1
|
Tauskela JS, Brunette E, Aylsworth A, Zhao X. Neuroprotection against supra-lethal 'stroke in a dish' insults by an anti-excitotoxic receptor antagonist cocktail. Neurochem Int 2022; 158:105381. [PMID: 35764225 DOI: 10.1016/j.neuint.2022.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM 2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6.
| | - Eric Brunette
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Amy Aylsworth
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Xigeng Zhao
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| |
Collapse
|
2
|
Shabanzadeh AP, D'Onofrio PM, Magharious M, Choi KAB, Monnier PP, Koeberle PD. Modifying PTEN recruitment promotes neuron survival, regeneration, and functional recovery after CNS injury. Cell Death Dis 2019; 10:567. [PMID: 31358730 PMCID: PMC6662832 DOI: 10.1038/s41419-019-1802-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/07/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Phosphatase and tensin homolog (PTEN) regulates apoptosis and axonal growth in the developing and adult central nervous system (CNS). Here, we show that human PTEN C-terminal PDZ interactions play a critical role in neuronal apoptosis and axon regeneration after traumatic CNS injury and stroke, highlighted by the findings that antagonizing the PDZ-motif interactions of PTEN has therapeutic applicability for these indications. Interestingly, the death-inducing function of PTEN following ischemic insult depends on a PDZ-domain interaction with MAGI-2 and MAST205, PDZ proteins that are known to recruit PTEN to the plasma membrane and stabilize its interaction with PIP3. Treatments with a human peptide that prevents PTEN association with MAGI-2 or MAST205 increased neuronal survival in multiple stroke models, in vitro. A pro-survival effect was also observed in models of retinal ischemia, optic nerve transection, and after middle cerebral artery occlusion (MCAO) in adult rats. The human PTEN peptide also improved axonal regeneration in the crushed optic nerve. Furthermore, human PTEN peptide therapy promoted functional improvement after MCAO or retinal ischemia induced via ophthalmic artery ligation. These findings show that the human peptide-based targeting of C-terminal PTEN PDZ interactions has therapeutic potential for insults of the CNS, including trauma and stroke.
Collapse
Affiliation(s)
- Alireza Pirsaraei Shabanzadeh
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Philippe Matteo D'Onofrio
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mark Magharious
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kyung An Brian Choi
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Philippe Patrick Monnier
- Departments of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Paulo Dieter Koeberle
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Rehabilitation Science Institute, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Noubhani A, Bégu D, Chaignepain S, Moha Ou Maati H, Borsotto M, Dupuy JW, Langlois d'Estaintot B, Santarelli X, Heurteaux C, Gallois B, Hugues M. Production, in Pichia pastoris, of a recombinant monomeric mapacalcine, a protein with anti-ischemic properties. Biochem Biophys Rep 2015; 4:299-305. [PMID: 29124217 PMCID: PMC5669352 DOI: 10.1016/j.bbrep.2015.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 11/26/2022] Open
Abstract
Mapacalcine is a small homodimeric protein of 19 kDa with 9 disulfide bridges extracted from the Cliona vastifica sponge (Red Sea). It selectively blocks a calcium current insensitive to most calcium blockers. Specific receptors for mapacalcine have been described in a variety of tissues such as brain, smooth muscle, liver, and kidney. Previous works achieved on hepatocytes and nervous cells demonstrated that this protein selectively blocks a calcium influx triggered by an ischemia/reperfusion (I/R) shock and efficiently protects cells from death after I/R. The aim of this work was to produce the recombinant mapacalcine in the yeast Pichia pastoris. Mass spectrometry, light scattering analysis and biological characterization demonstrated that the recombinant mapacalcine obtained was a monomeric form with 4 disulfide bridges which retains the biological activity of the natural protein. Mapacalcine is a homodimeric protein extracted from the Cliona vastifica sponge. Mapacalcine significantly increases cell survival after ischemia/reperfusion. We expressed a recombinant mapacalcine in the yeast Pichia pastoris. The expressed protein retains the biological properties of the natural mapacalcine.
