1
|
Goris M, Jacobsen RG, Lewis AE. Presence of active AKT in the nucleus upon adipocyte differentiation of 3T3-L1 cells. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001140. [PMID: 38495585 PMCID: PMC10940900 DOI: 10.17912/micropub.biology.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024]
Abstract
AKT is an essential player in the phosphoinositide 3-kinase (PI3K) signalling pathway. Although the mechanisms of its action are well understood at the plasma membrane, AKT can also be found in the nucleus. In adipocytes, this pathway is activated during the process of adipogenesis and solicits both plasma membrane and nuclear AKT activity. However, the endogenous presence of active AKT in the nucleus during adipogenesis has not been shown. Here, we show that the levels of active AKT phosphorylated at Ser-473 increase rapidly after the induction of differentiation in 3T3-L1 cells, both in the cytoplasm and in the nucleus, and tend to remain elevated over the course of differentiation. In conclusion, these results support the notion that nuclear AKT plays an important role in this process.
Collapse
Affiliation(s)
- Marianne Goris
- Department of Biological Sciences, University of Bergen, Bergen, Vestland, Norway
| | - Rhîan G. Jacobsen
- Department of Biological Sciences, University of Bergen, Bergen, Vestland, Norway
| | - Aurélia E. Lewis
- Department of Biological Sciences, University of Bergen, Bergen, Vestland, Norway
| |
Collapse
|
2
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
3
|
Bagyánszki M, Bódi N. Key elements determining the intestinal region-specific environment of enteric neurons in type 1 diabetes. World J Gastroenterol 2023; 29:2704-2716. [PMID: 37274063 PMCID: PMC10237112 DOI: 10.3748/wjg.v29.i18.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Diabetes, as a metabolic disorder, is accompanied with several gastrointestinal (GI) symptoms, like abdominal pain, gastroparesis, diarrhoea or constipation. Serious and complex enteric nervous system damage is confirmed in the background of these diabetic motility complaints. The anatomical length of the GI tract, as well as genetic, developmental, structural and functional differences between its segments contribute to the distinct, intestinal region-specific effects of hyperglycemia. These observations support and highlight the importance of a regional approach in diabetes-related enteric neuropathy. Intestinal large and microvessels are essential for the blood supply of enteric ganglia. Bidirectional morpho-functional linkage exists between enteric neurons and enteroglia, however, there is also a reciprocal communication between enteric neurons and immune cells on which intestinal microbial composition has crucial influence. From this point of view, it is more appropriate to say that enteric neurons partake in multidirectional communication and interact with these key players of the intestinal wall. These interplays may differ from segment to segment, thus, the microenvironment of enteric neurons could be considered strictly regional. The goal of this review is to summarize the main tissue components and molecular factors, such as enteric glia cells, interstitial cells of Cajal, gut vasculature, intestinal epithelium, gut microbiota, immune cells, enteroendocrine cells, pro-oxidants, antioxidant molecules and extracellular matrix, which create and determine a gut region-dependent neuronal environment in diabetes.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
4
|
Sango K, Takaku S, Tsukamoto M, Niimi N, Yako H. Glucagon-Like Peptide-1 Receptor Agonists as Potential Myelination-Inducible and Anti-Demyelinating Remedies. Front Cell Dev Biol 2022; 10:950623. [PMID: 35874814 PMCID: PMC9298969 DOI: 10.3389/fcell.2022.950623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) were developed as insulinotropic and anti-hyperglycemic agents for the treatment of type 2 diabetes, but their neurotrophic and neuroprotective activities have been receiving increasing attention. Myelin plays a key role in the functional maintenance of the central and peripheral nervous systems, and recent in vivo and in vitro studies have shed light on the beneficial effects of GLP-1RAs on the formation and protection of myelin. In this article, we describe the potential efficacy of GLP-1RAs for the induction of axonal regeneration and remyelination following nerve lesions and the prevention and alleviation of demyelinating disorders, particularly multiple sclerosis.
Collapse
Affiliation(s)
- Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masami Tsukamoto
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
5
|
Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 2022; 17:e0261696. [PMID: 35061720 PMCID: PMC8782417 DOI: 10.1371/journal.pone.0261696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] Open
Abstract
The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of β-amyloid (Aβi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 μM in restoring normal insulin-dependent Akt activation and in mitigating Aβi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aβ oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of β-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| | - John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Mengia S. Rioult-Pedotti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States of America
- Department of Neurology, Clinical Neurorehabilitation, University of Zurich, Zurich, Switzerland
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Chapman University, School of Pharmacology, Irvine, CA United States of America
| | - Bumsup Kwon
- Department of Neurology, Rhode Island Hospital, Providence, RI, United States of America
| | | | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, MA, United States of America
| |
Collapse
|
6
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
7
|
Lai ZY, Tsai KY, Chang SJ, Chuang YJ. Gain-of-Function Mutant TP53 R248Q Overexpressed in Epithelial Ovarian Carcinoma Alters AKT-Dependent Regulation of Intercellular Trafficking in Responses to EGFR/MDM2 Inhibitor. Int J Mol Sci 2021; 22:ijms22168784. [PMID: 34445495 PMCID: PMC8395913 DOI: 10.3390/ijms22168784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
As the most common gene mutation found in cancers, p53 mutations are detected in up to 96% of high-grade serous ovarian carcinoma (HGSOC). Meanwhile, mutant p53 overexpression is known to drive oncogenic phenotypes in cancer patients and to sustain the activation of EGFR signaling. Previously, we have demonstrated that the combined inhibition of EGFR and MDM2-p53 pathways, by gefitinib and JNJ-26854165, exerts a strong synergistic lethal effect on HGSOC cells. In this study, we investigated whether the gain-of-function p53 mutation (p53R248Q) overexpression could affect EGFR-related signaling and the corresponding drug inhibition outcome in HGSOC. The targeted inhibition responses of gefitinib and JNJ-26854165, in p53R248Q-overexpressing cells, were extensively evaluated. We found that the phosphorylation of AKT increased when p53R248Q was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53R248Q overexpression, several AKT-related regulatory proteins translocated in unique intracellular patterns. Subsequent analysis revealed that, under the combined inhibition of gefitinib and JNJ-26854165, the cytonuclear trafficking of EGFR and MDM2 was disrupted. Next, we analyzed the gefitinib and JNJ-26854165 responses and found differential sensitivity to the single- or combined-drug inhibitions in p53R248Q-overexpressing cells. Our findings suggested that the R248Q mutation of p53 in HGSOC caused significant changes in signaling protein function and trafficking, under EGFR/MDM2-targeted inhibition. Such knowledge could help to advance our understanding of the role of mutant p53 in ovarian carcinoma and to improve the prognosis of patients receiving EGFR/MDM2-targeted therapies.
Collapse
Affiliation(s)
- Zih-Yin Lai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
| | - Kai-Yun Tsai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan
- Correspondence: (S.-J.C.); (Y.-J.C.); Tel.: +886-3-6119595 (S.-J.C.); +886-3-5742764 (Y.-J.C.); Fax: +886-3-6110900 (S.-J.C.); +886-3-5715934 (Y.-J.C.)
| | - Yung-Jen Chuang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
- Correspondence: (S.-J.C.); (Y.-J.C.); Tel.: +886-3-6119595 (S.-J.C.); +886-3-5742764 (Y.-J.C.); Fax: +886-3-6110900 (S.-J.C.); +886-3-5715934 (Y.-J.C.)
| |
Collapse
|
8
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|
9
|
Fadeev FO, Bashirov FV, Markosyan VA, Izmailov AA, Povysheva TV, Sokolov ME, Kuznetsov MS, Eremeev AA, Salafutdinov II, Rizvanov AA, Lee HJ, Islamov RR. Combination of epidural electrical stimulation with ex vivo triple gene therapy for spinal cord injury: a proof of principle study. Neural Regen Res 2021; 16:550-560. [PMID: 32985487 PMCID: PMC7996027 DOI: 10.4103/1673-5374.293150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/03/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Despite emerging contemporary biotechnological methods such as gene- and stem cell-based therapy, there are no clinically established therapeutic strategies for neural regeneration after spinal cord injury. Our previous studies have demonstrated that transplantation of genetically engineered human umbilical cord blood mononuclear cells producing three recombinant therapeutic molecules, including vascular endothelial growth factor (VEGF), glial cell-line derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) can improve morpho-functional recovery of injured spinal cord in rats and mini-pigs. To investigate the efficacy of human umbilical cord blood mononuclear cells-mediated triple-gene therapy combined with epidural electrical stimulation in the treatment of spinal cord injury, in this study, rats with moderate spinal cord contusion injury were intrathecally infused with human umbilical cord blood mononuclear cells expressing recombinant genes VEGF165, GDNF, NCAM1 at 4 hours after spinal cord injury. Three days after injury, epidural stimulations were given simultaneously above the lesion site at C5 (to stimulate the cervical network related to forelimb functions) and below the lesion site at L2 (to activate the central pattern generators) every other day for 4 weeks. Rats subjected to the combined treatment showed a limited functional improvement of the knee joint, high preservation of muscle fiber area in tibialis anterior muscle and increased H/M ratio in gastrocnemius muscle 30 days after spinal cord injury. However, beneficial cellular outcomes such as reduced apoptosis and increased sparing of the gray and white matters, and enhanced expression of heat shock and synaptic proteins were found in rats with spinal cord injury subjected to the combined epidural electrical stimulation with gene therapy. This study presents the first proof of principle study of combination of the multisite epidural electrical stimulation with ex vivo triple gene therapy (VEGF, GDNF and NCAM) for treatment of spinal cord injury in rat models. The animal protocols were approved by the Kazan State Medical University Animal Care and Use Committee (approval No. 2.20.02.18) on February 20, 2018.
