1
|
Peluso-Iltis C, Pierrat N, Rovito D, Osz J, Sawada D, Kittaka A, Laverny G, Rochel N. 4-Hydroxy-1α,25-Dihydroxyvitamin D 3: Synthesis and Structure-Function Study. Biomolecules 2024; 14:551. [PMID: 38785958 PMCID: PMC11117473 DOI: 10.3390/biom14050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The active vitamin D metabolites, 25-hydroxyvitamin D3 (25D3) and 1,25-dihydroxyvitamin D3 (1,25D3), are produced by successive hydroxylation steps and play key roles in several cellular processes. However, alternative metabolic pathways exist, and among them, the 4-hydroxylation of 25D3 is a major one. This study aims to investigate the structure-activity relationships of 4-hydroxy derivatives of 1,25D3. Structural analysis indicates that 1,4α,25(OH)3D3 and 1,4β,25(OH)3D3 maintain the anchoring hydrogen bonds of 1,25D3 and form additional interactions, stabilizing the active conformation of VDR. In addition, 1,4α,25D3 and 1,4β,25D3 are as potent as 1,25D3 in regulating the expression of VDR target genes in rat intestinal epithelial cells and in the mouse kidney. Moreover, these two 4-hydroxy derivatives promote hypercalcemia in mice at a dose similar to that of the parent compound.
Collapse
Affiliation(s)
- Carole Peluso-Iltis
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Noé Pierrat
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Daniela Rovito
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Judit Osz
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan;
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan;
| | - Gilles Laverny
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| | - Natacha Rochel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67400 Illkirch, France; (C.P.-I.); (G.L.)
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U1258, 67400 Illkirch, France
- University of Strasbourg, 67400 Illkirch, France
| |
Collapse
|
2
|
Norlin M, Wikvall K. Enzymatic activation in vitamin D signaling - Past, present and future. Arch Biochem Biophys 2023; 742:109639. [PMID: 37196753 DOI: 10.1016/j.abb.2023.109639] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Vitamin D signaling is important in regulating calcium homeostasis essential for bone health but also displays other functions in cells of several tissues. Disturbed vitamin D signaling is linked to a large number of diseases. The multiple cytochrome P450 (CYP) enzymes catalyzing the different hydroxylations in bioactivation of vitamin D3 are crucial for vitamin D signaling and function. This review is focused on the progress achieved in identification of the bioactivating enzymes and their genes in production of 1α,25-dihydroxyvitamin D3 and other active metabolites. Results obtained on species- and tissue-specific expression, catalytic reactions, substrate specificity, enzyme kinetics, and consequences of gene mutations are evaluated. Matters of incomplete understanding regarding the physiological roles of some vitamin D hydroxylases are critically discussed and the authors will give their view of the importance of each enzyme for vitamin D signaling. Roles of different vitamin D receptors and an alternative bioactivation pathway, leading to 20-hydroxylated vitamin D3 metabolites, are also discussed. Considerable progress has been achieved in knowledge of the vitamin D3 bioactivating enzymes. Nevertheless, several intriguing areas deserve further attention to understand the pleiotropic and diverse activities elicited by vitamin D signaling and the mechanisms of enzymatic activation necessary for vitamin D-induced responses.
Collapse
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Donati S, Marini F, Giusti F, Palmini G, Aurilia C, Falsetti I, Iantomasi T, Brandi ML. Calcifediol: Why, When, How Much? Pharmaceuticals (Basel) 2023; 16:ph16050637. [PMID: 37242420 DOI: 10.3390/ph16050637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D deficiency is a constantly growing health problem worldwide. Adults affected with hypovitaminosis D could experience negative consequences on their musculoskeletal system and extra-skeletal health. In fact, an optimal vitamin D status is essential to ensure the correct bone, calcium, and phosphate homeostasis. To improve vitamin D status, it is important to not only increase the intake of food fortified with vitamin D, but also to administer vitamin D supplementation when required. Vitamin D3 (cholecalciferol) is the most widely used supplement. In recent years, the administration of calcifediol (25(OH)D3), the direct precursor of the biologically active form of vitamin D3, as oral vitamin D supplementation has progressively grown. Here, we report the potential medical benefits of some peculiar biological actions of calcifediol, discussing the possible specific clinical scenarios in which the oral intake of calcifediol could be most effective to restore the correct serum levels of 25(OH)D3. In summary, the aim of this review is to provide insights into calcifediol-related rapid non-genomic responses and the possible use of this vitamin D metabolite as a supplement for the treatment of people with a higher risk of hypovitaminosis D.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Francesca Marini
- Fondazione Italiana Ricerca Sulle Malattie dell'Osso (FIRMO Onlus), 50129 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell'Osso (FIRMO Onlus), 50129 Florence, Italy
| |
Collapse
|
4
|
Cipriani C, Cianferotti L. Vitamin D in hypoparathyroidism: insight into pathophysiology and perspectives in clinical practice. Endocrine 2023:10.1007/s12020-023-03354-2. [PMID: 37000405 DOI: 10.1007/s12020-023-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/12/2023] [Indexed: 04/01/2023]
Abstract
Hypoparathyroidism (HypoPT) is a rare endocrine disorder characterized by the absence or insufficient parathyroid hormone production resulting in chronic hypocalcemia. Complications of HypoPT include perturbation of several target organs. The conventional treatment consists of the administration of active vitamin D, namely calcitriol. Regarding vitamin D status, few data are available, mostly in HypoPT subjects supplemented with parent vitamin D. In addition, perturbation of vitamin D metabolism has been poorly investigated, as well as the contribution of altered vitamin D status on the clinical expression of the disease. The most recent consensus on the management of chronic HypoPT suggests the baseline evaluation of serum 25-hydroxy-vitamin D [25(OH)D] and supplementation with parent vitamin D with the aim to achieve and maintain serum 25(OH)D levels in the range of 30-50 ng/mL. The rationale for using supplementation with parent vitamin D (either ergocalciferol or cholecalciferol) in HypoPT would be to provide sufficient 25(OH)D substrate to the residual 1-α-hydroxylase activity, thus ensuring its conversion to active vitamin D in renal and extra-renal tissues. More data from experimental and clinical studies are needed for better assessing how these mechanisms may significantly influence metabolic control in HypoPT and eventually skeletal and extra-skeletal manifestation of the disease. Finally, future data will clarify how the currently available parent vitamin D compounds (ergocalciferol, cholecalciferol, calcifediol) would perform in addressing these specific issues.
Collapse
Affiliation(s)
- Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Luisella Cianferotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale GB Morgagni 50, Florence, 50134, Italy
| |
Collapse
|
5
|
Kise S, Iijima A, Nagao C, Okada T, Mano H, Nishikawa M, Ikushiro S, Kanemoto Y, Kato S, Nakanishi T, Sato S, Yasuda K, Sakaki T. Functional analysis of vitamin D receptor (VDR) using adenovirus vector. J Steroid Biochem Mol Biol 2023; 230:106275. [PMID: 36854350 DOI: 10.1016/j.jsbmb.2023.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/25/2023] [Indexed: 02/27/2023]
Abstract
Recently, we generated type II rickets model rats, including Vdr(R270L), Vdr(H301Q), Vdr(R270L/H301Q), and Vdr-knockout (KO), by genome editing. All generated animals showed symptoms of rickets, including growth retardation and abnormal bone formation. Among these, only Vdr-KO rats exhibited abnormal skin formation and alopecia. To elucidate the relationship between VDR function and rickets symptoms, each VDR was expressed in human HaCaT-VDR-KO cells using an adenovirus vector. We also constructed an adenovirus vector expressing VDR(V342M) corresponding to human VDR(V346M) which causes alopecia. We compared the nuclear translocation of VDRs after adding 1α,25-dihydroxyvitamin D3 (1,25D3) or 25-hydroxyvitamin D3 (25D3) at final concentrations of 10 and 100 nM, respectively. Both 25D3 and 1,25D3 induced the nuclear translocation of wild type VDR and VDR(V342M). Conversely, VDR(R270L) translocation was observed in the presence of 100 nM 25D3, with almost no translocation following treatment with 10 nM 1,25D3. VDR(R270L/H301Q) failed to undergo nuclear translocation. These results were consistent with their affinity for each ligand. Notably, VDR(R270L/H301Q) may exist in an unliganded form under physiological conditions, and factors interacting with VDR(R270L/H301Q) may be involved in the hair growth cycle. Thus, this novel system using an adenovirus vector could be valuable in elucidating vitamin D receptor functions.
Collapse
Affiliation(s)
- Satoko Kise
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Ayano Iijima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Chika Nagao
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tadashi Okada
- Health Sciences Research Center, Iryo Sosei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551, Japan; Research Institute of Innovative Medicine (RIIM), Tokiwa Foundation, 57 Kaminodai Jyoban Kamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshiaki Kanemoto
- Research Institute of Innovative Medicine (RIIM), Tokiwa Foundation, 57 Kaminodai Jyoban Kamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University, 5-5-1 Chuodai Iino, Iwaki, Fukushima 970-8551, Japan; Research Institute of Innovative Medicine (RIIM), Tokiwa Foundation, 57 Kaminodai Jyoban Kamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Tomoko Nakanishi
- Center of Biomedical Research Resources, Juntendo University School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Center of Biomedical Research Resources, Juntendo University School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
6
|
Nishikawa M, Murose N, Mano H, Yasuda K, Isogai Y, Kittaka A, Takano M, Ikushiro S, Sakaki T. Robust osteogenic efficacy of 2α-heteroarylalkyl vitamin D analogue AH-1 in VDR (R270L) hereditary vitamin D-dependent rickets model rats. Sci Rep 2022; 12:12517. [PMID: 35869242 PMCID: PMC9307643 DOI: 10.1038/s41598-022-16819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Active vitamin D form 1α,25-dihydroxtvitamin D3 (1,25(OH)2D3) plays pivotal roles in calcium homeostasis and osteogenesis via its transcription regulation effect via binding to vitamin D receptor (VDR). Mutated VDR often causes hereditary vitamin D-dependent rickets (VDDR) type II, and patients with VDDR-II are hardly responsive to physiological doses of 1,25(OH)D3. Current therapeutic approaches, including high doses of oral calcium and supraphysiologic doses of 1,25(OH)2D3, have limited success and fail to improve the quality of life of affected patients. Thus, various vitamin D analogues have been developed as therapeutic options. In our previous study, we generated genetically modified rats with mutated Vdr(R270L), an ortholog of human VDR(R274L) isolated from the patients with VDDR-II. The significant reduced affinity toward 1,25(OH)2D3 of rat Vdr(R270L) enabled us to evaluate biological activities of exogenous VDR ligand without 1α-hydroxy group such as 25(OH)D3. In this study, 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (AH-1) exerted much higher affinity for Vdr(R270L) in in vitro ligand binding assay than both 25(OH)D3 and 1,25(OH)2D3. A robust osteogenic activity of AH-1 was observed in Vdr(R270L) rats. Only a 40-fold lower dose of AH-1 than that of 25(OH)D3 was effective in ameliorating rickets symptoms in Vdr(R270L) rats. Therefore, AH-1 may be promising for the therapy of VDDR-II with VDR(R274L).
