for subcutaneous delivery of an IgG1 monoclonal antibody, and exposure increased proportionally with dose elevation. The number of patients showing PASI 75 treatment response at week 12 was low in all groups; no significant difference was recorded in this end point between placebo and any namilumab group. Similar outcomes were recorded for other clinical study end points. Moreover, no significant treatment-related changes from baseline were observed in laboratory investigations of cell types or subpopulations, or cytokines relevant to inflammatory pathways in psoriasis. CONCLUSIONS GM-CSF blockade is not critical for suppression of key inflammatory pathways underlying psoriasis.
Collapse
Affiliation(s)
- K A Papp
- K Papp Clinical Research and Probity Medical Research, 135 Union St E, Waterloo, ON, N2J1C4, Canada
| | - M Gooderham
- SKiN Centre for Dermatology, Queen's University and Probity Medical Research, Peterborough, ON, Canada
| | - R Jenkins
- Clinical Science, Takeda International - U.K. Branch, London, U.K
| | - R Vender
- Dermatrials Research Inc, Hamilton, ON, Canada
| | - J C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| | - T Wagner
- Modelling and Simulation, Takeda Pharmaceuticals International, Zurich, Switzerland
| | - B Hunt
- Statistics, Takeda International, Deerfield, IL, U.S.A
| | - B Souberbielle
- Clinical Science, Takeda International - U.K. Branch, London, U.K
| | | |
Collapse
|
22
|
Ribatti D, Tamma R. Hematopoietic growth factors and tumor angiogenesis. Cancer Lett 2018; 440-441:47-53. [PMID: 30312730 DOI: 10.1016/j.canlet.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Angiogenesis is regulated by numerous "classic" factors such as vascular endothelial growth factor (VEGF) and many other endogenous "non-classic"peptides, including erythropoietin (Epo), and granulocyte-/granulocyte macrophage colony stimulating factor (G-/GM-CSF). The latter play an important regulatory role in angiogenesis, especially under pathological conditions and constitute a crosslink between angiogenesis and hematopoiesis. This article reviews studies on the ability of hematopoietic cytokines to affect several endothelial cell functions in tumor angiogenesis. These findings in all these studies support the hypothesis formulated at the beginning of this century that a common ancestral cell, the hemangioblast, gives rise to cells of both the endothelial and the hematopoietic lineages.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
23
|
STAT3-Inducible Mouse ESCs: A Model to Study the Role of STAT3 in ESC Maintenance and Lineage Differentiation. Stem Cells Int 2018; 2018:8632950. [PMID: 30254684 PMCID: PMC6142778 DOI: 10.1155/2018/8632950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
Studies have demonstrated that STAT3 is essential in maintaining self-renewal of embryonic stem cells (ESCs) and modulates ESC differentiation. However, there is still lack of direct evidence on STAT3 functions in ESCs and embryogenesis because constitutive STAT3 knockout (KO) mouse is embryonic lethal at E6.5-E7.5, prior to potential functional role in early development can be assessed. Therefore, in this study, two inducible STAT3 ESC lines were established, including the STAT3 knockout (InSTAT3 KO) and pSTAT3 overexpressed (InSTAT3 CA) using Tet-on inducible system in which STAT3 expression can be strictly controlled by doxycycline (Dox) stimulation. Through genotyping, deletion of STAT3 alleles was detected in InSTAT3 KO ESCs following 24 hours Dox stimulation. Western blot also showed that pSTAT3 and STAT3 protein levels were significantly reduced in InSTAT3 KO ESCs while dominantly elevated in InSTAT3 CA ECSs upon Dox stimulation. Likewise, it was found that STAT3-null ESCs would affect the differentiation of ESCs into mesoderm and cardiac lineage. Taken together, the findings of this study indicated that InSTAT3 KO and InSTAT3 CA ESCs could provide a new tool to clarify the direct targets of STAT3 and its role in ESC maintenance, which will facilitate the elaboration of the mechanisms whereby STAT3 maintains ESC pluripotency and regulates ESC differentiation during mammalian embryogenesis.