Collapse
Affiliation(s)
- Filip Olegovich Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | | | | | | | | | | - Hyun Joon Lee
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
- Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| | | |
Collapse
|
10
|
Liu C, Liu S, Wang S, Sun Y, Lu X, Li H, Li G. IGF-1 Via PI3K/Akt/S6K Signaling Pathway Protects DRG Neurons with High Glucose-induced Toxicity. Open Life Sci 2019; 14:502-514. [PMID: 33817186 PMCID: PMC7874800 DOI: 10.1515/biol-2019-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/02/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperglycemia-induced toxicity of neurons contributes to the pathogenesis and progression of diabetic neuropathy (DNP). High concentration glucose triggered reactive oxygen species (ROS) overproduction and induced cell apoptosis of neurons from dorsal root ganglion (DRG) in vitro. Currently, there is no effective therapeutic method to retard this devastating complication or neurotoxicity induced by high glucose. Insulin-like growth factor-1 (IGF-1) has multi-neurotrophic actions which need to be explored regarding its actions and mechanisms on relieving high glucose induced neurotoxicity. Herein, high concentration glucose was exposed to the DRG neurons in vitro. The effects of IGF-1 on relieving high glucose-induced neurotoxicity were evaluated. We illustrated that IGF-1 enhanced regeneration of neurites sent from DRG neuronal cell bodies and increased neuronal viability which inhibited by high glucose challenge. IGF-1 alleviated neuronal apoptosis caused by high glucose exposure. IGF-1 also suppressed the intracellular ROS overproduction and ATF3 expression upregulation which was induced by high glucose insult. The anti-neurotoxic effects of IGF-1 might be through restoration of prosurvival PI3K/Akt/S6K signaling. These data shed some light on the treatment of intractable DNP and suggested that IGF-1 might be a potential effective agent on relieving high glucose induced neurotoxicity.
Collapse
Affiliation(s)
- Chunhong Liu
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan 250012, China
| | - Siyan Liu
- Department of Rheumatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Sheng Wang
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan 250012, China
| | - Yi Sun
- Department of Rheumatology, Shandong University Qilu Hospital, Jinan 250012, China
| | - Xin Lu
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| | - Hao Li
- Department of Orthopaedics, Shandong University Qilu Hospital, Jinan 250012, China
| | - Guibao Li
- Department of Anatomy, Shandong University School of Basic Medical Sciences, Jinan, 250012, China
| |
Collapse
|
11
|
Tan J, Digicaylioglu M, Wang SX, Dresselhuis J, Dedhar S, Mills J. Insulin attenuates apoptosis in neuronal cells by an integrin-linked kinase-dependent mechanism. Heliyon 2019; 5:e02294. [PMID: 31463398 PMCID: PMC6706370 DOI: 10.1016/j.heliyon.2019.e02294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin promotes neuronal survival by activating a phosphatidylinositol 3-kinase (PI 3-kinase)/AKT-dependent signaling pathway and reducing caspase activation. We investigated a role for integrin-linked kinase (ILK) in insulin-mediated cell survival in cultured neurons and differentiated R28 cells. We used a serum and depolarization withdrawal model to induce apoptosis in cerebellar granule neurons and a serum withdrawal model to induce apoptosis in differentiated R28 cells. ILK knock-out decreased insulin-mediated protection as did the addition of pharmacological inhibitors of ILK, KP-392 or QLT-0267. Prosurvival effects of insulin were rescued by Boc-Asp (O-methyl)-CH2F (BAF), a pancaspase inhibitor, in the presence of KP-392. Insulin and IGF-1 decreased caspase-3 activation, an effect that was inhibited by KP-392 and QLT-0267. Western blot analysis indicates that insulin-induced stimulation of AKT Ser-473 phosphorylation was decreased after the ILK gene was conditionally knocked-out, following overexpression of AKT-DN or in the presence of QLT-0267. Insulin and IGF-1 stimulated ILK kinase activity in primary neurons and this was inhibited following ILK-DN overexpression. Western blot analysis indicates that insulin exposure upregulated the expression of the cellular inhibitor of apoptosis protein c-IAP2 in an extracellular matrix-dependent manner, an effect blocked by KP-392. These results indicate that ILK is an important effector in insulin-mediated neuroprotection.
Collapse
Affiliation(s)
- Jacqueline Tan
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Murat Digicaylioglu
- Departments of Neurosurgery and Physiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stacy X.J. Wang
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Jonathan Dresselhuis
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Corresponding author.
| |
Collapse
|
12
|
Yu Y, Xiong Y, Ladeiras D, Yang Z, Ming XF. Myosin 1b Regulates Nuclear AKT Activation by Preventing Localization of PTEN in the Nucleus. iScience 2019; 19:39-53. [PMID: 31349190 PMCID: PMC6660601 DOI: 10.1016/j.isci.2019.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Insulin-induced AKT activation is dependent on phosphoinositide 3-kinase and opposed by tumor suppressor phosphatase and tensin homolog (PTEN). Our previous study demonstrates that myosin 1b (MYO1B) mediates arginase-II-induced activation of mechanistic target of rapamycin complex 1 that is regulated by AKT. However, the role of MYO1B in AKT activation is unknown. Here we show that silencing MYO1B in mouse embryonic fibroblasts (MEF) inhibits insulin-induced nuclear but not cytoplasmic AKT activation accompanied by elevated nuclear PTEN level. Co-immunoprecipitation, co-immunostaining, and proximity ligation assay show an interaction of MYO1B and PTEN resulting in reduced nuclear PTEN. Moreover, the elevated nuclear PTEN upon silencing MYO1B promotes apoptosis of MEFs and melanoma B16F10 cells. Taken together, we demonstrate that MYO1B, by interacting with PTEN, prevents nuclear localization of PTEN contributing to nuclear AKT activation and suppression of cell apoptosis. This may present a therapeutic approach for cancer treatment such as melanoma. MYO1B, by interacting with PTEN, prevents PTEN localization in the nucleus MYO1B prevents nuclear localization of PTEN depending on its motor activity This contributes to nuclear AKT activation and suppression of cell apoptosis Targeting MYO1B may represent a therapeutic approach for cancer treatment
Collapse
Affiliation(s)
- Yi Yu
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Yuyan Xiong
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Diogo Ladeiras
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism and Cardiovascular System, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700 Fribourg, Switzerland.
| |
Collapse
|
13
|
Theobromine Improves Working Memory by Activating the CaMKII/CREB/BDNF Pathway in Rats. Nutrients 2019; 11:nu11040888. [PMID: 31010016 PMCID: PMC6520707 DOI: 10.3390/nu11040888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023] Open
Abstract
Theobromine (TB) is a primary methylxanthine found in cacao beans. cAMP-response element-binding protein (CREB) is a transcription factor, which is involved in different brain processes that bring about cellular changes in response to discrete sets of instructions, including the induction of brain-derived neurotropic factor (BDNF). Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been strongly implicated in the memory formation of different species as a key regulator of gene expression. Here we investigated whether TB acts on the CaMKII/CREB/BDNF pathway in a way that might improve the cognitive and learning function in rats. Male Wistar rats (5 weeks old) were divided into two groups. For 73 days, the control rats (CN rats) were fed a normal diet, while the TB-fed rats (TB rats) received the same food, but with a 0.05% TB supplement. To assess the effects of TB on cognitive and learning ability in rats: The radial arm maze task, novel object recognition test, and Y-maze test were used. Then, the brain was removed and the medial prefrontal cortex (mPFC) was isolated for Western Blot, real-time PCR and enzyme-linked immunosorbent assay. Phosphorylated CaMKII (p-CaMKII), phosphorylated CREB (p-CREB), and BDNF level in the mPFC were measured. In all the behavior tests, working memory seemed to be improved by TB ingestion. In addition, p-CaMKII and p-CREB levels were significantly elevated in the mPFC of TB rats in comparison to those of CN rats. We also found that cortical BDNF protein and mRNA levels in TB rats were significantly greater than those in CN rats. These results suggest that orally supplemented TB upregulates the CaMKII/CREB/BDNF pathway in the mPFC, which may then improve working memory in rats.