Collapse
|
7
|
Metabolic Advantage of 25(OH)D3 versus 1,25(OH)2D3 Supplementation in Infantile Nephropathic Cystinosis-Associated Adipose Tissue Browning and Muscle Wasting. Cells 2022; 11:cells11203264. [PMID: 36291130 PMCID: PMC9600749 DOI: 10.3390/cells11203264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022] Open
Abstract
Manifestations of infantile nephropathic cystinosis (INC) often include cachexia and deficiency of circulating vitamin D metabolites. We examined the impact of 25(OH)D3 versus 1,25(OH)2D3 repletion in Ctns null mice, a mouse model of INC. Six weeks of intraperitoneal administration of 25(OH)D3 (75 μg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) resulted in Ctns−/− mice corrected low circulating 25(OH)D3 or 1,25(OH)2D3 concentrations. While 25(OH)D3 administration in Ctns−/− mice normalized several metabolic parameters characteristic of cachexia as well as muscle function in vivo, 1,25(OH)2D3 did not. Administration of 25(OH)D3 in Ctns−/− mice increased muscle fiber size and decreased fat infiltration of skeletal muscle, which was accompanied by a reduction of abnormal muscle signaling pathways. 1,25(OH)2D3 administration was not as effective. In conclusion, 25(OH)D3 supplementation exerts metabolic advantages over 1,25(OH)2D3 supplementation by amelioration of muscle atrophy and fat browning in Ctns−/− mice.
Collapse
|
8
|
Hanel A, Veldhuizen C, Carlberg C. Gene-Regulatory Potential of 25-Hydroxyvitamin D3 and D2. Front Nutr 2022; 9:910601. [PMID: 35911100 PMCID: PMC9330572 DOI: 10.3389/fnut.2022.910601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) represent a highly responsive primary tissue that is composed of innate and adaptive immune cells. In this study, we compared modulation of the transcriptome of PBMCs by the vitamin D metabolites 25-hydroxyvitamin D3 (25(OH)D3), 25(OH)D2 and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Saturating concentrations of 1,25(OH)2D3, 25(OH)D3 and 25(OH)D2 resulted after 24 h stimulation in a comparable number and identity of target genes, but below 250 nM 25(OH)D3 and 25(OH)D2 were largely insufficient to affect the transcriptome. The average EC50 values of 206 common target genes were 322 nM for 25(OH)D3 and 295 nM for 25(OH)D2 being some 600-fold higher than 0.48 nM for 1,25(OH)2D3. The type of target gene, such as primary/secondary, direct/indirect or up-/down-regulated, had no significant effect on vitamin D metabolite sensitivity, but individual genes could be classified into high, mid and lower responders. Since the 1α-hydroxylase CYP27B1 is very low expressed in PBMCs and early (4 and 8 h) transcriptome responses to 25(OH)D3 and 25(OH)D2 were as prominent as to 1,25(OH)2D3, both vitamin D metabolites may directly control gene expression. In conclusion, at supra-physiological concentrations 25(OH)D3 and 25(OH)D2 are equally potent in modulating the transcriptome of PBMCs possibly by directly activating the vitamin D receptor.
Collapse
Affiliation(s)
- Andrea Hanel
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- *Correspondence: Carsten Carlberg
| |
Collapse
|
9
|
Mak RH, Querfeld U, Gonzalez A, Gunta S, Cheung WW. Differential Effects of 25-Hydroxyvitamin D 3 versus 1α 25-Dihydroxyvitamin D 3 on Adipose Tissue Browning in CKD-Associated Cachexia. Cells 2021; 10:3382. [PMID: 34943890 PMCID: PMC8699879 DOI: 10.3390/cells10123382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Patients with chronic kidney disease (CKD) often have low serum concentrations of 25(OH)D3 and 1,25(OH)2D3. We investigated the differential effects of 25(OH)D3 versus 1,25(OH)2D3 repletion in mice with surgically induced CKD. Intraperitoneal supplementation of 25(OH)D3 (75 μg/kg/day) or 1,25(OH)2D3 (60 ng/kg/day) for 6 weeks normalized serum 25(OH)D3 or 1,25(OH)2D3 concentrations in CKD mice, respectively. Repletion of 25(OH)D3 normalized appetite, significantly improved weight gain, increased fat and lean mass content and in vivo muscle function, as well as attenuated elevated resting metabolic rate relative to repletion of 1,25(OH)2D3 in CKD mice. Repletion of 25(OH)D3 in CKD mice attenuated adipose tissue browning as well as ameliorated perturbations of energy homeostasis in adipose tissue and skeletal muscle, whereas repletion of 1,25(OH)2D3 did not. Significant improvement of muscle fiber size and normalization of fat infiltration of gastrocnemius was apparent with repletion of 25(OH)D3 but not with 1,25(OH)2D3 in CKD mice. This was accompanied by attenuation of the aberrant gene expression of muscle mass regulatory signaling, molecular pathways related to muscle fibrosis as well as muscle expression profile associated with skeletal muscle wasting in CKD mice. Our findings provide evidence that repletion of 25(OH)D3 exerts metabolic advantages over repletion of 1,25(OH)2D3 by attenuating adipose tissue browning and muscle wasting in CKD mice.
Collapse
Affiliation(s)
- Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| | - Uwe Querfeld
- Department of Paediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| | - Sujana Gunta
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
- Pediatric Services, Vista Community Clinic, Vista, CA 92084, USA
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093, USA; (A.G.); (S.G.); (W.W.C.)
| |
Collapse
|
10
|
Abdulmughni A, Erichsen B, Hensel J, Hannemann F, Bernhardt R. Improvement of the 25-hydroxyvitamin D 3 production in a CYP109A2-expressing Bacillus megaterium system. J Biotechnol 2020; 325:355-359. [PMID: 33268138 DOI: 10.1016/j.jbiotec.2020.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/21/2023]
Abstract
Calcifediol (25(OH)VD3) is a physiologically very important vitamin D3 metabolite and of high pharmaceutical importance, due to its potential for treating not only vitamin D3 deficiencies but also coronary diseases and cancer. Previously, we established a whole-cell Bacillus megaterium-based system using the cytochrome P450 CYP109A2 for the biotransformation of vitamin D3 into its metabolite 25-hydroxyvitamin D3. In this study, we demonstrate the importance of the region between amino acids T103 and A106 for the catalytic activity of CYP109A2 towards vitamin D3 as a substrate. In order to increase the productivity of the system, reaction conditions (xylose, vitamin D3, saponin, 2-hydroxypropyl-β-cyclodextrin) were optimized for the in vivo production of 25-hydroxyvitamin D3. With cells producing the T103A mutant, a productivity of 282.7 mg/L/48 h was achieved under the optimized conditions. This value is two times higher than that obtained in the control reaction with the wild-type enzyme in this study and five times higher than that obtained in a previous study.
Collapse
Affiliation(s)
- Ammar Abdulmughni
- Institute of Biochemistry, Saarland University, Campus B2.2, D-66123, Saarbruecken, Germany
| | - Björn Erichsen
- IFB Halle GmbH, Schiepziger Str. 35, 06120, Halle-Lettin, Germany
| | - Jürgen Hensel
- IFB Halle GmbH, Schiepziger Str. 35, 06120, Halle-Lettin, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Campus B2.2, D-66123, Saarbruecken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus B2.2, D-66123, Saarbruecken, Germany.
| |
Collapse
|
11
|
Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol 2020; 29:876-884. [PMID: 32654294 DOI: 10.1111/exd.14147] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The genomic actions of the vitamin D are mediated via its biologically most potent metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) and the transcription factor vitamin D receptor (VDR). Activation of VDR by 1,25(OH)2 D3 leads to change in the expression of more 1000 genes in various human tissues. Based on (epi)genome, transcriptome and crystal structure data the molecular details of this nuclear vitamin D signalling pathway are well understood. Vitamin D is known for its role on calcium homeostasis and bone formation, but it also modulates energy metabolism, innate and adaptive immunity as well as cellular growth, differentiation and apoptosis. The observation of rapid, non-genomic effects of 1,25(OH)2 D3 at cellular membranes and in the cytosol initiated the question, whether there are alternative vitamin D-binding proteins in these cellular compartments. So far, the best candidate is the enzyme PDIA3 (protein disulphide isomerase family A member 3), which is found at various subcellular locations. Furthermore, also VDR seems to play a role in membrane-based responses to vitamin D. In this viewpoint, we will dispute whether these rapid, non-genomic pathways are a meaningful addition to the genome-wide effects of vitamin D.
Collapse
Affiliation(s)
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Okamoto K, Horibe K, Mano H, Nakagawa K, Tsugawa N, Hirota Y, Horie T, Hinoi E, Okano T, Ikushiro S, Sakaki T. Generation of novel genetically modified rats to reveal the molecular mechanisms of vitamin D actions. Sci Rep 2020; 10:5677. [PMID: 32231239 PMCID: PMC7105495 DOI: 10.1038/s41598-020-62048-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Recent studies have suggested that vitamin D activities involve vitamin D receptor (VDR)-dependent and VDR-independent effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 25-hydroxyvitamin D3 (25(OH)D3) and ligand-independent effects of the VDR. Here, we describe a novel in vivo system using genetically modified rats deficient in the Cyp27b1 or Vdr genes. Type II rickets model rats with a mutant Vdr (R270L), which recognizes 1,25(OH)2D3 with an affinity equivalent to that for 25(OH)D3, were also generated. Although Cyp27b1-knockout (KO), Vdr-KO, and Vdr (R270L) rats each showed rickets symptoms, including abnormal bone formation, they were significantly different from each other. Administration of 25(OH)D3 reversed rickets symptoms in Cyp27b1-KO and Vdr (R270L) rats. Interestingly, 1,25(OH)2D3 was synthesized in Cyp27b1-KO rats, probably by Cyp27a1. In contrast, the effects of 25(OH)D3 on Vdr (R270L) rats strongly suggested a direct action of 25(OH)D3 via VDR-genomic pathways. These results convincingly suggest the usefulness of our in vivo system.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Keisuke Abe
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kairi Okamoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kyohei Horibe
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi-Osaka, 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, 337-8570, Japan
| | - Tetsuhiro Horie
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
13
|
Gerhard C, Jaffey JA. Persistent Increase in Serum 25-Hydroxyvitamin D Concentration in a Dog Following Cholecalciferol Intoxication. Front Vet Sci 2020; 6:472. [PMID: 31998760 PMCID: PMC6970194 DOI: 10.3389/fvets.2019.00472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Cholecalciferol is becoming an increasingly utilized rodenticide in the United States due to changes implemented by the Environmental Protection Agency (EPA) to reduce unintended exposure of wildlife to second-generation anticoagulant rodenticides. The lipophilic properties of cholecalciferol and prolonged tissue elimination are well-documented; however, long-term clinical ramifications are unknown. This report describes unique clinicopathologic and treatment features during the acute phase of cholecalciferol rodenticide toxicosis in a 4-year-old neutered Shih-Tzu mix that presented for intermittent vomiting, anorexia, polyuria, and polydipsia. In addition, this report also highlights the potential benefit of serial measurements of serum 25-hydroxyvitamin D concentrations and long-term treatment in the chronic phase of cholecalciferol rodenticide toxicosis in dogs.
