1
|
Cui G, Di Y, Yang S, Chen Y, Li Y, Chen D. Proteomic analysis reveals key differences in pro-stromal corneal tissue between highly myopic males and females. Front Med (Lausanne) 2024; 11:1406748. [PMID: 39219796 PMCID: PMC11361967 DOI: 10.3389/fmed.2024.1406748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background and purpose Nowadays, myopia has become a highly prevalent disease globally, especially in East Asia. Epidemiological studies have found that there may be sex differences in the occurrence and progression of myopia, with females having a higher incidence of myopia and higher risk of myopia progression. The purpose of this study was to explore the sex differences in myopic cornea using corneal stroma removed by small incision lenticule extraction (SMILE) surgery. Methods The corneal stroma of females with high myopia (FH) and males with high myopia (MH) were subjected to proteomic assays. Proteomic-related data were statistically analyzed using software such as MaxQuan, KAAS, Proteome Discovery, etc. The total number of proteins in the cornea and the proteins specifically expressed in the two groups were counted, and the differentially expressed proteins in the two groups were identified by expression fold change >2 and p-value <0.05, and volcano plots were constructed, and functional enrichment analysis, subcellular organelle analysis, and molecular interaction were implemented. Results Ten samples from each group were analyzed. Twenty-seven proteins were down-regulated and 27 proteins were up-regulated in the FH group, of which 23 proteins were up-regulated in the range of 2-10-fold and 4 proteins were up-regulated in the range of >10-fold. Comparative proteomic analysis of the cornea of male and female patients with high myopia revealed that the expression of corneal extracellular matrix and collagen I, III, V, and VIII-associated proteins were increased in the cornea of female patients, and the transforming growth factor-β (TGF-β)/Smad pathway was an important pathway obtained by functional analysis. Conclusion Comparative proteomic analysis of cornea from male and female patients with high myopia revealed increased expression of proteins related to extracellular matrix and collagen I, III, V, and VIII in female patients, and the TGF-β/Smad pathway was an important pathway obtained from the functional analysis, suggesting that extracellular matrix remodeling and collagen fiber synthesis may be more active in the cornea of female patients.
Collapse
Affiliation(s)
- Ge Cui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Di
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Jensen KT, Nielsen NS, Viana Almeida A, Thøgersen IB, Enghild JJ, Harwood SL. Proteolytic cleavage of the TGFβ co-receptor CD109 changes its conformation, resulting in protease inhibition via activation of its thiol ester, and dissociation from the cell membrane. FEBS J 2024; 291:3169-3190. [PMID: 38587194 DOI: 10.1111/febs.17128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored protein cluster of differentiation 109 (CD109) is expressed on many human cell types and modulates the transforming growth factor β (TGF-β) signaling network. CD109 belongs to the alpha-macroglobulin family of proteins, known for their protease-triggered conformational changes. However, the effect of proteolysis on CD109 and its conformation are unknown. Here, we investigated the interactions of CD109 with proteases. We found that a diverse selection of proteases cleaved peptide bonds within the predicted bait region of CD109, inducing a conformational change that activated the thiol ester of CD109. We show CD109 was able to conjugate proteases with this thiol ester and decrease their activity toward protein substrates, demonstrating that CD109 is a protease inhibitor. We additionally found that CD109 has a unique mechanism whereby its GPI-anchored macroglobulin 8 (MG8) domain dissociates during its conformational change, allowing proteases to release CD109 from the cell surface by a precise mechanism and not unspecific shedding. We conclude that proteolysis of the CD109 bait region affects both its structure and location, and that interactions between CD109 and proteases may be important to understanding its functions, for example, as a TGF-β co-receptor.
Collapse
Affiliation(s)
| | | | - Ana Viana Almeida
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
3
|
Hosen S, Ikeda-Yorifuji I, Yamashita T. Asporin and CD109, expressed in the injured neonatal spinal cord, attenuate axonal re-growth in vitro. Neurosci Lett 2024; 833:137832. [PMID: 38796094 DOI: 10.1016/j.neulet.2024.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.
Collapse
Affiliation(s)
- Sakura Hosen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
4
|
Naoi H, Suzuki Y, Miyagi A, Horiguchi R, Aono Y, Inoue Y, Yasui H, Hozumi H, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Inui N, Mii S, Ichihara M, Takahashi M, Suda T. CD109 Attenuates Bleomycin-induced Pulmonary Fibrosis by Inhibiting TGF-β Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1221-1231. [PMID: 38334455 DOI: 10.4049/jimmunol.2300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-β plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-β signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-β have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-β receptor I and negatively regulates TGF-β signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-β signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-β signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyogo Naoi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Asuka Miyagi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryo Horiguchi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuya Aono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ichihara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Biomedical Science, Chubu University Graduate School of Life and Health Science, Kasugai, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Harvey AB, Wolters RA, Deepe RN, Tarolli HG, Drummond JR, Trouten A, Zandi A, Barth JL, Mukherjee R, Romeo MJ, Vaena SG, Tao G, Muise-Helmericks R, Ramos PS, Norris RA, Wessels A. Epicardial deletion of Sox9 leads to myxomatous valve degeneration and identifies Cd109 as a novel gene associated with valve development. J Mol Cell Cardiol 2024; 186:16-30. [PMID: 37935281 PMCID: PMC10843603 DOI: 10.1016/j.yjmcc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.
Collapse
Affiliation(s)
- Andrew B Harvey
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Renélyn A Wolters
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Raymond N Deepe
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Hannah G Tarolli
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jenna R Drummond
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Allison Trouten
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Auva Zandi
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC 29425, USA.
| | - Martin J Romeo
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Silvia G Vaena
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Robin Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Paula S Ramos
- Departments of Medicine and Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA.