Collapse
|
14
|
Aguado-Llera D, Canelles S, Fernández-Mendívil C, Frago LM, Argente J, Arilla-Ferreiro E, López MG, Barrios V. Improvement in inflammation is associated with the protective effect of Gly-Pro-Glu and cycloprolylglycine against Aβ-induced depletion of the hippocampal somatostatinergic system. Neuropharmacology 2019; 151:112-126. [PMID: 30981749 DOI: 10.1016/j.neuropharm.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/08/2023]
Abstract
Glycine-proline-glutamate (GPE) is a cleaved tripeptide of IGF-I that can be processed to cycloprolylglycine (cPG) in the brain. IGF-I protects the hippocampal somatostatinergic system from β-amyloid (Aβ) insult and although neither IGF-I-derived peptides bind to IGF-I receptors, they exert protective actions in several neurological disorders. As their effects on the hippocampal somatostatinergic system remain unknown, the objective of this study was to evaluate if cPG and/or GPE prevent the deleterious effects of Aβ25-35 infusion on this system and whether changes in intracellular-related signaling and interleukin (IL) content are involved in their protective effect. We also determined the effect of cPG or GPE co-administration with Aβ25-35 on IL secretion in glial cultures and the influence of these ILs on signaling activation and somatostatin synthesis in neuronal cultures. cPG or GPE co-administration reduced Aβ-induced cell death and pro-inflammatory ILs, increased IL-4 and partially avoided the reduction of components of the somatostatinergic system affected by Aβ25-35. GPE increased activation of Akt and CREB and reduced GSK3β activation and astrogliosis, whereas cPG increased phosphorylation of extracellular signal-regulated kinases. Both peptides converged in the activation of mTOR and S6 kinase. Co-administration of these peptides with Aβ25-35 to glial cultures increased IL-4 and reduced IL-1β; this release of IL-4 could be responsible for activation of Akt and increased somatostatin in neuronal cultures. Our findings suggest that cPG and GPE exert protective effects against Aβ on the somatostatinergic system by a reduction of the inflammatory environment that may activate different pro-survival pathways in these neurons.
Collapse
Affiliation(s)
- David Aguado-Llera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Fernández-Mendívil
- Department of Pharmacology and Therapeutics and Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | - Manuela G López
- Department of Pharmacology and Therapeutics and Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
AKT/protein kinase B associates with β-actin in the nucleus of melanoma cells. Biosci Rep 2019; 39:BSR20181312. [PMID: 30643008 PMCID: PMC6356016 DOI: 10.1042/bsr20181312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
The serine-threonine kinase AKT/PKB is a critical regulator of various essential cellular processes, and dysregulation of AKT has been implicated in many diseases, including cancer. Despite AKT action is known to function mainly in the cytoplasm, AKT has been reported to translocate to the nucleus. However, very little is known about the mechanism required for the nuclear import of AKT as well as its function in this cellular compartment. In the present study, we characterized the presence of endogenous nuclear AKT in human melanoma cells and addressed the possible role of AKT by exploring its potential association with key interaction nuclear partners. Confocal and Western blot analyses showed that both phosphorylated and non-phosphorylated forms of AKT are present in melanoma cells nuclei. Using mass spectrometry in combination with protein-crosslinking and co-immunoprecipitation, we identified a series of putative protein partners of nuclear AKT, including heterogeneous nuclear ribonucleoprotein (hnRNP), cytoskeleton proteins β-actin, γ-actin, β-actin-like 2 and vimentin. Confocal microscopy and biochemical analyses validated β-actin as a new nuclear AKT-interacting partner. Cofilin and active RNA Polymerase II, two proteins that have been described to interact and work in concert with nuclear actin in transcription regulation, were also found associated with nuclear AKT. Overall, the present study uncovered a yet unrecognized nuclear coupling of AKT and provides insights into the involvement of AKT in the interaction network of nuclear actin.
Collapse
|
16
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
17
|
Wang H, Zhang H, Cao F, Lu J, Tang J, Li H, Zhang Y, Feng B, Tang Z. Protection of insulin‑like growth factor 1 on experimental peripheral neuropathy in diabetic mice. Mol Med Rep 2018; 18:4577-4586. [PMID: 30221656 DOI: 10.3892/mmr.2018.9435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/19/2018] [Indexed: 11/05/2022] Open
Abstract
The present study investigated whether insulin‑like growth factor‑1 (IGF‑1) exerts a protective effect against neuropathy in diabetic mice and its potential underlying mechanisms. Mice were divided into four groups: Db/m (control), db/db (diabetes), IGF‑1‑treated db/db and IGF‑1‑picropodophyllin (PPP)‑treated db/db. Behavioral studies were conducted using the hot plate and von Frey methods at 6 weeks of age prior to treatment. The motor nerve conduction velocity (NCV) of the sciatic nerve was measured using a neurophysiological method at 8 weeks of age. The alterations in the expression levels of IGF‑1 receptor (IGF‑1R), c‑Jun N‑terminal kinase (JNK), extracellular signal‑regulated kinase (ERK), p38 and effect of IGF‑1 on the sciatic nerve morphology were observed by western blotting and electron microscopy. Compared with the control group, the diabetes group developed hypoalgesia after 12 weeks, and neurological lesions improved following an intraperitoneal injection of recombinant (r)IGF‑1. The sciatic NCV in the diabetes group was significantly lower compared with the control group. The sciatic NCV improved following rIGF‑1 intervention; however, was impaired following administration of the IGF‑1 receptor antagonist, PPP. The myelin sheath in the sciatic nerve of the diabetes group was significantly more impaired compared with the control group. The myelin sheath in the sciatic nerves of the rIGF‑1‑treated group was significantly improved compared with the diabetes group; whereas, they were significantly impaired following administration of the IGF‑1R inhibitor. In addition, the expression of IGF‑1R, phosphorylated (p)‑JNK and p‑ERK of sciatic nerves in the db/db mice was significantly increased following treatment with IGF‑1. The expression levels of these proteins were significantly lower in the IGF‑1‑PPP group compared with the IGF‑1 group; however, no significant difference was observed in the expression levels of p‑p38 following treatment with IGF‑1. The results of the present study demonstrated that IGF‑1 may improve neuropathy in diabetic mice. This IGF‑1‑induced neurotrophic effect may be associated with the increased phosphorylation levels of JNK and ERK, not p38; however, it was attenuated by administration of an IGF‑1R antagonist.
Collapse
Affiliation(s)
- Hua Wang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Hao Zhang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fuming Cao
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jiaping Lu
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jin Tang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Huizhi Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yiyun Zhang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhaosheng Tang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
18
|
Park JM, Lee SH, Kim KI, Kim WH, Cho JY, Hahm KB, Hong SP. Feasibility of intraperitoneal placental-derived mesenchymal stem cell injection in stomachs of diabetic mice. J Gastroenterol Hepatol 2018; 33:1242-1247. [PMID: 29141105 DOI: 10.1111/jgh.14045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/28/2017] [Accepted: 11/04/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Diabetic gastropathy is associated with loss of interstitial cells of Cajal and autonomic neuropathy. Effective management for diabetic gastropathy is still unavailable. This study was aimed to confirm the pathogenetic changes in diabetic gastropathy and to examine the effect of treatment with placental-derived mesenchymal stem cells (PDMSCs) in stomachs of animal models. METHODS Fourteen non-obese diabetic/ShiLtJ mice of 8 weeks were bled until week 30. Diabetes mellitus developed in 10 out of 14 mice, which all survived with insulin. The mice were grouped into three groups: nondiabetic group (n = 4), diabetic sham group (n = 5), and diabetic PDMSC group (n = 5) all of which were treated with intraperitoneal PDMSCs injection at week 30. All mice were killed at week 34, and the stomachs were examined by immunohistochemical stain with c-kit and neuronal nitric oxide synthase antibodies. RESULTS The number of c-kit positive cells in stomach decreased significantly in the diabetic sham group compared with that in the nondiabetic group (21.2 ± 6.7 vs 88.0 ± 29.3, P = 0.006) but increased with PDMSC treatment (21.2 ± 6.7 vs 64.0 ± 15.1, P = 0.02). The positive rate of neuronal nitric oxide synthase in neural plexus was also significantly lower in the diabetic sham group than in the nondiabetic group (22.3% ± 18.5% vs 48.0% ± 22.7%, P = 0.003) but increased with PDMSC treatment (22.3% ± 18.5% vs 43.3% ± 20.5%, P = 0.03). CONCLUSIONS Interstitial cells of Cajal and neural plexus decreased in stomachs of mice with diabetes mellitus but were significantly repaired with intraperitoneal injection of PDMSC.