Collapse
Affiliation(s)
- Charlotte Gerhard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| | - Jared A Jaffey
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
| |
Collapse
|
14
|
Ravid A, Rapaport N, Issachar A, Erman A, Bachmetov L, Tur-Kaspa R, Zemel R. 25-Hydroxyvitamin D Inhibits Hepatitis C Virus Production in Hepatocellular Carcinoma Cell Line by a Vitamin D Receptor-Independent Mechanism. Int J Mol Sci 2019; 20:E2367. [PMID: 31086078 PMCID: PMC6539257 DOI: 10.3390/ijms20092367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Previously, we have reported that the active vitamin D metabolite, calcitriol and vitamin D3 (cholecalciferol), both remarkably inhibit hepatitis C virus production. The mechanism by which vitamin D3 exerts its effect is puzzling due to the low levels of calcitriol produced in vitamin D3-treated Huh7.5 cells. In this study, we aimed to explore the mechanism of vitamin D3 anti-hepatitis C virus effect. We show that vitamin D3 activity is not mediated by its metabolic conversion to calcitriol, but may be due to its primary metabolic product 25(OH)D3. This is inferred from the findings that 25(OH)D3 could inhibit hepatitis C virus production in our system, and that adequate concentrations needed to exert this effect are produced in Huh7.5 cells treated with vitamin D3. Using the CRISPR-Cas9 editing technology to knockout the vitamin D receptor, we found that the antiviral activity of vitamin D3 and 25(OH)D3 was not impaired in the vitamin D receptor knockout cells. This result indicates that 25(OH)D3 anti-hepatitis C virus effect is exerted by a vitamin D receptor-independent mode of action. The possibility that vitamin D3 and 25(OH)D3, being 3β-hydroxysteroids, affect hepatitis C virus production by direct inhibition of the Hedgehog pathway in a vitamin D receptor-independent manner was ruled out. Taken together, this study proposes a novel mode of action for the anti-hepatitis C virus activity of vitamin D3 that is mediated by 25(OH)D3 in a vitamin D receptor-independent mechanism.
Collapse
Affiliation(s)
- Amiram Ravid
- Endocrine Immunology Laboratory, Sackler School of Medicine, Tel-Aviv University, Beilinson Hospital, Petah Tikva 49100, Israel.
| | - Noa Rapaport
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Tel-Aviv University, Beilinson Hospital, Petah Tikva 49100, Israel.
| | - Assaf Issachar
- Liver Institute, Rabin Medical Center, Beilinson Hospital, 49100 Petah Tikva, Israel.
| | - Arie Erman
- Department of Nephrology and Hypertension, Rabin Medical Center, Beilinson Hospital, Petah Tikva 49100, Israel.
| | - Larisa Bachmetov
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Tel-Aviv University, Beilinson Hospital, Petah Tikva 49100, Israel.
| | - Ran Tur-Kaspa
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Tel-Aviv University, Beilinson Hospital, Petah Tikva 49100, Israel.
- Liver Institute, Rabin Medical Center, Beilinson Hospital, 49100 Petah Tikva, Israel.
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel.
| | - Romy Zemel
- Molecular Hepatology Research Laboratory, Sackler School of Medicine, Tel-Aviv University, Beilinson Hospital, Petah Tikva 49100, Israel.
| |
Collapse
|
15
|
Nishikawa M, Yasuda K, Takamatsu M, Abe K, Nakagawa K, Tsugawa N, Hirota Y, Tanaka K, Yamashita S, Ikushiro S, Suda T, Okano T, Sakaki T. Generation of 1,25-dihydroxyvitamin D 3 in Cyp27b1 knockout mice by treatment with 25-hydroxyvitamin D 3 rescued their rachitic phenotypes. J Steroid Biochem Mol Biol 2019; 185:71-79. [PMID: 30031146 DOI: 10.1016/j.jsbmb.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022]
Abstract
We have reported that 25-hydroxyvitamin D3 [25(OH)D3] binds to vitamin D receptor and exhibits several biological functions directly in vitro. To evaluate the direct effect of 25(OH)D3 in vivo, we used Cyp27b1 knockout (KO) mice, which had no detectable plasma 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] when fed a diet containing normal Ca and vitamin D. Daily treatment with 25(OH)D3 at 250 μg kg-1 day-1 rescued rachitic phenotypes in the Cyp27b1 KO mice. Bone mineral density, female sexual cycles, and plasma levels of Ca, P, and PTH were all normalized following 25(OH)D3 administration. An elevated Cyp24a1 mRNA expression was observed in the kidneys, and plasma concentrations of Cyp24a1-dependent metabolites of 25(OH)D3 were increased. To our surprise, 1,25(OH)2D3 was detected at a normal level in the plasma of Cyp27b1 KO mice. The F1 to F4 generations of Cyp27b1 KO mice fed 25(OH)D3 showed normal growth, normal plasma levels of Ca, P, and parathyroid hormone, and normal bone mineral density. The curative effect of 25(OH)D3 was considered to depend on the de novo synthesis of 1,25(OH)2D3 in the Cyp27b1 KO mice. This suggests that another enzyme than Cyp27b1 is present for the 1,25(OH)2D3 synthesis. Interestingly, the liver mitochondrial fraction prepared from Cyp27b1 KO mice converted 25(OH)D3 to 1,25(OH)2D3. The most probable candidate is Cyp27a1. Our findings suggest that 25(OH)D3 may be useful for the treatment and prevention of osteoporosis for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Miyu Nishikawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masashi Takamatsu
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Abe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Naoko Tsugawa
- Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi, Osaka 577-8550, Japan
| | - Yoshihisa Hirota
- Laboratory of Biochemistry, Faculty of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kazuma Tanaka
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shigeaki Yamashita
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
16
|
Wang D, Song J, Ma H. An in vitro Experimental Insight into the Osteoblast Responses to Vitamin D3 and Its Metabolites. Pharmacology 2018; 101:225-235. [PMID: 29393236 DOI: 10.1159/000486446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND 25-hydroxyvitamin D3 (25[OH]VD3) has recently been found to be an active hormone. Its biological actions are also demonstrated in various cell types. However, the precise influences of vitamin D3 (VD3) and its metabolites (25[OH]VD3, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2VD3]) on the osteoblast differentiation remain largely unknown. In this work, we investigated the effects of VD3 and its metabolites in different concentrations on the early and later osteoblast differentiation and biomineralization. METHODS We first used quantitative real-time polymerase chain reaction (RT-qPCR) to evaluate the responsiveness of osteoblasts to VD3, 25(OH)VD3 or 1α,25-(OH)2VD3. We also evaluated the proliferation, differentiation and biomineralization of osteoblast at different time points via cell counting kit-8 assay and the analysis of osteogenic markers. RESULTS The experimental results confirmed that osteoblasts could be responsive to 25(OH)VD3 and 1α,25-(OH)2VD3 but could not directly metabolize VD3 and 25(OH)VD3. Only 200 nmol/L VD3 significantly promoted osteoblast proliferation, while 25(OH)VD3 and 1α,25-(OH)2VD3 did not show obvious actions. Moreover, the early osteogenic markers were increased by 25(OH)VD3 and 1α,25-(OH)2VD3 in a dose-dependent manner. More importantly, only 25(OH)VD3 had accelerated the gene and protein expressions of osteocalcin and the biomineralization level of osteoblasts. CONCLUSIONS Our findings provide reliable evidence that 25(OH)VD3 at 100-200 nmol/L can induce the early and later osteoblast differentiation and biomineralization for clinical bone tissue engineering.
Collapse
Affiliation(s)
- Dong Wang
- Spine Centre, Department of Orthopedics, 306th Hospital of PLA, Beijing, China
| | - Jiang Song
- Department of Spine Surgery, Tengzhou Central People's Hospital, Tengzhou, China
| | - Huasong Ma
- Spine Centre, Department of Orthopedics, 306th Hospital of PLA, Beijing, China
| |
Collapse
|
17
|
25-Hydroxyvitamin D 3 induces osteogenic differentiation of human mesenchymal stem cells. Sci Rep 2017; 7:42816. [PMID: 28211493 PMCID: PMC5314335 DOI: 10.1038/srep42816] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
25-Hydroxyvitamin D3 [25(OH)D3] has recently been found to be an active hormone. Its biological actions are demonstrated in various cell types. 25(OH)D3 deficiency results in failure in bone formation and skeletal deformation. Here, we investigated the effect of 25(OH)D3 on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We also studied the effect of 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], a metabolite of 25(OH)D3. One of the vitamin D responsive genes, 25(OH)D3-24-hydroxylase (cytochrome P450 family 24 subfamily A member 1) mRNA expression is up-regulated by 25(OH)D3 at 250-500 nM and by 1α,25-(OH)2D3 at 1-10 nM. 25(OH)D3 and 1α,25-(OH)2D3 at a time-dependent manner alter cell morphology towards osteoblast-associated characteristics. The osteogenic markers, alkaline phosphatase, secreted phosphoprotein 1 (osteopontin), and bone gamma-carboxyglutamate protein (osteocalcin) are increased by 25(OH)D3 and 1α,25-(OH)2D3 in a dose-dependent manner. Finally, mineralisation is significantly increased by 25(OH)D3 but not by 1α,25-(OH)2D3. Moreover, we found that hMSCs express very low level of 25(OH)D3-1α-hydroxylase (cytochrome P450 family 27 subfamily B member 1), and there is no detectable 1α,25-(OH)2D3 product. Taken together, our findings provide evidence that 25(OH)D3 at 250-500 nM can induce osteogenic differentiation and that 25(OH)D3 has great potential for cell-based bone tissue engineering.