Collapse
|
24
|
Kwee BJ, Budina E, Najibi AJ, Mooney DJ. CD4 T-cells regulate angiogenesis and myogenesis. Biomaterials 2018; 178:109-121. [PMID: 29920403 PMCID: PMC6090550 DOI: 10.1016/j.biomaterials.2018.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022]
Abstract
Ischemic diseases, such as peripheral artery disease, affect millions of people worldwide. While CD4+ T-cells regulate angiogenesis and myogenesis, it is not understood how the phenotype of these adaptive immune cells regulate these regenerative processes. The secreted factors from different types of CD4+ T-cells (Th1, Th2, Th17, and Treg) were utilized in a series of in vitro assays and delivered from an injectable alginate biomaterial into a murine model of ischemia to study their effects on vascular and skeletal muscle regeneration. Conditioned medium from Th2 and Th17 T-cells enhanced angiogenesis in vitro and in vivo, in part by directly stimulating endothelial sprouting. Th1 conditioned medium induced vascular regression in vitro and provided no benefit to angiogenesis in vivo. Th1, Th2, and Th17 conditioned medium, to varying extents, enhanced muscle precursor cell proliferation and inhibited their differentiation in vitro, and prolonged early stages of muscle regeneration in vivo. Treg conditioned medium had a moderate or no effect on these processes in vitro and no discernible effect in vivo. These findings suggest that Th2 and Th17 T-cells may enhance angiogenesis and myogenesis in ischemic injuries, which may be useful in the design of immunomodulatory biomaterials to treat these diseases.
Collapse
Affiliation(s)
- Brian J Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Erica Budina
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Saygı Hİ, Güngör ZB, Kalay F, Seçkin İ. In glomerular cells of puromycin aminonucleoside nephrosis rats both phosphorylated and total STAT3 levels increased during proteinuria. Acta Histochem 2018; 120:595-603. [PMID: 30054017 DOI: 10.1016/j.acthis.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Recent studies showed that JAK/STAT pathway plays role in glomerular damages. The fact that STAT3 could be activated also by oxidative stress make Puromycin Aminonucleoside (PAN) Nephrosis model very appropriate for examination of STAT3 expression changes in glomerular pathology. Along with a control group, three PAN groups sacrificed on different days were formed by the i.p. injection of PAN for 5 consecutive days. Throughout the experiment, 24-hour-urines were collected on specific days and proteinuria levels were monitored. At the end of the experiments, tissue specimens were stained immunohistochemically for both total and phosphorylated STAT3 and evaluated subjectively. They were also examined ultrastructurally in transmission electron microscope. The proteinuria levels did not increase significantly on 5th day but showed a dramatic increase on 10th and 15th days. On 20th and 25th days, urinary protein levels gradually decreased. Ultrastructural examinations showed glomerular damages such as significant decrease in slit pore number, a significant gradual increase in glomerular basement membrane thickness and podocyte hypertrophy on 5th and 15th days; besides significant increase in mesangial matrix. The first significant increases in phosphorylated and total STAT3 levels occurred in 5th day and 15th day groups respectively. These increases diminished in 25th day group. Regarding all the findings, it was deduced that STAT3 is one of the active factors in glomerular pathologies.
Collapse
Affiliation(s)
- Halil İbrahim Saygı
- İstanbul University, Cerrahpaşa Medical Faculty, Histology and Embryology Department, Turkey.
| | - Zeynep Banu Güngör
- İstanbul University, Cerrahpaşa Medical Faculty, Biochemistry Department, Turkey
| | - Fatma Kalay
- İstanbul University, Cerrahpaşa Medical Faculty, Biochemistry Department, Turkey
| | - İsmail Seçkin
- İstanbul University, Cerrahpaşa Medical Faculty, Histology and Embryology Department, Turkey
| |
Collapse
|
26
|
Kilar CR, Sekharan S, Sautina L, Diao Y, Keinan S, Shen Y, Bungert J, Mohandas R, Segal MS. Computational design and experimental characterization of a novel β-common receptor inhibitory peptide. Peptides 2018; 104:1-6. [PMID: 29635062 PMCID: PMC6475910 DOI: 10.1016/j.peptides.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/14/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
Abstract
In short-term animal models of ischemia, erythropoietin (EPO) signaling through the heterodimeric EPO receptor (EPOR)/β-common receptor (βCR) is believed to elicit tissue protective effects. However, large, randomized, controlled trials demonstrate that targeting a higher hemoglobin level by administering higher doses of EPO, which are more likely to activate the heterodimeric EPOR/βCR, is associated with an increase in adverse cardiovascular events. Thus, inhibition of long-term activation of the βCR may have therapeutic implications. This study aimed to design and evaluate the efficacy of novel computationally designed βCR inhibitory peptides (βIP). These novel βIPs were designed based on a truncated portion of Helix-A from EPO, specifically residues 11-26 (VLERYLLEAKEAEKIT). Seven novel peptides (P1 to P7) were designed. Peptide 7 (P7), VLERYLHEAKHAEKIT, demonstrated the most robust inhibitory activity. We also report here the ability of P7 to inhibit βCR-induced nitric oxide (NO) production and angiogenesis in human umbilical vein endothelial cells (HUVECs). Specifically, we found that P7 βIP completely abolished EPO-induced NO production. The inhibitory effect could be overcome with super physiological doses of EPO, suggesting a competitive inhibition. βCR-induced angiogenesis in HUVEC's was also abolished with treatment of P7 βIP, but P7 βIP did not inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis. In addition, we demonstrate that the novel P7 βIP does not inhibit EPO-induced erythropoiesis with use of peripheral blood mononuclear cells (PBMCs). These results, for the first time, describe a novel, potent βCR peptide inhibitor that inhibit the actions of the βCR without affecting erythropoiesis.