Collapse
Affiliation(s)
- A Noubhani
- University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - D Bégu
- University Bordeaux, MCMP, UMR 5234, F-33000 Bordeaux, France
| | - S Chaignepain
- University Bordeaux, CBMN, UMR 5248, F-33600 Pessac, France
| | - H Moha Ou Maati
- IGF, CNRS/INSERM/UM1/UM2, UMR 5203 141 rue de la Cardonille, 34095 Montpellier Cedex 5, France
| | - M Borsotto
- IPMC, CNRS, UMR 7275, Université de Nice Sophia Antipolis, 660, route des Lucioles, F-06560 Valbonne, France
| | - J W Dupuy
- University Bordeaux, CGF, Plateforme Protéome, F-33000 Bordeaux, France
| | | | - X Santarelli
- University Bordeaux, BPRVS, EA 4135, F-33000 Bordeaux, France
| | - C Heurteaux
- IPMC, CNRS, UMR 7275, Université de Nice Sophia Antipolis, 660, route des Lucioles, F-06560 Valbonne, France
| | - B Gallois
- University Bordeaux, CBMN, UMR 5248, F-33600 Pessac, France
| | - M Hugues
- University Bordeaux, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
4
|
Cheng KY, Guo F, Lu JQ, Cao YZ, Wang TC, Yang Q, Xia Q. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress. CNS Neurosci Ther 2014; 21:435-45. [PMID: 25545542 DOI: 10.1111/cns.12373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
AIMS Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. METHODS Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. RESULTS MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. CONCLUSION Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress.
Collapse
Affiliation(s)
- Kuo-Yuan Cheng
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Grubman A, White AR, Liddell JR. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br J Pharmacol 2014; 171:2159-73. [PMID: 24206195 DOI: 10.1111/bph.12513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022] Open
Abstract
Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders.
Collapse
Affiliation(s)
- A Grubman
- Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
6
|
Gouix E, Buisson A, Nieoullon A, Kerkerian-Le Goff L, Tauskela JS, Blondeau N, Had-Aissouni L. Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacol Res 2014; 87:8-17. [DOI: 10.1016/j.phrs.2014.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
|
7
|
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014; 20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.
Collapse
Affiliation(s)
- Huaxin Sheng
- 1 Department of Anesthesiology, Duke University Medical Center (DUMC) , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
8
|
Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage. PLoS One 2013; 8:e73499. [PMID: 24023686 PMCID: PMC3758302 DOI: 10.1371/journal.pone.0073499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA) and sodium (Nav) channels trigger excitotoxic neuron death. Na+, Ca++ and H2O influx into affected neurons elicits swelling (increased cell volume) and pathological blebbing (disassociation of the plasma membrane’s bilayer from its spectrin-actomyosin matrix). Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM)-based force spectroscopy) upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine). Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be feasible.
Collapse
|
9
|
Moha ou Maati H, Widmann C, Gallois DSB, Heurteaux C, Borsotto M, Hugues M. Mapacalcine protects mouse neurons against hypoxia by blocking cell calcium overload. PLoS One 2013; 8:e66194. [PMID: 23843951 PMCID: PMC3699608 DOI: 10.1371/journal.pone.0066194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 05/07/2013] [Indexed: 12/01/2022] Open
Abstract
Stroke is one of a major cause of death and adult disability. Despite intense researches, treatment for stroke remains reduced to fibrinolysis, a technique useful for less than 10% of patients. Finding molecules able to treat or at least to decrease the deleterious consequences of stroke is an urgent need. Here, we showed that mapacalcine, a homodimeric peptide purified from the marine sponge Cliona vastifica, is able to protect mouse cortical neurons against hypoxia. We have also identified a subtype of L-type calcium channel as a target for mapacalcine and we showed that the channel has to be open for mapacalcine binding. The two main L-type subunits at the brain level are CaV1.3 and CaV1.2 subunits but mapacalcine was unable to block these calcium channels.Mapacalcine did not interfere with N-, P/Q- and R-type calcium channels. The protective effect was studied by measuring internal calcium level variation triggered by Oxygen Glucose Deprivation protocol, which mimics stroke, or glutamate stimulation. We showed that NMDA/AMPA receptors are not involved in the mapacalcine protection. The protective effect was confirmed by measuring the cell survival rate after Oxygen Glucose Deprivation condition. Our data indicate that mapacalcine is a promising molecule for stroke treatment.