Collapse
|
18
|
Tian G, Liang X, Chen D, Mao X, Yu J, Zheng P, He J, Huang Z, Yu B. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. J Steroid Biochem Mol Biol 2016; 163:157-63. [PMID: 27174720 DOI: 10.1016/j.jsbmb.2016.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
Abstract
Vitamin D had an anti-infection effect and benefited to the intestinal health. Autophagy signaling pathway was regulated by vitamin D3 to inhibit the infection of human immunodeficiency virus type-1. Rotavirus (RV) was a major cause of the severe diarrheal disease in young children and young animals. Although evidence suggested that vitamin D3 attenuates the negative effects of RV infection via the retinoic acid-inducible gene I signaling pathway, little is known of its antiviral effect whether through the regulation of autophagy. The present study was performed to investigate whether vitamin D3 alleviates RV infection in pig and porcine small intestinal epithelial cell line (IPEC-J2) models via regulating the autophagy signaling pathway. RV administration increased the Beclin 1 mRNA abundance in porcine jejunum and ileum. 5000 IU/kg dietary vitamin D3 supplementation greatly up-regulated LC3-II/LC3-I ratios and PR-39 mRNA expression under the condition of RV challenged. The viability of IPEC-J2 was significantly inhibited by RV infection. Incubation with 25-hydroxyvitamin D3 significantly decreased the concentrations of RV antigen and non-structural protein 4 (NSP4), and up-regulated the mRNA expression of Beclin 1 and PR-39 in the RV-infected IPEC-J2 cells. And then, based on the 25-hydroxyvitamin D3 treatment and RV infection, LC3-II mRNA expression in cells was inhibited by an autophagy inhibitor 3-methyladenine (3-MA). Bafilomycin A1 (Baf A1, a class of inhibitors of membrane ATPases, inhibits maturation of autophagic vacuoles) treatment numerically enhanced the LC3-II mRNA abundance, but had no effect on NSP4 concentration. Furthermore, 25-hydroxyvitamin D3 decreased the p62 mRNA expression and increased porcine cathelicidins (PMAP23, PG1-5 and PR-39) mRNA expression in the RV-infected cells. Taken together, these results indicated that vitamin D3 attenuates RV infection through regulating autophagic maturation and porcine cathelicidin genes expression.
Collapse
Affiliation(s)
- Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiaofang Liang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
19
|
Norlin M, Lundqvist J, Ellfolk M, Hellström Pigg M, Gustafsson J, Wikvall K. Drug-Mediated Gene Regulation of Vitamin D3Metabolism in Primary Human Dermal Fibroblasts. Basic Clin Pharmacol Toxicol 2016; 120:59-63. [DOI: 10.1111/bcpt.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Maria Norlin
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - Johan Lundqvist
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - Maria Ellfolk
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | | | - Jan Gustafsson
- Department of Women's and Children's Health; Uppsala University; University Children's Hospital; Uppsala Sweden
| | - Kjell Wikvall
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| |
Collapse
|
20
|
Li J, Luco AL, Ochietti B, Fadhil I, Camirand A, Reinhardt TA, St-Arnaud R, Muller W, Kremer R. Tumoral Vitamin D Synthesis by CYP27B1 1-α-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-κB Modulation. Endocrinology 2016; 157:2204-16. [PMID: 27119753 DOI: 10.1210/en.2015-1824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biologically active vitamin D (1,25-dihydroxycholecalciferol or 1,25(OH)2D) is synthetized from inactive prohormone 25-hydroxycholecalciferol (25(OH)D) by the enzyme CYP27B1 1-α-hydroxylase in kidney and several extrarenal tissues including breast. Although the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioactive vitamin D production within tumors themselves is not fully understood. To investigate the role of tumoral vitamin D production in mammary epithelial cell progression to breast cancer, we conducted a Cre-loxP-mediated Cyp27b1 gene ablation in the mammary epithelium of the polyoma middle T antigen-mouse mammary tumor virus (PyMT-MMTV) mouse breast cancer model. Targeted ablation of Cyp27b1 was accompanied by significant acceleration in initiation of spontaneous mammary tumorigenesis. In vivo, cell proliferation, angiogenesis, cell cycle progression, and survival markers were up-regulated in tumors by Cyp27b1 ablation, and apoptosis was decreased. AK thymoma (AKT) phosphorylation and expression of several components of nuclear factor κB (NF-κB), integrin, and signal transducer and activator of transcription 3 (STAT3) signaling pathways were increased in Cyp27b1-ablated tumors compared with nonablated controls. In vitro, 1,25(OH)2D treatment induced a strong antiproliferative action on tumor cells from both ablated and nonablated mice, accompanied by rapid disappearance of NF-κB p65 from the nucleus and segregation in the cytoplasm. In contrast, treatment with the metabolic precursor 25(OH)D was only effective against cells from nonablated mice. 25(OH)D did not inhibit growth of Cyp27b1-ablated cells, and their nuclear NF-κB p65 remained abundant. Our findings demonstrate that in-tumor CYP27B1 1-α-hydroxylase activity plays a crucial role in controlling early oncogene-mediated mammary carcinogenesis events, at least in part by modulating tumoral cell NF-κB p65 nuclear translocation.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Aimée-Lee Luco
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Benoît Ochietti
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Ibtihal Fadhil
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Anne Camirand
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Timothy A Reinhardt
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - René St-Arnaud
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - William Muller
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Richard Kremer
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| |
Collapse
|
21
|
Munetsuna E, Kittaka A, Chen TC, Sakaki T. Metabolism and Action of 25-Hydroxy-19-nor-Vitamin D3 in Human Prostate Cells. VITAMIN D HORMONE 2016; 100:357-77. [DOI: 10.1016/bs.vh.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Effect of narrowband ultraviolet B phototherapy on serum vitamin D levels in patients with vitiligo. JOURNAL OF THE EGYPTIAN WOMEN’S DERMATOLOGIC SOCIETY 2016. [DOI: 10.1097/01.ewx.0000473579.35791.9a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Sonne C, Kirkegaard M, Jakobsen J, Jenssen BM, Letcher RJ, Dietz R. Altered vitamin D status in liver tissue and blood plasma from Greenland sledge dogs (Canis familiaris) dietary exposed to organohalogen contaminated minke whale (Balaenoptera acuterostrata) blubber. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:403-408. [PMID: 24725758 DOI: 10.1016/j.ecoenv.2013.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
This study compared vitamin D3 (vitD3) and 25-OH vitamin D3 (25OHD3) status in Greenland sledge dogs (Canis familiaris) given either minke whale (Balaenoptera acuterostrata) blubber high in organohalogen contaminants (OHCs) or clean porcine (Suis scrofa) fat for up to 636 days. A group of six exposed and six control sister bitches (maternal generation) and their three exposed and four control pups, respectively, were daily fed 112g whale blubber (193µg ∑PCB/day) or porcine fat (0.17µg ∑PCB/day). Mean level of ∑PCB in adipose tissue of exposed bitches and their pups was 3106 and 2670ng/g lw, respectively, which was significantly higher than the mean concentration of 53ng/g lw for all controls (p<0.001). The vitamin analyses showed that 25OHD3 in liver of maternal exposed bitches were significantly lower than in controls (p=0.004) while vitD3 was significantly highest in liver of exposed pups (p<0.003). Regarding blood plasma concentrations, exposed F generation pups had significantly higher concentrations of 25OHD3 than controls (p=0.009). Correlation analyses showed that blood 25OHD3 decreased significantly with increased adipose tissue concentrations of ∑PCB in exposed dogs (R(2)=0.64, p=0.005) and a similar trend was found for liver 25OHD3 (R(2)=0.32, p=0.08). The results indicate that the homeostasis and metabolism of vitamin D compounds may respond differently to the dietary composition of fatty acids and OHC exposure. It is unknown if the lower level of 25OHD3 in the liver of exposed dogs would have any negative effects on immunity and reproduction and more focus should be conducted on this compound in Arctic wildlife.
Collapse
Affiliation(s)
- Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark.
| | - Maja Kirkegaard
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| | - Jette Jakobsen
- Technical University of Denmark, National Food Institute, Søborg, Denmark
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert J Letcher
- Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada
| | - Rune Dietz
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre, Roskilde, Denmark
| |
Collapse
|
24
|
Liu X, Nelson A, Wang X, Farid M, Gunji Y, Ikari J, Iwasawa S, Basma H, Feghali-Bostwick C, Rennard SI. Vitamin D modulates prostaglandin E2 synthesis and degradation in human lung fibroblasts. Am J Respir Cell Mol Biol 2014; 50:40-50. [PMID: 23941558 DOI: 10.1165/rcmb.2013-0211oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vitamin D insufficiency has been increasingly recognized in the general population worldwide and has been associated with several lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), and respiratory tract infections. Fibroblasts play a critical role in tissue repair and remodeling, which is a key feature of COPD and asthma. Fibroblasts modulate tissue repair by producing and modifying extracellular matrix components and by releasing mediators that act as autocrine or paracrine modulators of tissue remodeling. The current study was designed to investigate if vitamin D alters fibroblast release of key autocrine/paracrine repair factors. First, we demonstrated that human fetal lung (HFL)-1 cells express the vitamin D receptor (VDR) and that vitamin D, 25-hydroxyvitamin D [25(OH)D], or 1,25-dihydroxyvitamin D [1,25(OH)2D] induce VDR nuclear translocation and increase VDR-DNA binding activity. We next demonstrated that vitamin D, 25(OH)D, and 1,25(OH)2D significantly reduced prostaglandin (PG)E2 production by human lung fibroblasts (HFL-1) but had no effect on transforming growth factor β1, vascular endothelial growth factor, or fibronectin production. Vitamin D, 25(OH)D, and 1,25(OH)2D significantly inhibited IL-1β-induced microsomal PGE synthase (mPGES)-1 expression; in contrast, all three forms of vitamin D stimulated 15-hydroxy PG dehydrogenase, an enzyme that degrades PGE2. Cyclooxygenase-1 and -2 and the other two PGE2 synthases (mPGES-2 and cytosolic PGE synthase) were not altered by vitamin D, 25(OH)D, or 1,25(OH)2D. Finally, the effect of PGE2 inhibition by 25(OH)D was observed in adult lung fibroblasts. These findings suggest that vitamin D can regulate PGE2 synthesis and degradation and by this mechanism can modulate fibroblast-mediated tissue repair function.