Collapse
Affiliation(s)
- Cody R Kilar
- Division of Nephrology, Hypertension, and Transplantation, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sivakumar Sekharan
- Cloud Pharmaceuticals, Inc., 6 Davis Dr, Research Triangle Park, NC, 27709, USA
| | - Larysa Sautina
- Division of Nephrology, Hypertension, and Transplantation, College of Medicine, University of Florida, Gainesville, FL, USA
| | - YanPeng Diao
- Division of Nephrology, Hypertension, and Transplantation, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shahar Keinan
- Cloud Pharmaceuticals, Inc., 6 Davis Dr, Research Triangle Park, NC, 27709, USA
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jorg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension, and Transplantation, College of Medicine, University of Florida, Gainesville, FL, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Mark S Segal
- Division of Nephrology, Hypertension, and Transplantation, College of Medicine, University of Florida, Gainesville, FL, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
27
|
Wu Q, Zhao Y, Wang P. miR-204 inhibits angiogenesis and promotes sensitivity to cetuximab in head and neck squamous cell carcinoma cells by blocking JAK2-STAT3 signaling. Biomed Pharmacother 2018; 99:278-285. [DOI: 10.1016/j.biopha.2018.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 01/07/2023] Open
|
28
|
Yan Q, Jiang L, Liu M, Yu D, Zhang Y, Li Y, Fang S, Li Y, Zhu YH, Yuan YF, Guan XY. ANGPTL1 Interacts with Integrin α1β1 to Suppress HCC Angiogenesis and Metastasis by Inhibiting JAK2/STAT3 Signaling. Cancer Res 2017; 77:5831-5845. [DOI: 10.1158/0008-5472.can-17-0579] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/15/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
29
|
Sheu ML, Shen CC, Jheng JR, Chiang CK. Activation of PI3K in response to high glucose leads to regulation of SOCS-3 and STAT1/3 signals and induction of glomerular mesangial extracellular matrix formation. Oncotarget 2017; 8:16925-16938. [PMID: 28129651 PMCID: PMC5370011 DOI: 10.18632/oncotarget.14808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 01/27/2023] Open
Abstract
Excessive deposition of extracellular matrix (ECM) in the glomerulus contributed by mesangial cells is the hallmark of diabetic nephropathy, eventually leading to glomerulosclerosis. In this study, we examined the regulatory signals involved in the high glucose (HG)-induced overproduction of ECM in rat mesangial cells (RMCs). We disclosed excessive fibronectin and collagen IV production, tyrosine phosphorylation of signal transducer and activator of transcription 1 and 3 (STAT1/3), and up-regulation of suppressor of cytokine signaling-3 (SOCS-3) expression in HG-treated RMCs. STAT1/STAT3 binding element was essential for SOCS-3 promoter activity stimulated by HG. HG was capable of promoting the specific DNA binding activities to an oligonucleotide probe containing the SOCS-3 sequence. The selective phosphoinositide 3-kinase (PI3K) inhibitor LY294002 and dominant negative p85 vector (DNΔp85) transfection effectively abolished these HG-induced responses. Moreover, HG markedly increased the cyclin kinase inhibitor p27Kip1 protein expression, which could be inhibited by LY294002 or transfection of DNΔp85. Taken together, these results suggest that HG-induced SOCS-3 upregulation depends upon the presence of STAT-binding element in the SOCS-3 promoter, which is specifically activated by STAT1/3. The PI3K/STAT1/3 signaling pathway mediated HG-triggered ECM accumulation and SOCS-3 upregulation in RMCs.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chang Shen
- Chemical Engineering Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jia-Rong Jheng
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
30
|