Collapse
Affiliation(s)
- Hamid Moha ou Maati
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Catherine Widmann
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Djamila Sedjelmaci Bernard Gallois
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - Marc Borsotto
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
- * E-mail: (MB); (MH)
| | - Michel Hugues
- Chimie Biologie des Membranes et des Nanoobjets, Centre National de la Recherche Scientifique (UMR5248), Pessac, France
- * E-mail: (MB); (MH)
| |
Collapse
|
10
|
Fahim MA, Shehab S, Nemmar A, Adem A, Dhanasekaran S, Hasan MY. Daily subacute paraquat exposure decreases muscle function and substantia nigra dopamine level. Physiol Res 2013; 62:313-21. [PMID: 23489189 DOI: 10.33549/physiolres.932386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The use of the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridylium dichloride; PQ) which is widely used in agriculture is known to cause dopaminergic neurotoxicity. However, the mechanisms underlying this effect are not fully understood. This present study investigated the behavioral manifestations, motor coordination, and dopaminergic neurodegeneration following exposure to PQ. Male rats were injected with PQ (10 mg/kg i.p.) daily for three weeks. Rotarod systems were used for measuring locomotor activity and motor coordination. The effects of PQ on dorsiflexor, electrophysiologically-induced muscle contraction were studied. Dopamine concentrations in the ventral mesencephalon were measured by high performance liquid chromatography and the number of dopaminergic neurons in substantia nigra pars compacta was estimated by tyrosine hydroxylase immunohistochemistry. PQ induced difficulty in movement and significant reduction in motor activity and twitch tension at the dorsiflexor skeletal muscle. The number of tyrosine hydroxylase positive neurons was significantly less in the substantia nigra pars compacta and nigral dopamine level was significantly reduced in PQ treated animals (20.4+/-3.4 pg/mg) when compared with control animals (55.0+/-2.4 pg/mg wet tissue). Daily treatment of PQ for three weeks induces selective dopaminergic neuronal loss in the substantia nigra and significant behavioral and peripheral motor deficit effects.
Collapse
Affiliation(s)
- M A Fahim
- Faculty of Medicine, UAE University, Al Ain, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|
11
|
Moha ou Maati H, Peyronnet R, Devader C, Veyssiere J, Labbal F, Gandin C, Mazella J, Heurteaux C, Borsotto M. A human TREK-1/HEK cell line: a highly efficient screening tool for drug development in neurological diseases. PLoS One 2011; 6:e25602. [PMID: 22022421 PMCID: PMC3194802 DOI: 10.1371/journal.pone.0025602] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/06/2011] [Indexed: 11/19/2022] Open
Abstract
TREK-1 potassium channels are involved in a number of physiopathological processes such as neuroprotection, pain and depression. Molecules able to open or to block these channels can be clinically important. Having a cell model for screening such molecules is of particular interest. Here, we describe the development of the first available cell line that constituvely expresses the TREK-1 channel. The TREK-1 channel expressed by the h-TREK-1/HEK cell line has conserved all its modulation properties. It is opened by stretch, pH, polyunsaturated fatty acids and by the neuroprotective molecule, riluzole and it is blocked by spadin or fluoxetine. We also demonstrate that the h-TREK-1/HEK cell line is protected against ischemia by using the oxygen-glucose deprivation model.