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | - Andy Wessels
- Department of Regenerative Medicine and Cell Biology, College of Medicine, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| |
Collapse
|
6
|
Zhang C, Zhong L, Lau YK, Wu M, Yao L, Schaer TP, Mauck RL, Malhotra NR, Qin L, Smith LJ. Single cell RNA sequencing reveals emergent notochord-derived cell subpopulations in the postnatal nucleus pulposus. FASEB J 2024; 38:e23363. [PMID: 38085183 PMCID: PMC10757564 DOI: 10.1096/fj.202301217r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain. Cell-based strategies that seek to treat disc degeneration by regenerating the central nucleus pulposus (NP) hold significant promise, but key challenges remain. One of these is the inability of therapeutic cells to effectively mimic the performance of native NP cells, which are unique amongst skeletal cell types in that they arise from the embryonic notochord. In this study, we use single cell RNA sequencing to demonstrate emergent heterogeneity amongst notochord-derived NP cells in the postnatal mouse disc. Specifically, we established the existence of progenitor and mature NP cells, corresponding to notochordal and chondrocyte-like cells, respectively. Mature NP cells exhibited significantly higher expression levels of extracellular matrix (ECM) genes including aggrecan, and collagens II and VI, along with elevated transforming growth factor-beta and phosphoinositide 3 kinase-protein kinase B signaling. Additionally, we identified Cd9 as a novel surface marker of mature NP cells, and demonstrated that these cells were localized to the NP periphery, increased in numbers with increasing postnatal age, and co-localized with emerging glycosaminoglycan-rich matrix. Finally, we used a goat model to show that Cd9+ NP cell numbers decrease with moderate severity disc degeneration, suggesting that these cells are associated with maintenance of the healthy NP ECM. Improved understanding of the developmental mechanisms underlying regulation of ECM deposition in the postnatal NP may inform improved regenerative strategies for disc degeneration and associated low back pain.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Yian Khai Lau
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Meilun Wu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Thomas P. Schaer
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, 382 W Street Rd, Kennett Square, PA, USA 19348
| | - Robert L. Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA 19104
| | - Neil R. Malhotra
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
| | - Lachlan J. Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA, USA 19104
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 USA
| |
Collapse
|
7
|
Mori N, Esaki N, Shimoyama Y, Shiraki Y, Asai N, Sakai T, Nishida Y, Takahashi M, Enomoto A, Mii S. Significance of expression of CD109 in osteosarcoma and its involvement in tumor progression via BMP signaling. Pathol Res Pract 2023; 245:154443. [PMID: 37030166 DOI: 10.1016/j.prp.2023.154443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Osteosarcoma, the most common primary malignant bone tumor, is defined by the formation of neoplastic osteoid and/or bone. This sarcoma is a highly heterogeneous disease with a wide range of patient outcomes. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in various types of malignant tumors. We previously reported that CD109 is expressed in osteoblasts and osteoclasts in normal human tissues and plays a role in bone metabolism in vivo. While CD109 has been shown to promote various carcinomas through the downregulation of TGF-β signaling, the role and mechanism of CD109 in sarcomas remain largely unknown. In this study, we investigated the molecular function of CD109 in sarcomas using osteosarcoma cell lines and tissue. Semi-quantitative immunohistochemical analysis using human osteosarcoma tissue revealed a significantly worse prognosis in the CD109-high group compared with the CD109-low group. We found no association between CD109 expression and TGF-β signaling in osteosarcoma cells. However, enhancement of SMAD1/5/9 phosphorylation was observed in CD109 knockdown cells under bone morphogenetic protein-2 (BMP-2) stimulation. We also performed immunohistochemical analysis for phospho-SMAD1/5/9 using human osteosarcoma tissue and found a negative correlation between CD109 expression and SMAD1/5/9 phosphorylation. In vitro wound healing assay showed that osteosarcoma cell migration was significantly attenuated in CD109-knockdown cells compared with control cells in the presence of BMP. These results suggest that CD109 is a poor prognostic factor in osteosarcoma and affects tumor cell migration via BMP signaling.
Collapse
|
8
|
Proteins Found in the Triple-Negative Breast Cancer Secretome and Their Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24032100. [PMID: 36768435 PMCID: PMC9916912 DOI: 10.3390/ijms24032100] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The cancer secretome comprises factors secreted by tumors, including cytokines, growth factors, proteins from the extracellular matrix (ECM), proteases and protease inhibitors, membrane and extracellular vesicle proteins, peptide hormones, and metabolic proteins. Secreted proteins provide an avenue for communication with other tumor cells and stromal cells, and these in turn promote tumor growth and progression. Breast cancer is the most commonly diagnosed cancer in women in the US and worldwide. Triple-negative breast cancer (TNBC) is characterized by its aggressiveness and its lack of expression of the estrogen receptor (ER), progesterone receptor (PR), and HER2, making it unable to be treated with therapies targeting these protein markers, and leaving patients to rely on standard chemotherapy. In order to develop more effective therapies against TNBC, researchers are searching for targetable molecules specific to TNBC. Proteins in the TNBC secretome are involved in wide-ranging cancer-promoting processes, including tumor growth, angiogenesis, inflammation, the EMT, drug resistance, invasion, and development of the premetastatic niche. In this review, we catalog the currently known proteins in the secretome of TNBC tumors and correlate these secreted molecules with potential therapeutic opportunities to facilitate translational research.
Collapse
|
9
|
Robles J, Pintado‐Berninches L, Boukich I, Escudero B, de los Rios V, Bartolomé RA, Jaén M, Martín‐Regalado Á, Fernandez‐Aceñero MJ, Imbaud JI, Casal JI. A prognostic six-gene expression risk-score derived from proteomic profiling of the metastatic colorectal cancer secretome. J Pathol Clin Res 2022; 8:495-508. [PMID: 36134447 PMCID: PMC9535096 DOI: 10.1002/cjp2.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The necessity to accurately predict recurrence and clinical outcome in early stage colorectal cancer (CRC) is critical to identify those patients who may benefit from adjuvant chemotherapy. Here, we developed and validated a gene-based risk-score algorithm for patient stratification and personalised treatment in early stage disease based on alterations in the secretion of metastasis-related proteins. A quantitative label-free proteomic analysis of the secretome of highly and poorly metastatic CRC cell lines with different genetic backgrounds revealed 153 differentially secreted proteins (fold-change >5). These changes in the secretome were validated at the transcriptomic level. Starting from 119 up-regulated proteins, a six-gene/protein-based prognostic signature composed of IGFBP3, CD109, LTBP1, PSAP, BMP1, and NPC2 was identified after sequential discovery, training, and validation in four different cohorts. This signature was used to develop a risk-score algorithm, named SEC6, for patient stratification. SEC6 risk-score components showed higher expression in the poor prognosis CRC subtypes: consensus molecular subtype 4 (CMS4), CRIS-B, and stem-like. High expression of the signature was also associated with patients showing dMMR, CIMP+ status, and BRAF mutations. In addition, the SEC6 signature was associated with lower overall survival, progression-free interval, and disease-specific survival in stage II and III patients. SEC6-based risk stratification indicated that 5-FU treatment was beneficial for low-risk patients, whereas only aggressive treatments (FOLFOX and FOLFIRI) provided benefits to high-risk patients in stages II and III. In summary, this novel risk-score demonstrates the value of the secretome compartment as a reliable source for the retrieval of biomarkers with high prognostic and chemotherapy-predictive capacity, providing a potential new tool for tailoring decision-making in patient care.
