1
|
Dasen B, Pigeot S, Born GM, Verrier S, Rivero O, Dittrich PS, Martin I, Filippova M. T-cadherin is a novel regulator of pericyte function during angiogenesis. Am J Physiol Cell Physiol 2023; 324:C821-C836. [PMID: 36802732 DOI: 10.1152/ajpcell.00326.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Pericytes are mural cells that play an important role in regulation of angiogenesis and endothelial function. Cadherins are a superfamily of adhesion molecules mediating Ca2+-dependent homophilic cell-cell interactions that control morphogenesis and tissue remodeling. To date, classical N-cadherin is the only cadherin described on pericytes. Here, we demonstrate that pericytes also express T-cadherin (H-cadherin, CDH13), an atypical glycosyl-phosphatidylinositol (GPI)-anchored member of the superfamily that has previously been implicated in regulation of neurite guidance, endothelial angiogenic behavior, and smooth muscle cell differentiation and progression of cardiovascular disease. The aim of the study was to investigate T-cadherin function in pericytes. Expression of T-cadherin in pericytes from different tissues was performed by immunofluorescence analysis. Using lentivirus-mediated gain-of-function and loss-of-function in cultured human pericytes, we demonstrate that T-cadherin regulates pericyte proliferation, migration, invasion, and interactions with endothelial cells during angiogenesis in vitro and in vivo. T-cadherin effects are associated with the reorganization of the cytoskeleton, modulation of cyclin D1, α-smooth muscle actin (αSMA), integrin β3, metalloprotease MMP1, and collagen expression levels, and involve Akt/GSK3β and ROCK intracellular signaling pathways. We also report the development of a novel multiwell 3-D microchannel slide for easy analysis of sprouting angiogenesis from a bioengineered microvessel in vitro. In conclusion, our data identify T-cadherin as a novel regulator of pericyte function and support that it is required for pericyte proliferation and invasion during active phase of angiogenesis, while T-cadherin loss shifts pericytes toward the myofibroblast state rendering them unable to control endothelial angiogenic behavior.
Collapse
Affiliation(s)
- Boris Dasen
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Sebastien Pigeot
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Gordian Manfred Born
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | | | - Olga Rivero
- Research Group on Psychiatry and Neurodegenerative Disorders, Biomedical Network Research Centre on Mental Health (CIBERSAM), Valencia, Spain
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ivan Martin
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Maria Filippova
- Tissue Engineering Lab, Department of Biomedicine and Department of Surgery, Basel University Hospital, Basel, Switzerland
| |
Collapse
|
2
|
Morsing SKH, Zeeuw van der Laan E, van Stalborch AD, van Buul JD, Vlaar APJ, Kapur R. Endothelial cells of pulmonary origin display unique sensitivity to the bacterial endotoxin lipopolysaccharide. Physiol Rep 2022; 10:e15271. [PMID: 35439361 PMCID: PMC9017980 DOI: 10.14814/phy2.15271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/14/2022] [Accepted: 03/19/2022] [Indexed: 06/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major clinical problem without available therapies. Known risks for ARDS include severe sepsis, SARS-CoV-2, gram-negative bacteria, trauma, pancreatitis, and blood transfusion. During ARDS, blood fluids and inflammatory cells enter the alveoli, preventing oxygen exchange from air into blood vessels. Reduced pulmonary endothelial barrier function, resulting in leakage of plasma from blood vessels, is one of the major determinants in ARDS. It is, however, unknown why systemic inflammation particularly targets the pulmonary endothelium, as endothelial cells (ECs) line all vessels in the vascular system of the body. In this study, we examined ECs of pulmonary, umbilical, renal, pancreatic, and cardiac origin for upregulation of adhesion molecules, ability to facilitate neutrophil (PMN) trans-endothelial migration (TEM) and for endothelial barrier function, in response to the gram-negative bacterial endotoxin LPS. Interestingly, we found that upon LPS stimulation, pulmonary ECs showed increased levels of adhesion molecules, facilitated more PMN-TEM and significantly perturbed the endothelial barrier, compared to other types of ECs. These observations could partly be explained by a higher expression of the adhesion molecule ICAM-1 on the pulmonary endothelial surface compared to other ECs. Moreover, we identified an increased expression of Cadherin-13 in pulmonary ECs, for which we demonstrated that it aids PMN-TEM in pulmonary ECs stimulated with LPS. We conclude that pulmonary ECs are uniquely sensitive to LPS, and intrinsically different, compared to ECs from other vascular beds. This may add to our understanding of the development of ARDS upon systemic inflammation.
Collapse
Affiliation(s)
- Sofia K. H. Morsing
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Eveline Zeeuw van der Laan
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anne‐Marieke D. van Stalborch
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jaap D. van Buul
- Molecular Cell Biology LabDepartment Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM)Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS)University of AmsterdamAmsterdamThe Netherlands
| | | | - Rick Kapur
- Department of Experimental ImmunohematologySanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Rubina KA, Semina EV, Kalinina NI, Sysoeva VY, Balatskiy AV, Tkachuk VA. Revisiting the multiple roles of T-cadherin in health and disease. Eur J Cell Biol 2021; 100:151183. [PMID: 34798557 DOI: 10.1016/j.ejcb.2021.151183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
As a non-canonical member of cadherin superfamily, T-cadherin was initially described as a molecule involved in homophilic recognition in the nervous and vascular systems. The ensuing decades clearly demonstrated that T-cadherin is a remarkably multifunctional molecule. It was validated as a bona fide receptor for both: LDL exerting adverse atherogenic action and adiponectin mediating many protective metabolic and cardiovascular effects. Motivated by the latest progress and accumulated data unmasking important roles of T-cadherin in blood vessel function and tissue regeneration, here we revisit the original function of T-cadherin as a guidance receptor for the growing axons and blood vessels, consider the recent data on T-cadherin-induced exosomes' biogenesis and their role in myocardial regeneration and revascularization. The review expands upon T-cadherin contribution to mesenchymal stem/stromal cell compartment in adipose tissue. We also dwell upon T-cadherin polymorphisms (SNP) and their possible therapeutic applications. Furthermore, we scrutinize the molecular hub of insulin and adiponectin receptors (AdipoR1 and AdipoR2) conveying signals to their downstream targets in quest for defining a putative place of T-cadherin in this molecular circuitry.