Yang D, Wang J, Xiao M, Zhou T, Shi X. Role of Mir-155 in Controlling HIF-1α Level and Promoting Endothelial Cell Maturation. Sci Rep 2016; 6:35316. [PMID: 27731397 PMCID: PMC5059686 DOI: 10.1038/srep35316] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Stem-cell-based therapy for cardiovascular disease, especially ischemic heart disease (IHD), is a promising approach to facilitating neovascularization through the migration of stem cells to the ischemic site and their subsequent differentiation into endothelial cells (ECs). Hypoxia is a chief feature of IHD and the stem cell niche. However, whether hypoxia promotes stem cell differentiation into ECs or causes them to retain their stemness is controversial. Here, the differentiation of pluripotent stem cells (iPSCs) into endothelial cells (ECs) was induced under hypoxia. Though the angiogenic capability and angiogenesis-related autocrine/paracrine factors of the ECs were improved under hypoxia, the level of hypoxia inducible factor 1α (HIF-1α) was nonetheless found to be restricted along with the EC differentiation. The down-regulation of HIF-1α was found to have been caused by VEGF-induced microRNA-155 (miR-155). Moreover, miR-155 was also found to enhance the angiogenic capability of induced ECs by targeting E2F2 transcription factor. Hence, miR-155 not only contributes to controlling HIF-1α expression under hypoxia but also promotes angiogenesis, which is a key feature of mature ECs. Revealing the real role of hypoxia and clarifying the function of miR-155 in EC differentiation may facilitate improvement of angiogenic gene- and stem-cell-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Deguang Yang
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Jinhong Wang
- Department of Respiration, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Meng Xiao
- Department of Nursing, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Tao Zhou
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Xu Shi
- Central Laboratory, the First Hospital of Jilin University, Changchun, 130032, China
| |
Collapse
|
31
|
Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther 2016; 23:188-98. [PMID: 27199222 DOI: 10.1038/cgt.2016.19] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023]
Abstract
Assumptions that liver immune cells and immunosuppressive pathways are similar to their counterparts in other spaces have led to gaps in our understanding of intrahepatic neoplasm aggressiveness. Myeloid-derived suppressor cells (MDSCs) are potent inhibitors of antitumor immunity and pose a major obstacle to solid tumor treatment. Liver MDSCs (L-MDSCs) associated with liver metastases (LM) are particularly problematic by contributing to intrahepatic immunosuppression that promotes tumor progression. L-MDSCs have been reported to expand in response to granulocyte-macrophages colony-stimulating factor (GM-CSF) and suppress antitumor immunity in LM. To extend these findings, we examined mechanisms of intrahepatic immunosuppression exploited by L-MDSCs. We found that the majority of L-MDSCs co-expressed GM-CSF receptor (GM-CSF-R), indoleamine 2,3-dioxygenase (IDO) and programmed death ligand 1 (PD-L1), while demonstrating high levels of signal transducer and activator of transcription factor 3 (STAT3) activation. GM-CSF-secreting tumor cells induced STAT3 phosphorylation in L-MDSCs in addition to expression of IDO and PD-L1. GM-CSF or GM-CSF-R blockade markedly reduced L-MDSC IDO and PD-L1 expression, implicating tumor-derived GM-CSF in supporting L-MDSC-immunoinhibitory molecule expression. Small-molecule inhibitors of Janus-activated kinase 2 (JAK2) and STAT3 also dramatically diminished IDO and PD-L1 expression in L-MDSCs. We determined that STAT3 exerts transcriptional control over L-MDSC IDO and PD-L1 expression by binding to the IDO1 and PD-L1 promoters. Our data suggest that the GM-CSF/JAK2/STAT3 axis in L-MDSCs drives immunosuppression in a model of LM and blockade of this pathway may enable rescue of intrahepatic antitumor immunity.