Collapse
Affiliation(s)
- Javier Robles
- Protein Alternatives SLMadridSpain,Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - Laura Pintado‐Berninches
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain,Present address:
Biochemistry DepartmentUniversidad Autónoma de MadridMadridSpain
| | - Issam Boukich
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - Beatriz Escudero
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - Vivian de los Rios
- Proteomics Core FacilityCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - Rubén A Bartolomé
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - Marta Jaén
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - Ángela Martín‐Regalado
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| | - María Jesús Fernandez‐Aceñero
- Pathology DepartmentHospital Clínico San Carlos (HCSC)MadridSpain,Fundación de Investigación Biomédica del HCSC (FIBHCSC)MadridSpain
| | | | - José Ignacio Casal
- Department of Molecular BiomedicineCentro de Investigaciones Biológicas Margarita Salas, CSICMadridSpain
| |
Collapse
|
10
|
Hosokawa K, Nakao S. Somatic mutations and clonal expansions in paroxysmal nocturnal hemoglobinuria. Semin Hematol 2022; 59:143-149. [DOI: 10.1053/j.seminhematol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 01/02/2023]
|
11
|
CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14153672. [PMID: 35954339 PMCID: PMC9367592 DOI: 10.3390/cancers14153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Squamous cell carcinoma (SCC) is one of the leading causes of cancer-related deaths worldwide. CD109 is overexpressed in many cancers including SCC. Although a pro-tumorigenic role for CD109 has been shown in non-SCC cancers, and in one type of SCC, the mechanisms and signaling pathways reported are discrepant. (2) Methods: The CD109-EGFR interaction and CD109-mediated regulation of EGFR expression, signaling, and stemness were studied using microarray, immunoblot, immunoprecipitation, qPCR, immunofluorescence, and/or spheroid formation assays. The role of CD109 in tumor progression and metastasis was studied using xenograft tumor growth and metastatic models. (3) Results: We establish the in vivo tumorigenicity of CD109 in vulvar SCC cells and demonstrate that CD109 is an essential regulator of EGFR expression at the mRNA and protein levels and of EGFR/AKT signaling in vulvar and hypopharyngeal SCC cells. Furthermore, we show that the mechanism involves EGFR-CD109 heteromerization and colocalization, leading to the stabilization of EGFR levels. Additionally, we demonstrate that the maintenance of epithelial morphology and in vitro tumorigenicity of SCC cells require CD109 localization to the cell surface. (4) Conclusions: Our study identifies an essential role for CD109 in vulvar SCC progression. We demonstrate that CD109 regulates SCC cellular stemness and epithelial morphology via a cell-surface CD109-EGFR interaction, stabilization of EGFR levels and EGFR/AKT signaling.
Collapse
|
12
|
Adachi K, Sakurai Y, Ichinoe M, Tadehara M, Tamaki A, Kesen Y, Kato T, Mii S, Enomoto A, Takahashi M, Koizumi W, Murakumo Y. CD109 expression in tumor cells and stroma correlates with progression and prognosis in pancreatic cancer. Virchows Arch 2022; 480:819-829. [PMID: 34762199 DOI: 10.1007/s00428-021-03230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, whose expression is upregulated in some types of malignant tumors. High levels of CD109 in tumor cells have been reported to correlate with poor prognosis; however, significance of CD109 stromal expression in human malignancy has not been elucidated. In this study, we investigated the tumorigenic properties of CD109 in pancreatic ductal adenocarcinoma (PDAC). Immunohistochemical analysis of 92 PDAC surgical specimens revealed that positive CD109 expression in tumor cells was significantly associated with poor prognosis (disease-free survival, p = 0.003; overall survival, p = 0.002), and was an independent prognostic factor (disease-free survival, p = 0.0173; overall survival, p = 0.0104) in PDAC. Furthermore, CD109 expression was detected in the stroma surrounding tumor cells, similar to that of α-smooth muscle actin, a histological marker of cancer-associated fibroblasts. The stromal CD109 expression significantly correlated with tumor progression in PDAC (TNM stage, p = 0.033; N factor, p = 0.024; lymphatic invasion, p = 0.028). In addition, combined assessment of CD109 in tumor cells and stroma could identify the better prognosis group of patients from the entire patient population. In MIA PaCa-2 PDAC cell line, we demonstrated the involvement of CD109 in tumor cell motility, but not in PANC-1. Taken together, CD109 not only in the tumor cells but also in the stroma is involved in the progression and prognosis of PDAC, and may serve as a useful prognostic marker in PDAC.
Collapse
Affiliation(s)
- Kai Adachi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yasutaka Sakurai
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Masayoshi Tadehara
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akihiro Tamaki
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yurika Kesen
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Takuya Kato
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.
| |
Collapse
|
13
|
Kuroishi A, Takihara Y, Hirayama F. Current understanding and future perspectives for anti-human platelet antigen-15 antibodies in patients with alloimmune thrombocytopenia: History, laboratory testing, and clinical impact. Transfusion 2022; 62:1128-1141. [PMID: 35266549 DOI: 10.1111/trf.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ayumu Kuroishi
- Laboratory, Japanese Red Cross Kinki Block Blood Center, Ibaraki-shi, Osaka, Japan
| | | | - Fumiya Hirayama
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-shi, Osaka, Japan
| |
Collapse
|
14
|
Han RI, Hu CW, Loose DS, Yang L, Li L, Connell JP, Reardon MJ, Lawrie GM, Qutub AA, Morrisett JD, Grande-Allen KJ. Differential proteome profile, biological pathways, and network relationships of osteogenic proteins in calcified human aortic valves. Heart Vessels 2022; 37:347-358. [PMID: 34727208 PMCID: PMC10960607 DOI: 10.1007/s00380-021-01975-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disease requiring intervention. Most research on CAVD has focused on inflammation, ossification, and cellular phenotype transformation. To gain a broader picture into the wide range of cellular and molecular mechanisms involved in this disease, we compared the total protein profiles between calcified and non-calcified areas from 5 human valves resected during surgery. The 1413 positively identified proteins were filtered down to 248 proteins present in both calcified and non-calcified segments of at least 3 of the 5 valves, which were then analyzed using Ingenuity Pathway Analysis. Concurrently, the top 40 differentially abundant proteins were grouped according to their biological functions and shown in interactive networks. Finally, the abundance of selected osteogenic proteins (osteopontin, osteonectin, osteocalcin, osteoprotegerin, and RANK) was quantified using ELISA and/or immunohistochemistry. The top pathways identified were complement system, acute phase response signaling, metabolism, LXR/RXR and FXR/RXR activation, actin cytoskeleton, mineral binding, nucleic acid interaction, structural extracellular matrix (ECM), and angiogenesis. There was a greater abundance of osteopontin, osteonectin, osteocalcin, osteoprotegerin, and RANK in the calcified regions than the non-calcified ones. The osteogenic proteins also formed key connections between the biological signaling pathways in the network model. In conclusion, this proteomic analysis demonstrated the involvement of multiple signaling pathways in CAVD. The interconnectedness of these pathways provides new insights for the treatment of this disease.