Collapse
Affiliation(s)
- K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | - E V Semina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - N I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - A V Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
5
|
Jiang N, Zhang Z, Chen X, Zhang G, Wang Y, Pan L, Yan C, Yang G, Zhao L, Han J, Xue T. Plasma Lipidomics Profiling Reveals Biomarkers for Papillary Thyroid Cancer Diagnosis. Front Cell Dev Biol 2021; 9:682269. [PMID: 34235148 PMCID: PMC8255691 DOI: 10.3389/fcell.2021.682269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to identify potential biomarkers and possible metabolic pathways of malignant and benign thyroid nodules through lipidomics study. A total of 47 papillary thyroid carcinomas (PTC) and 33 control check (CK) were enrolled. Plasma samples were collected for UPLC-Q-TOF MS system detection, and then OPLS-DA model was used to identify differential metabolites. Based on classical statistical methods and machine learning, potential biomarkers were characterized and related metabolic pathways were identified. According to the metabolic spectrum, 13 metabolites were identified between PTC group and CK group, and a total of five metabolites were obtained after further screening. Its metabolic pathways were involved in glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol (GPI)—anchor biosynthesis, Phosphatidylinositol signaling system and the metabolism of arachidonic acid metabolism. The metabolomics method based on PROTON nuclear magnetic resonance (NMR) had great potential for distinguishing normal subjects from PTC. GlcCer(d14:1/24:1), PE-NME (18:1/18:1), SM(d16:1/24:1), SM(d18:1/15:0), and SM(d18:1/16:1) can be used as potential serum markers for the diagnosis of PTC.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Zhenya Zhang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Xianyang Chen
- BaoFeng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Guofen Zhang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Ying Wang
- Department of Oncology, Tai'an City Central Hospital, Tai'an, China
| | - Lijie Pan
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Chengping Yan
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Guoshan Yang
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Li Zhao
- Department of General Surgery, First Hospital of Tsinghua University, Beijing, China
| | - Jiarui Han
- BaoFeng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Teng Xue
- Zhongguancun Biological and Medical Big Data Center, Beijing, China
| |
Collapse
|
6
|
Forero A, Ku HP, Malpartida AB, Wäldchen S, Alhama-Riba J, Kulka C, Aboagye B, Norton WHJ, Young AMJ, Ding YQ, Blum R, Sauer M, Rivero O, Lesch KP. Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function. Neuropharmacology 2020; 168:108018. [PMID: 32113967 DOI: 10.1016/j.neuropharm.2020.108018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023]
Abstract
Genome-wide screening approaches identified the cell adhesion molecule Cadherin-13 (CDH13) as a risk factor for neurodevelopmental disorders, nevertheless the contribution of CDH13 to the disease mechanism remains obscure. CDH13 is involved in neurite outgrowth and axon guidance during early brain development and we previously provided evidence that constitutive CDH13 deficiency influences the formation of the raphe serotonin (5-HT) system by modifying neuron-radial glia interaction. Here, we dissect the specific impact of CDH13 on 5-HT system development and function using a 5-HT neuron-specific Cdh13 knockout mouse model (conditional Cdh13 knockout, Cdh13 cKO). Our results show that exclusive inactivation of CDH13 in 5-HT neurons selectively increases 5-HT neuron density in the embryonic dorsal raphe, with persistence into adulthood, and serotonergic innervation of the developing prefrontal cortex. At the behavioral level, adult Cdh13 cKO mice display delayed acquisition of several learning tasks and a subtle impulsive-like phenotype, with decreased latency in a sociability paradigm alongside with deficits in visuospatial memory. Anxiety-related traits were not observed in Cdh13 cKO mice. Our findings further support the critical role of CDH13 in the development of dorsal raphe 5-HT circuitries, a mechanism that may underlie specific clinical features observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Ana Belén Malpartida
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Judit Alhama-Riba
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Christina Kulka
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Benjamin Aboagye
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Yu-Qiang Ding
- Institute of Brain Sciences, Fudan University, Shanghai, 200031, China
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Guan T, Huang K, Liu Y, Hou S, Hu C, Li Y, Zhang J, Zhao J, Zhang J, Wang R, Huang Y. Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. Toxicol Lett 2018; 300:51-58. [PMID: 30381256 DOI: 10.1016/j.toxlet.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Robo1/Robo2-NCK1/NCK2 signaling pathway controls endothelial cell sprouting and migration induced by Slit2 or VEGF, but whether it is involved in peritubular capillary (PTC) rarefaction of Aristolochic acid nephropathy (AAN) is unclear. In the present study, we evaluated whether AA exerts antiangiogenic effects by targeting this signaling pathways in HUVECs. HUVECs or lentivirus-mediated NCK1-overexpressing HUVECs were stimulated with AA (1, 2 or 3 μg/ml) in the absence or presence of 6 nM Slit2. Our results showed that AAІ (1-3 μg/ml) dose-dependently inhibited the migration and tube formation of HUVECs. This inhibition was in parallel with down-regulated mRNA and protein expression of Slit2/Robo1/Robo2-NCK1/NCK2 signaling pathway. Importantly, overexpression of NCK1 rescued AAІ-impaired angiogenesis, as evidenced by the increase of cell migration and tube formation of HUVECs in response to Slit2. The down-regulation of NCK2 and decreased activation of Rac1 was also restored by overexpression of NCK1. Taken together, our findings show that AA inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in HUVECs, and NCK1 might be a potential agent for vascular remodeling in AAN and diseases associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Tao Guan
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Ke Huang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yuanyuan Liu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Shihui Hou
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Chengfang Hu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Yi Li
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jingbo Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jun Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Rupeng Wang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yunjian Huang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
8
|
Rubina KA, Semina EV, Tkachuk VA. Guidance molecules and chemokines in angiogenesis and vascular remodeling. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017050015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
|
10
|
Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 2015; 5:e655. [PMID: 26460479 PMCID: PMC4930129 DOI: 10.1038/tp.2015.152] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/11/2015] [Indexed: 12/14/2022] Open
Abstract
Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.
Collapse
|
11
|
Novel mechanism regulating endothelial permeability via T-cadherin-dependent VE-cadherin phosphorylation and clathrin-mediated endocytosis. Mol Cell Biochem 2013; 387:39-53. [PMID: 24136461 PMCID: PMC3904039 DOI: 10.1007/s11010-013-1867-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
T-cadherin is a unique member of the cadherin superfamily of adhesion molecules. In contrast to “classical” cadherins, T-cadherin lacks transmembrane and cytoplasmic domains and is anchored to the cell membrane via a glycosilphosphoinositol moiety. T-cadherin is predominantly expressed in cardiovascular system. Clinical and biochemical studies evidence that expression of T-cadherin increases in post-angioplasty restenosis and atherosclerotic lesions—conditions associated with endothelial dysfunction and pathological expression of adhesion molecules. Here, we provide data suggesting a new signaling mechanism by which T-cadherin regulates endothelial permeability. T-cadherin overexpression leads to VE-cadherin phosphorylation on Y731 (β-catenin-binding site), VE-cadherin clathrin-dependent endocytosis and its degradation in lysosomes. Moreover, T-cadherin overexpression results in activation of Rho GTPases signaling and actin stress fiber formation. Thus, T-cadherin up-regulation is involved in degradation of a key endothelial adhesion molecule, VE-cadherin, resulting in the disruption of endothelial barrier function. Our results point to the role of T-cadherin in regulation of endothelial permeability and its possible engagement in endothelial dysfunction.