Collapse
|
32
|
Tas SW, Maracle CX, Balogh E, Szekanecz Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol 2015; 12:111-22. [PMID: 26633288 DOI: 10.1038/nrrheum.2015.164] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiogenesis is de novo capillary outgrowth from pre-existing blood vessels. This process not only is crucial for normal development, but also has an important role in supplying oxygen and nutrients to inflamed tissues, as well as in facilitating the migration of inflammatory cells to the synovium in rheumatoid arthritis, spondyloarthritis and other systemic autoimmune diseases. Neovascularization is dependent on the balance of proangiogenic and antiangiogenic mediators, including growth factors, cytokines, chemokines, cell adhesion molecules and matrix metalloproteinases. This Review describes the various intracellular signalling pathways that govern these angiogenic processes and discusses potential approaches to interfere with pathological angiogenesis, and thereby ameliorate inflammatory disease, by targeting these pathways.
Collapse
Affiliation(s)
- Sander W Tas
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Chrissta X Maracle
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Emese Balogh
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| |
Collapse
|
33
|
Androgen Modulates Functions of Endothelial Progenitor Cells through Activated Egr1 Signaling. Stem Cells Int 2015; 2016:7057894. [PMID: 26697079 PMCID: PMC4677258 DOI: 10.1155/2016/7057894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/31/2015] [Accepted: 09/13/2015] [Indexed: 01/09/2023] Open
Abstract
Researches show that androgens have important effects on migration of endothelial cells and endothelial protection in coronary heart disease. Endothelial progenitor cells (EPCs) as a progenitor cell type that can differentiate into endothelial cells, have a critical role in angiogenesis and endothelial protection. The relationship between androgen and the functions of EPCs has animated much interest and controversy. In this study, we investigated the angiogenic and migratory functions of EPCs after treatment by dihydrotestosterone (DHT) and the molecular mechanisms as well. We found that DHT treatment enhanced the incorporation of EPCs into tubular structures formed by HUVECs and the migratory activity of EPCs in the transwell assay dose dependently. Moreover, microarray analysis was performed to explore how DHT changes the gene expression profiles of EPCs. We found 346 differentially expressed genes in androgen-treated EPCs. Angiogenesis-related genes like Egr-1, Vcan, Efnb2, and Cdk2ap1 were identified to be regulated upon DHT treatment. Furthermore, the enhanced angiogenic and migratory abilities of EPCs after DHT treatment were inhibited by Egr1-siRNA transfection. In conclusion, our findings suggest that DHT markedly enhances the vessel forming ability and migration capacity of EPCs. Egr1 signaling may be a possible pathway in this process.
Collapse
|
34
|
Liu K, Zhang Q, Lan H, Wang L, Mou P, Shao W, Liu D, Yang W, Lin Z, Lin Q, Ji T. GCN5 Potentiates Glioma Proliferation and Invasion via STAT3 and AKT Signaling Pathways. Int J Mol Sci 2015; 16:21897-910. [PMID: 26378521 PMCID: PMC4613287 DOI: 10.3390/ijms160921897] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
The general control of nucleotide synthesis 5 (GCN5), which is one kind of lysine acetyltransferases, regulates a number of cellular processes, such as cell proliferation, differentiation, cell cycle and DNA damage repair. However, its biological role in human glioma development remains elusive. In the present study, we firstly reported that GCN5 was frequently overexpressed in human glioma tissues and GCN5 was positively correlated with proliferation of cell nuclear antigen PCNA and matrix metallopeptidase MMP9. Meanwhile, down-regulation of GCN5 by siRNA interfering inhibited glioma cell proliferation and invasion. In addition, GCN5 knockdown reduced expression of p-STAT3, p-AKT, PCNA and MMP9 and increased the expression of p21 in glioma cells. In conclusion, GCN5 exhibited critical roles in glioma development by regulating cell proliferation and invasion, which suggested that GCN5 might be a potential molecular target for glioma treatment.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Qing Zhang
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Haitao Lan
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Liping Wang
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Pengfei Mou
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Wei Shao
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Dan Liu
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Wensheng Yang
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Zhen Lin
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Qingyuan Lin
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| | - Tianhai Ji
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen 361000, China.
- Chinese People's Liberation Army No. 174 Clinical College, Anhui Medical University, Xiamen 361000, China.
| |
Collapse
|
35
|
Hou BH, Jian ZX, Cui P, Li SJ, Tian RQ, Ou JR. miR-216a may inhibit pancreatic tumor growth by targeting JAK2. FEBS Lett 2015; 589:2224-32. [DOI: 10.1016/j.febslet.2015.06.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022]
|
36
|
Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma. Oncotarget 2015; 5:6788-800. [PMID: 25216518 PMCID: PMC4196163 DOI: 10.18632/oncotarget.2253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL.