Collapse
Affiliation(s)
- Hamid Moha ou Maati
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Rémi Peyronnet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Christelle Devader
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Julie Veyssiere
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Fabien Labbal
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Carine Gandin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Jean Mazella
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
| | - Marc Borsotto
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS, UMR6097), Université de Nice Sophia Antipolis, Valbonne, France
- * E-mail:
| |
Collapse
|
12
|
Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 2010; 13:877-918. [PMID: 20095865 PMCID: PMC2935339 DOI: 10.1089/ars.2009.2876] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia-reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO(3)(*-), peroxyl radical, and less efficiently H(2)O(2). By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
13
|
Batinic-Haberle I, Spasojevic I, Tse HM, Tovmasyan A, Rajic Z, St Clair DK, Vujaskovic Z, Dewhirst MW, Piganelli JD. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids 2010; 42:95-113. [PMID: 20473774 DOI: 10.1007/s00726-010-0603-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
Abstract
The most efficacious Mn(III) porphyrinic (MnPs) scavengers of reactive species have positive charges close to the Mn site, whereby they afford thermodynamic and electrostatic facilitation for the reaction with negatively charged species such as O (2) (•-) and ONOO(-). Those are Mn(III) meso tetrakis(N-alkylpyridinium-2-yl)porphyrins, more specifically MnTE-2-PyP(5+) (AEOL10113) and MnTnHex-2-PyP(5+) (where alkyls are ethyl and n-hexyl, respectively), and their imidazolium analog, MnTDE-2-ImP(5+) (AEOL10150, Mn(III) meso tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin). The efficacy of MnPs in vivo is determined not only by the compound antioxidant potency, but also by its bioavailability. The former is greatly affected by the lipophilicity, size, structure, and overall shape of the compound. These porphyrins have the ability to both eliminate reactive oxygen species and impact the progression of oxidative stress-dependent signaling events. This will effectively lead to the regulation of redox-dependent transcription factors and the suppression of secondary inflammatory- and oxidative stress-mediated immune responses. We have reported on the inhibition of major transcription factors HIF-1α, AP-1, SP-1, and NF-κB by Mn porphyrins. While the prevailing mechanistic view of the suppression of transcription factors activation is via antioxidative action (presumably in cytosol), the pro-oxidative action of MnPs in suppressing NF-κB activation in nucleus has been substantiated. The magnitude of the effect is dependent upon the electrostatic (porphyrin charges) and thermodynamic factors (porphyrin redox ability). The pro-oxidative action of MnPs has been suggested to contribute at least in part to the in vitro anticancer action of MnTE-2-PyP(5+) in the presence of ascorbate, and in vivo when combined with chemotherapy of lymphoma. Given the remarkable therapeutic potential of metalloporphyrins, future studies are warranted to further our understanding of in vivo action/s of Mn porphyrins, particularly with respect to their subcellular distribution.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, 281b/285 MSRB I, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tauskela JS, Brunette E. Neuroprotection against staurosporine by metalloporphyrins independent of antioxidant capability. Neurosci Lett 2009; 466:41-6. [PMID: 19766169 DOI: 10.1016/j.neulet.2009.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/26/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
Abstract
Metalloporphyrin catalytic antioxidants are remarkably useful in protecting cells and tissues in a wide array of disease models, attributed primarily to functioning as superoxide dismutase (SOD) mimetics or by scavenging other reactive oxygen species (ROS). However, we recently showed that neuroprotection against Ca(2+)-dependent excitotoxic insults did not correlate with antioxidant strength or capability [25], raising the question of whether scavenging of ROS underlies neuroprotection in other types of neuronal injury. The protein kinase inhibitor staurosporine causes neuronal demise primarily by apoptosis. Neuroprotection from staurosporine by a limited number of metalloporphyrin antioxidants has previously been attributed to antioxidant action. In the current study, a wide array of anionic and cationic metalloporphyrins and porphyrins, ranging in antioxidant strength or capability, provided protection against staurosporine in cortical neuron and cerebellar granule neuron (CGN) culture. Neuroprotection did not correlate with antioxidant strength or capability. In CGN but not cortical neuron cultures, NMDA receptor antagonists also prevented neurotoxicity, so metalloporphyrins may also target this secondary mode of death induced by staurosporine. Neuroprotection observed with antioxidant-inactive controls raises the possibility of an additional, or perhaps alternative, mechanism by antioxidant analogs not involving ROS scavenging.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Therapies & Devices Group, Montreal Rd. Campus, Ottawa, ON, Canada K1A 0R6.
| | | |
Collapse
|
15
|
Rosenthal RA, Huffman KD, Fisette LW, Damphousse CA, Callaway WB, Malfroy B, Doctrow SR. Orally available Mn porphyrins with superoxide dismutase and catalase activities. J Biol Inorg Chem 2009; 14:979-91. [PMID: 19504132 PMCID: PMC2716445 DOI: 10.1007/s00775-009-0550-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 05/18/2009] [Indexed: 12/04/2022]
Abstract
Superoxide dismutase/catalase mimetics, such as salen Mn complexes and certain metalloporphyrins, catalytically neutralize reactive oxygen and nitrogen species, which have been implicated in the pathogenesis of many serious diseases. Both classes of mimetic are protective in animal models of oxidative stress. However, only AEOL11207 and EUK-418, two uncharged Mn porphyrins, have been shown to be orally bioavailable. In this study, EUK-418 and several new analogs (the EUK-400 series) were synthesized and shown to exhibit superoxide dismutase, catalase, and peroxidase activities in vitro. Some also protected PC12 cells against staurosporine-induced cell death. All EUK-400 compounds were stable in simulated gastric fluid, and most were substantially more lipophilic than the salen Mn complexes EUK-189 and EUK-207, which lack oral activity. Pharmacokinetics studies demonstrate the presence of all EUK-400 series compounds in the plasma of rats after oral administration. These EUK-400 series compounds are potential oral therapeutic agents for cellular damage caused by oxidative stress.