Collapse
Affiliation(s)
- Xiangde Liu
- 1 Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Munetsuna E, Kawanami R, Nishikawa M, Ikeda S, Nakabayashi S, Yasuda K, Ohta M, Kamakura M, Ikushiro S, Sakaki T. Anti-proliferative activity of 25-hydroxyvitamin D3 in human prostate cells. Mol Cell Endocrinol 2014; 382:960-70. [PMID: 24291609 DOI: 10.1016/j.mce.2013.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
Abstract
1α-Hydroxylation of 25-hydroxyvitamin D3 is believed to be essential for its biological effects. In this study, we evaluated the biological activity of 25(OH)D3 itself comparing with the effect of cell-derived 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). First, we measured the cell-derived 1α,25(OH)2D3 level in immortalized human prostate cell (PZ-HPV-7) using [(3)H]-25(OH)D3. The effects of the cell-derived 1α,25(OH)2D3 on vitamin D3 24-hydroxylase (CYP24A1) mRNA level and the cell growth inhibition were significantly lower than the effects of 25(OH)D3 itself added to cell culture. 25-Hydroxyvitamin D3 1α-hydroxylase (CYP27B1) gene knockdown had no significant effects on the 25(OH)D3-dependent effects, whereas vitamin D receptor (VDR) gene knockdown resulted in a significant decrease in the 25(OH)D3-dependent effects. These results strongly suggest that 25(OH)D3 can directly bind to VDR and exerts its biological functions. DNA microarray and real-time RT-PCR analyses suggest that semaphorin 3B, cystatin E/M, and cystatin D may be involved in the antiproliferative effect of 25(OH)D3.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Biochemistry, Fujita Health University for Medical Science, Toyoake 470-1192, Japan
| | - Rie Kawanami
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinnosuke Ikeda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Sachie Nakabayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miho Ohta
- Development Nourishment Department, Soai University, 4-4-1 Nankonaka, Suminoe, Osaka 559-0033, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
26
|
Bläuer M, Sand J, Laukkarinen J. Cryopreserved mouse pancreatic acinar cells from long-term explant outgrowth cultures maintain their secretory phenotype after thawing. Pancreatology 2013; 13:610-4. [PMID: 24280578 DOI: 10.1016/j.pan.2013.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/13/2013] [Accepted: 09/28/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES We recently reported an explant outgrowth culture method for obtaining functionally competent mouse pancreatic acinar cells for long-term in vitro purposes. The aim of the present study was to explore the possibility of cryostoring these cells without loss of functional differentiation. METHODS Acinar cells prepared by the explant outgrowth method were cryopreserved using a DMSO-based protocol and stored in liquid nitrogen for 4 weeks. The following characteristics were compared in cryopreserved and parallel non-frozen cell preparations: cell viability and recovery, amylase content in viable cells before culture, basal and stimulated amylase release in culture and the ability of the cells to form glandular structures in Matrigel. RESULTS Immediate post-thaw viability of the cells was similar to that of freshly isolated cells. Approximately 53% of viable cells frozen were recovered after thawing. Intracellular amylase content was identical in frozen and non-frozen cells. Cryopreserved cells maintained their ability to secrete amylase and to respond to caerulein stimulation in 4-day secondary cultures. They also were observed to form amylase-expressing glandular structures in three-dimensional cultures in Matrigel in a similar manner as non-frozen cells. CONCLUSIONS This study shows that pancreatic acinar cells can be cryopreserved for long-term storage in liquid nitrogen without dedifferentiation. Successful cryopreservation helps to refine the experimental use of primary acinar cells by enabling their banking for on-demand utilization.
Collapse
Affiliation(s)
- Merja Bläuer
- Department of Gastroenterology and Alimentary Tract Surgery and Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | | | | |
Collapse
|
27
|
Tuohimaa P, Wang JH, Khan S, Kuuslahti M, Qian K, Manninen T, Auvinen P, Vihinen M, Lou YR. Gene expression profiles in human and mouse primary cells provide new insights into the differential actions of vitamin D3 metabolites. PLoS One 2013; 8:e75338. [PMID: 24116037 PMCID: PMC3792969 DOI: 10.1371/journal.pone.0075338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/12/2013] [Indexed: 01/08/2023] Open
Abstract
1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
Collapse
Affiliation(s)
- Pentti Tuohimaa
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Department of Clinical Chemistry, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Jing-Huan Wang
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
- Tampere Graduate School in Biomedicine and Biotechnology, University of Tampere, Tampere, Finland
- Drug Discovery Graduate School, University of Turku, Turku, Finland
| | - Sofia Khan
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Marianne Kuuslahti
- Department of Anatomy, Medical School, University of Tampere, Tampere, Finland
| | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tommi Manninen
- Department of Cell Biology, Medical School, University of Tampere, Tampere, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology and BioMediTech, University of Tampere, Tampere, Finland
- Institute of Experimental Medical Science, Lund University, Lund, Sweden
- Tampere University Hospital, Tampere, Finland
| | - Yan-Ru Lou
- Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
28
|
Nemazannikova N, Antonas K, Dass CR. Vitamin D: metabolism, molecular mechanisms, and mutations to malignancies. Mol Carcinog 2013; 53:421-31. [PMID: 23359295 DOI: 10.1002/mc.21999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/16/2012] [Accepted: 12/12/2012] [Indexed: 01/30/2023]
Abstract
The potential protective effects of vitamin D against cutaneous carcinogenesis are still poorly understood. The inhibition, by vitamin D, of various cancers in in vitro and in vivo models has triggered detailed investigation of vitamin D effects on neoplastic behavior. Recent studies highlight that such neoplastic features as the tumor microenvironment, angiogenesis, DNA mutagenesis, and apoptosis are all connected to vitamin D metabolic pathways. This review discusses these connections. Vitamin D modulation of the cell cycle, DNA repair and apoptosis via its receptors (VDRs) may have a suppressive effect on skin cancer as some studies suggest. The regulation of multiple tumor signaling pathways by vitamin D may have an implication in cutaneous carcinogenesis and tumor progression to malignancy.
Collapse
|
29
|
Campos LT, Brentani H, Roela RA, Katayama MLH, Lima L, Rolim CF, Milani C, Folgueira MAAK, Brentani MM. Differences in transcriptional effects of 1α,25 dihydroxyvitamin D3 on fibroblasts associated to breast carcinomas and from paired normal breast tissues. J Steroid Biochem Mol Biol 2013; 133:12-24. [PMID: 22939885 DOI: 10.1016/j.jsbmb.2012.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022]
Abstract
The effects of 1α,25 dihydroxyvitamin D3 (1,25D) on breast carcinoma associated fibroblasts (CAFs) are still unknown. This study aimed to identify genes whose expression was altered after 1,25D treatment in CAFs and matched adjacent normal mammary associated fibroblasts (NAFs). CAFs and NAFs (from 5 patients) were cultured with or without (control) 1,25D 100 nM. Both CAF and NAF expressed vitamin D receptor (VDR) and 1,25D induction of the genomic pathway was detected through up-regulation of the target gene CYP24A1. Microarray analysis showed that despite presenting 50% of overlapping genes, CAFs and NAFs exhibited distinct transcriptional profiles after 1,25D treatment (FDR<0.05). Functional analysis revealed that in CAFs, genes associated with proliferation (NRG1, WNT5A, PDGFC) were down regulated and those involved in immune modulation (NFKBIA, TREM-1) were up regulated, consistent with anti tumor activities of 1,25D in breast cancer. In NAFs, a distinct subset of genes was induced by 1,25D, involved in anti apoptosis, detoxification, antibacterial defense system and protection against oxidative stress, which may limit carcinogenesis. Co-expression network and interactome analysis of genes commonly regulated by 1,25D in NAFs and CAFs revealed differences in their co-expression values, suggesting that 1,25D effects in NAFs are distinct from those triggered in CAFs.
Collapse
Affiliation(s)
- Laura Tojeiro Campos
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, Sala 4112, CEP 01246-903, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nemazannikova N, Antonas K, Dass CR. Role of vitamin D metabolism in cutaneous tumour formation and progression. J Pharm Pharmacol 2012; 65:2-10. [PMID: 23215682 DOI: 10.1111/j.2042-7158.2012.01527.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Very limited information is available on the role of vitamin D in skin carcinogenesis. For most individuals, skin cancer can be readily managed with surgery; however, some patients may face life-threatening neoplasia. Sun exposure, specifically UV radiation, is a causative agent for development of skin cancer, though, somewhat ironically, sunlight through the production of vitamin D may have protective effect against some skin cancers. This review focuses on the development and progression of cutaneous carcinogenesis and the role of vitamin D in the prevention of the initiation and progression of lethal skin cancers. KEY FINDINGS Vitamin D is involved in regulation of multiple signalling pathways that have implications in carcinogenesis. Skin cancer metastasis depends on the tumour microenvironment, where vitamin D metabolites play a key role in prevention of certain molecular events involved in tumour progression. The vitamin D receptor (VDR) is a well-known potent regulator of cellular growth and differentiation. SUMMARY The VDR's possible involvement in cell death, tumour microenvironment and angiogenesis makes it a candidate agent for cancer regulation.
Collapse
Affiliation(s)
- Natalie Nemazannikova
- School of Biomedical and Health Sciences, Victoria University, St Albans, Victoria, Australia
| | | | | |
Collapse
|
31
|
Abstract
Vitamin D system is a complex pathway that includes precursors, active metabolites, enzymes, and receptors. This complex system actives several molecular pathways and mediates a multitude of functions. In addition to the classical role in calcium and bone homeostasis, vitamin D plays "non-calcemic" effects in host defense, inflammation, immunity, and cancer processes as recognized in vitro and in vivo studies. The aim of this review is to highlight the relationship between vitamin D and cancer, summarizing several mechanisms proposed to explain the potential protective effect of vitamin D against the development and progression of cancer. Vitamin D acts like a transcription factor that influences central mechanisms of tumorigenesis: growth, cell differentiation, and apoptosis. In addition to cellular and molecular studies, epidemiological surveys have shown that sunlight exposure and consequent increased circulating levels of vitamin D are associated with reduced reduced occurrence and a reduced mortality in different histological types of cancer. Another recent field of interest concerns polymorphisms of vitamin D receptor (VDR); in this context, preliminary data suggest that VDR polymorphisms more frequently associated with tumorigenesis are Fok1, Bsm1, Taq1, Apa1, EcoRV, Cdx2; although further studies are needed to clarify their role in the cancer. In this review, the relationship between vitamin D and cancer is discussed.