Collapse
Affiliation(s)
- Richard I Han
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX, 77030, USA
- Division of Atherosclerosis and Vascular Medicine, Departments of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Chenyue W Hu
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX, 77030, USA
| | - David S Loose
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Yang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Li Li
- Clinical and Translational Proteomics Service Center, University of Texas Health Sciences at Houston, Houston, TX, USA
| | - Jennifer P Connell
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX, 77030, USA
| | - Michael J Reardon
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Gerald M Lawrie
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Amina A Qutub
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Joel D Morrisett
- Division of Atherosclerosis and Vascular Medicine, Departments of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
16
|
Setiamarga DHE, Hirota K, Yoshida MA, Takeda Y, Kito K, Ishikawa M, Shimizu K, Isowa Y, Ikeo K, Sasaki T, Endo K. Hydrophilic Shell Matrix Proteins of Nautilus pompilius and the Identification of a Core Set of Conchiferan Domains. Genes (Basel) 2021; 12:genes12121925. [PMID: 34946873 PMCID: PMC8700984 DOI: 10.3390/genes12121925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Despite being a member of the shelled mollusks (Conchiferans), most members of extant cephalopods have lost their external biomineralized shells, except for the basally diverging Nautilids. Here, we report the result of our study to identify major Shell Matrix Proteins and their domains in the Nautilid Nautilus pompilius, in order to gain a general insight into the evolution of Conchiferan Shell Matrix Proteins. In order to do so, we performed a multiomics study on the shell of N. pompilius, by conducting transcriptomics of its mantle tissue and proteomics of its shell matrix. Analyses of obtained data identified 61 distinct shell-specific sequences. Of the successfully annotated 27 sequences, protein domains were predicted in 19. Comparative analysis of Nautilus sequences with four Conchiferans for which Shell Matrix Protein data were available (the pacific oyster, the pearl oyster, the limpet and the Euhadra snail) revealed that three proteins and six protein domains were conserved in all Conchiferans. Interestingly, when the terrestrial Euhadra snail was excluded, another five proteins and six protein domains were found to be shared among the four marine Conchiferans. Phylogenetic analyses indicated that most of these proteins and domains were probably present in the ancestral Conchiferan, but employed in shell formation later and independently in most clades. Even though further studies utilizing deeper sequencing techniques to obtain genome and full-length sequences, and functional analyses, must be carried out in the future, our results here provide important pieces of information for the elucidation of the evolution of Conchiferan shells at the molecular level.
Collapse
Affiliation(s)
- Davin H. E. Setiamarga
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo 644-0023, Japan;
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan; (Y.T.); (T.S.)
- Correspondence:
| | - Kazuki Hirota
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo 644-0023, Japan;
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
| | - Masa-aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Unnan 685-0024, Japan;
| | - Yusuke Takeda
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan; (Y.T.); (T.S.)
- Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan;
| | - Makiko Ishikawa
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachiouji 192-0364, Japan
| | - Keisuke Shimizu
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
| | - Yukinobu Isowa
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima 411-8540, Japan;
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, Tokyo 113-0033, Japan; (Y.T.); (T.S.)
| | - Kazuyoshi Endo
- Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (M.I.); (K.S.); (Y.I.); (K.E.)
| |
Collapse
|
17
|
The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-β. Leukemia 2021; 36:847-855. [PMID: 34743190 DOI: 10.1038/s41375-021-01463-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Although a glycosylphosphatidylinositol-anchored protein (GPI-AP) CD109 serves as a TGF-β co-receptor and inhibits TGF-β signaling in keratinocytes, the role of CD109 on hematopoietic stem progenitor cells (HSPCs) remains unknown. We studied the effect of CD109 knockout (KO) or knockdown (KD) on TF-1, a myeloid leukemia cell line that expresses CD109, and primary human HSPCs. CD109-KO or KD TF-1 cells underwent erythroid differentiation in the presence of TGF-β. CD109 was more abundantly expressed in hematopoietic stem cells (HSCs) than in multipotent progenitors and HSPCs of human bone marrow (BM) and cord blood but was not detected in mouse HSCs. Erythroid differentiation was induced by TGF-β to a greater extent in CD109-KD cord blood or iPS cell-derived megakaryocyte-erythrocyte progenitor cells (MEPs) than in wild-type MEPs. When we analyzed the phenotype of peripheral blood MEPs of patients with paroxysmal nocturnal hemoglobinuria who had both GPI(+) and GPI(-) CD34+ cells, the CD36 expression was more evident in CD109- MEPs than CD109+ MEPs. In summary, CD109 suppresses TGF-β signaling in HSPCs, and the lack of CD109 may increase the sensitivity of PIGA-mutated HSPCs to TGF-β, thus leading to the preferential commitment of erythroid progenitor cells to mature red blood cells in immune-mediated BM failure.
Collapse
|
18
|
Li W, Lückstädt W, Wöhner B, Bub S, Schulz A, Socher E, Arnold P. Structural and functional properties of meprin β metalloproteinase with regard to cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119136. [PMID: 34626678 DOI: 10.1016/j.bbamcr.2021.119136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
The metalloproteinase meprin β plays an important role during collagen I deposition in the skin, mucus detachment in the small intestine and also regulates the abundance of different cell surface proteins such as the interleukin-6 receptor (IL-6R), the triggering receptor expressed on myeloid cells 2 (TREM2), the cluster of differentiation 99 (CD99), the amyloid precursor protein (APP) and the cluster of differentiation 109 (CD109). With that, regulatory mechanisms that control meprin β activity and regulate its release from the cell surface to enable access to distant substrates are increasingly important. Here, we will summarize factors that alternate meprin β activity and thereby regulate its proteolytic activity on the cell surface or in the supernatant. We will also discuss cleavage of the IL-6R and TREM2 on the cell surface and compare it to CD109. CD109, as a substrate of meprin β, is cleaved within the protein core, thereby releasing defined fragments from the cell surface. At last, we will also summarize the role of proteases in general and meprin β in particular in substrate release on extracellular vesicles.
Collapse
Affiliation(s)
- Wenjia Li
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wiebke Lückstädt
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany
| | - Birte Wöhner
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany
| | - Simon Bub
- Department of Molecular-Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Antonia Schulz
- Institute of Anatomy, Christian-Albrechts-Universität zu Kiel (CAU), Kiel, Germany
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
19
|
Filppu P, Tanjore Ramanathan J, Granberg KJ, Gucciardo E, Haapasalo H, Lehti K, Nykter M, Le Joncour V, Laakkonen P. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight 2021; 6:141486. [PMID: 33986188 PMCID: PMC8262342 DOI: 10.1172/jci.insight.141486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.