Collapse
|
12
|
Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 2013; 23:492-507. [PMID: 22795700 DOI: 10.1016/j.euroneuro.2012.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, early onset and enduring neuropsychiatric disorder characterized by developmentally inappropriate inattention, hyperactivity, increased impulsivity and motivational/emotional dysregulation with similar prevalence rates throughout different cultural settings. Persistence of ADHD into adulthood is associated with considerable risk for co-morbidities such as depression and substance use disorder. Although the substantial heritability of ADHD is well documented the etiology is characterized by a complex coherence of genetic and environmental factors rendering identification of risk genes difficult. Genome-wide linkage as well as single nucleotide polymorphism (SNP) and copy-number variant (CNV) association scans recently allow to reliably define aetiopathogenesis-related genes. A considerable number of novel ADHD risk genes implicate biological processes involved in neurite outgrowth and axon guidance. Here, we focus on the gene encoding Cadherin-13 (CDH13), a cell adhesion molecule which was replicably associated with liability to ADHD and related neuropsychiatric conditions. Based on its unique expression pattern in the brain, we discuss the molecular structure and neuronal mechanisms of Cadherin-13 in relation to other cadherins and the cardiovascular system. An appraisal of various Cadherin-13-modulated signaling pathways impacting proliferation, migration and connectivity of specific neurons is also provided. Finally, we develop an integrative hypothesis of the mechanisms in which Cadherin-13 plays a central role in the regulation of brain network development, plasticity and function. The review concludes with emerging concepts about alterations in Cadherin-13 signaling contributing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
13
|
Nakamura S, Takizawa H, Shimazawa M, Hashimoto Y, Sugitani S, Tsuruma K, Hara H. Mild endoplasmic reticulum stress promotes retinal neovascularization via induction of BiP/GRP78. PLoS One 2013; 8:e60517. [PMID: 23544152 PMCID: PMC3609792 DOI: 10.1371/journal.pone.0060517] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022] Open
Abstract
Endoplasmic reticulum (ER) stress occurs as a result of accumulation of unfolded or misfolded proteins in the ER and is involved in the mechanisms of various diseases, such as cancer and neurodegeneration. The goal of the present study was to clarify the relationship between ER stress and pathological neovascularization in the retina. Proliferation and migration of human retinal microvascular endothelial cells (HRMEC) were assessed in the presence of ER stress inducers, such as tunicamycin and thapsigargin. The expression of ER chaperone immunoglobulin heavy-chain binding protein (BiP), known as Grp78, was evaluated by real time RT-PCR, immunostaining, and Western blotting. Tunicamycin or thapsigargin was injected into the intravitreal body of oxygen-induced retinopathy (OIR) model mice at postnatal day 14 (P14) and retinal neovascularization was quantified at P17. The expression and localization of BiP in the retina was also evaluated in the OIR model. Exposure to tunicamycin and thapsigargin increased the proliferation and migration of HRMEC. Tunicamycin enhanced the expression of BiP in HRMEC at both the mRNA level and at the protein level on the cell surface, and increased the formation of a BiP/T-cadherin immunocomplex. In OIR model mice, retinal neovascularization was accelerated by treatments with ER stress inducers. BiP was particularly observed in the pathological vasculature and retinal microvascular endothelial cells, and the increase of BiP expression was correlated with retinal neovascularization. In conclusion, ER stress may contribute to the formation of abnormal vasculature in the retina via BiP complexation with T-cadherin, which then promotes endothelial cell proliferation and migration.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Haruka Takizawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuhei Hashimoto
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Sou Sugitani
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
- * E-mail:
| |
Collapse
|
14
|
Gao W, Sweeney C, Walsh C, Rooney P, McCormick J, Veale DJ, Fearon U. Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann Rheum Dis 2012; 72:1080-8. [PMID: 23161900 PMCID: PMC3664379 DOI: 10.1136/annrheumdis-2012-201978] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective Notch signalling pathways are critical for angiogenesis and endothelial cell (EC) fate; however the mechanisms regulating these processes in the inflamed joint remain to be elucidated. Here, we examine whether Notch signalling mediates vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2)-induced vascular function. Methods Notch-1 intracellular domain (Notch-1 IC), Notch-4 IC, Delta-like-ligand 4, Hes-related transcriptional repressors-1 and 2 (Hrt-1, Hrt-2) mRNA and/or protein expression was measured by Real-time PCR and/or western blot. VEGF/Ang2 induced EC function was assessed using transwell invasion chambers, matrigel tube formation assays and wound repair scratch assays ± Notch-1 siRNA or an γ-secretase inhibitor N-(N-(3,5-Difluorophenacetyl-L-alanly))-S-phenylglycine-t-Butyl Ester (DAPT) in RA synovial explants or human microvascular EC. Interleukin (IL)-6 and IL-8 were measured by ELISA and MMP2 and 9 by gelatine zymography. Results Notch-1 IC and Notch-4 IC protein expressions were demonstrated in RA and psoriatic arthritis synovial biopsies, with minimal expression observed in Osteoarthritis (OA). VEGF and Ang2 induced Notch-1 IC/ Notch-4 IC protein expression in synovial explant cultures and human microvascular EC levels were further potentiated by VEGF/Ang2 stimulation in combination. Notch-1, Delta-like-ligand 4, and Hrt-2 mRNA expression were significantly induced by VEGF and Ang2 alone and in combination. Furthermore VEGF/Ang2-induced EC invasion, angiogenesis and migration were inhibited by Notch-1 siRNA or DAPT. Conditioned media from VEGF/Ang2 stimulated RA synovial explants induced EC tube formation, an effect that was inhibited by DAPT. Finally, DAPT significantly decreased VEGF/Ang2 induced IL-6, IL-8, MMP2 and 9 expressions in RA synovial explants. Conclusions Notch-1 mediates VEGF/Ang2-induced angiogenesis and EC invasion in inflammatory arthritis.
Collapse
Affiliation(s)
- Wei Gao
- Department of Rheumatology, Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
15
|
Demirci EK, Demirci T, Linder P, Trzewik J, Gierkowski JR, Gossmann M, Kayser P, Porst D, Digel I, Artmann GM, Artmann AT. rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells. J Biosci Bioeng 2012; 114:212-9. [PMID: 22608565 DOI: 10.1016/j.jbiosc.2012.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 11/28/2022]
Abstract
All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models.
Collapse
Affiliation(s)
- Eylem Kurulgan Demirci
- Aachen University of Applied Sciences, Institute of Bioengineering, Laboratory of Cell Biophysics, Juelich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kyriakakis E, Maslova K, Philippova M, Pfaff D, Joshi MB, Buechner SA, Erne P, Resink TJ. T-Cadherin is an auxiliary negative regulator of EGFR pathway activity in cutaneous squamous cell carcinoma: impact on cell motility. J Invest Dermatol 2012; 132:2275-85. [PMID: 22592160 DOI: 10.1038/jid.2012.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genetic and epigenetic studies in different cancers, including cutaneous carcinomas, have implicated T-cadherin (T-cad) as a tumor suppressor. Immunohistochemical and in vitro studies have suggested that T-cad loss promotes incipient invasiveness in cutaneous squamous cell carcinoma (SCC). Molecular mechanisms are unknown. This study found that the main consequence of T-cad silencing in SCC is facilitation of ligand-dependent EGFR activation, whereas T-cad overexpression impedes EGFR activation. Gain- and loss-of-function studies in A431 SCC cells demonstrate T-cad-controlled responsiveness to EGF with respect to pharmacological inhibition of EGFR and to diverse signaling and functional events of the EGFR activation cascade (EGFR phosphorylation, internalization, nuclear translocation, cell retraction/de-adhesion, motility, invasion, integrin β1, and Rho small GTPases such as RhoA, Rac1, and Cdc42 activation). Further, T-cad modulates the EGFR pathway activity by influencing membrane compartmentalization of EGFR; T-cad upregulation promotes retention of EGFR in lipid rafts, whereas T-cad silencing releases EGFR from this compartment, rendering EGFR more accessible to ligand stimulation. This study reveals a mechanism for fine-tuning of EGFR activity in SCC, whereby T-cad represents an auxiliary "negative" regulator of the EGFR pathway, which impacts invasion-associated behavioral responses of SCC to EGF. This action of T-cad in SCC may serve as a paradigm explaining other malignancies displaying concomitant T-cad loss and enhanced EGFR activity.
Collapse
Affiliation(s)
- Emmanouil Kyriakakis
- Laboratory for Signal Transduction, Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tyrberg B, Miles P, Azizian KT, Denzel MS, Nieves ML, Monosov EZ, Levine F, Ranscht B. T-cadherin (Cdh13) in association with pancreatic β-cell granules contributes to second phase insulin secretion. Islets 2011; 3:327-37. [PMID: 21975561 PMCID: PMC3329514 DOI: 10.4161/isl.3.6.17705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glucose homeostasis depends on adequate control of insulin secretion. We report the association of the cell-adhesion and adiponectin (APN)-binding glycoprotein T-cadherin (Cdh13) with insulin granules in mouse and human β-cells. Immunohistochemistry and electron microscopy of islets in situ and targeting of RFP-tagged T-cadherin to GFP-labeled insulin granules in isolated β-cells demonstrate this unusual location. Analyses of T-cadherin-deficient (Tcad-KO) mice show normal islet architecture and insulin content. However, T-cadherin is required for sufficient insulin release in vitro and in vivo. Primary islets from Tcad-KO mice were defective in glucose-induced but not KCl-mediated insulin secretion. In vivo, second phase insulin release in T-cad-KO mice during a hyperglycemic clamp was impaired while acute first phase release was unaffected. Tcad-KO mice showed progressive glucose intolerance by 5 mo of age without concomitant changes in peripheral insulin sensitivity. Our analyses detected no association of APN with T-cadherin on β-cell granules although colocalization was observed on the pancreatic vasculature. These data identify T-cadherin as a novel component of insulin granules and suggest that T-cadherin contributes to the regulation of insulin secretion independently of direct interactions with APN.