Collapse
|
16
|
Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson's disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 2009; 4:24. [PMID: 19500376 PMCID: PMC2701947 DOI: 10.1186/1750-1326-4-24] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/05/2009] [Indexed: 12/21/2022] Open
Abstract
While numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death. Using Parkinson's disease (PD) as the paradigm, this review explores the hypothesis that oxidative modifications, mitochondrial functional disruption, and impairment of protein degradation constitute three interrelated molecular pathways that execute neuron death. These intertwined events are the consequence of environmental exposure, genetic factors, and endogenous risks and constitute a "Bermuda triangle" that may be considered the underlying cause of neurodegenerative pathogenesis.
Collapse
|
17
|
Batinić-Haberle I, Cuzzocrea S, Rebouças JS, Ferrer-Sueta G, Mazzon E, Di Paola R, Radi R, Spasojević I, Benov L, Salvemini D. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic Biol Med 2009; 46:192-201. [PMID: 19007878 PMCID: PMC2742324 DOI: 10.1016/j.freeradbiomed.2008.09.042] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/14/2008] [Accepted: 09/30/2008] [Indexed: 12/20/2022]
Abstract
MnTBAP is often referred to as an SOD mimic in numerous models of oxidative stress. We have recently reported that pure MnTBAP does not dismute superoxide, but commercial or poorly purified samples are able to perform O2.- dismutation with low-to-moderate efficacy via non-innocent Mn-containing impurities. Herein, we show that neither commercial nor pure MnTBAP could substitute for SOD enzyme in a SOD-deficient Escherichia coli model, whereas MnTE-2-PyP-treated SOD-deficient E. coli grew as well as a wild-type strain. This SOD-specific system indicates that MnTBAP does not act as an SOD mimic in vivo. In another model, carrageenan-induced pleurisy in mice, inflammation was evidenced by increased pleural fluid exudate and neutrophil infiltration and activation: these events were blocked by 0.3 mg/kg MnTE-2-PyP and, to a slightly lesser extent, by 10 mg/kg of either MnTBAP. Also, 3-nitrotyrosine formation, an indication of peroxynitrite existence in vivo, was blocked by both compounds; again MnTE-2-PyP was 33-fold more effective. Pleurisy model data indicate that MnTBAP exerts some protective actions in common with MnTE-2-PyP, which are not O2.- related and can be fully rationalized if one considers that the common biological role shared by MnTBAP and MnTE-2-PyP is related to their reduction of peroxynitrite and carbonate radical, the latter arising from ONOOCO2 adduct. The log kcat (O2.-) value for MnTBAP is estimated to be about 3.16, which is approximately 5 and approximately 6 orders of magnitude smaller than the SOD activities of the potent SOD mimic MnTE-2-PyP and Cu,Zn-SOD, respectively. This very low value indicates that MnTBAP is too inefficient at dismuting superoxide to be of any biological impact, which was confirmed in the SOD-deficient E. coli model. The peroxynitrite scavenging ability of MnTBAP, however, is only approximately 2.5 orders of magnitude smaller than that of MnTE-2-PyP and is not significantly affected by the presence of the SOD-active impurities in the commercial MnTBAP sample (log k red (ONOO-) = 5.06 for pure and 4.97 for commercial sample). The reduction of carbonate radical is equally fast with MnTBAP and MnTE-2-PyP. The dose of MnTBAP required to yield oxidative stress protection and block nitrotyrosine formation in the pleurisy model is > 1.5 orders of magnitude higher than that of MnTE-2-PyP, which could be related to the lower ability of MnTBAP to scavenge peroxynitrite. The slightly better protection observed with the commercial MnTBAP sample (relative to the pure MnTBAP) could arise from its impurities, which, by scavenging O2.-, reduce consequently the overall peroxynitrite and secondary ROS/RNS levels. These observations have profound biological repercussions as they may suggest that the effect of MnTBAP observed in numerous studies may conceivably relate to peroxynitrite scavenging. Moreover, provided that pure MnTBAP is unable to dismute superoxide at any significant extent, but is able to partially scavenge peroxynitrite and carbonate radical, this compound may prove valuable in distinguishing ONOO-/CO3.- from O2.- pathways.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham NC 27710, USA