Collapse
Affiliation(s)
- Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kirsi J. Granberg
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Kaisa Lehti
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Lückstädt W, Bub S, Koudelka T, Pavlenko E, Peters F, Somasundaram P, Becker-Pauly C, Lucius R, Zunke F, Arnold P. Cell Surface Processing of CD109 by Meprin β Leads to the Release of Soluble Fragments and Reduced Expression on Extracellular Vesicles. Front Cell Dev Biol 2021; 9:622390. [PMID: 33738281 PMCID: PMC7960916 DOI: 10.3389/fcell.2021.622390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed on primitive hematopoietic stem cells, activated platelets, CD4+ and CD8+ T cells, and keratinocytes. In recent years, CD109 was also associated with different tumor entities and identified as a possible future diagnostic marker linked to reduced patient survival. Also, different cell signaling pathways were proposed as targets for CD109 interference including the TGFβ, JAK-STAT3, YAP/TAZ, and EGFR/AKT/mTOR pathways. Here, we identify the metalloproteinase meprin β to cleave CD109 at the cell surface and thereby induce the release of cleavage fragments of different size. Major cleavage was identified within the bait region of CD109 residing in the middle of the protein. To identify the structural localization of the bait region, homology modeling and single-particle analysis were applied, resulting in a molecular model of membrane-associated CD109, which allows for the localization of the newly identified cleavage sites for meprin β and the previously published cleavage sites for the metalloproteinase bone morphogenetic protein-1 (BMP-1). Full-length CD109 localized on extracellular vesicles (EVs) was also identified as a release mechanism, and we can show that proteolytic cleavage of CD109 at the cell surface reduces the amount of CD109 sorted to EVs. In summary, we identified meprin β as the first membrane-bound protease to cleave CD109 within the bait region, provide a first structural model for CD109, and show that cell surface proteolysis correlates negatively with CD109 released on EVs.
Collapse
Affiliation(s)
- Wiebke Lückstädt
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Simon Bub
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Tomas Koudelka
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Egor Pavlenko
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Florian Peters
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Schlieren, Switzerland
| | - Prasath Somasundaram
- Systematic Proteomics and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
21
|
Hagiwara S, Sasaki E, Hasegawa Y, Suzuki H, Nishikawa D, Beppu S, Terada H, Sawabe M, Takahashi M, Hanai N. Serum CD109 levels reflect the node metastasis status in head and neck squamous cell carcinoma. Cancer Med 2021; 10:1335-1346. [PMID: 33565282 PMCID: PMC7926025 DOI: 10.1002/cam4.3737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Various biomarkers are being developed for the early diagnosis of cancer and for predicting its prognosis. The aim of this study is to evaluate the diagnostic significance of serum CD109 in head and neck squamous cell carcinoma (HNSCC). Methods The serum CD109 levels in a total of 112 serum samples collected before and after surgery from 56 HNSCC patients were analyzed with an enzyme‐linked immunosorbent assay (ELISA). The clinical factor that showed a statistically significant association with both the preoperative serum CD109 level, and the CD109 index: which was defined as the ratio of the preoperative serum CD109 level to the postoperative serum CD109 level, were assessed. The correlations between the serum CD109 levels and lymph node density (LND), pathological features such as lymphatic invasion, and serum SCC antigen levels were also assessed. Results The ELISA measurement revealed that preoperative serum CD109 levels were elevated in patients with node metastasis‐positive and stage IV disease, in comparison to those with node metastasis‐negative and Stage I+II+III disease, respectively. A multiple regression analysis indicated that serum CD109 level was significantly associated with the node metastasis status. A Spearman's rank correlation analysis also revealed a positive correlation between the preoperative serum CD109 level and LND. Furthermore, the probabilities of the overall and relapse‐free survival were significantly lower in patients with a preoperative serum CD109 level of ≥38.0 ng/ml and a CD109 index of ≥1.6, respectively, than in others. There was no significant correlation between the serum CD109 and SCC antigen levels. Conclusions The serum CD109 levels were elevated in patients with advanced stage disease, reflecting the node metastasis status. CD109 in sera could be a novel prognostic marker for HNSCC involving lymph node metastasis.
Collapse
Affiliation(s)
- Sumitaka Hagiwara
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery - Otolaryngology, Asahi University Hospital, Gifu, Japan
| | - Hidenori Suzuki
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Daisuke Nishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Shintaro Beppu
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hoshino Terada
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Michi Sawabe
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
22
|
Seumois G, Ramírez-Suástegui C, Schmiedel BJ, Liang S, Peters B, Sette A, Vijayanand P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol 2021; 5:5/48/eaba6087. [PMID: 32532832 DOI: 10.1126/sciimmunol.aba6087] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
CD4+ T helper (TH) cells and regulatory T (Treg) cells that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and nonasthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous and certain subsets are quantitatively and qualitatively different in individuals with HDM-reactive asthma. The number of interleukin-9 (IL-9)-expressing HDM-reactive TH cells is greater in asthmatics with HDM allergy compared with nonasthmatics with HDM allergy, and this IL-9-expressing TH subset displays enhanced pathogenic properties. More HDM-reactive TH and Treg cells expressing the interferon response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, tumor necrosis factor-related apoptosis-inducing ligand, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Collapse
Affiliation(s)
- Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | - Shu Liang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Clinical and Experimental Sciences, National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
23
|
Human kidney clonal proliferation disclose lineage-restricted precursor characteristics. Sci Rep 2020; 10:22097. [PMID: 33328501 PMCID: PMC7745030 DOI: 10.1038/s41598-020-78366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
In-vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage-restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex-vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * 106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub-lineages with distinct cellular and molecular characteristics; rapidly amplifying de-differentiated clones and a stably proliferating cuboidal epithelial-appearing clones, respectively. Furthermore, each showed distinct molecular features including cell-cycle, epithelial-mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifiers and multiple identity. Thus, ex-vivo clonal growth mimics the in-vivo situation displaying lineage-restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex-vivo, use of multiple heterogeneous precursors is warranted.