Collapse
Affiliation(s)
- Jong Min Park
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Sang Hwan Lee
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Kwang Il Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Won Hee Kim
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Joo Young Cho
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Ki Baik Hahm
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Sung Pyo Hong
- Division of Gastroenterology, Department of Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
19
|
Amtul Z, Hill DJ, Arany EJ, Cechetto DF. Altered Insulin/Insulin-Like Growth Factor Signaling in a Comorbid Rat model of Ischemia and β-Amyloid Toxicity. Sci Rep 2018; 8:5136. [PMID: 29572520 PMCID: PMC5865153 DOI: 10.1038/s41598-018-22985-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke and diabetes are vascular risk factors for the development of impaired memory such as dementia and/or Alzheimer's disease. Clinical studies have demonstrated that minor striatal ischemic lesions in combination with β-amyloid (Aβ) load are critical in generating cognitive deficits. These cognitive deficits are likely to be associated with impaired insulin signaling. In this study, we examined the histological presence of insulin-like growth factor-I (IGF-1) and insulin receptor substrate (IRS-1) in anatomically distinct brain circuits compared with morphological brain damage in a co-morbid rat model of striatal ischemia (ET1) and Aβ toxicity. The results demonstrated a rapid increase in the presence of IGF-1 and IRS-1 immunoreactive cells in Aβ + ET1 rats, mainly in the ipsilateral striatum and distant regions with synaptic links to the striatal lesion. These regions included subcortical white matter, motor cortex, thalamus, dentate gyrus, septohippocampal nucleus, periventricular region and horizontal diagonal band of Broca in the basal forebrain. The alteration in IGF-1 and IRS-1 presence induced by ET1 or Aβ rats alone was not severe enough to affect the entire brain circuit. Understanding the causal or etiologic interaction between insulin and IGF signaling and co-morbidity after ischemia and Aβ toxicity will help design more effective therapeutics.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - David J Hill
- Departments of Medicine, Physiology and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
20
|
Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget 2018; 7:59766-59780. [PMID: 27517495 PMCID: PMC5312347 DOI: 10.18632/oncotarget.11121] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
The importance of tumor microenvironment (TME) as a relevant contributor to cancer progression and its role in the development of de novo resistance to targeted therapies has become increasingly apparent. However, the mechanisms of microenvironment-mediated drug resistance for nonspecific conventional chemotherapeutic agents, such as platinum compounds or antimetabolites, are still unclear. Here we describe a mechanism induced by soluble factors released by carcinoma-associated fibroblasts (CAFs) that induce the translocation of AKT, Survivin and P38 to the nucleus of tumor cells. These changes are guided to ensure DNA repair and the correct entrance and exit from mitosis in the presence of chemotherapy. We used conditioned media (CM) from normal-colonic fibroblasts and paired CAFs to assess dose response curves of oxaliplatin and 5-fluorouracil, separately or combined, compared with standard culture medium. We also evaluated a colony-forming assay and cell death to demonstrate the protective role of CAF-CM. Immunofluorescence confirmed the translocation of AKT, P38 and Survivin to the nucleus induced by CAF-soluble factors. We also have shown that STAT3 or P38 inhibition provides a promising strategy for overcoming microenvironment-mediated resistance. Conversely, pharmacologic AKT inhibition induces an antagonistic effect that relieves a cMET and STAT3-mediated compensatory feedback that might explain the failure of AKT inhibitors in the clinic so far.
Collapse
|
21
|
Norrin protects optic nerve axons from degeneration in a mouse model of glaucoma. Sci Rep 2017; 7:14274. [PMID: 29079753 PMCID: PMC5660254 DOI: 10.1038/s41598-017-14423-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/10/2017] [Indexed: 11/25/2022] Open
Abstract
Norrin is a secreted signaling molecule activating the Wnt/β-catenin pathway. Since Norrin protects retinal neurons from experimental acute injury, we were interested to learn if Norrin attenuates chronic damage of retinal ganglion cells (RGC) and their axons in a mouse model of glaucoma. Transgenic mice overexpressing Norrin in the retina (Pax6-Norrin) were generated and crossed with DBA/2J mice with hereditary glaucoma and optic nerve axonal degeneration. One-year old DBA/2J/Pax6-Norrin animals had significantly more surviving optic nerve axons than their DBA/2J littermates. The protective effect correlated with an increase in insulin-like growth factor (IGF)-1 mRNA and an enhanced Akt phosphorylation in DBA/2J/Pax6-Norrin mice. Both mouse strains developed an increase in intraocular pressure during the second half of the first year and marked degenerative changes in chamber angle, ciliary body and iris structure. The degenerations were slightly attenuated in the chamber angle of DBA/2J/Pax6-Norrin mice, which showed a β-catenin increase in the trabecular meshwork. We conclude that high levels of Norrin and the subsequent constitutive activation of Wnt/β-catenin signaling in RGC protect from glaucomatous axonal damage via IGF-1 causing increased activity of PI3K-Akt signaling. Our results identify components of a protective signaling network preventing degeneration of optic nerve axons in glaucoma.
Collapse
|
22
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
23
|
Yan F, Wang H, Gao Y, Xu J, Zheng W. Artemisinin Protects Retinal Neuronal Cells against Oxidative Stress and Restores Rat Retinal Physiological Function from Light Exposed Damage. ACS Chem Neurosci 2017; 8:1713-1723. [PMID: 28447781 DOI: 10.1021/acschemneuro.7b00021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays a key role in the pathogenesis of age-related macular degeneration (AMD), a leading cause of severe visual loss and blindness in the aging population which lacks any effective treatments currently. In this study, artemisinin, a well-known antimalarial drug was found to suppress hydrogen peroxide (H2O2)-induced cell death in retinal neuronal RGC-5 cells. Artemisinin, in the therapeutically relevant dosage, concentration-dependently attenuated the accumulation of intracellular reactive oxygen species (ROS), increased mitochondrial membrane potential and decreased cell apoptosis in RGC-5 cells induced by H2O2. Western blot analysis showed that artemisinin upregulated the phosphorylation of p38 and extracellular signal-regulated kinases1/2 (ERK1/2) and reversed the inhibitory effect of H2O2 on the phosphorylation of these two kinases. Moreover, protective effect of artemisinin was blocked by the p38 kinase inhibitor PD169316 or ERK1/2 kinase pathway inhibitor PD98059, respectively. In contrast, c-Jun N-terminal kinase inhibitor and rapamycin had no effect in the protective effect of artemisinin. Taken together, these results demonstrated that artemisinin promoted the survival of RGC-5 cells from H2O2 toxicity via the activation of the p38 and ERK1/2 pathways. Interestingly, intravitreous injection of artimisinin, concentration-dependently reversed light exposed-damage (a dry AMD animal model) of rat retinal physiological function detected by flash electroretinogram. These results indicate that artemisinin can protect retinal neuronal functions from H2O2-induced damage in vitro and in vivo and suggest the potential application of artemisinin as a new drug in the treatment of retinal disorders like AMD.
Collapse
Affiliation(s)
- Fengxia Yan
- Faculty
of Health Sciences, University of Macau, Taipa, Macau 999078, China
- The
First Affiliated Hospital and Neuroparmacology, School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haitao Wang
- Faculty
of Health Sciences, University of Macau, Taipa, Macau 999078, China
- School
of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yang Gao
- Zhongshan
Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiangping Xu
- School
of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty
of Health Sciences, University of Macau, Taipa, Macau 999078, China
- The
First Affiliated Hospital and Neuroparmacology, School of Pharmaceutical
Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Hu M, Liu Z, Lv P, Wang H, Zhu Y, Qi Q, Xu J, Gao L. Nimodipine activates neuroprotective signaling events and inactivates autophages in the VCID rat hippocampus. Neurol Res 2017; 39:904-909. [PMID: 28782464 DOI: 10.1080/01616412.2017.1356157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Autophagy and phosphatidylinositol 3-kinase (PI3K)/Akt kinase pathways are implicated in cognitive decline associated with cerebrovascular lesions. This decline is reflected in the concept of vascular cognitive impairment and dementia (VCID). However, the underlying molecular mechanism and specific details regarding these types of cognitive deficits induced by chronic brain hypoperfusion have not been elucidated. METHODS We designed a method to evaluate these mechanisms. Adult male Sprague-Dawley rats were subjected to permanent bilateral occlusion of the common carotid artery (2VO) and randomly divided into three groups: Sham, Vehicle (2VO), and Nimodipine10 (2VO + nimodipine 10 mg/kg). Each group was studied for 4 weeks postoperatively and assessed by the Morris water maze. RESULTS The results of this study show that chronic brain hypoperfusion significantly increased the number of autophagic vacuoles with high LC3 II levels, but it decreased p-Akt and p-CREB levels, which were involved in the PI3K/Akt kinase pathway in the hippocampi of rats. Additionally, significant cognitive losses were observed following 2VO. Further analysis showed that, in VCID rats subjected to 2VO, nimodipine administration decreased autophagy, increased the Akt/CREB signaling pathway and significantly reduced brain damage. CONCLUSIONS We concluded that neuronal pathology and activation of the autophagic and Akt/CREB signaling pathway caused by chronic brain hypoperfusion could suppress cognitive behavior, which may provide a novel way for the prevention of VCID. The results of this study indicate that nimodipine protected the brain from chronic brain hypoperfusion damage by suppressing autophagy and activating the Akt/CREB signaling pathway.