- Corresponding authors: Ines Batinic-Haberle, Ph.D., Duke University Medical School, Department of Radiation Oncology - Cancer Biology, 281b/285 MSRB I, Box 3455, Durham, NC 27710, Tel: +1-919-684-2101; Fax: +1-919-684-8718, e-mail: , Daniela Salvemini, Ph.D., Saint Louis University, Department of Internal Medicine - Division on Pulmonary, Critical Care and Sleep Medicine, 3635 Vista Avenue, Desloge Towers 7th Floor, St Louis, MO 6311, Tel: +1-314-577-8856; Fax: +1-314-577-8859, e-mail:
| | - Salvatore Cuzzocrea
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy and Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - Júlio S. Rebouças
- Department of Radiation Oncology, Duke University Medical School, Durham NC 27710, USA
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy and Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy and Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | - Rafael Radi
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, and Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo 11400, Uruguay
| | - Ivan Spasojević
- Department of Medicine, Duke University Medical School, Durham NC 27710, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Daniela Salvemini
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Saint Louis University, St. Louis, MO 63110, USA
- Corresponding authors: Ines Batinic-Haberle, Ph.D., Duke University Medical School, Department of Radiation Oncology - Cancer Biology, 281b/285 MSRB I, Box 3455, Durham, NC 27710, Tel: +1-919-684-2101; Fax: +1-919-684-8718, e-mail: , Daniela Salvemini, Ph.D., Saint Louis University, Department of Internal Medicine - Division on Pulmonary, Critical Care and Sleep Medicine, 3635 Vista Avenue, Desloge Towers 7th Floor, St Louis, MO 6311, Tel: +1-314-577-8856; Fax: +1-314-577-8859, e-mail:
| |
Collapse
|
18
|
Tauskela JS, Fang H, Hewitt M, Brunette E, Ahuja T, Thivierge JP, Comas T, Mealing GAR. Elevated synaptic activity preconditions neurons against an in vitro model of ischemia. J Biol Chem 2008; 283:34667-76. [PMID: 18845540 PMCID: PMC3259903 DOI: 10.1074/jbc.m805624200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/06/2008] [Indexed: 12/22/2022] Open
Abstract
Tolerance to otherwise lethal cerebral ischemia in vivo or to oxygen-glucose deprivation (OGD) in vitro can be induced by prior transient exposure to N-methyl-D-aspartic acid (NMDA): preconditioning in this manner activates extrasynaptic and synaptic NMDA receptors and can require bringing neurons to the "brink of death." We considered if this stressful requirement could be minimized by the stimulation of primarily synaptic NMDA receptors. Subjecting cultured cortical neurons to prolonged elevations in electrical activity induced tolerance to OGD. Specifically, exposing cultures to a K(+)-channel blocker, 4-aminopyridine (20-2500 microm), and a GABA(A) receptor antagonist, bicuculline (50 microm) (4-AP/bic), for 1-2 days resulted in potent tolerance to normally lethal OGD applied up to 3 days later. Preconditioning induced phosphorylation of ERK1/2 and CREB which, along with Ca(2+) spiking and OGD tolerance, was eliminated by tetrodotoxin. Antagonists of NMDA receptors or L-type voltage-gated Ca(2+) channels (L-VGCCs) applied during preconditioning decreased Ca(2+) spiking, phosphorylation of ERK1/2 and CREB, and OGD tolerance more effectively when combined, particularly at the lowest 4-AP concentration. Inhibiting ERK1/2 or Ca(2+)/calmodulin-dependent protein kinases (CaMKs) also reduced Ca(2+) spiking and OGD tolerance. Preconditioning resulted in altered neuronal excitability for up to 3 days following 4-AP/bic washout, based on field potential recordings obtained from neurons cultured on 64-channel multielectrode arrays. Taken together, the data are consistent with action potential-driven co-activation of primarily synaptic NMDA receptors and L-VGCCs, resulting in parallel phosphorylation of ERK1/2 and CREB and involvement of CaMKs, culminating in a potent, prolonged but reversible, OGD-tolerant phenotype.