Collapse
Affiliation(s)
- Laura Vuolo
- Department of Molecular and Clinical Endocrinology and Oncology, "Federico II" University of Naples Naples, Italy.
| | | | | | | |
Collapse
|
32
|
Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, Bennett J, Gnatt A, Habtemariam B, MacKerell AD, Passaniti A. Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res 2012; 27:913-25. [PMID: 22189971 DOI: 10.1002/jbmr.1504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fat-soluble prohormone cholecalciferol (Vitamin D3) is a precursor of the circulating 25-OH Vitamin D3, which is converted by 1α-hydroxylase to the biologically active 1,25-OH Vitamin D3. Active Vitamin D3 interacts with the Vitamin D receptor (VDR), a transcription factor that plays an important role in calcium mobilization and bone formation. RUNX2 is a DNA-binding transcription factor that regulates target genes important in bone formation, angiogenesis, and cancer metastasis. Using computer-assisted drug design (CADD) and a microtiter plate-based DNA-binding enzyme-linked immunosorbent assay (D-ELISA) to measure nuclear RUNX2 DNA binding, we have found that Vitamin D3 prohormones can modulate RUNX2 DNA binding, which was dose-dependent and sensitive to trypsin, salt, and phosphatase treatment. Unlabeled oligonucleotide or truncated, dominant negative RUNX2 proteins were competitive inhibitors of RUNX2 DNA binding. The RUNX2 heterodimeric partner, Cbfβ, was detected in the binding complexes with specific antibodies. Evaluation of several RUNX2:DNA targeted small molecules predicted by CADD screening revealed a previously unknown biological activity of the inactive Vitamin D3 precursor, cholecalciferol. Cholecalciferol modulated RUNX2:DNA binding at nanomolar concentrations even in cells with low VDR. Cholecalciferol and 25-OH Vitamin D3 prohormones were selective inhibitors of RUNX2-positive endothelial, bone, and breast cancer cell proliferation, but not of cells lacking RUNX2 expression. These compounds may have application in modulating RUNX2 activity in an angiogenic setting, in metastatic cells, and to promote bone formation in disease-mediated osteoporosis. The combination CADD discovery and D-ELISA screening approaches allows the testing of other novel derivatives of Vitamin D and/or transcriptional inhibitors with the potential to regulate DNA binding and biological function.
Collapse
Affiliation(s)
- Karen F Underwood
- The Marlene & Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The population-based association between low vitamin D status and increased cancer risk can be inconsistent, but it is now generally accepted. These relationships link low serum 25OHD (25-hydroxyvitamin D) levels to cancer, whereas cell-based studies show that the metabolite 1,25(OH)2D (1,25-dihydroxyvitamin D) is a biologically active metabolite that works through vitamin D receptor to regulate gene transcription. In the present review we discuss the literature relevant to the molecular events that may account for the beneficial impact of vitamin D on cancer prevention or treatment. These data show that although vitamin D-induced growth arrest and apoptosis of tumour cells or their non-neoplastic progenitors are plausible mechanisms, other chemoprotective mechanisms are also worthy of consideration. These alternative mechanisms include enhancing DNA repair, antioxidant protection and immunomodulation. In addition, other cell targets, such as the stromal cells, endothelial cells and cells of the immune system, may be regulated by 1,25(OH)2D and contribute to vitamin D-mediated cancer prevention.
Collapse
|
34
|
Munetsuna E, Nakabayashi S, Kawanami R, Yasuda K, Ohta M, Arai MA, Kittaka A, Chen TC, Kamakura M, Ikushiro S, Sakaki T. Mechanism of the anti-proliferative action of 25-hydroxy-19-nor-vitamin D(3) in human prostate cells. J Mol Endocrinol 2011; 47:209-18. [PMID: 21693624 DOI: 10.1530/jme-11-0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
According to the prevailing paradigm, 1α-hydroxylation of 25-hydroxyvitamin D(3) (25(OH)D(3)) and its analogs is a pre-requisite step for their biological effects. We previously reported that 25-hydroxy-19-nor-vitamin D(3) (25(OH)-19-nor-D(3)) had anti-proliferative activity in a cell line, PZ-HPV-7, which was derived from human non-cancerous prostate tissue, and suggested that 25(OH)-19-nor-D(3) acted after 1α-hydroxylation by vitamin D 1α-hydroxylase (CYP27B1). However, metabolic studies of 25(OH)-19-nor-D(3) using recombinant CYP27B1 revealed that 25(OH)-19-nor-D(3) was rarely subjected to 1α-hydroxylation. Therefore, in this report, we attempted to clarify the mechanism of 25(OH)-19-nor-D(3) action in intact cells using PZ-HPV-7 prostate cells. After incubating the cells with 25(OH)-19-nor-D(3), eight metabolites of 24-hydroxylase (CYP24A1) were detected, whereas no products of CYP27B1 including 1α,25-dihydroxy-19-nor-vitamin D(3) (1α,25(OH)(2)-19-nor-D(3)) were found. Furthermore, the time-dependent nuclear translocation of vitamin D receptor (VDR) and the subsequent transactivation of cyp24A1 gene in the presence of 25(OH)-19-nor-D(3) were almost identical as those induced by 1α,25(OH)(2)-19-nor-D(3). These results strongly suggest that 25(OH)-19-nor-D(3) directly binds to VDR as a ligand and transports VDR into the nucleus to induce transcription of cyp24A1 gene. In addition, knock down of cyp27B1 gene did not affect the anti-proliferative activity of 25(OH)-19-nor-D(3), whereas knock down of VDR attenuated the inhibitory effect. Thus, our results clearly demonstrate that the anti-proliferative activity of 25(OH)-19-nor-D(3) is VDR dependent but 1α-hydroxylation independent, suggesting that 25(OH)D(3) analogs such as 25(OH)-19-nor-D(3) could be attractive candidates for anticancer therapy.
Collapse
Affiliation(s)
- Eiji Munetsuna
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Donkena KV, Young CYF. Vitamin d, sunlight and prostate cancer risk. Adv Prev Med 2011; 2011:281863. [PMID: 21991434 PMCID: PMC3170721 DOI: 10.4061/2011/281863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the second common cancer in men worldwide. The prevention of prostate cancer remains a challenge to researchers and clinicians. Here, we review the relationship of vitamin D and sunlight to prostate cancer risk. Ultraviolet radiation of the sunlight is the main stimulator for vitamin D production in humans. Vitamin D's antiprostate cancer activities may be involved in the actions through the pathways mediated by vitamin D metabolites, vitamin D metabolizing enzymes, vitamin D receptor (VDR), and VDR-regulated genes. Although laboratory studies including the use of animal models have shown that vitamin D has antiprostate cancer properties, whether it can effectively prevent the development and/or progression of prostate cancer in humans remains to be inconclusive and an intensively studied subject. This review will provide up-to-date information regarding the recent outcomes of laboratory and epidemiology studies on the effects of vitamin D on prostate cancer prevention.
Collapse
Affiliation(s)
- Krishna Vanaja Donkena
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Charles Y. F. Young
- Departments of Urology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Geng S, Zhou S, Glowacki J. Effects of 25-hydroxyvitamin D(3) on proliferation and osteoblast differentiation of human marrow stromal cells require CYP27B1/1α-hydroxylase. J Bone Miner Res 2011; 26:1145-53. [PMID: 21542014 PMCID: PMC3179303 DOI: 10.1002/jbmr.298] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1,25-Dihydroxyvitamin D(3)[1,25(OH)(2)D(3)] has many noncalcemic actions that rest on inhibition of proliferation and promotion of differentiation in malignant and normal cell types. 1,25(OH)(2)D(3) stimulates osteoblast differentiation of human marrow stromal cells (hMSCs), but little is known about the effects of 25-hydroxyvitamin D(3)[25(OH)D(3)] on these cells. Recent evidence shows that hMSCs participate in vitamin D metabolism and can activate 25(OH)D(3) by CYP27B1/1α-hydroxylase. These studies test the hypothesis that antiproliferative and prodifferentiation effects of 25(OH)D(3) in hMSCs depend on CYP27B1. We studied hMSCs that constitutively express high (hMSCs(hi-1α) ) or low (hMSCs(lo-1α)) levels of CYP27B1 with equivalent expression of CYP24A1 and vitamin D receptor. In hMSCs(hi-1α), 25(OH)D(3) reduced proliferation, downregulated proliferating cell nuclear antigen (PCNA), upregulated p21(Waf1/Cip1), and decreased cyclin D1. Unlike 1,25(OH)(2)D(3), the antiapoptotic effects of 25(OH)D(3) on Bax and Bcl-2 were blocked by the P450 inhibitor ketoconazole. The antiproliferative effects of 25(OH)D(3) in hMSCs(hi-1α) and of 1,25(OH)(2)D(3) in both samples of hMSCs were explained by cell cycle arrest, not by increased apoptosis. Stimulation of osteoblast differentiation in hMSCs(hi-1α) by 25(OH)D(3) was prevented by ketoconazole and upon transfection with CYP27B1 siRNA. These data indicate that CYP27B1 is required for 25(OH)D(3)'s action in hMSCs. Three lines of evidence indicate that CYP27B1 is required for the antiproliferative and prodifferentiation effects of 25(OH)D(3) on hMSCs: Those effects were not seen (1) in hMSCs with low constitutive expression of CYP27B1, (2) in hMSCs treated with ketoconazole, and (3) in hMSCs in which CYP27B1 expression was silenced. Osteoblast differentiation and skeletal homeostasis may be regulated by autocrine/paracrine actions of 25(OH)D(3) in hMSCs.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
Vähävihu K, Ylianttila L, Kautiainen H, Tuohimaa P, Reunala T, Snellman E. Spore film dosimeters are feasible for UV dose monitoring during heliotherapy. Photochem Photobiol 2011; 86:1174-8. [PMID: 20573044 DOI: 10.1111/j.1751-1097.2010.00769.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of the study was to compare Bacillus subtilis spore film dosimeters with a Robertson Berger UV meter (RB meter) and diary records for assessing personal UV-B doses during a 13-day heliotherapy (HT) for atopic dermatitis (AD). In addition, the relationship between the personal UV-B dose and change in serum 25-hydroxyvitamin D (25(OH)D) was studied. Altogether 21 adult patients with AD completed the study arranged in the Canary Islands, either in January or March 2005. The spore film dosimeters were used throughout the day during the HT. Serum 25(OH)D was analyzed using radioimmunoassay. The mean personal UV-B dose measured with the dosimeters was 75 SED in January and 131 SED in March. The respective results gained from the RB meter combined with diary records were 63 SED and 119 SED showing a close correlation with the dosimeter results. Serum 25(OH)D concentration increased by 9.7nmol L(-1) in January and by 26.0 7nmol L(-1) in March. The increase in serum 25(OH)D correlated with the UV-B dose received. The patients complied well to use the dosimeters. We conclude spore films to be a feasible and reliable personal UV dosimeter in vivo in field conditions.