Collapse
Affiliation(s)
- Björn Tyrberg
- Sanford-Burnham Medical Research Institute; Orlando, FL USA
| | - Philip Miles
- Department of Surgery; UCSD School of Medicine; La Jolla, CA USA
| | | | | | | | | | - Fred Levine
- Sanford-Burnham Medical Research Institute; La Jolla; CA USA
| | - Barbara Ranscht
- Sanford-Burnham Medical Research Institute; La Jolla; CA USA
| |
Collapse
|
18
|
Kyriakakis E, Cavallari M, Pfaff D, Fabbro D, Mestan J, Philippova M, De Libero G, Erne P, Resink TJ. IL-8-mediated angiogenic responses of endothelial cells to lipid antigen activation of iNKT cells depend on EGFR transactivation. J Leukoc Biol 2011; 90:929-39. [PMID: 21807744 DOI: 10.1189/jlb.0211097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
iNKT cells are a unique T cell subset, which is CD1d-restricted and specific for glycolipid antigens. In advanced atherosclerotic plaques, focal collections of inflammatory cells correlate with areas of intraplaque neovascularization. We reported recently that iNKT cells might facilitate intraplaque neovascularization by enhancing EC migration and sprouting in an IL-8-dependent manner. This study investigated the participating effector mechanisms. In ECs, CM, derived from antigen-stimulated human iNKT cells (CM+), induced up-regulation of IL-8R CXCR2 and the phosphorylation of EGFR and of multiple intracellular signaling effectors, including FAK, Src, Erk, Jnk, p38-MAPK, and STAT1 and -3. We found that a cascade of events, which were IL-8-dependent and involved EGFR activation, was responsible for signaling through FAK and Src kinases and necessary for acquisition of angiogenic morphology, migration in a two-dimensional wound assay, and sprout outgrowth in a three-dimensional model of angiogenesis in vitro. The data support that IL-8-dependent activation of angiogenic behavior in ECs, in response to activated iNKT, involves CXCR2, transactivation of EGFR, and subsequent FAK/Src signaling. We found too that activated iNKT increased VEGFR2 expression in ECs. Functional studies confirmed that EGF is the motogenic-enhancing factor in CM+ and is necessary, together with an exogenous source of VEGF, for iNKT-promoted sprout formation. EGFR inhibition may represent a novel therapeutic modality aimed at plaque stabilization through control of neovascularization within developing atherosclerotic plaques.
Collapse
|
19
|
Abstract
We review the evidence suggesting the involvement of Cadherin 13 (CDH13, T-cadherin, H-cadherin) in various cancers. CDH13 is an atypical member of the cadherin family, devoid of a transmembrane domain and anchored to the exterior surface of the plasma membrane via a glycosylphosphatidylinositol anchor. CDH13 is thought to affect cellular behavior largely through its signaling properties. It is often down-regulated in cancerous cells. CDH13 down-regulation has been associated with poorer prognosis in various carcinomas, such as lung, ovarian, cervical and prostate cancer. CDH13 re-expression in most cancer cell lines inhibits cell proliferation and invasiveness, increases susceptibility to apoptosis, and reduces tumor growth in in vivo models. These properties suggest that CDH13 may represent a possible target for therapy in some cancers. At the same time, CDH13 is up-regulated in blood vessels growing through tumors and promotes tumor neovascularization. In contrast to most cancer cell lines, CDH13 overexpression in endothelial cells promotes their proliferation and migration, and has a pro-survival effect. We also discuss molecular mechanisms that may regulate CDH13 expression and underlie its roles in cancer.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois, College of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
20
|
Pfaff D, Philippova M, Buechner S, Maslova K, Mathys T, Erne P, Resink T. T-cadherin loss induces an invasive phenotype in human keratinocytes and squamous cell carcinoma (SCC) cells in vitro
and is associated with malignant transformation of cutaneous SCC in vivo. Br J Dermatol 2010; 163:353-63. [DOI: 10.1111/j.1365-2133.2010.09801.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Andreeva AV, Han J, Kutuzov MA, Profirovic J, Tkachuk VA, Voyno-Yasenetskaya TA. T-cadherin modulates endothelial barrier function. J Cell Physiol 2010; 223:94-102. [PMID: 20039275 DOI: 10.1002/jcp.22014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
T-cadherin is an atypical member of the cadherin family, which lacks the transmembrane and intracellular domains and is attached to the plasma membrane via a glycosylphosphatidylinositol anchor. Unlike canonical cadherins, it is believed to function primarily as a signaling molecule. T-cadherin is highly expressed in endothelium. Using transendothelial electrical resistance measurements and siRNA-mediated depletion of T-cadherin in human umbilical vein endothelial cells, we examined its involvement in regulation of endothelial barrier. We found that in resting confluent monolayers adjusted either to 1% or 10% serum, T-cadherin depletion modestly, but consistently reduced transendothelial resistance. This was accompanied by increased phosphorylation of Akt and LIM kinase, reduced phosphorylation of p38 MAP kinase, but no difference in tubulin acetylation and in phosphorylation of an actin filament severing protein cofilin and myosin light chain kinase. Serum stimulation elicited a biphasic increase in resistance with peaks at 0.5 and 4-5 h, which was suppressed by a PI3 kinase/Akt inhibitor wortmannin and a p38 inhibitor SB 239063. T-cadherin depletion increased transendothelial resistance between the two peaks and reduced the amplitude of the second peak. T-cadherin depletion abrogated serum-induced Akt phosphorylation at Thr308 and reduced phosphorylation at Ser473, reduced phosphorylation of cofilin, and accelerated tubulin deacetylation. Adiponectin slightly improved transendothelial resistance irrespectively of T-cadherin depletion. T-cadherin depletion also resulted in a reduced sensitivity and delayed responses to thrombin. These data implicate T-cadherin in regulation of endothelial barrier function, and suggest a complex signaling network that links T-cadherin and regulation of barrier function.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Briggs FBS, Ramsay PP, Madden E, Norris JM, Holers VM, Mikuls TR, Sokka T, Seldin MF, Gregersen PK, Criswell LA, Barcellos LF. Supervised machine learning and logistic regression identifies novel epistatic risk factors with PTPN22 for rheumatoid arthritis. Genes Immun 2010; 11:199-208. [PMID: 20090771 DOI: 10.1038/gene.2009.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating genetic interactions (epistasis) has proven difficult despite the recent advances of both laboratory methods and statistical developments. With no 'best' statistical approach available, combining several analytical methods may be optimal for detecting epistatic interactions. Using a multi-stage analysis that incorporated supervised machine learning and methods of association testing, we investigated epistatic interactions with a well-established genetic factor (PTPN22 1858T) in a complex autoimmune disease (rheumatoid arthritis (RA)). Our analysis consisted of four principal stages: Stage I (data reduction)-identifying candidate chromosomal regions in 292 affected sibling pairs, by predicting PTPN22 concordance using multipoint identity-by-descent probabilities and a supervised machine learning algorithm (Random Forests); Stage II (extension analysis)-testing detailed genetic data within candidate chromosomal regions for epistasis with PTPN22 1858T in 677 cases and 750 controls using logistic regression; Stage III (replication analysis)-confirmation of epistatic interactions in 947 cases and 1756 controls; Stage IV (combined analysis)-a pooled analysis including all 1624 RA cases and 2506 control subjects for final estimates of effect size. A total of seven replicating epistatic interactions were identified. SNP variants within CDH13, MYO3A, CEP72 and near WFDC1 showed significant evidence for interaction with PTPN22, affecting susceptibility to RA.