Collapse
Affiliation(s)
- Ming Hu
- a Department of Neurology , Hebei General Hospital , Shijiazhuang , People's Republic of China
| | - Zhijuan Liu
- a Department of Neurology , Hebei General Hospital , Shijiazhuang , People's Republic of China
| | - Peiyuan Lv
- a Department of Neurology , Hebei General Hospital , Shijiazhuang , People's Republic of China
| | - Hebo Wang
- a Department of Neurology , Hebei General Hospital , Shijiazhuang , People's Republic of China
| | - Yifei Zhu
- b Department of Neurology , the Second Hospital of Hebei Medical University , Shijiazhuang , People's Republic of China
| | - Qianqian Qi
- a Department of Neurology , Hebei General Hospital , Shijiazhuang , People's Republic of China
| | - Jing Xu
- a Department of Neurology , Hebei General Hospital , Shijiazhuang , People's Republic of China
| | - Lei Gao
- c Department of Ultrasonography , the First Central Hospital of Baoding , Baoding , People's Republic of China
| |
Collapse
|
25
|
Farzampour S, Majdi A, Sadigh-Eteghad S. Intranasal insulin treatment improves memory and learning in a rat amyloid-beta model of Alzheimer's disease. Physiol Int 2017; 103:344-353. [PMID: 28229638 DOI: 10.1556/2060.103.2016.3.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, insulin has been used as a pro-cognitive agent for the potential treatment of Alzheimer's disease (AD), because of its ability to cross the brain-blood barrier (BBB) by a saturable transport system. This study has been designed to evaluate the effects of intranasal insulin regimen, as a bypass system of BBB, on spatial memory in amyloid-beta (Aβ) model of AD in rat. Unilateral infusion of Aβ25-35 (10 nmol/2 µl/rat) into the lateral ventricular region of brain was used to produce a rat model of AD. After a 24-h recovery period, rats received insulin or vehicle via intraperitoneal or intranasal route (0.1, 0.2, and 0.3 IU) for 14 days. Memory function in rats was assessed by Morris water maze test, with 5 days of training and consequent probe test protocol. Different doses of intraperitoneal insulin did not have a significant effect on learning and memory in AD rats. However, intranasal insulin at doses of 0.2 and 0.3 IU improved the learning and memory in Aβ-received rats. In conclusion, intranasal insulin as a non-invasive strategy improves spatial learning and memory in AD model.
Collapse
Affiliation(s)
- S Farzampour
- 1 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz, Iran
| | - A Majdi
- 1 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz, Iran
| | - S Sadigh-Eteghad
- 1 Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
26
|
Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, Chiu PL, Chen YS, Chen RJ, Huang CY, Lin CC. Alpinia oxyphylla Miq. fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:184. [PMID: 28359314 PMCID: PMC5374583 DOI: 10.1186/s12906-017-1695-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/17/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND It is known that the medicinal herb Alpinia oxyphylla Miq. is widely used as a remedy for diarrhea as well as the symptoms accompanying hypertension and cerebrovascular disorders. Moreover, it has also been reported that Alpinia oxyphylla Miq. has beneficial effects on anti-senescence and neuro-protection. This study focuses on the molecular mechanisms by which the Alpinia oxyphylla Miq. fruits promote neuron regeneration. METHODS A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with various doses of Alpinia oxyphylla Miq. fruits to assess their regenerative effect on damaged nerves. Further, we investigated the role of Alpinia oxyphylla Miq. fruits in RSC96 Schwann cell proliferation. RESULTS Our current results showed that treatment with the extract of Alpinia oxyphylla Miq. fruits triggers the phosphorylated insulin-like growth factor-1 receptor- phosphatidylinositol 3-kinase/serine-threonine kinase pathway, and up-regulated the proliferating cell nuclear antigen in a dose-dependent manner. Cell cycle analysis on RSC96 Schwann cells showed that, after exposure to Alpinia oxyphylla Miq. fruit extract, the transition from the first gap phase to the synthesis phase occurs in 12-18 h. The expression of the cell cycle regulatory proteins cyclin D1, cyclin E and cyclin A increased in a dose-dependent manner. Transfection with a small interfering RNA blocked the expression of phosphatidylinositol 3-kinase and induced down-regulation both on the mRNA and protein levels, which resulted in a reduction of the expression of the survival factor B-cell lymphoma 2. CONCLUSION We provide positive results that demonstrate that Alpinia oxyphylla Miq. fruits facilitate the survival and proliferation of RSC96 cells via insulin-like growth factor-1 signaling.
Collapse
|
27
|
Lv LJ, Li J, Qiao HB, Nie BJ, Lu P, Xue F, Zhang ZM. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage. Mol Med Rep 2017; 15:1368-1372. [PMID: 28098881 DOI: 10.3892/mmr.2017.6126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
Glucose‑regulated protein 75 (GRP75) is a member of the heat shock protein 70 family and previous studies have demonstrated that GRP75 is involved in diseases of the central nervous system. However, the biological function of GRP75 in intracerebral hemorrhage (ICH) remains to be clarified. Thus, the aim of the present study was to evaluate the effects of GRP75 in a rat model of ICH. Western blotting was used to detect the protein expression of GRP75, active caspase‑3, Bax, Bcl‑2, p‑Akt and Akt in brain tissues following ICH. The levels of tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β were evaluated using ELISA assay. Expression of GRP75 mRNA and protein was demonstrated to be reduced in the brain tissues of rats with ICH compared with sham‑operated rats. In addition, overexpression of GRP75 in brain tissues with ICH significantly inhibited the production of the inflammatory cytokines TNF‑α and IL-1β and increased Bcl‑2/decreased Bax levels compared with ICH alone. Furthermore, overexpression of GRP75 in brain tissues with ICH resulted in significantly increased phosphorylation of Akt compared with ICH alone. Therefore, the present study demonstrated, for the first time to the best of our knowledge, significantly reduced GRP75 expression in brain tissues following ICH, and that overexpression of GRP75 inhibits inflammation and potentially inhibits neuronal apoptosis in a rat model of ICH. GRP75 may, therefore, represent a promising target in the treatment of ICH.
Collapse
Affiliation(s)
- Lian-Jie Lv
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jia Li
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Hai-Bo Qiao
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Ben-Jin Nie
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Peng Lu
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Feng Xue
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhi-Ming Zhang
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
28
|
Chen S, Liu Y, Rong X, Li Y, Zhou J, Lu L. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish. Front Endocrinol (Lausanne) 2017; 8:21. [PMID: 28228749 PMCID: PMC5296330 DOI: 10.3389/fendo.2017.00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Neuronal survival and growth in the embryo is controlled partly by trophic factors. For most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. This study presents data illustrating the role of PI3K/Akt in attainment of normal brain size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a significant reduction in brain size (in addition to global growth retardation) during zebrafish embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt was found to protect neuronal cells from apoptosis induced by heat shock and UV light, suggesting that inhibition of neuronal cell death may be part of the underlying cause of the increased brain size. These data provide a foundation for addressing the role of PI3K/Akt in brain growth during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- *Correspondence: Ling Lu,
| |
Collapse
|
29
|
Zhong J. RAS and downstream RAF-MEK and PI3K-AKT signaling in neuronal development, function and dysfunction. Biol Chem 2016; 397:215-22. [PMID: 26760308 DOI: 10.1515/hsz-2015-0270] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
In postmitotic neurons, the activation of RAS family small GTPases regulates survival, growth and differentiation. Dysregulation of RAS or its major effector pathway, the cascade of RAF-, mitogen-activated and extracellular-signal regulated kinase kinases (MEK), and extracellular-signal regulated kinases (ERK) causes the RASopathies, a group of neurodevelopmental disorders whose pathogenic mechanisms are the subject of intense research. I here summarize the functions of RAS-RAF-MEK-ERK signaling in neurons in vivo, and discuss perspectives for harnessing this pathway to enable novel treatments for nervous system injury, the RASopathies, and possibly other neurological conditions.