Collapse
|
37
|
Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 2015; 20:6342-88. [PMID: 25867824 PMCID: PMC6272510 DOI: 10.3390/molecules20046342] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis, the process of formation of new blood vessel from pre-existing ones, is involved in various intertwined pathological processes including virus infection, inflammation and oncogenesis, making it a promising target for the development of novel strategies for various interventions. To induce angiogenesis, angiogenic growth factors (AGFs) must interact with pro-angiogenic receptors to induce proliferation, protease production and migration of endothelial cells (ECs). The action of AGFs is counteracted by antiangiogenic modulators whose main mechanism of action is to bind (thus sequestering or masking) AGFs or their receptors. Many sugars, either free or associated to proteins, are involved in these interactions, thus exerting a tight regulation of the neovascularization process. Heparin and heparan sulfate proteoglycans undoubtedly play a pivotal role in this context since they bind to almost all the known AGFs, to several pro-angiogenic receptors and even to angiogenic inhibitors, originating an intricate network of interaction, the so called "angiogenesis glycomic interactome". The decoding of the angiogenesis glycomic interactome, achievable by a systematic study of the interactions occurring among angiogenic modulators and sugars, may help to design novel antiangiogenic therapies with implications in the cure of angiogenesis-dependent diseases.
Collapse
|
38
|
Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, DeMatteo RP, Ayala A, Joseph Espat N, Junghans RP, Katz SC. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 2015; 64:817-29. [PMID: 25850344 DOI: 10.1007/s00262-015-1692-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor-modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded threefold in response to LM, and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials.
Collapse
Affiliation(s)
- Rachel A Burga
- Division of Surgical Oncology, Department of Surgery, Roger Williams Medical Center, 825 Chalkstone Avenue, Prior 4, Providence, RI, 02908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Iman V, Karimian H, Mohan S, Hobani YH, Noordin MI, Mustafa MR, Noor SM. In vitro and in vivo anti-angiogenic activity of girinimbine isolated from Murraya koenigii. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1281-92. [PMID: 25767375 PMCID: PMC4354401 DOI: 10.2147/dddt.s71557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Girinimbine is a carbazole alkaloid isolated from the stem bark and root of Murraya koenigii. Here we report that girinimbine is an inhibitor of angiogenic activity both in vitro and in vivo. MTT results showed that girinimbine inhibited proliferation of human umbilical vein endothelial cells, while results from endothelial cell invasion, migration, tube formation, and wound healing assays demonstrated significant time- and dose-dependent inhibition by girinimbine. A proteome profiler array done on girinimbine-treated human umbilical vein endothelial cells showed that girinimbine had mediated regulation of pro-angiogenic and anti-angiogenic proteins. The anti-angiogenic potential of girinimbine was also evidenced in vivo in the zebrafish embryo model wherein girinimbine inhibited neo vessel formation in zebrafish embryos following 24 hours of exposure. Together, these results showed that girinimbine could effectively suppress angiogenesis, suggestive of its therapeutic potential as a novel angiogenesis inhibitor.
Collapse
Affiliation(s)
- Venoos Iman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Syam Mohan
- Medical Research Center, University of Jazan, Jazan, Saudi Arabia
| | | | | | - Mohd Rais Mustafa
- Department of Pharmacology, Centre for Natural Products and Drug Discovery (CENAR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis. Apoptosis 2014; 19:1254-68. [DOI: 10.1007/s10495-014-1001-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA, Zhavoronkov A. A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med 2014; 3:737-46. [PMID: 24692240 PMCID: PMC4303143 DOI: 10.1002/cam4.239] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/08/2014] [Accepted: 03/04/2014] [Indexed: 12/17/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) modulate progression of certain solid tumors. The G-CSF- or GM-CSF-secreting cancers, albeit not very common are, however, among the most rapidly advancing ones due to a cytokine-mediated immune suppression and angiogenesis. Similarly, de novo angiogenesis and vasculogenesis may complicate adjuvant use of recombinant G-CSF or GM-CSF thus possibly contributing to a cancer relapse. Rapid diagnostic tools to differentiate G-CSF- or GM-CSF-secreting cancers are not well developed therefore hindering efforts to individualize treatments for these patients. Given an increasing utilization of adjuvant G-/GM-CSF in cancer therapy, we aimed to summarize recent studies exploring their roles in pathophysiology of solid tumors and to provide insights into some complexities of their therapeutic applications.