Collapse
|
23
|
Haubitz M, Dhaygude A, Woywodt A. Mechanisms and markers of vascular damage in ANCA-associated vasculitis. Autoimmunity 2010; 42:605-14. [PMID: 19863378 DOI: 10.1080/08916930903002503] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Much progress has been made in understanding the pathogenesis of anti-neutrophil cytoplasmic antibodies (ANCA)-associated small-vessel vasculitis and interaction between ANCA and micro-vascular endothelial cells are centre stage. The interactions of these key players culminate in respiratory burst of the neutrophil with release of radicals and proteases and subsequent endothelial cell and tissue damage. During the last decade, markers have become available to assess the extent and/or acuity of vascular damage in a clinical setting. First, circulating endothelial cells (CEC) have emerged as reliable surrogate markers of endothelial damage in vasculitis. More recently, endothelial microparticles have been used and appear to reflect damage and activation of the cells. Data on endothelial progenitor cells in vasculitis are sparse but intriguing while a genuine progenitor cell deficiency remains controversial. The severely damaged phenotype of CEC in vasculitis led to the hypothesis that such circulating apoptotic and/or necrotic debris may itself be a mediator of disease and first data from experimental studies have added proof to this assumption. Such effects may well contribute to a pro-inflammatory environment in ANCA-associated small-vessel vasculitis and in vascular disease in general. Here, we review mechanisms and markers of endothelial damage and repair in ANCA-associated vasculitis and put these findings into perspective.
Collapse
Affiliation(s)
- Marion Haubitz
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
24
|
Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L. Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 2009; 114:4300-9. [PMID: 19741192 PMCID: PMC2774558 DOI: 10.1182/blood-2008-12-193326] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 08/18/2009] [Indexed: 01/18/2023] Open
Abstract
Slits are large, secreted repulsive axon guidance molecules. Recent genetic studies revealed that the Slit3 is dispensable for neural development but required for non-neuron-related developmental processes, such as the genesis of the diaphragm and kidney. Here we report that Slit3 potently promotes angiogenesis, a process essential for proper organogenesis during embryonic development. We observed that Slit3 is expressed and secreted by both endothelial cells and vascular smooth muscle cells in vasculature and that the Slit cognate receptors Robo1 and Robo4 are universally expressed by endothelial cells, suggesting that Slit3 may act in paracrine and autocrine manners to regulate endothelial cells. Cellular function studies revealed that Slit3 stimulates endothelial-cell proliferation, promotes endothelial-cell motility and chemotaxis via interaction with Robo4, and accelerates endothelial-cell vascular network formation in vitro with a specific activity comparable with vascular endothelial growth factor. Furthermore, Slit3 stimulates neovessel sprouting ex vivo and new blood vessel growth in vivo. Consistent with these observations, the Slit3 knockout mice display disrupted angiogenesis during embryogenesis. Taken together, our studies reveal that the repulsive axon guidance molecule Slit3 is a novel and potent angiogenic factor and functions to promote angiogenesis in coordinating organogenesis during embryonic development.
Collapse
MESH Headings
- Angiogenic Proteins/genetics
- Angiogenic Proteins/physiology
- Animals
- Axons/physiology
- Cell Line
- Chick Embryo
- Endothelial Cells/drug effects
- Endothelial Cells/physiology
- Gene Expression Regulation, Developmental
- Humans
- In Vitro Techniques
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/pharmacology
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurogenesis/genetics
- Neurogenesis/physiology
- Rats
- Rats, Inbred F344
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/physiology
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/physiology
- rho GTP-Binding Proteins/metabolism
- Roundabout Proteins
Collapse
Affiliation(s)
- Bing Zhang
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-4712, USA
| | | | | | | | | | | |
Collapse
|
25
|
Andreeva AV, Kutuzov MA, Tkachuk VA, Voyno-Yasenetskaya TA. T-cadherin is located in the nucleus and centrosomes in endothelial cells. Am J Physiol Cell Physiol 2009; 297:C1168-77. [PMID: 19726744 DOI: 10.1152/ajpcell.00237.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cadherin (H-cadherin, cadherin 13) is upregulated in vascular proliferative disorders and in tumor-associated neovascularization and is deregulated in many cancers. Unlike canonical cadherins, it lacks transmembrane and intracellular domains and is attached to the plasma membrane via a glycosylphosphatidylinositol anchor. T-cadherin is thought to function in signaling rather than as an adhesion molecule. Some interactive partners of T-cadherin at the plasma membrane have recently been identified. We examined T-cadherin location in human endothelial cells using confocal microscopy and subcellular fractionation. We found that a considerable proportion of T-cadherin is located in the nucleus and in the centrosomes. T-cadherin colocalized with a centrosomal marker gamma-tubulin uniformly throughout the cell cycle at least in human umbilical vein endothelial cells. In the telophase, T-cadherin transiently concentrated in the midbody and was apparently degraded. Its overexpression resulted in an increase in the number of multinuclear cells, whereas its downregulation by small interfering RNA led to an increase in the number of cells with multiple centrosomes. These findings indicate that deregulation of T-cadherin in endothelial cells may lead to disturbances in cytokinesis or centrosomal replication.
Collapse
Affiliation(s)
- Alexandra V Andreeva
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
26
|
Joshi MB, Kyriakakis E, Pfaff D, Rupp K, Philippova M, Erne P, Resink TJ. Extracellular cadherin repeat domains EC1 and EC5 of T-cadherin are essential for its ability to stimulate angiogenic behavior of endothelial cells. FASEB J 2009; 23:4011-21. [PMID: 19638398 DOI: 10.1096/fj.09-133611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T-cadherin (T-cad) promotes survival, proliferation, and migration of endothelial cells and induces angiogenesis. We aimed to identify domains of T-cad functionally relevant to its effects on endothelial cell behavior. To specifically target the functional properties of the 5 cadherin repeat domains (EC1-EC5) of T-cad, endothelial cells were transduced with lentivectors containing specific T-cad-domain-deletion mutant constructs (DeltaI, DeltaII, DeltaIII, DeltaIV, DeltaV). Empty (E) lentivector-transduced cells served as control. Similarly to overexpression of native T-cad, cells expressing DeltaII, DeltaIII, or DeltaIV displayed elevated levels of p-Akt and p-GSK3beta and increased proliferation rates (for DeltaII, DeltaIII) vs. E. DeltaI- and DeltaV-transduced cells exhibited reduced levels of p-Akt and p-GSK3beta and retarded growth rates vs. E. Stimulatory effects of native T-cad overexpression on Akt and GSK3beta phosphorylation were dose dependently inhibited by coexpression of DeltaI or DeltaV. Subsequent functional analyses compared only DeltaI-, DeltaII-, and DeltaV-mutant constructs with E as a negative control. Unlike DeltaII cells, DeltaI and DeltaV cells failed to exhibit homophilic ligation and deadhesion responses on a substratum of T-cad protein. In the wound assay, migration was increased for DeltaII cells but impaired for DeltaI and DeltaV cells. In endothelial cell-spheroid assay, angiogenic sprouting was augmented for DeltaII cells but inhibited for DeltaI and DeltaV cells. We conclude that EC1 and EC5 domains of T-cad are essential for its proangiogenic effects. DeltaI and DeltaV constructs may serve as dominant-negative mutants and as potential tools targeting excessive angiogenesis.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Basel University Hospital, Department of Biomedicine, Laboratory for Signal Transduction, ZLF 316, Hebelstrasse 20, CH 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
Semina EV, Rubina KA, Rutkevich PN, Voyno-Yasenetskaya TA, Parfyonova YV, Tkachuk VA. T-cadherin activates Rac1 and Cdc42 and changes endothelial permeability. BIOCHEMISTRY (MOSCOW) 2009; 74:362-70. [PMID: 19463088 DOI: 10.1134/s0006297909040026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study, expression of T-cadherin was shown to induce intracellular signaling in NIH3T3 fibroblasts: it activated Rac1 and Cdc42 (p < 0.01) but not RhoA. T-Cadherin overexpression in human umbilical vein endothelial cells (HUVEC) using adenoviral constructs induced disassembly of microtubules and polymerization of actin stress fibers, whereas down-regulation of endogenous T-cadherin expression in HUVEC using lentiviral constructs resulted in microtubule polymerization and a decrease in the number of actin stress fibers. Moreover, suppression of the T-cadherin expression significantly decreased the endothelial monolayer permeability as compared to the control (p < 0.001).