Collapse
|
30
|
Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, Hu X, Luo Z. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS One 2016; 11:e0162784. [PMID: 27611779 PMCID: PMC5017744 DOI: 10.1371/journal.pone.0162784] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation (ES)-triggered up-regulation of brain-derived neurotrophic factor (BDNF) and neurite outgrowth in cultured rat postnatal dorsal root ganglion neurons (DRGNs) is calcium (Ca2+)-dependent. The effects of increased Ca2+ on BDNF up-regulation and neurite outgrowth remain unclear. We showed here that ES increased phosphorylation of the cAMP-response element binding protein (CREB). Blockade of Ca2+ suppressed CREB phosphorylation and neurite outgrowth. Down-regulation of phosphorylated (p)-CREB reduced BDNF transcription and neurite outgrowth triggered by ES. Furthermore, blockade of calmodulin-dependent protein kinase II (CaMKII) using the inhibitors KN93 or KN62 reduced p-CREB, and specific knockdown of the CaMKIIα or CaMKIIβ subunit was sufficient to suppress p-CREB. Recombinant BDNF or hyperforin reversed the effects of Ca2+ blockade and CaMKII knockdown. Taken together, these data establish a potential signaling pathway of Ca2+-CaMKII-CREB in neuronal activation. To our knowledge, this is the first report of the mechanisms of Ca2+-dependent BDNF transcription and neurite outgrowth triggered by ES. These findings might help further investigation of complex molecular signaling networks in ES-triggered nerve regeneration in vivo.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Zhengxu Ye
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fei He
- Department of Hereditary and Development, Basic Unit, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Xiao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xueyu Hu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- * E-mail: (ZL); (XH)
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- * E-mail: (ZL); (XH)
| |
Collapse
|
31
|
Kong D, Gong L, Arnold E, Shanmugam S, Fort PE, Gardner TW, Abcouwer SF. Insulin-like growth factor 1 rescues R28 retinal neurons from apoptotic death through ERK-mediated BimEL phosphorylation independent of Akt. Exp Eye Res 2016; 151:82-95. [PMID: 27511131 DOI: 10.1016/j.exer.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response.
Collapse
Affiliation(s)
- Dejuan Kong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Lijie Gong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Edith Arnold
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States.
| |
Collapse
|
32
|
Ayadi AE, Zigmond MJ, Smith AD. IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases. Exp Brain Res 2016; 234:1863-1873. [PMID: 26894890 DOI: 10.1007/s00221-016-4572-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/25/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is an endogenous peptide transported across the blood brain barrier that is protective in several brain injury models, including an acute animal model of Parkinson's disease (PD). Motor deficits in PD are due largely to the progressive loss of nigrostriatal dopaminergic neurons. Thus, we examined the neuroprotective potential of IGF-1 in a progressive model of dopamine deficiency in which 6-hydroxydopamine (6-OHDA) is infused into the striatum. Rats received intrastriatal IGF-1 (5 or 50 µg) 6 h prior to infusion of 4 µg 6-OHDA into the same site and were euthanized 1 or 4 weeks later. Both concentrations of IGF-1 protected tyrosine hydroxylase (TH) immunoreactive terminals in striatum at 4 weeks but not at 1 week, indicating that IGF-induced restoration of the dopaminergic phenotype occurred over several weeks. TH-immunoreactive cell loss was only attenuated with 50 µg IGF-1. We then examined the effect of striatal IGF-1 on the Ras/ERK1/2 and PI3K/Akt pathways to ascertain whether their activation correlated with IGF-1-induced protection. Striatal and nigral levels of phospho-ERK1/2 were maximal 6 h after IGF-1 infusion and, with the exception of an increase in nigral pERK2 at 48 h, returned to basal levels by 7 days. Phospho-Akt (Ser473) was elevated 6-24 h post-IGF-1 infusion in both striatum and substantia nigra concomitant with inhibition of pro-death GSK-3β, a downstream target of Akt. These results suggest that IGF-1 can protect the nigrostriatal pathway in a progressive PD model and that this protection is preceded by activation of key pro-survival signaling cascades.
Collapse
Affiliation(s)
- Amina El Ayadi
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh, 3501 Fifth Avenue, 7026 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Michael J Zigmond
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh, 3501 Fifth Avenue, 7026 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA
| | - Amanda D Smith
- Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh, 3501 Fifth Avenue, 7026 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA.
- VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
McGinley LM, Sims E, Lunn JS, Kashlan ON, Chen KS, Bruno ES, Pacut CM, Hazel T, Johe K, Sakowski SA, Feldman EL. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease. Stem Cells Transl Med 2016; 5:379-91. [PMID: 26744412 PMCID: PMC4807660 DOI: 10.5966/sctm.2015-0103] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erika Sims
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S Bruno
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Crystal M Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tom Hazel
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Karl Johe
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Hu A, Yuan H, Wu L, Chen R, Chen Q, Zhang T, Wang Z, Liu P, Zhu X. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice. Brain Res 2016; 1631:204-13. [DOI: 10.1016/j.brainres.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022]
|
35
|
Xiang Q, Zhang J, Li CY, Wang Y, Zeng MJ, Cai ZX, Tian RB, Jia W, Li XH. Insulin resistance-induced hyperglycemia decreased the activation of Akt/CREB in hippocampus neurons: Molecular evidence for mechanism of diabetes-induced cognitive dysfunction. Neuropeptides 2015; 54:9-15. [PMID: 26344332 DOI: 10.1016/j.npep.2015.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Several previous studies have indicated that diabetic have higher risk of suffering from Alzheimer's disease, which severely induced cognitive dysfunction. However, the underlying molecular mechanism and more details on the cognitive deficits induced by hyperglycemia have not been elucidated. Here in our present study, on the basis of Goto-Kakizaki (GK) rats and streptozotocin (STZ)-induced diabetic model, we detected the variation of dendritic spine density in hippocampus as well as the differential expression of some important signal transduction molecules that were of relevance in learning and memory function. We found that the magnitude of escape latency time was significantly increased in such diabetic animals; the phosphorylated Akt/CREB; SYP and BDNF as well as other downstream molecules in hippocampus neurons were also downregulated in both diabetic groups compared to the normal groups. Thus, all of these data indicate the obstacle of neuronal pathology and the Akt/CREB signaling pathway caused by hyperglycemia that may suppress cognitive behavior, which may provide a novel way for the prevention of diabetic encephalopathy and the cognitive deficits of Alzheimer's disease.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Jie Zhang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Chun-Yan Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Yan Wang
- Pharmacy of Department, First People's Hospital of Foshan, Guangdong, China
| | - Mao-Jun Zeng
- College of Medicine, Jishou University, Hunan, China
| | - Zhi-Xin Cai
- College of Medicine, Jishou University, Hunan, China
| | - Rong-Bo Tian
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Wei Jia
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Xian-Hui Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China.
| |
Collapse
|
36
|
Chuang JI, Huang JY, Tsai SJ, Sun HS, Yang SH, Chuang PC, Huang BM, Ching CH. FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic Biol Med 2015; 89:274-86. [PMID: 26424114 DOI: 10.1016/j.freeradbiomed.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023]
Abstract
Our previous studies demonstrated that fibroblast growth factor 9 (FGF9) protects cortical and dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP(+))-induced oxidative insult by upregulation of γ-glutamylcysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1). However, the mechanisms responsible for FGF9-induced γ-GCS and HO-1 upregulation remain uncharacterized. In the present study, we demonstrate the signaling pathways by which FGF9 upregulates HO-1 and γ-GCS expression. We found that FGF9-induced HO-1 and γ-GCS expression was prevented by PD173014, an inhibitor of the FGF receptor (FGFR). FGF9 treatment induced the phosphorylation of FGFR downstream signals of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT in a dose- and time-dependent manner. The inhibition of MEK/ERK1/2 or PI3K/AKT activity by U0126 or wortmannin, but not the inhibition of phospholipase Cγ by U73122, prevented FGF9-induced γ-GCS and HO-1 upregulation, changes in cellular redox status, and neuroprotection against MPP(+) toxicity in primary cortical and dopaminergic neurons. Furthermore, FGF9 treatment enhanced the promoter activity of the cAMP-response element binding protein (CREB) and nuclear factor erythroid-derived 2-like 2 (Nrf2), and this phenomenon was blocked by PD173014 or U0126 or wortmannin. Knockdown of CREB and Nrf2 by shRNA blocked FGF9-induced γ-GCS and HO-1 upregulation, but not ERK and AKT phosphorylation. An in vivo study consistently showed that FGF9 overexpression using a lentivirus delivery system induced ERK1/2 phosphorylation and HO-1 upregulation and protected dopaminergic neurons against MPP(+) toxicity in rat substantia nigra. These results indicate that FGF9-induced HO-1 and γ-GCS upregulation is mediated by binding to FGFR and activation of two parallel downstream signaling pathways, ERK and AKT, which reconverge to induce CREB and Nrf2 transcriptional activity.