Collapse
Affiliation(s)
- Alexander M Aliper
- Federal Clinical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow, 117198, Russia
| | | | | | | | | |
Collapse
|
43
|
Ribatti D. The discovery of angiogenic growth factors: the contribution of Italian scientists. Vasc Cell 2014; 6:8. [PMID: 24690161 PMCID: PMC3974417 DOI: 10.1186/2045-824x-6-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is regulated, under both physiological and pathological conditions, by numerous “non-classic” pro-angiogenic factors, including fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and “non-classic” pro-angiogenic factors, including granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and erythropoietin (EPO). In the context of the most important discoveries in this field, this review article summarizes the important role played by the Italian scientists in the course of the last twenty years.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Policlinico - Piazza G, Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
44
|
Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BKH, Sethi G, Bishayee A. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta Rev Cancer 2014; 1845:136-54. [PMID: 24388873 DOI: 10.1016/j.bbcan.2013.12.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 12/25/2022]
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade.
Collapse
Affiliation(s)
| | - Sakshi Sikka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Rohit Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Benny K H Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA, USA.
| |
Collapse
|
45
|
Lee JH, Nam H, Um S, Lee J, Lee G, Seo BM. Upregulation of GM-CSF by TGF-β1 in epithelial mesenchymal transition of human HERS/ERM cells. In Vitro Cell Dev Biol Anim 2013; 50:399-405. [PMID: 24258001 DOI: 10.1007/s11626-013-9712-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/04/2013] [Indexed: 11/24/2022]
Abstract
Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) have been suggested to play an important role in tooth root formation, particularly in periodontal development. Epithelial mesenchymal transition (EMT) has been suggested to contribute to root development in tooth. However, the mechanism of interaction between HERS/ERM cells and dental mesenchymal cells has not been fully understood. In this study, we investigated the effect of exogenous transforming growth factor beta 1 (TGF-β1) in human HERS/ERM cells in order to verify the role of granulocyte macrophage colony-stimulating factor (GM-CSF) in EMT process. Antibody array was used to screen secretion factors by exogenous TGF-β1. Secretion of GM-CSF was increased by exogenous TGF-β1. Expression levels of EMT markers, vimentin, ZEB1 (zinc finger E-box binding homeobox 1), and E-cadherin, were confirmed using reverse transcription polymerase chain reaction and immunocytochemistry. Treatment with GM-CSF increased the expression of vimentin and ZEB1, similar to TGF-β1 treatment, and decreased the expression of E-cadherin. Our results suggest that GM-CSF could induce EMT in human HERS/ERM cells.
Collapse
Affiliation(s)
- Joo-Hee Lee
- Biotooth Engineering Lab, Department of Oral and Maxillofacial Surgery, School of Dentistry, Craniomaxillofacial Life Science, Dental Research Institute, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Angiotensin-(1–7) synergizes with colony-stimulating factors in hematopoietic recovery. Cancer Chemother Pharmacol 2013; 72:1235-45. [DOI: 10.1007/s00280-013-2312-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/25/2013] [Indexed: 12/26/2022]
|
47
|
Peyser ND, Grandis JR. Critical analysis of the potential for targeting STAT3 in human malignancy. Onco Targets Ther 2013; 6:999-1010. [PMID: 23935373 PMCID: PMC3735336 DOI: 10.2147/ott.s47903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) family of proteins was originally discovered in the context of normal cell biology where they function to transduce intracellular and extracellular signals to the nucleus, ultimately leading to transcription of specific target genes and downstream phenotypic effects. It was quickly appreciated that the STATs, especially STAT3, play a fundamental role in human malignancy. In contrast to normal biology in which transient STAT3 signaling is strictly regulated by a tightly coordinated network of activators and deactivators, STAT3 is constitutively activated in human malignancies. Constitutive STAT3 signaling has been associated with many cancerous phenotypes across nearly all human cancers, including the upregulation of cell growth, proliferation, survival, and motility, among others. Studies involving candidate preclinical STAT3 inhibitors have further demonstrated that the reversal of these phenotypes results from pharmacologic or genetic inhibition of STAT3, suggesting that STAT3 may be a promising target for clinical interventions. Indeed, a Phase 0 clinical trial involving a STAT3 decoy oligonucleotide demonstrated that STAT3 is a drug-gable target in human tumors. Because of the ubiquity of overactive STAT3 in cancer, its role in promoting a wide variety of cancerous phenotypes, and the strong clinical and preclinical studies performed to date, STAT3 represents a promising target for the development of inhibitors for the treatment of human cancers.