Collapse
Affiliation(s)
- E V Semina
- Institute of Experimental Cardiology, Cardiology Research Center, Moscow, 121552, Russia
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Saccone SF, Bierut LJ, Chesler EJ, Kalivas PW, Lerman C, Saccone NL, Uhl GR, Li CY, Philip VM, Edenberg HJ, Sherry ST, Feolo M, Moyzis RK, Rutter JL. Supplementing high-density SNP microarrays for additional coverage of disease-related genes: addiction as a paradigm. PLoS One 2009; 4:e5225. [PMID: 19381300 PMCID: PMC2668711 DOI: 10.1371/journal.pone.0005225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/18/2009] [Indexed: 11/19/2022] Open
Abstract
Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.
Collapse
Affiliation(s)
- Scott F Saccone
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Uhl GR, Drgon T, Johnson C, Liu QR. Addiction genetics and pleiotropic effects of common haplotypes that make polygenic contributions to vulnerability to substance dependence. J Neurogenet 2009; 23:272-82. [PMID: 19152208 DOI: 10.1080/01677060802572929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abundant evidence from family, adoption, and twin studies point to large genetic contributions to individual differences in vulnerability to develop dependence on one or more addictive substances. Twin data suggest that most of this genetic vulnerability is shared by individuals who are dependent on a variety of addictive substances. Molecular genetic studies, especially genomewide and candidate gene association studies, have elucidated common haplotypes in dozens of genes that appear to make polygenic contributions to vulnerability to developing dependence. Most genes that harbor currently identified addiction-associated haplotypes are expressed in the brain. Haplotypes in many of the same genes are identified in genomewide association studies that compare allele frequencies in substance dependent vs. control individuals from European, African, and Asian racial/ethnic backgrounds. Many of these addiction-associated haplotypes display pleiotropic influences on a variety of related brain-based phenotypes that display 1) substantial heritability and 2) clinical cooccurence with substance dependence.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP (NIDA), Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
31
|
Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm (Vienna) 2008; 115:1573-85. [PMID: 18839057 DOI: 10.1007/s00702-008-0119-3] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/25/2008] [Indexed: 12/25/2022]
Abstract
A genome-wide association (GWA) study with pooled DNA in adult attention-deficit/hyperactivity disorder (ADHD) employing approximately 500K SNP markers identifies novel risk genes and reveals remarkable overlap with findings from recent GWA scans in substance use disorders. Comparison with results from our previously reported high-resolution linkage scan in extended pedigrees confirms several chromosomal loci, including 16q23.1-24.3 which also reached genome-wide significance in a recent meta-analysis of seven linkage studies (Zhou et al. in Am J Med Genet Part B, 2008). The findings provide additional support for a common effect of genes coding for cell adhesion molecules (e.g., CDH13, ASTN2) and regulators of synaptic plasticity (e.g., CTNNA2, KALRN) despite the complex multifactorial etiologies of adult ADHD and addiction vulnerability.
Collapse
|
32
|
Uhl GR, Drgon T, Johnson C, Li CY, Contoreggi C, Hess J, Naiman D, Liu QR. Molecular genetics of addiction and related heritable phenotypes: genome-wide association approaches identify "connectivity constellation" and drug target genes with pleiotropic effects. Ann N Y Acad Sci 2008; 1141:318-81. [PMID: 18991966 PMCID: PMC3922196 DOI: 10.1196/annals.1441.018] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-wide association (GWA) can elucidate molecular genetic bases for human individual differences in complex phenotypes that include vulnerability to addiction. Here, we review (a) evidence that supports polygenic models with (at least) modest heterogeneity for the genetic architectures of addiction and several related phenotypes; (b) technical and ethical aspects of importance for understanding GWA data, including genotyping in individual samples versus DNA pools, analytic approaches, power estimation, and ethical issues in genotyping individuals with illegal behaviors; (c) the samples and the data that shape our current understanding of the molecular genetics of individual differences in vulnerability to substance dependence and related phenotypes; (d) overlaps between GWA data sets for dependence on different substances; and (e) overlaps between GWA data for addictions versus other heritable, brain-based phenotypes that include bipolar disorder, cognitive ability, frontal lobe brain volume, the ability to successfully quit smoking, neuroticism, and Alzheimer's disease. These convergent results identify potential targets for drugs that might modify addictions and play roles in these other phenotypes. They add to evidence that individual differences in the quality and quantity of brain connections make pleiotropic contributions to individual differences in vulnerability to addictions and to related brain disorders and phenotypes. A "connectivity constellation" of brain phenotypes and disorders appears to receive substantial pathogenic contributions from individual differences in a constellation of genes whose variants provide individual differences in the specification of brain connectivities during development and in adulthood. Heritable brain differences that underlie addiction vulnerability thus lie squarely in the midst of the repertoire of heritable brain differences that underlie vulnerability to other common brain disorders and phenotypes.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, National Institutes of Health (NIH), Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE, David SP, Niaura R, Lerman C. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. ACTA ACUST UNITED AC 2008; 65:683-93. [PMID: 18519826 DOI: 10.1001/archpsyc.65.6.683] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Smoking remains a major public health problem. Twin studies indicate that the ability to quit smoking is substantially heritable, with genetics that overlap modestly with the genetics of vulnerability to dependence on addictive substances. OBJECTIVES To identify replicated genes that facilitate smokers' abilities to achieve and sustain abstinence from smoking (herein after referred to as quit-success genes) found in more than 2 genome-wide association (GWA) studies of successful vs unsuccessful abstainers, and, secondarily, to nominate genes for selective involvement in smoking cessation success with bupropion hydrochloride vs nicotine replacement therapy (NRT). DESIGN The GWA results in subjects from 3 centers, with secondary analyses of NRT vs bupropion responders. SETTING Outpatient smoking cessation trial participants from 3 centers. PARTICIPANTS European American smokers who successfully vs unsuccessfully abstain from smoking with biochemical confirmation in a smoking cessation trial using NRT, bupropion, or placebo (N = 550). MAIN OUTCOME MEASURES Quit-success genes, reproducibly identified by clustered nominally positive single-nucleotide polymorphisms (SNPs) in more than 2 independent samples with significant P values based on Monte Carlo simulation trials. The NRT-selective genes were nominated by clustered SNPs that display much larger t values for NRT vs placebo comparisons. The bupropion-selective genes were nominated by bupropion-selective results. RESULTS Variants in quit-success genes are likely to alter cell adhesion, enzymatic, transcriptional, structural, and DNA, RNA, and/or protein-handling functions. Quit-success genes are identified by clustered nominally positive SNPs from more than 2 samples and are unlikely to represent chance observations (Monte Carlo P< .0003). These genes display modest overlap with genes identified in GWA studies of dependence on addictive substances and memory. CONCLUSIONS These results support polygenic genetics for success in abstaining from smoking, overlap with genetics of substance dependence and memory, and nominate gene variants for selective influences on therapeutic responses to bupropion vs NRT. Molecular genetics should help match the types and/or intensity of antismoking treatments with the smokers most likely to benefit from them.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Research Branch, National Institutes of Health-Intramural Research Program, National Institute on Drug Abuse, 333 Cassell Dr, Ste 3510, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dames SA, Bang E, Haüssinger D, Ahrens T, Engel J, Grzesiek S. Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain. J Biol Chem 2008; 283:23485-95. [PMID: 18550521 DOI: 10.1074/jbc.m708335200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T-cadherin is unique among the family of type I cadherins, because it lacks transmembrane and cytosolic domains, and attaches to the membrane via a glycophosphoinositol anchor. The N-terminal cadherin repeat of T-cadherin (Tcad1) is approximately 30% identical to E-, N-, and other classical cadherins. However, it lacks many amino acids crucial for their adhesive function of classical cadherins. Among others, Trp-2, which is the key residue forming the canonical strand-exchange dimer, is replaced by an isoleucine. Here, we report the NMR structure of the first cadherin repeat of T-cadherin (Tcad1). Tcad1, as other cadherin domains, adopts a beta-barrel structure with a Greek key folding topology. However, Tcad1 is monomeric in the absence and presence of calcium. Accordingly, lle-2 binds into a hydrophobic pocket on the same protomer and participates in an N-terminal beta-sheet. Specific amino acid replacements compared to classical cadherins reduce the size of the binding pocket for residue 2 and alter the backbone conformation and flexibility around residues 5 and 15 as well as many electrostatic interactions. These modifications apparently stabilize the monomeric form and make it less susceptible to a conformational switch upon calcium binding. The absence of a tendency for homoassociation observed by NMR is consistent with electron microscopy and solid-phase binding data of the full T-cadherin ectodomain (Tcad1-5). The apparent low adhesiveness of T-cadherin suggests that it is likely to be involved in reversible and dynamic cellular adhesion-deadhesion processes, which are consistent with its role in cell growth and migration.