Collapse
Affiliation(s)
- Katja Vähävihu
- Department of Dermatology, Päijät-Häme Central Hospital, Lahti, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Peng X, Vaishnav A, Murillo G, Alimirah F, Torres KEO, Mehta RG. Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells. J Cell Biochem 2010; 110:1324-33. [PMID: 20564226 DOI: 10.1002/jcb.22646] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
25-Hydroxyvitamin D(3) (25(OH)D(3)) is a prohormone and a major vitamin D metabolite. The discovery of (25(OH)D(3)) 1 alpha-hydroxylase in many vitamin D target organs has yielded an increased interest in defining the role(s) of 25(OH)D(3) in these tissues. The etiology of cancer appears to be complex and multi-factorial. Cellular stress (e.g., DNA damage, hypoxia, oncogene activation) has been identified as one of the key factors responsible for initiating the carcinogenesis process. In this study, we investigated whether 25(OH)D(3) protects breast epithelial cells from cellular stress using an established breast epithelial cell line MCF12F. To better elucidate the role of 25(OH)D(3) in the stress response, we used multiple in vitro stress models including serum starvation, hypoxia, oxidative stress, and apoptosis induction. Under all these stress conditions, 25(OH)D(3) (250 nmol/L) treatment significantly protected cells against cell death. Low-serum stress induced p53 expression accompanied with downregulation of PCNA, the presence of 25(OH)D(3) consistently inhibited the alteration of p53 and PCNA, suggesting that these molecules were involved in the stress process and may be potential target genes of 25(OH)D(3). miRNA microarray analysis demonstrated that stress induced by serum starvation caused significant alteration in the expression of multiple miRNAs including miR182, but the presence of 25(OH)D(3) effectively reversed this alteration. These data suggest that there is a significant protective role for 25(OH)D(3) against cellular stress in the breast epithelial cells and these effects may be mediated by altered miRNA expression.
Collapse
Affiliation(s)
- Xinjian Peng
- IIT Research Institute, Chicago, Illinois 60616, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Mordan-McCombs S, Brown T, Wang WLW, Gaupel AC, Welsh J, Tenniswood M. Tumor progression in the LPB-Tag transgenic model of prostate cancer is altered by vitamin D receptor and serum testosterone status. J Steroid Biochem Mol Biol 2010; 121:368-71. [PMID: 20347977 PMCID: PMC4211603 DOI: 10.1016/j.jsbmb.2010.03.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 11/19/2022]
Abstract
Previous studies have suggested that 1,25 dihydroxyvitamin D(3) (1,25(OH)2D3) induces cell cycle arrest and/or apoptosis in prostate cancer cells in vitro, suggesting that vitamin D may be a useful adjuvant therapy for prostate cancer and a chemopreventive agent. Most epidemiological data however shows a weak link between serum 25(OH)D3 and risk of prostate cancer. To explore this dichotomy we have compared tumor progression in the LPB-Tag model of prostate in VDR knock out (VDRKO) and wild type (VDRWT) mice. On the C57BL/6 background LPB-Tag tumors progress significantly more rapidly in the VDRKO mice. VDRKO tumors show significantly higher levels of cell proliferation than VDRWT tumors. In mice supplemented with testosterone to restore the serum levels to the normal range, these differences in tumor progression, and proliferation are abrogated, suggesting that there is considerable cross-talk between the androgen receptor (AR) and the vitamin D axis which is reflected in significant changes in steady state mRNA levels of the AR, PCNA, cdk2 survivin and IGFR1 and 2 genes. These alterations may explain the differences between the in vitro data and the epidemiological studies.
Collapse
Affiliation(s)
- Sarah Mordan-McCombs
- Cancer Research Center, Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144
- Department of Biological Sciences University of Notre Dame, Notre Dame IN 46556
| | - Theodore Brown
- Department of Biological Sciences University of Notre Dame, Notre Dame IN 46556
| | - Wei-Lin Winnie Wang
- Cancer Research Center, Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144
| | - Ann-Christin Gaupel
- Cancer Research Center, Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144
| | - JoEllen Welsh
- Cancer Research Center, Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144
| | - Martin Tenniswood
- Cancer Research Center, Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144
- Address correspondence to: Martin Tenniswood, Ph.D., Cancer Research Center, Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144, Phone: 1-518-591-7231, Fax: 1-518-591-7201,
| |
Collapse
|
40
|
Vitamin D, nervous system and aging. Psychoneuroendocrinology 2009; 34 Suppl 1:S278-86. [PMID: 19660871 DOI: 10.1016/j.psyneuen.2009.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 01/08/2023]
Abstract
This is a mini-review of vitamin D(3), its active metabolites and their functioning in the central nervous system (CNS), especially in relation to nervous system pathologies and aging. The vitamin D(3) endocrine system consists of 3 active calcipherol hormones: calcidiol (25OHD(3)), 1alpha-calcitriol (1alpha,25(OH)2D(3)) and 24-calcitriol (24,25(OH)2D(3)). The impact of the calcipherol hormone system on aging, health and disease is discussed. Low serum calcidiol concentrations are associated with an increased risk of several chronic diseases including osteoporosis, cancer, diabetes, autoimmune disorders, hypertension, atherosclerosis and muscle weakness all of which can be considered aging-related diseases. The relationship of many of these diseases and aging-related changes in physiology show a U-shaped response curve to serum calcidiol concentrations. Clinical data suggest that vitamin D(3) insufficiency is associated with an increased risk of several CNS diseases, including multiple sclerosis, Alzheimer's and Parkinson's disease, seasonal affective disorder and schizophrenia. In line with this, recent animal and human studies suggest that vitamin D insufficiency is associated with abnormal development and functioning of the CNS. Overall, imbalances in the calcipherol system appear to cause abnormal function, including premature aging, of the CNS.
Collapse
|
41
|
Aquila S, Guido C, Middea E, Perrotta I, Bruno R, Pellegrino M, Andò S. Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism. Reprod Biol Endocrinol 2009; 7:140. [PMID: 19948036 PMCID: PMC2794269 DOI: 10.1186/1477-7827-7-140] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 11/30/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified. METHODS AND RESULTS By RT-PCR, Western blot and Immunofluorescence techniques, we demonstrated that human sperm expresses the 1,25(OH)2D3 receptor (VDR). Besides, 25(OH)D3-1 alpha-hydroxylase, evidenced by Western blot analysis, indicated that in sperm 1,25(OH)2D3 is locally produced, highlighting the potential for autocrine-paracrine responses. 1,25(OH)2D3 through VDR, increased intracellular Ca2+ levels, motility and acrosin activity revealing an unexpected significance of this hormone in the acquisition of fertilizing ability. In sperm, 1,25(OH)2D3 through VDR, reduces triglycerides content concomitantly to the increase of lipase activity. Rapid responses stimulated by 1,25(OH)2D3 have been observed on Akt, MAPK and GSK3 implying that this secosteroid is involved in different sperm signalling pathways. CONCLUSION Our data extended the role of 1,25(OH)2D3 beyond its conventional physiological actions, paving the way for novel therapeutic opportunities in the treatment of the male reproduction disorders.
Collapse
Affiliation(s)
- Saveria Aquila
- Dept Pharmaco-Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
- Centro Sanitario, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| | - Carmela Guido
- Dept Pharmaco-Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
- Centro Sanitario, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| | - Emilia Middea
- Dept Pharmaco-Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
- Centro Sanitario, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| | - Ida Perrotta
- Dept Cellular Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| | - Rosalinda Bruno
- Dept Pharmaco-Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
- Centro Sanitario, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| | - Michele Pellegrino
- Dept Cellular Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
- Dept Cellular Biology, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
- Faculty of Pharmacy, University of Calabria 87036 Arcavacata di Rende (Cosenza), Italy
| |
Collapse
|
42
|
25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol 2009; 118:162-70. [PMID: 19944755 DOI: 10.1016/j.jsbmb.2009.11.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 12/22/2022]
Abstract
25-Hydroxyvitamin D(3) 1alpha-hydroxylase encoded by CYP27B1 converts 25-hydroxyvitamin D(3) into 1alpha,25-dihydroxyvitamin D(3), a vitamin D receptor ligand. 25-Hydroxyvitamin D(3) has been regarded as a prohormone. Using Cyp27b1 knockout cells and a 1alpha-hydroxylase-specific inhibitor we provide in four cellular systems, primary mouse kidney, skin, prostate cells and human MCF-7 breast cancer cells, evidence that 25-hydroxyvitamin D(3) has direct gene regulatory properties. The high expression of megalin, involved in 25-hydroxyvitamin D(3) internalisation, in Cyp27b1(-/-) cells explains their higher sensitivity to 25-hydroxyvitamin D(3). 25-Hydroxyvitamin D(3) action depends on the vitamin D receptor signalling supported by the unresponsiveness of the vitamin D receptor knockout cells. Molecular dynamics simulations show the identical binding mode for both 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) with the larger volume of the ligand-binding pocket for 25-hydroxyvitamin D(3). Furthermore, we demonstrate direct anti-proliferative effects of 25-hydroxyvitamin D(3) in human LNCaP prostate cancer cells. The synergistic effect of 25-hydroxyvitamin D(3) with 1alpha,25-dihydroxyvitamin D(3) in Cyp27b1(-/-) cells further demonstrates the agonistic action of 25-hydroxyvitamin D(3) and suggests that a synergism between 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) might be physiologically important. In conclusion, 25-hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand with gene regulatory and anti-proliferative properties.
Collapse
|
43
|
Cicarma E, Mørk C, Porojnicu AC, Juzeniene A, Tam TTT, Dahlback A, Moan J. Influence of narrowband UVB phototherapy on vitamin D and folate status. Exp Dermatol 2009; 19:e67-72. [DOI: 10.1111/j.1600-0625.2009.00987.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS. Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1alpha,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther 2009; 330:389-402. [PMID: 19414624 DOI: 10.1124/jpet.108.149815] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The effects of 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on gene expression and function were studied in Caco-2 cells. Microarray analyses, real-time quantitative polymerase chain reactions, and Western blotting were used to determine the mRNA and protein expression of transporters and enzymes after 1,25(OH)(2)D(3) or vehicle (0.1% ethanol) treatment for 1, 3, 6, and 10 days. The mRNA and protein expressions of the apical sodium-dependent bile acid transporter, oligopeptide transporter 1, multidrug resistance-associated protein (MRP) 3, and sulfotransferase 1E1 remained unchanged with 1,25(OH)(2)D(3) treatment, whereas those for CYP3A4, multidrug resistance protein 1, and MRP2 were significantly increased (P < 0.05). 1,25(OH)(2)D(3) treatment significantly enhanced MRP4 protein expression by increasing protein stability without affecting mRNA expression, as confirmed in cycloheximide experiments. Marked increase in 6beta-hydroxylation of testosterone by CYP3A4 was also observed in the 6-day 1,25(OH)(2)D(3)-treated (100 nM) cell lysate. The transport of [(3)H]digoxin, the P-glycoprotein (P-gp) substrate, after treatment with 100 nM 1,25(OH)(2)D(3) for 3 days revealed a higher apparent permeability (P(app)) value in the basal (B)-to-apical (A) direction over that of vehicle treatment (15.1 +/- 0.53 x 10(-6) versus 11.8 +/- 0.58 x 10(-6) cm/s; P < 0.05), whereas the P(app) in the A-to-B direction was unchanged; the efflux ratio was increased (from 5.8 to 8.0). Reduced cellular retention of 5-(and-6)-carboxy-2',7'-dichlorofluorescein, suggestive of higher MRP2 activity, was observed in the 3-day 100 nM 1,25(OH)(2)D(3)-treated cells over controls. Higher protein expression of CYP3A4, MRP2, P-gp, and MRP4 was also observed after a 6-day treatment with other vitamin D analogs (100 nM 1alpha-hydroxyvitamin D(3),1alpha-hydroxyvitamin D(2) or Hectorol, and 25-hydroxyvitamin D(3)) in Caco-2 cells, suggesting a role of 1,25(OH)(2)D(3) and analogs in the activation of enzymes and transporters via the vitamin D receptor.