Collapse
Affiliation(s)
- Jih-Ing Chuang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jui-Yen Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - H Sunny Sun
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Insititute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Hsin Ching
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
37
|
Rosiglitazone improves learning and memory ability in rats with type 2 diabetes through the insulin signaling pathway. Am J Med Sci 2015; 350:121-8. [PMID: 25973687 DOI: 10.1097/maj.0000000000000499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) is associated with moderate cognitive deficits and neurophysiologic and structural changes in the brain, a condition that is referred to as diabetic encephalopathy. This study was performed to investigate the effect of rosiglitazone (RSG) on learning and memory in rats with DM and elucidate possible mechanisms underlying this condition. Thirty-two male Sprague-Dawley rats were randomly divided into 4 groups: control (C, n = 8), DM (n = 8), RSG-administered control (C + RSG, n = 8) and RSG-administered DM groups (DM + RSG, n = 8). At 8 weeks after drug administration, Morris water maze was used to perform a training and probe trial to detect spatial learning and memory abilities. Western blot and immunohistochemistry were also used to detect changes in proteins involved in the insulin signal transduction pathway, such as the insulin receptor, insulin receptor substrate-1, protein kinase B, phosphorylated cAMP response element-binding protein and B-cell lymphoma 2, in the hippocampus of the rats. This study found that RSG could normalize the impaired insulin signal transduction in type 2 DM. The authors showed that RSG modulated the central insulin signaling axis.
Collapse
|
38
|
Das SK, Barhwal K, Hota SK, Thakur MK, Srivastava RB. Disrupting monotony during social isolation stress prevents early development of anxiety and depression like traits in male rats. BMC Neurosci 2015; 16:2. [PMID: 25880744 PMCID: PMC4336522 DOI: 10.1186/s12868-015-0141-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023] Open
Abstract
Background Although there have been several reports on social isolation induced mood alterations, the independent contribution of monotonous environment in mediating mood alterations has been less studied. In view of the above, the present study is aimed at investigating the relative contribution of monotony towards mood alterations during isolation stress. Monotony was induced in a specially designed isolation chamber in male Sprague-Dawley rats in the presence or absence of isolation by housing animals singly (SH) or in pairs (PH). Novel objects were introduced to disrupt monotony in singly housed animals (SHNO) or paired housed animals (PHNO). Behavioural alterations were assessed using Open field test (OFT), Elevated Plus Maze (EPM) and Forced Swim Test (FST). Neuro-morphological changes in the CA3 region of hippocampus were studied by cresyl violet and golgi-cox staining. Hippocampal serotonin and 5-hydroxy indole acetic acid (5-HIAA) levels were estimated along with the expression of phospho-insulin like growth factor-1 receptor (pIGF-1R) and phospho cyclic AMP response-element binding protein (pCREB). Serotonin was depleted by administering Para-chlorophenylalanine (PCPA) to a separate PH group (PHPCPA), PHNO group (PHNOPCPA) and SHNO group (SHNOPCPA) to determine the role of serotonin in mediating monotony induced emotional mal-adaptations. Results The results showed anxiety and depression like traits in both PH and SH groups during behavioural test such as OFT, EPM and FST. Pyknosis along with decrease in apical dendritic arborization was observed in the CA3 region of SH group along with decrease in serotonin and reduced expression of pIGF-1R and pCREB. Disrupting monotony through intervention of novel objects in PHNO and SHNO groups ameliorated anxiety and depression like traits and augmented pIGF-1R along with increase in serotonin level. Depletion of hippocampal serotonin level by PCPA administration in PHNOPCPA and SHNOPCPA groups on the other hand resulted in altered mood state despite disruption of monotony by novel objects intervention. Conclusion The findings of our study suggest that monotonous environment independently contributes to impairment in mood state and disrupting monotony by intervention of novel objects during social isolation prevents mood disorders and emotional maladaptation through up regulation of hippocampal pIGF-1R and increase in serotonin.
Collapse
Affiliation(s)
- Saroj Kumar Das
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | - Kalpana Barhwal
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | - Sunil Kumar Hota
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| | | | - Ravi Bihari Srivastava
- Experimental Biology Division, Defence Institute of High Altitude Research, Defence Research Development Organisation, Leh-Ladakh, C/O- 56 APO, Jammu and Kashmir, 901205, India.
| |
Collapse
|
39
|
Wang R, Yang J, Peng L, Zhao J, Mu N, Huang J, Lazarovici P, Chen H, Zheng W. Gardenamide A attenuated cell apoptosis induced by serum deprivation insult via the ERK1/2 and PI3K/AKT signaling pathways. Neuroscience 2015; 286:242-50. [DOI: 10.1016/j.neuroscience.2014.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/13/2014] [Accepted: 11/27/2014] [Indexed: 11/24/2022]
|
40
|
Rao YK, Shih HN, Lee YC, Cheng WT, Hung HC, Wang HC, Chen CJ, Tzeng YM, Lee MJ. Purification of kavalactones from Alpinia zerumbet and their protective actions against hydrogen peroxide-induced cytotoxicity in PC12 cells. J Biosci Bioeng 2014; 118:679-88. [DOI: 10.1016/j.jbiosc.2014.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|
41
|
Hamid HS, Mervak CM, Münch AE, Robell NJ, Hayes JM, Porzio MT, Singleton JR, Smith AG, Feldman EL, Lentz SI. Hyperglycemia- and neuropathy-induced changes in mitochondria within sensory nerves. Ann Clin Transl Neurol 2014; 1:799-812. [PMID: 25493271 PMCID: PMC4241807 DOI: 10.1002/acn3.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 02/04/2023] Open
Abstract
Objective This study focused on altered mitochondrial dynamics as a potential mechanism for diabetic peripheral neuropathy (DPN). We employed both an in vitro sensory neuron model and an in situ analysis of human intraepidermal nerve fibers (IENFs) from cutaneous biopsies to measure alterations in the size distribution of mitochondria as a result of hyperglycemia and diabetes, respectively. Methods Neurite- and nerve-specific mitochondrial signals within cultured rodent sensory neurons and human IENFs were measured by employing a three-dimensional visualization and quantification technique. Skin biopsies from distal thigh (DT) and distal leg (DL) were analyzed from three groups of patients; patients with diabetes and no DPN, patients with diabetes and confirmed DPN, and healthy controls. Results This analysis demonstrated an increase in mitochondria distributed within the neurites of cultured sensory neurons exposed to hyperglycemic conditions. Similar changes were observed within IENFs of the DT in DPN patients compared to controls. This change was represented by a significant shift in the size frequency distribution of mitochondria toward larger mitochondria volumes within DT nerves of DPN patients. There was a length-dependent difference in mitochondria within IENFs. Distal leg IENFs from control patients had a significant shift toward larger volumes of mitochondrial signal compared to DT IENFs. Interpretation The results of this study support the hypothesis that altered mitochondrial dynamics may contribute to DPN pathogenesis. Future studies will examine the potential mechanisms that are responsible for mitochondrial changes within IENFs and its effect on DPN pathogenesis.
Collapse
Affiliation(s)
- Hussein S Hamid
- University of Michigan Medical School, University of Michigan Ann Arbor, Michigan, 48109
| | - Colin M Mervak
- Department of Neurology, University of Michigan Ann Arbor, Michigan, 48109
| | - Alexandra E Münch
- Division on Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor, Michigan, 48105
| | - Nicholas J Robell
- Department of Neurology, University of Michigan Ann Arbor, Michigan, 48109
| | - John M Hayes
- Department of Neurology, University of Michigan Ann Arbor, Michigan, 48109
| | - Michael T Porzio
- Department of Neurology, University of Utah School of Medicine Salt Lake City, Utah, 84132
| | - J Robinson Singleton
- Department of Neurology, University of Utah School of Medicine Salt Lake City, Utah, 84132
| | - A Gordon Smith
- Department of Neurology, University of Utah School of Medicine Salt Lake City, Utah, 84132
| | - Eva L Feldman
- Department of Neurology, University of Michigan Ann Arbor, Michigan, 48109
| | - Stephen I Lentz
- Division on Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor, Michigan, 48105
| |
Collapse
|
42
|
Kuang H, Sun M, Lv J, Li J, Wu C, Chen N, Bo L, Wei X, Gu X, Liu Z, Mao C, Xu Z. Hippocampal apoptosis involved in learning deficits in the offspring exposed to maternal high sucrose diets. J Nutr Biochem 2014; 25:985-90. [DOI: 10.1016/j.jnutbio.2014.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/28/2014] [Accepted: 04/26/2014] [Indexed: 01/24/2023]
|
43
|
Sun LJ, Hou XH, Xue SH, Yan F, Dai YJ, Zhao CH, Wang F, Yang RH. Fish oil modulates glycogen synthase kinase-3 signaling pathway in diabetes-induced hippocampal neurons apoptosis. Brain Res 2014; 1574:37-49. [DOI: 10.1016/j.brainres.2014.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/06/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
44
|
Yang RH, Lin J, Hou XH, Cao R, Yu F, Liu HQ, Ji AL, Xu XN, Zhang L, Wang F. Effect of docosahexaenoic acid on hippocampal neurons in high-glucose condition: involvement of PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience 2014; 274:218-28. [PMID: 24881575 DOI: 10.1016/j.neuroscience.2014.05.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/01/2022]
Abstract
Accumulating evidence suggested that hyperglycemia played a critical role in hippocampus dysfunction in patients with diabetes mellitus. However, the multifactorial pathogenesis of hyperglycemia-induced impairments of hippocampal neurons has not been fully elucidated. Docosahexaenoic acid (DHA) has been shown to enhance learning and memory and affect neural function in various experimental conditions. The present study investigated the effects of DHA on the lipid peroxidation, the level of inflammatory cytokines and neuron apoptosis in the hippocampal neurons in high-glucose condition. High-glucose administration increased the level of tumor necrosis factor α (TNF-α) and IL-6, induced oxidative stress and apoptosis of hippocampal neurons in vitro. DHA treatment reduced oxidative stress and TNF-α expression, protected the hippocampal neurons by increasing AKT phosphorylation and decreasing caspase-3 and caspase-9 expression. These results suggested that high-glucose exposure induced injury of hippocampal neurons in vitro, and the principle mechanisms involved in the neuroprotective effect of DHA were its antioxidant and anti-apoptotic potential. DHA may thus be of use in preventing or treating neuron-degeneration resulting from hyperglycemia.