Collapse
|
24
|
Taki T, Shiraki Y, Enomoto A, Weng L, Chen C, Asai N, Murakumo Y, Yokoi K, Takahashi M, Mii S. CD109 regulates in vivo tumor invasion in lung adenocarcinoma through TGF-β signaling. Cancer Sci 2020; 111:4616-4628. [PMID: 33007133 PMCID: PMC7734007 DOI: 10.1111/cas.14673] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Stromal invasion is considered an important prognostic factor in patients with lung adenocarcinoma. The mechanisms underlying the formation of tumor stroma and stromal invasion have been studied in the lung; however, they are still unclear. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein highly expressed in several types of human malignant tumors including lung cancers. In this study, we investigated the in vivo functions of CD109 protein in malignant lung tumors. Initially, we identified an association between higher expression of CD109 protein in human lung adenocarcinoma and a significantly worse prognosis, according to immunohistochemical analysis. We also showed that CD109 deficiency significantly reduced the area of stromal invasive lesions in a genetically engineered CD109-deficient lung adenocarcinoma mouse model, which correlated with the results observed in human lung adenocarcinoma. Furthermore, we identified latent TGF-β binding protein-1 (LTBP1) as a CD109-interacting protein using mass spectrometry and confirmed their interaction by co-immunoprecipitation. Importantly, increased CD109 expression enhanced stromal TGF-β activation in the presence of LTBP1. Therefore, these data suggest the significance of the regulation of TGF-β signaling through CD109 and LTBP1 interaction in tumor stroma and also reveal the importance of CD109 expression levels in promoting lung cancer cell proliferation, migration, and invasion, and thus predicting the outcome of patients suffering from lung adenocarcinoma. Therefore, CD109 protein could be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Tetsuro Taki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukihiro Shiraki
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Atsushi Enomoto
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Liang Weng
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Chen Chen
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Naoya Asai
- Department of Molecular Pathology, Graduate School of MedicineFujita Health UniversityToyoakeJapan
| | - Yoshiki Murakumo
- Department of PathologyKitasato University School of MedicineSagamiharaJapan
| | - Kohei Yokoi
- Department of Thoracic SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Masahide Takahashi
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinji Mii
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
25
|
Mo XT, Leung THY, Tang HWM, Siu MKY, Wan PKT, Chan KKL, Cheung ANY, Ngan HYS. CD109 mediates tumorigenicity and cancer aggressiveness via regulation of EGFR and STAT3 signalling in cervical squamous cell carcinoma. Br J Cancer 2020; 123:833-843. [PMID: 32507856 PMCID: PMC7463003 DOI: 10.1038/s41416-020-0922-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 04/07/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background CD109 was involved in the tumorigenesis and progression of various cancers via TGF-β1 signalling and STAT3 activation. As CD109 is strongly expressed in cervical squamous cell carcinoma, this study was conducted to investigate its functional characteristics in cervical cancer. Methods CD109 expression was examined by immunohistochemistry (IHC) with cervical tissue microarray. The effects of CD109 expression were examined on migration, cell proliferation, spheroid formation and soft-agar colony-formation assay. Meanwhile, cervical cancer cell lines with high CD109 expression were chosen for the functional study using siRNA knockdown and CRISPR/Cas9 knockout. Results IHC demonstrated an upregulation of CD109 in the cell membrane of cervical squamous cell carcinoma. CD109( + ) cells isolated by flow-cytometric sorting displayed enhanced migration, cell proliferation, sphere-forming and anchorage-independent cell growth ability. In contrast, silencing of CD109 expression could reverse the in vitro and in vivo tumorigenic and aggressive properties. Furthermore, CD109 induced EGFR-mediated STAT3 phosphorylation known to be responsible for cell migration, proliferation and maintenance of CSC phenotype. Conclusion Abundant CD109( + ) populations in cervical cancer cells potentially contributed to carcinogenesis and aggressiveness, whereas silencing of CD109 expression could reverse those properties. CD109 mediates cervical tumorigenicity and aggressiveness via CD109/EGFR/STAT3 signalling.
Collapse
Affiliation(s)
- Xue-Tang Mo
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Thomas Ho-Yin Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Hermit Wai-Man Tang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Michelle Kwan-Yee Siu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Peter Kok-Ting Wan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Karen Kar-Loen Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Annie Nga-Yin Cheung
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China
| | - Hextan Yuen-Sheung Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region of China.
| |
Collapse
|
26
|
Hatsuzawa Y, Yamaguchi K, Takanashi T, Sato I, Tamai K, Mochizuki M, Iwai W, Wakui Y, Abue M, Yamamoto K, Yasuda J, Mizuma M, Unno M, Sugamura K. CD109 promotes the tumorigenic ability and metastatic motility of pancreatic ductal adenocarcinoma cells. Pancreatology 2020; 20:493-500. [PMID: 32007357 DOI: 10.1016/j.pan.2020.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accumulating evidence indicates that CD109, a glycosylphosphatidylinositol-anchored glycoprotein, is highly expressed in human epithelial carcinomas of multiple organs including the pancreas, but its functional role in carcinoma development has not yet been fully clarified. The aim of this study was to investigate the role of CD109 in the malignancy of pancreatic ductal adenocarcinoma (PDAC). METHODS PDAC specimens of 145 cases were immunostained for CD109, and correlations between CD109 expression and clinicopathological conditions were analyzed. CD109 expression in PANC-1 cells, a PDAC-derived cell line, was decreased by siRNA or shRNA and its effect on the malignancy of PANC-1 cells was examined. RESULTS Suppression of CD109 expression in PANC-1 cells resulted in reduction of in vitro cell motility and tumorigenicity in xenografts. Based on these results, we investigated the relationship between CD109 expression and metastasis of PDAC using tumor tissue specimens. Among 106 recurrent cases of 145 PDAC, there was a tendency for CD109-positive cases to be accompanied by distant metastasis. CONCLUSIONS CD109 plays a critical role in the promotion of tumorigenic ability and cellular motility relating to metastasis of PDAC cells.
Collapse
Affiliation(s)
- Yuuri Hatsuzawa
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan; Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan.
| | - Tomoka Takanashi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan
| | - Ikuro Sato
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan; Division of Pathology, Miyagi Cancer Center, Natori, 9811293, Japan
| | - Keiichi Tamai
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan; Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan
| | - Mai Mochizuki
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan; Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan
| | - Wataru Iwai
- Department of Gastroenterology, Miyagi Cancer Center, Natori, 9811293, Japan
| | - Yuta Wakui
- Department of Gastroenterology, Miyagi Cancer Center, Natori, 9811293, Japan
| | - Makoto Abue
- Department of Gastroenterology, Miyagi Cancer Center, Natori, 9811293, Japan
| | - Kuniharu Yamamoto
- Department of Surgery, Tohoku Medical and Pharmaceutical University, Sendai, 9838536, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, 9811293, Japan
| |
Collapse
|
27
|
Lee KY, Shueng PW, Chou CM, Lin BX, Lin MH, Kuo DY, Tsai IL, Wu SM, Lin CW. Elevation of CD109 promotes metastasis and drug resistance in lung cancer via activation of EGFR-AKT-mTOR signaling. Cancer Sci 2020; 111:1652-1662. [PMID: 32133706 PMCID: PMC7226182 DOI: 10.1111/cas.14373] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most commonly diagnosed cancer worldwide, and metastasis in lung cancer is the leading cause of cancer‐related deaths. Thus, understanding the mechanism of lung cancer metastasis will improve the diagnosis and treatment of lung cancer patients. Herein, we found that expression of cluster of differentiation 109 (CD109) was correlated with the invasive and metastatic capacities of lung adenocarcinoma cells. CD109 is upregulated in tumorous tissues, and CD109 overexpression was associated with tumor progression, distant metastasis, and a poor prognosis in patient with lung adenocarcinoma. Mechanistically, expression of CD109 regulates protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling via its association with the epidermal growth factor receptor (EGFR). Inhibition of CD109 decreases EGFR phosphorylation, diminishes EGF‐elicited activation of AKT/mTOR, and sensitizes tumor cells to an EGFR inhibitor. Taken together, our results show that CD109 is a potential diagnostic and therapeutic target in lung cancer patients.