Collapse
Affiliation(s)
- Joseph S Tauskela
- Synaptic Therapies & Devices Group, National Research Council, Institute for Biological Sciences, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ali SS, Hardt JI, Dugan LL. SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:283-94. [PMID: 18656425 DOI: 10.1016/j.nano.2008.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/29/2008] [Accepted: 05/09/2008] [Indexed: 01/26/2023]
Abstract
Superoxide radical anion is a biologically important oxidant that has been linked to tissue injury and inflammation in several diseases. Here we carried out a structure-activity study on six different carboxyfullerene superoxide dismutase (SOD) mimetics with distinct electronic and biophysical characteristics. Neurotoxicity via N-methyl-D-aspartate receptors, which involves intracellular superoxide, was used as a model to evaluate structure-activity relationships between reactivity toward superoxide and neuronal rescue by these drugs. A significant correlation between neuroprotection by carboxyfullerenes and their ki toward superoxide radical was observed. Computer-assisted molecular modeling demonstrated that the reactivity toward superoxide is sensitive to changes in dipole moment, which are dictated not only by the number of carboxyl groups but also by their distribution on the fullerene ball. These results indicate that the SOD activity of these cell-permeable compounds predicts neuroprotection, and establishes a structure-activity relationship to aid in future studies on the biology of superoxide across disciplines.
Collapse
Affiliation(s)
- Sameh Saad Ali
- Department of Medicine, University of California, San Diego, California, USA.
| | | | | |
Collapse
|
20
|
Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure–activity relationship as a watchdog mechanism in experimental therapeutics and biology. J Biol Inorg Chem 2007; 13:289-302. [DOI: 10.1007/s00775-007-0324-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/11/2007] [Indexed: 10/22/2022]
|
21
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
22
|
Abstract
Catalytic antioxidants are comprised of specialised classes of organometallic complexes that can catalyse the decomposition of injurious biological oxidants. These complexes have been shown to prevent the formation of several oxidative markers in spinal cord of G93A amyotropic lateral sclerosis mice and markedly extend survival, even when administered at symptom onset; however, it is now clear that some complexes lacking in antioxidant activity are also protective. New proteomics data suggest that these complexes also induce a broad spectrum of endogenous cellular defense mechanisms. The combination of antioxidant and adaptive resistance effects may explain the remarkable potency of these compounds and may also suggest wide applicability for them in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- John P Crow
- University of Arkansas for Medical Sciences, College of Medicine, 4301 W. Markham Slot 638, Little Rock, AR 72205, USA.
| |
Collapse
|
23
|
Tauskela JS, Brunette E, Kiedrowski L, Lortie K, Hewitt M, Morley P. Unconventional neuroprotection against Ca2+ -dependent insults by metalloporphyrin catalytic antioxidants. J Neurochem 2006; 98:1324-42. [PMID: 16895586 DOI: 10.1111/j.1471-4159.2006.03973.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We evaluated whether both inert and catalytically active metalloporphyrin antioxidants, meso-substituted with either phenyl-based or N-alkylpyridinium-based groups, suppress Ca(2+)-dependent neurotoxicity in cell culture models of relevance to cerebral ischemia. Representatives from both metalloporphyrin classes, regardless of antioxidant strength, protected cultured cortical neurons or PC-12 cultures against the Ca(2+) ionophores ionomycin or A23187, by suppressing neurotoxic Ca(2+) influx. Some metalloporphyrins suppressed excitotoxic Ca(2+) influx indirectly induced by the Ca(2+) ionophores in cortical neurons. Metalloporphyrins did not quench intracellular fluorescence, suggesting localization to the plasma membrane interface and/or interference with Ca(2+) ionophores. Metalloporphyrins suppressed ionomycin-induced Mn(2+) influx, but did not protect cortical neurons against pyrithione, a Zn(2+) ionophore. In other Ca(2+)-dependent paradigms, Ca(2+) influx via plasma membrane depolarization, but not through reversal of plasmalemmal Na(+)/Ca(2+) exchangers, was modestly suppressed by Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP) or by an inert analog, Zn(II)TBAP. Mn(III)TBAP and Zn(II)TBAP potently protected cortical neurons against long-duration oxygen-glucose deprivation (OGD), performed in the presence of antagonists of NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and L-type voltage-gated Ca(2+) channels, raising the possibility of an unconventional mode of blockade of transient receptor protein melastatin 7 channels by a metalloTBAP family of metalloporphyrins. The present study extends the range of Ca(2+)-dependent insults for which metalloporphyrins demonstrate unconventional neuroprotection. MetalloTBAPs appear capable of targeting an OGD temporal continuum.