Collapse
Affiliation(s)
- Sonja A Dames
- Department of Structural Biology, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
35
|
Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 2008; 28:4004-17. [PMID: 18411300 DOI: 10.1128/mcb.00157-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is scant knowledge regarding how cell surface lipid-anchored T-cadherin (T-cad) transmits signals through the plasma membrane to its intracellular targets. This study aimed to identify membrane proteins colocalizing with atypical glycosylphosphatidylinositol (GPI)-anchored T-cad on the surface of endothelial cells and to evaluate their role as signaling adaptors for T-cad. Application of coimmunoprecipitation from endothelial cells expressing c-myc-tagged T-cad and high-performance liquid chromatography revealed putative association of T-cad with the following proteins: glucose-related protein GRP78, GABA-A receptor alpha1 subunit, integrin beta3, and two hypothetical proteins, LOC124245 and FLJ32070. Association of Grp78 and integrin beta3 with T-cad on the cell surface was confirmed by surface biotinylation and reciprocal immunoprecipitation and by confocal microscopy. Use of anti-Grp78 blocking antibodies, Grp78 small interfering RNA, and coexpression of constitutively active Akt demonstrated an essential role for surface Grp78 in T-cad-dependent survival signal transduction via Akt in endothelial cells. The findings herein are relevant in the context of both the identification of transmembrane signaling partners for GPI-anchored T-cad as well as the demonstration of a novel mechanism whereby Grp78 can influence endothelial cell survival as a cell surface signaling receptor rather than an intracellular chaperone.
Collapse
|
36
|
Hebbard LW, Garlatti M, Young LJT, Cardiff RD, Oshima RG, Ranscht B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res 2008; 68:1407-16. [PMID: 18316604 DOI: 10.1158/0008-5472.can-07-2953] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cadherin delineates endothelial, myoepithelial, and ductal epithelial cells in the normal mouse mammary gland, and becomes progressively restricted to the vasculature during mammary tumorigenesis. To test the function of T-cadherin in breast cancer, we inactivated the T-cadherin (Cdh13) gene in mice and evaluated tumor development and pathology after crossing the mutation into the mouse mammary tumor virus (MMTV)-polyoma virus middle T (PyV-mT) transgenic model. We report that T-cadherin deficiency limits mammary tumor vascularization and reduces tumor growth. Tumor transplantation experiments confirm the stromal role of T-cadherin in tumorigenesis. In comparison with wild-type MMTV-PyV-mT controls, T-cadherin-deficient tumors are pathologically advanced and metastasize to the lungs. T-cadherin is a suggested binding partner for high molecular weight forms of the circulating, fat-secreted hormone adiponectin. We discern adiponectin in association with the T-cadherin-positive vasculature in the normal and malignant mammary glands and report that this interaction is lost in the T-cadherin null condition. This work establishes a role for T-cadherin in promoting tumor angiogenesis and raises the possibility that vascular T-cadherin-adiponectin association may contribute to the molecular cross-talk between tumor cells and the stromal compartment in breast cancer.
Collapse
Affiliation(s)
- Lionel W Hebbard
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ghosh S, Joshi MB, Ivanov D, Feder-Mengus C, Spagnoli GC, Martin I, Erne P, Resink TJ. Use of multicellular tumor spheroids to dissect endothelial cell-tumor cell interactions: a role for T-cadherin in tumor angiogenesis. FEBS Lett 2007; 581:4523-8. [PMID: 17765896 DOI: 10.1016/j.febslet.2007.08.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/19/2007] [Indexed: 01/19/2023]
Abstract
This study addresses establishment of an "in vitro" melanoma angiogenesis model using multicellular tumor spheroids (MCTS) of differentiated (HBL) or undifferentiated (NA8) melanoma cell lines. DNA microarray assay and qRT-PCR indicated upregulation of pro-angiogenic factors IL-8, VEGF, Ephrin A1 and ANGPTL4 in NA8-MCTSs (vs. monolayers) whereas these were absent in MCTS and monolayer cultures of HBL. Upon co-culture with endothelial cell line HMEC-1 NA8-MCTS attract, whereas HBL-MCTS repulse, HMEC-1. Overexpression of T-cadherin in HMEC-1 leads to their increased invasion and network formation within NA8-MCTS. Given an appropriate angiogenic tumor microenvironment, T-cadherin upregulation on endothelial cells may potentiate intratumoral angiogenesis.
Collapse
Affiliation(s)
- Sourabh Ghosh
- ICFS, Departments of Surgery and Research, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rubina K, Kalinina N, Potekhina A, Efimenko A, Semina E, Poliakov A, Wilkinson DG, Parfyonova Y, Tkachuk V. T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis 2007; 10:183-95. [PMID: 17486418 DOI: 10.1007/s10456-007-9072-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 02/28/2007] [Indexed: 01/26/2023]
Abstract
Our previous studies have revealed the abundant expression of T-cadherin--a glycosylphosphatidylinositol (GPI)-anchored member of cadherin superfamily--in endothelial and mural cells in the heart and vasculature. The upregulation of T-cadherin in vascular proliferative disorders such as atherosclerosis and restenosis suggests the involvement of T-cadherin in vascular growth and remodeling. However, the functional significance of this molecule in the vasculature remains unknown. The effect of T-cadherin on angiogenesis in vivo was evaluated using Matrigel implant model. We demonstrate that T-cadherin overexpression in L929 cells injected in Matrigel inhibits neovascularization of the plug. In vitro T-cadherin inhibits the directional migration of endothelial cells, capillary growth, and tube formation but has no effect on endothelial cell proliferation, adhesion, or apoptosis in vitro. These data suggest that T-cadherin expressed in the stroma could act as a negative guidance cue for the ingrowing blood vessels and thus could have an important potential therapeutic application.