Collapse
Affiliation(s)
- Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bo-Xing Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- Graduate Institute of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020; 10:biom10030487. [PMID: 32210029 PMCID: PMC7175140 DOI: 10.3390/biom10030487] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
Collapse
|
29
|
A New Assessment of Thioester-Containing Proteins Diversity of the Freshwater Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010069. [PMID: 31936127 PMCID: PMC7016707 DOI: 10.3390/genes11010069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Thioester-containing proteins (TEPs) superfamily is known to play important innate immune functions in a wide range of animal phyla. TEPs are involved in recognition, and in the direct or mediated killing of several invading organisms or pathogens. While several TEPs have been identified in many invertebrates, only one TEP (named BgTEP) has been previously characterized in the freshwater snail, Biomphalaria glabrata. As the presence of a single member of that family is particularly intriguing, transcriptomic data and the recently published genome were used to explore the presence of other BgTEP related genes in B. glabrata. Ten other TEP members have been reported and classified into different subfamilies: Three complement-like factors (BgC3-1 to BgC3-3), one α-2-macroblobulin (BgA2M), two macroglobulin complement-related proteins (BgMCR1, BgMCR2), one CD109 (BgCD109), and three insect TEP (BgTEP2 to BgTEP4) in addition to the previously characterized BgTEP that we renamed BgTEP1. This is the first report on such a level of TEP diversity and of the presence of macroglobulin complement-related proteins (MCR) in mollusks. Gene structure analysis revealed alternative splicing in the highly variable region of three members (BgA2M, BgCD109, and BgTEP2) with a particularly unexpected diversity for BgTEP2. Finally, different gene expression profiles tend to indicate specific functions for such novel family members.
Collapse
|
30
|
Jin S, Zhang L, Wei YF, Zhang HJ, Wang CY, Zou H, Hu JM, Jiang JF, Pang LJ. Pure squamous cell carcinoma of the gallbladder locally invading the liver and abdominal cavity: A case report and review of the literature. World J Clin Cases 2019; 7:4163-4171. [PMID: 31832423 PMCID: PMC6906552 DOI: 10.12998/wjcc.v7.i23.4163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gallbladder squamous cell carcinoma (GBSCC) is a rare subtype of malignancy and accounts for only 2%-3% of gallbladder malignancies. Due to its rapid development, most patients with GBSCC initially present with an advanced stage of the disease and hence a poor prognosis. The clinicopathological and biological features of SCC remain to be fully elucidated, owing to its uncommon occurrence. The majority of currently available data only described individual case reports or series analyses of trivial cases.
CASE SUMMARY A 64-year-old man was admitted for progressively poor abdominal distension and pain. Liver computed tomography (CT) showed infiltration of gallbladder carcinoma into the adjacent liver, and enlarged retroperitoneal lymph nodes. The patient underwent radical cholecystectomy. Part of the mass was grey and soft, and the neoplastic section showed a purulent-necrotic lesion. Hematoxylin and eosin staining revealed a moderately differentiated SCC. Immunohistochemical studies showed strong staining of the tumor for AE1/3 and CK5/6. Staining for CK19, CK7, and CAM5.2 was positive in the cytoplasm. Systemic chemotherapy was not administered because of the patient’s poor physical condition. After five months, CT and magnetic resonance cholangiopancreatography showed multiple metastases in the liver and abdominal cavity.
CONCLUSION Squamous components of GBSCC may explain the complex biological behavior, and CD109 may be involved in the pathogenesis.
Collapse
Affiliation(s)
- Shan Jin
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Lu Zhang
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Yuan-Feng Wei
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Hai-Jun Zhang
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Cheng-Yan Wang
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Hong Zou
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Jian-Ming Hu
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Jin-Fang Jiang
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| | - Li-Juan Pang
- Department of Pathology, the First Affiliated Hospital to Shihezi University School of Medicine and Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi 832002, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
31
|
CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep 2019; 9:16317. [PMID: 31695056 PMCID: PMC6834570 DOI: 10.1038/s41598-019-50694-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence that the expression of CD109, a GPI-anchored cell surface protein is dysregulated in squamous cell carcinoma (SCC). However, the functional role of CD109 in SCC progression is poorly understood. In current study, we demonstrate that CD109 is a critical regulator of epithelial phenotype in SSC cells. CD109 levels inversely correlate with TGF-β signaling, EMT, migration, and invasion in cultured SCC cells. CRISPR/Cas9-mediated knockout CD109 (CD109 KO) in SCC cells represses epithelial traits and promotes the mesenchymal phenotype, as evidenced by elevated expression of mesenchymal proteins and markers of epithelial to mesenchymal transition. Treatment with recombinant CD109 protein causes CD109 KO cells to regain their epithelial traits. CD109 loss results in pronounced alterations of gene expression as detected by microarray analysis and in dysregulation of 15 important signalling pathways as shown by KEGG pathway cluster analysis. Validation using 52 human oral SCC tumor samples show that CD109 levels inversely correlate with tumor grade and the activation state of one such pathway, the TGF-β signaling pathway. Taken together, our findings highlight a novel role for CD109 as a gatekeeper of the epithelial phenotype by regulating TGF-β pathway in SCC cells.
Collapse
|
32
|
Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells 2019; 8:cells8090969. [PMID: 31450621 PMCID: PMC6769927 DOI: 10.3390/cells8090969] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023] Open
Abstract
Cartilage homeostasis is governed by articular chondrocytes via their ability to modulate extracellular matrix production and degradation. In turn, chondrocyte activity is regulated by growth factors such as those of the transforming growth factor β (TGFβ) family. Members of this family include the TGFβs, bone morphogenetic proteins (BMPs), and growth and differentiation factors (GDFs). Signaling by this protein family uniquely activates SMAD-dependent signaling and transcription but also activates SMAD-independent signaling via MAPKs such as ERK and TAK1. This review will address the pivotal role of the TGFβ family in cartilage biology by listing several TGFβ family members and describing their signaling and importance for cartilage maintenance. In addition, it is discussed how (pathological) processes such as aging, mechanical stress, and inflammation contribute to altered TGFβ family signaling, leading to disturbed cartilage metabolism and disease.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Arjan P M van Caam
- Experimental Rheumatology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
33
|
Luo JJ, Zhang Y, Sun H, Wei JT, Khalil MM, Wang YW, Dai JF, Zhang NY, Qi DS, Sun LH. The response of glandular gastric transcriptome to T-2 toxin in chicks. Food Chem Toxicol 2019; 132:110658. [PMID: 31299295 DOI: 10.1016/j.fct.2019.110658] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
This study was conducted to determine the effect of T-2 toxin on the transcriptome of the glandular stomach in chicks using RNA-sequencing (RNA-Seq). Four groups of 1-day-old Cobb male broilers (n = 4 cages/group, 6 chicks/cage) were fed a corn-soybean-based diet (control) and control supplemented with T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, for 2 weeks. The histological results showed that dietary supplementation of T-2 toxin at 3.0 and 6.0 mg/kg induced glandular gastric injury including serious inflammation, increased inflammatory cells, mucosal edema, and necrosis and desquamation of the epithelial cells in the glandular stomach of chicks. RNA-Seq analysis revealed that there were 671, 1393, and 1394 genes displayed ≥2 (P < 0.05) differential expression in the dietary supplemental T-2 toxin at 1.0, 3.0, and 6.0 mg/kg, respectively, compared with the control group. Notably, 204 differently expressed genes had shared similar changes among these three doses of T-2 toxin. GO and KEGG pathway analysis results showed that many genes involved in oxidation-reduction process, inflammation, wound healing/bleeding, and apoptosis/carcinogenesis were affected by T-2 toxin exposure. In conclusion, this study systematically elucidated toxic mechanisms of T-2 toxin on the glandular stomach, which might provide novel ideas to prevent adverse effects of T-2 toxin in chicks.