Collapse
Affiliation(s)
- Jianghong Fan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Minasyan A, Keisala T, Zou J, Zhang Y, Toppila E, Syvälä H, Lou YR, Kalueff AV, Pyykkö I, Tuohimaa P. Vestibular dysfunction in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 2009; 114:161-6. [PMID: 19429446 DOI: 10.1016/j.jsbmb.2009.01.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 12/16/2022]
Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. Vitamin D deficits are associated with muscle weakness and osteoporosis, whereas vitamin D supplementation may improve muscle function, body sway and frequency of falls, growth and mineral homeostasis of bones. The loss of muscle strength and mass, as well as deficits in bone formation, lead to poor balance. Poor balance is one of the main causes of falls, and may lead to dangerous injuries. Here we examine balance functions in vitamin D receptor deficient (VDR-/-) mice, an animal model of vitamin D-dependent rickets type II, and in 1alpha-hydroxylase deficient (1alpha-OHase-/-) mice, an animal model of pseudovitamin D-deficiency rickets. Recently developed methods (tilting box, rotating tube test), swim test, and modified accelerating rotarod protocol were used to examine whether the absence of functional VDR, or the lack of a key vitamin D-activating enzyme, could lead to mouse vestibular dysfunctions. Overall, VDR-/- mice, but not 1alpha-OHase-/- mice, showed shorter latency to fall from the rotarod, smaller fall angle in the tilting box test, and aberrant poor swimming. These data suggest that VDR deficiency in mice is associated with decreased balance function, and may be relevant to poorer balance/posture control in humans with low levels of vitamin D.
Collapse
Affiliation(s)
- Anna Minasyan
- Department of Anatomy, Medical School, University of Tampere, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ellfolk M, Norlin M, Gyllensten K, Wikvall K. Regulation of human vitamin D(3) 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells. Mol Pharmacol 2009; 75:1392-9. [PMID: 19286836 DOI: 10.1124/mol.108.053660] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we examined whether 1alpha,25-dihydroxyvitamin D(3) (calcitriol), phenobarbital, and the antiretroviral drug efavirenz, drugs used by patient groups with high incidence of low bone mineral density, could affect the 25-hydroxylase activity or expression of human 25-hydroxylases in dermal fibroblasts and prostate cancer LNCaP cells. Fibroblasts express the 25-hydroxylating enzymes CYP2R1 and CYP27A1. LNCaP cells were found to express two potential vitamin D 25-hydroxylases-CYP2R1 and CYP2J2. The presence in different cells of nuclear receptors vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) was also determined. Phenobarbital suppressed the expression of CYP2R1 in fibroblasts and CYP2J2 in LNCaP cells. Efavirenz suppressed the expression of CYP2R1 in fibroblasts but not in LNCaP cells. CYP2J2 was slightly suppressed by efavirenz, whereas CYP27A1 was not affected by any of the two drugs. Calcitriol suppressed the expression of CYP2R1 in both fibroblasts and LNCaP cells but had no clear effect on the expression of either CYP2J2 or CYP27A1. The vitamin D(3) 25-hydroxylase activity in fibroblasts was suppressed by both calcitriol and efavirenz. In LNCaP cells, consumption of substrate (1alpha-hydroxyvitamin D(3)) was used as indicator of metabolism because no 1alpha,25-dihydroxyvitamin D(3) product could be determined. The amount of 1alpha-hydroxyvitamin D(3) remaining in cells treated with calcitriol was significantly increased. Taken together, 25-hydroxylation of vitamin D(3) was suppressed by calcitriol and drugs. The present study provides new information indicating that 25-hydroxylation of vitamin D(3) may be regulated. In addition, the current results may offer a possible explanation for the impaired bone health after treatment with certain drugs.
Collapse
Affiliation(s)
- Maria Ellfolk
- Department of Pharmaceutical Biosciences, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
47
|
Abstract
Recent studies using genetically modified mice, such as FGF23-/- and Klotho-/- mice that exhibit altered mineral homeostasis due to a high vitamin D activity showed features of premature aging that include retarded growth, osteoporosis, atherosclerosis, ectopic calcification, immunological deficiency, skin and general organ atrophy, hypogonadism and short lifespan. The phenotype reversed by normalizing vitamin D and/or mineral homeostasis. Thus, hypervitaminosis D due to an increased 1alpha-hydroxylase activity seems to be a cause of the premature aging. In several studies, we have described that a complete or partial lack of vitamin D action (VDR-/- mice and CYP27B1-/-) show almost similar phenotype as FGF23-/- or Klotho-/- mice. VDR mutant mice have growth retardation, osteoporosis, kyphosis, skin thickening and wrinkling, alopecia, ectopic calcification, progressive loss of hearing and balance as well as short lifespan. CYP27B1-/- mice do not show alopecia nor balance deficit, which might be apoVDR-dependent or calcidiol-dependent. The features are typical to premature aging. The phenotype is resistant to a normalization of the mineral homeostasis by a rescue diet containing high calcium and phosphate. Taken together, aging shows a U-shaped dependency on hormonal forms of vitamin D suggesting that there is an optimal concentration of vitamin D in delaying aging phenomena. Our recent study shows that calcidiol is an active hormone. Since serum calcidiol but not calcitriol is fluctuating in physiological situations, calcidiol might determine the biological output of vitamin D action. Due to its high serum concentration and better uptake of calcidiol-DBP by the target cells through the cubilin-megalin system, calcidiol seems to be an important circulating hormone. Therefore, serum calcidiol might be associated with an increased risk of aging-related chronic diseases more directly than calcitriol. Aging and cancer seem to be tightly associated phenomena. Accumulation of damage on DNA and telomeres cause both aging and cancer, moreover the signalling pathways seem to converge on tumour suppressor protein, p53, which seems to be regulated by vitamin D. Also, the insulin-like growth factor signalling pathway (IGF-1, IGFBPs, IGFR) and fibroblast growth factor-23 (FGF-23) regulate growth, aging and cancer. Vitamin D can regulate these signalling pathways, too. Also NF-kappaB and telomerase reverse transcriptase (TERT) might be molecular mechanisms mediating vitamin D action in aging and cancer. Calcidiol serum concentrations show a U-shaped risk of prostate cancer suggesting an optimal serum concentration of 40-60 nmol/L for the lowest cancer risk. Therefore, it is necessary to study several common aging-associated diseases such as osteoporosis, hypertension and diabetes known to be vitamin D-dependent before any recommendations of an optimal serum concentration of calcidiol are given.
Collapse
|
48
|
Minelli A, Bellezza I, Conte C, Culig Z. Oxidative stress-related aging: A role for prostate cancer? Biochim Biophys Acta Rev Cancer 2008; 1795:83-91. [PMID: 19121370 DOI: 10.1016/j.bbcan.2008.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 11/18/2022]
Abstract
Prostate cancer has the highest prevalence of any non-cutaneous cancer in the human body and essentially all men with circulating androgens will develop microscopic prostate cancer if they live long enough. Aging, considered as an impairment of body functions over time, caused by the accumulation of molecular damage in DNA, proteins and lipids, is also characterized by an increase in intracellular oxidative stress due to the progressive decrease of the intracellular ROS scavenging. The aging damage may eventually appear in age-related health issues, which have a significant impact on the independence, general well-being and morbidity of the elderly. The association of aging with prostate cancer is undisputable as well as the association of aging with oxidative stress. Nevertheless, supportive evidence linking an increase in oxidative stress with prostate cancer is still scarce. This review is a comprehensive, literature-based analysis of the association of human prostate cancer with oxidative stress. The objective was to examine the involvement of reactive oxygen species in the mechanisms of prostatic carcinogenesis since the understanding of risk factors for prostate cancer has practical importance for public health, genetic and nutritional education, and chemoprevention.
Collapse
Affiliation(s)
- Alba Minelli
- Dipartimento di Medicina Sperimentale Scienze Biochimiche, Sezione Biochimica Cellulare, Università di Perugia, via del Giochetto, 06123 Perugia, Italy.
| | | | | | | |
Collapse
|
49
|
Fleet JC. Molecular actions of vitamin D contributing to cancer prevention. Mol Aspects Med 2008; 29:388-96. [PMID: 18755215 PMCID: PMC2613446 DOI: 10.1016/j.mam.2008.07.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/31/2008] [Indexed: 02/07/2023]
Abstract
The population-based relationship between low vitamin D status and increased cancer risk is now generally accepted. While these relationships are between serum 25 hydroxyvitamin D and cancer, cell-based studies show that the metabolite 1,25 dihydroxyvitamin D is biologically active and influences cell biology relevant to cancer through vitamin D receptor-mediated gene transcription. This review examines this paradox and also discusses the cell and gene targets influenced by 1,25 dihydroxyvitamin D that may account for the anti-cancer actions of vitamin D. A review of the literature shows that while vitamin D-induced growth arrest and apoptosis of tumor cells or their non-neoplastic progenitors are plausible mechanisms, other gene targets related to DNA repair and immunomodulation, and other cell targets such as the stromal cells and cells of the immune system, may be regulated by 1,25 dihydroxyvitamin D and contribute to vitamin D mediated cancer prevention.
Collapse
Affiliation(s)
- James C Fleet
- Department of Foods and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47906-2059, USA.
| |
Collapse
|
50
|
Affiliation(s)
- Pentti Tuohimaa
- The Department of Anatomy, Medical School, University of Tampere and Department of Medical Chemistry, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|