Collapse
Affiliation(s)
- Noah D Peyser
- Departments of Otolaryngology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
48
|
Lee AS, Kim D, Wagle SR, Lee JE, Jung YJ, Kang KP, Lee S, Park SK, Kim W. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis. Biochem Biophys Res Commun 2013; 436:565-70. [DOI: 10.1016/j.bbrc.2013.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
|
49
|
New role of JAK2/STAT3 signaling in endothelial cell oxidative stress injury and protective effect of melatonin. PLoS One 2013; 8:e57941. [PMID: 23483946 PMCID: PMC3590213 DOI: 10.1371/journal.pone.0057941] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that the JAK2/STAT3 signaling pathway plays a regulatory role in cellular oxidative stress injury (OSI). In this study, we explored the role of the JAK2/STAT3 signaling pathway in hydrogen peroxide (H2O2)-induced OSI and the protective effect of melatonin against (H2O2)-induced injury in human umbilical vein endothelial cells (HUVECs). AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway) and JAK2 siRNA were used to manipulate JAK2/STAT3 activity, and the results showed that AG490 and JAK2 siRNA inhibited OSI and the levels of p-JAK2 and p-STAT3. HUVECs were then subjected to H2O2 in the absence or presence of melatonin, the main secretory product of the pineal gland. Melatonin conferred a protective effect against H2O2, which was evidenced by improvements in cell viability, adhesive ability and migratory ability, decreases in the apoptotic index and reactive oxygen species (ROS) production and several biochemical parameters in HUVECs. Immunofluorescence and Western blotting showed that H2O2 treatment increased the levels of p-JAK2, p-STAT3, Cytochrome c, Bax and Caspase3 and decreased the levels of Bcl2, whereas melatonin treatment partially reversed these effects. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in a protective effect against endothelial OSI. The protective effects of melatonin against OSI, at least partially, depend upon JAK2/STAT3 inhibition.
Collapse
|
50
|
Lee MMK, Chui RKS, Tam IYS, Lau AHY, Wong YH. CCR1-mediated STAT3 tyrosine phosphorylation and CXCL8 expression in THP-1 macrophage-like cells involve pertussis toxin-insensitive Gα(14/16) signaling and IL-6 release. THE JOURNAL OF IMMUNOLOGY 2012; 189:5266-76. [PMID: 23125416 DOI: 10.4049/jimmunol.1103359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists of CCR1 contribute to hypersensitivity reactions and atherosclerotic lesions, possibly via the regulation of the transcription factor STAT3. CCR1 was demonstrated to use pertussis toxin-insensitive Gα(14/16) to stimulate phospholipase Cβ and NF-κB, whereas both Gα(14) and Gα(16) are also capable of activating STAT3. The coexpression of CCR1 and Gα(14/16) in human THP-1 macrophage-like cells suggests that CCR1 may use Gα(14/16) to induce STAT3 activation. In this study, we demonstrated that a CCR1 agonist, leukotactin-1 (CCL15), could indeed stimulate STAT3 Tyr(705) and Ser(727) phosphorylation via pertussis toxin-insensitive G proteins in PMA-differentiated THP-1 cells, human erythroleukemia cells, and HEK293 cells overexpressing CCR1 and Gα(14/16). The STAT3 Tyr(705) and Ser(727) phosphorylations were independent of each other and temporally distinct. Subcellular fractionation and confocal microscopy illustrated that Tyr(705)-phosphorylated STAT3 translocated to the nucleus, whereas Ser(727)-phosphorylated STAT3 was retained in the cytosol after CCR1/Gα(14) activation. CCL15 was capable of inducing IL-6 and IL-8 (CXCL8) production in both THP-1 macrophage-like cells and HEK293 cells overexpressing CCR1 and Gα(14/16). Neutralizing Ab to IL-6 inhibited CCL15-mediated STAT3 Tyr(705) phosphorylation, whereas inhibition of STAT3 activity abolished CCL15-activated CXCL8 release. The ability of CCR1 to signal through Gα(14/16) provides a linkage for CCL15 to regulate IL-6/STAT3-signaling cascades, leading to expression of CXCL8, a cytokine that is involved in inflammation and the rupture of atherosclerotic plaque.
Collapse
Affiliation(s)
- Maggie M K Lee
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|