Collapse
Affiliation(s)
- R-H Yang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - J Lin
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - X-H Hou
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - R Cao
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - F Yu
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - H-Q Liu
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - A-L Ji
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - X-N Xu
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - L Zhang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China
| | - F Wang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
45
|
Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil 2014; 26:611-24. [PMID: 24661628 PMCID: PMC4104990 DOI: 10.1111/nmo.12330] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastrointestinal manifestations of diabetes are common and a source of significant discomfort and disability. Diabetes affects almost every part of gastrointestinal tract from the esophagus to the rectum and causes a variety of symptoms including heartburn, nausea, vomiting, abdominal pain, diarrhea and constipation. Understanding the underlying mechanisms of diabetic gastroenteropathy is important to guide development of therapies for this common problem. Over recent years, the data regarding the pathophysiology of diabetic gastroenteropathy is expanding. In addition to autonomic neuropathy causing gastrointestinal disturbances the role of enteric nervous system is becoming more evident. PURPOSE In this review, we summarize the reported alterations in enteric nervous system including enteric neurons, interstitial cells of Cajal and neurotransmission in diabetic animal models and patients. We also review the possible underlying mechanisms of these alterations, with focus on oxidative stress, growth factors and diabetes induced changes in gastrointestinal smooth muscle. Finally, we will discuss recent advances and potential areas for future research related to diabetes and the ENS such as gut microbiota, micro-RNAs and changes in the microvasculature and endothelial dysfunction.
Collapse
Affiliation(s)
- S. S. Yarandi
- Division of Digestive Diseases; Emory University; Atlanta GA
- Atlanta VA Medical Center; Decatur Georgia USA
| | - S. Srinivasan
- Division of Digestive Diseases; Emory University; Atlanta GA
- Atlanta VA Medical Center; Decatur Georgia USA
| |
Collapse
|
46
|
Krieger F, Elflein N, Saenger S, Wirthgen E, Rak K, Frantz S, Hoeflich A, Toyka KV, Metzger F, Jablonka S. Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1. Brain 2014; 137:1374-93. [DOI: 10.1093/brain/awu059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol 2014; 118:1-18. [PMID: 24582776 DOI: 10.1016/j.pneurobio.2014.02.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/09/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Insulin and Insulin Growth Factor-1 (IGF-1) play a major role in body homeostasis and glucose regulation. They also have paracrine/autocrine functions in the brain. The Insulin/IGF-1 signaling pathway contributes to the control of neuronal excitability, nerve cell metabolism and cell survival. Glucagon like peptide-1 (GLP-1), known as an insulinotropic hormone has similar functions and growth like properties as insulin/IGF-1. Growing evidence suggests that dysfunction of these pathways contribute to the progressive loss of neurons in Alzheimer's disease (AD) and Parkinson's disease (PD), the two most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting insulin/IGF-1 and GLP-1 signaling with currently available anti-diabetics. These studies have shown that administration of insulin, IGF-1 and GLP-1 agonists reverses signaling abnormalities and has positive effects on surrogate markers of neurodegeneration and behavioral outcomes. Several proof-of-concept studies are underway that attempt to translate the encouraging preclinical results to patients suffering from AD and PD. In the first part of this review, we discuss physiological functions of insulin/IGF-1 and GLP-1 signaling pathways including downstream targets and receptors distribution within the brain. In the second part, we undertake a comprehensive overview of preclinical studies targeting insulin/IGF-1 or GLP-1 signaling for treating AD and PD. We then detail the design of clinical trials that have used anti-diabetics for treating AD and PD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into treatments for patients with AD and PD.
Collapse
|
48
|
Chen JH, Lee DC, Chiu IM. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells. Arch Toxicol 2013; 88:769-80. [PMID: 24318646 DOI: 10.1007/s00204-013-1174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 12/26/2022]
Abstract
Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.
Collapse
Affiliation(s)
- Jong-Hang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35, Keyan Rd, Miaoli, 350, Taiwan
| | | | | |
Collapse
|
49
|
Jia D, Heng LJ, Yang RH, Gao GD. Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience 2013; 258:228-37. [PMID: 24252320 DOI: 10.1016/j.neuroscience.2013.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 11/07/2013] [Indexed: 01/15/2023]
Abstract
Previous research has demonstrated that diabetes induces learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids, have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. The present study investigated the effects of fish oil supplementation on the lipid peroxidation, inflammation and neuron apoptosis in the hippocampus of streptozotocin (STZ)-induced diabetes rats. The effects of diabetes and fish oil treatment on the spatial learning and memory were also evaluated using the Morris Water Maze. STZ-induced diabetes impaired spatial learning and memory of rats, which was associated with the inflammation, oxidative stress and apoptosis of hippocampal neurons. Fish oil administration ameliorated cognitive deficit, reduced oxidative stress and tumor necrosis factor α (TNF-α), protected the hippocampal neurons by increasing Protein Kinase B (AKT) phosphorylation and decreasing caspase-9 expression. These results suggested that the principle mechanisms involved in the antidiabetic and neuroprotective effect of fish oil were its antioxidant, anti-inflammatory and anti-apoptosis potential, supporting a potential role for fish oil as an adjuvant therapy for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- D Jia
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - L-J Heng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - R-H Yang
- Department of Nutrition and Food Hygiene, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi'an 710032, PR China.
| | - G-D Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China.
| |
Collapse
|
50
|
Gonzalo-Gobernado R, Calatrava-Ferreras L, Reimers D, Herranz AS, Rodríguez-Serrano M, Miranda C, Jiménez-Escrig A, Díaz-Gil JJ, Bazán E. Neuroprotective activity of peripherally administered liver growth factor in a rat model of Parkinson's disease. PLoS One 2013; 8:e67771. [PMID: 23861803 PMCID: PMC3701531 DOI: 10.1371/journal.pone.0067771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Liver growth factor (LGF) is a hepatic mitogen purified some years ago that promotes proliferation of different cell types and the regeneration of damaged tissues, including brain tissue. Considering the possibility that LGF could be used as a therapeutic agent in Parkinson’s disease, we analyzed its potential neuroregenerative and/or neuroprotective activity when peripherally administered to unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. For these studies, rats subjected to nigrostriatal lesions were treated intraperitoneally twice a week with LGF (5 microg/rat) for 3 weeks. Animals were sacrificed 4 weeks after the last LGF treatment. The results show that LGF stimulates sprouting of tyrosine hydroxylase-positive terminals and increases tyrosine hydroxylase and dopamine transporter expression, as well as dopamine levels in the denervated striatum of 6-OHDA-lesioned rats. In this structure, LGF activates microglia and raises tumor necrosis factor-alpha protein levels, which have been reported to have a role in neuroregeneration and neuroprotection. Besides, LGF stimulates the phosphorylation of MAPK/ERK1/2 and CREB, and regulates the expression of proteins which are critical for cell survival such as Bcl2 and Akt. Because LGF partially protects dopamine neurons from 6-OHDA neurotoxicity in the substantia nigra, and reduces motor deficits in these animals, we propose LGF as a novel factor that may be useful in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
| | | | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Antonio Sánchez Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Cristina Miranda
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | - Juan José Díaz-Gil
- Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- * E-mail:
| |
Collapse
|