Collapse
Affiliation(s)
- Kseniya Rubina
- Department of Biological and Medical Chemistry, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av., Moscow, 119192, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Joshi MB, Ivanov D, Philippova M, Erne P, Resink TJ. Integrin-linked kinase is an essential mediator for T-cadherin-dependent signaling via Akt and GSK3beta in endothelial cells. FASEB J 2007; 21:3083-95. [PMID: 17485554 DOI: 10.1096/fj.06-7723com] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycosylphosphatidylinositol-anchored T-cadherin (T-cad) influences several parameters of angiogenesis including endothelial cell (EC) differentiation, migration, proliferation, and survival. This presupposes signal transduction networking via mediatory regulators and molecular adaptors since T-cad lacks transmembrane and cytosolic domains. Here, using pharmacological inhibition of PI3K, adenoviral-mediated T-cad-overexpression, siRNA-mediated T-cad-depletion, and agonistic antibody-mediated ligation, we demonstrate signaling by T-cad through PI3K-Akt-GSK3beta pathways in EC. T-cad-overexpressing EC exhibited increased levels and nuclear accumulation of active beta-catenin, which was transcriptionally active as shown by increased Lef/Tcf reporter activity and cyclin D1 levels. Cotransduction of EC with constitutively active GSK3beta (S9A-GSK3beta) abrogated the stimulatory effects of T-cad on active beta-catenin accumulation, proliferation, and survival. Integrin-linked kinase (ILK), a membrane proximal upstream regulator of Akt and GSK3beta, was considered a candidate signaling mediator for T-cad. T-cad was present in anti-ILK immunoprecipitates, and confocal microscopy revealed colocalization of T-cad and ILK within lamellipodia of migrating cells. ILK-siRNA abolished T-cad-dependent effects on (Ser-473)Akt/(Ser-9)GSK3beta phosphorylation, active beta-catenin accumulation, and survival. We conclude ILK is an essential mediator for T-cad signaling via Akt and GSK3beta in EC. This is the first demonstration that ILK can regulate inward signaling by GPI-anchored proteins. Furthermore, ILK-GSK3beta-dependent modulation of active beta-catenin levels by GPI-anchored T-cad represents a novel mechanism for controlling cellular beta-catenin activity.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Department of Research, Cardiovascular Laboratories, Basel University Hospital, Hebelstrasse 20, CH 4031 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE. Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs. BMC Genet 2007; 8:10. [PMID: 17407593 PMCID: PMC1853105 DOI: 10.1186/1471-2156-8-10] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 04/03/2007] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Classical genetic studies indicate that nicotine dependence is a substantially heritable complex disorder. Genetic vulnerabilities to nicotine dependence largely overlap with genetic vulnerabilities to dependence on other addictive substances. Successful abstinence from nicotine displays substantial heritable components as well. Some of the heritability for the ability to quit smoking appears to overlap with the genetics of nicotine dependence and some does not. We now report genome wide association studies of nicotine dependent individuals who were successful in abstaining from cigarette smoking, nicotine dependent individuals who were not successful in abstaining and ethnically-matched control subjects free from substantial lifetime use of any addictive substance. RESULTS These data, and their comparison with data that we have previously obtained from comparisons of four other substance dependent vs control samples support two main ideas: 1) Single nucleotide polymorphisms (SNPs) whose allele frequencies distinguish nicotine-dependent from control individuals identify a set of genes that overlaps significantly with the set of genes that contain markers whose allelic frequencies distinguish the four other substance dependent vs control groups (p < 0.018). 2) SNPs whose allelic frequencies distinguish successful vs unsuccessful abstainers cluster in small genomic regions in ways that are highly unlikely to be due to chance (Monte Carlo p < 0.00001). CONCLUSION These clustered SNPs nominate candidate genes for successful abstinence from smoking that are implicated in interesting functions: cell adhesion, enzymes, transcriptional regulators, neurotransmitters and receptors and regulation of DNA, RNA and proteins. As these observations are replicated, they will provide an increasingly-strong basis for understanding mechanisms of successful abstinence, for identifying individuals more or less likely to succeed in smoking cessation efforts and for tailoring therapies so that genotypes can help match smokers with the treatments that are most likely to benefit them.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Qing-Rong Liu
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Tomas Drgon
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Catherine Johnson
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Donna Walther
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
| | - Jed E Rose
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Suite 3510, 333 Cassell Drive Baltimore, Maryland 21224, USA
- Dept of Psychiatry and Center for Nicotine and Smoking Cessation Research, Duke University, Durham NC 27708, USA
| |
Collapse
|
41
|
Song K, Sun X, Wang J, Chen F. How Glycosylphosphatidylinositol-phospholipase D acts in homing of hematopoietic stem/progenitor cells? Med Hypotheses 2007; 69:660-5. [PMID: 17368745 DOI: 10.1016/j.mehy.2006.12.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Homing of hematopoietic stem/progenitor cells (HS/PC) to the bone marrow (BM) microenvironment is the first and essential step in HS/PC engraftment and initiation of the marrow reconstitution during clinical hematopoietic stem cell transplantation (HSCT). How to improve the homing efficiencies and make full use of HS/PC resources, especially umbilical cord blood (UCB), are of great importance in clinical practice. However, the cellular and molecular mechanisms that govern this process are poorly understood. Glycosylphosphatidylinositol-phospholipase D (GPI-PLD) is an enzyme which can regulate the expression of Glycosylphosphatidylinositol (GPI)-anchored proteins and modulate their correspondent functions by releasing GPI-anchored proteins from cell membrane. Recent studies suggested that the mechanisms of the malignancy and prognosis of certain tumors were correlated with GPI-PLD. HS/PC homing was similar to tumor invasion and metastasis in some process. Here we proposed the hypothesis that GPI-PLD might also has played a role in the homing of HS/PC by modulating the adhesion and migration of these cells. If GPI-PLD did participate in HS/PC homing, maybe the mechanisms of homing can herefrom be partly elucidated, which would benefit transplantation in clinical practice.
Collapse
Affiliation(s)
- Kui Song
- Department of Hematology, Xiang Ya Hospital, Central South University, ChangSha 410008, PR China
| | | | | | | |
Collapse
|
42
|
Riou P, Saffroy R, Chenailler C, Franc B, Gentile C, Rubinstein E, Resink T, Debuire B, Piatier-Tonneau D, Lemoine A. Expression of T-cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma. FASEB J 2006; 20:2291-301. [PMID: 17077306 DOI: 10.1096/fj.06-6085com] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overexpression of T-cadherin (T-cad) transcripts occurs in approximately 50% of human hepatocellular carcinomas (HCCs). To elucidate T-cad functions in HCC, we examined T-cad protein expression in normal and tumoral human livers and hepatoma cell lines and investigated its influence on invasive potential of HCC using RNA interference silencing of T-cad expression in Mahlavu cells. Whereas T-cad expression was restricted to endothelial cells (EC) from large blood vessels in normal livers, it was up-regulated in sinusoidal EC from 8/15 invasive HCCs. Importantly, in three of them (38%) T-cad was detected in tumor cells within regions in which E-cadherin expression was absent. Among six hepatoma cell lines, only Mahlavu expressed T-cad but not E-cadherin. T-cad exhibited a globally punctuate distribution in quiescent Mahlavu and additionally it concentrated at the leading edge of migrating cells. Matrigel invasion assay revealed that Mahlavu possess a high invasive potential that was significantly inhibited by T-cad silencing. Wound healing and random motility assays demonstrated that inhibition of T-cad expression in Mahlavu significantly reduced their motility. We propose that T-cad expression in tumor cells might occur by cadherin-switching during epithelial-mesenchymal transition and may represent an additional mechanism contributing to HCC metastasis.
Collapse
|
43
|
Joshi MB, Philippova M, Ivanov D, Allenspach R, Erne P, Resink TJ. T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 2005; 19:1737-9. [PMID: 16099944 DOI: 10.1096/fj.05-3834fje] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In vascular tissue, T-cadherin (T-cad) is up-regulated in vivo under disease conditions associated with oxidative stress and concomitant cell migration, proliferation and apoptosis/survival. Using cultures of human umbilical vein endothelial cells (HUVEC), we examined whether there is a functional relationship between oxidative stress, T-cad expression, and cell survival status. Culture of HUVEC under conditions of oxidative stress (e.g., serum deprivation, inclusion of H2O2) resulted in increased T-cad expression. Oxidative stress-induced increases in T-cad were inhibited by the free radical-scavenging antioxidant, N-acetylcysteine, and the flavin-containing oxidase inhibitor, diphenyleneiodonium. Thus reactive oxygen species (ROS) contribute to stress-induced elevation of T-cad in HUVEC. Compared with control cells, HUVEC overexpressing T-cad (T-cad+-HUVEC) had higher phosphorylation levels for phosphatidylinositol 3-kinase (PI3K) target Akt and mTOR target p70(S6K) (survival pathway regulators), but lower levels for p38MAPK (death pathway regulator). T-cad+-HUVEC exposed to stress (serum-deprivation, TNF-alpha, actinomycin D, staurosporine) exhibited reduced caspase activation together with increased cell survival. Protection against stress-induced apoptosis in T-cad+-HUVEC was abrogated by either PI3K-inhibitor wortmannin or mTOR-inhibitor rapamycin. We conclude that T-cad overexpression in HUVEC protects against stress-induced apoptosis through activation of the PI3K/Akt/mTOR survival signal pathway and concomitant suppression of the p38 MAPK proapoptotic pathway. ROS-induced changes in T-cad expression may play an important role in controlling tissue cellularity during vascular remodeling.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Department of Research, Cardiovascular Laboratories, Basel University Hospital, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|