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Pathophysiology Group, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Kruger AL, Peterson SJ, Schwartzman ML, Fusco H, McClung JA, Weiss M, Shenouda S, Goodman AI, Goligorsky MS, Kappas A, Abraham NG. Up-regulation of heme oxygenase provides vascular protection in an animal model of diabetes through its antioxidant and antiapoptotic effects. J Pharmacol Exp Ther 2006; 319:1144-52. [PMID: 16959961 DOI: 10.1124/jpet.106.107482] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heme oxygenase (HO) plays a critical role in the regulation of cellular oxidative stress. The effects of the reactive oxygen species scavenger ebselen and the HO inducers cobalt protoporphyrin and stannous chloride (SnCl(2)) on HO protein levels and activity, indices of oxidative stress, and the progression of diabetes were examined in the Zucker rat model of type 2 diabetes. The onset of diabetes coincided with an increase in HO-1 protein levels and a paradoxical decrease in HO activity, which was restored by administration of ebselen. Up-regulation of HO-1 expressed in the early development of diabetes produced a decrease in oxidative/nitrosative stress as manifested by decreased levels of 3-nitrotyrosine, superoxide, and cellular heme content. This was accompanied by a decrease in endothelial cell sloughing and reduced blood pressure. Increased HO activity was also associated with a significant increase in the antiapoptotic signaling molecules Bcl-xl and phosphorylation of p38-mitogen-activated protein kinase but no significant increases in Bcl-2 or BAD proteins. In conclusion, 3-nitrotyrosine, cellular heme, and superoxide, promoters of vascular damage, are reduced by HO-1 induction, thereby preserving vascular integrity and protecting cardiac function involving an increase in antiapoptotic proteins.
Collapse
Affiliation(s)
- Adam L Kruger
- Division of Cardiology, Department of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tauskela JS, Brunette E, Hewitt M, Mealing G, Morley P. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins. Neurosci Lett 2006; 401:236-41. [PMID: 16631306 DOI: 10.1016/j.neulet.2006.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/03/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
The goal of this study was to determine if novel porphyrins protect cultured cortical neurons from excitotoxic NMDA exposure or oxygen-glucose deprivation (OGD), which model key aspects of cerebral ischemia. Porphyrins were chosen based on conventional and unconventional criteria. Metalloporphyrin catalytic antioxidants possessing a redox-sensitive metal core can exhibit potent and wide-ranging catalytic antioxidant abilities, which are conventionally believed to underlie neuroprotection. We report here that a recent-generation potent peroxynitrite decomposition catalyst, FP-15, protected a majority of neurons against OGD and NMDA toxicity, without suppressing NMDA-mediated intracellular Ca2+ (Cai2+) elevations or whole-cell currents. We have previously shown that neuroprotection against OGD and NMDA toxicity correlated with an ability to suppress neurotoxic Cai2+ elevations and not antioxidant ability. We now evaluate if this unconventional mechanism extends to inert metal-free porphyrins. Neuron cultures were completely protected against OGD and NMDA toxicity by H2-meso-tetrakis(3-benzoic acid)porphyrin (H2-TBAP(3)) or H2-meso-tetrakis(4-sulfonatophenyl)porphyrin (H2-TPPS(4)), although only H2-TPPS(4) suppressed (completely) NMDA-induced Cai2+ rises. H2-meso-tetrakis(3,3'-benzoic acid)porphyrin (H2-TBAP(3,3')) or H2-meso-tetrakis(N-methylpyridynium-4-yl)porphyrin (H2-TM-PyP(4)) provided at least partial protection against OGD and NMDA toxicity and partially suppressed NMDA-induced Cai2+ elevations. Despite the complexity of Ca2+-independent and -dependent based mechanisms, the inventory of porphyrins demonstrating neuroprotection in ischemia-relevant insults is now expanded to include FP-15 and inert metal-free compounds, although with no apparent advantage gained by using FP-15.
Collapse
Affiliation(s)
- Joseph Stephen Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Pathophysiology Group, Montreal Road Campus, Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | | | | | |
Collapse
|