Collapse
Affiliation(s)
- Jing-Jing Luo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hua Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jin-Tao Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, China
| | | | - You-Wei Wang
- Postgraduate School, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie-Fan Dai
- Sichuan Green Food Development Center, Chengdu, 610041, China
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
34
|
Erban T, Sopko B, Kadlikova K, Talacko P, Harant K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci Rep 2019; 9:9400. [PMID: 31253851 PMCID: PMC6599063 DOI: 10.1038/s41598-019-45764-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa–honeybee–DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Klara Kadlikova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.,Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6-Suchdol, CZ-165 00, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| |
Collapse
|
35
|
Mii S, Enomoto A, Shiraki Y, Taki T, Murakumo Y, Takahashi M. CD109: a multifunctional GPI‐anchored protein with key roles in tumor progression and physiological homeostasis. Pathol Int 2019; 69:249-259. [DOI: 10.1111/pin.12798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shinji Mii
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
| | - Atsushi Enomoto
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
| | - Yukihiro Shiraki
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of Medicine Nagoya Japan
| | - Tetsuro Taki
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshiki Murakumo
- Department of PathologyKitasato University School of Medicine Sagamihara Japan
| | - Masahide Takahashi
- Department of PathologyNagoya University Graduate School of Medicine Nagoya Japan
- Division of Molecular Pathology, Center for Neurological Disease and CancerNagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
36
|
Moquin A, Ji J, Neibert K, Winnik F, Maysinger D. Encapsulation and Delivery of Neutrophic Proteins and Hydrophobic Agents Using PMOXA-PDMS-PMOXA Triblock Polymersomes. ACS OMEGA 2018; 3:13882-13893. [PMID: 30411053 PMCID: PMC6217674 DOI: 10.1021/acsomega.8b02311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Polymersomes are attractive nanocarriers for hydrophilic and lipophilic drugs; they are more stable than liposomes, tunable, and relatively easy to prepare. The copolymer composition and molar mass are critical features that determine the physicochemical properties of the polymersomes including the rate of drug release. We used the triblock-copolymer, poly(2-methyl-2-oxazoline)-block-poly-(dimethysiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-PDMS-PMOXA), to form amphipathic polymersomes capable of loading proteins and small hydrophobic agents. The selected agents were unstable neurotrophins (nerve growth factor and brain-derived neurotrophic factor), a large protein CD109, and the fluorescent drug curcumin. We prepared, characterized, and tested polymersomes loaded with selected agents in 2D and 3D biological models. Curcumin-loaded and rhodamine-bound PMOXA-PDMS-PMOXA polymersomes were used to visualize them inside cells. N-Methyl-d-aspartate receptor (NMDAR) agonists and antagonists were also covalently attached to the surface of polymersomes for targeting neurons. Labeled and unlabeled polymersomes with or without loaded agents were characterized using dynamic light scattering (DLS), UV-vis fluorescence spectroscopy, and asymmetrical flow field-flow fractionation (AF4). Polymersomes were imaged and tested for biological activity in human and murine fibroblasts, murine macrophages, primary murine dorsal root ganglia, and murine hippocampal cultures. Polymersomes were rapidly internalized and there was a clear intracellular co-localization of the fluorescent drug (curcumin) with the fluorescent rhodamine-labeled polymersomes. Polymersomes containing CD109, a glycosylphosphatidylinositol-anchored protein, promoted cell migration in the model of wound healing. Nerve growth factor-loaded polymersomes effectively enhanced neurite outgrowth in dissociated and explanted dorsal root ganglia. Brain-derived neurotrophic factor increased dendritic spine density in serum-deprived hippocampal slice cultures. NMDAR agonist- and antagonist-functionalized polymersomes targeted selectively neurons over glial cells in mixed cultures. Collectively, the study reveals the successful incorporation into polymersomes of biologically active trophic factors and small hydrophilic agents that retain their biological activity in vitro, as demonstrated in selected central and peripheral tissue models.
Collapse
Affiliation(s)
- Alexandre Moquin
- Department
of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, H3G
1Y6 Montreal, Québec, Canada
| | - Jeff Ji
- Department
of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, H3G
1Y6 Montreal, Québec, Canada
| | - Kevin Neibert
- Department
of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, H3G
1Y6 Montreal, Québec, Canada
| | - Françoise
M. Winnik
- Département
de Chimie, Université de Montréal, CP 6128 Succursale Centre-Ville, H3C 3J7 Montréal, Québec, Canada
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044 Tsukuba, Ibaraki, Japan
- Department
of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Dusica Maysinger
- Department
of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, H3G
1Y6 Montreal, Québec, Canada
| |
Collapse
|
37
|
Bojic S, Hallam D, Alcada N, Ghareeb A, Queen R, Pervinder S, Buck H, Amitai Lange A, Figueiredo G, Rooney P, Stojkovic M, Shortt A, Figueiredo FC, Lako M. CD200 Expression Marks a Population of Quiescent Limbal Epithelial Stem Cells with Holoclone Forming Ability. Stem Cells 2018; 36:1723-1735. [PMID: 30157305 DOI: 10.1002/stem.2903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
One of the main challenges in limbal stem cell (LSC) biology and transplantation is the lack of definitive cell surface markers which can be used to identify and enrich viable LSCs. In this study, expression of 361 cell surface proteins was assessed in ex vivo expanded limbal epithelial cells. One marker, CD200 was selected for further characterization based on expression in a small subset of limbal epithelial cells (2.25% ± 0.69%) and reduced expression through consecutive passaging and calcium induced differentiation. CD200 was localized to a small population of cells at the basal layer of the human and mouse limbal epithelium. CD200+ cells were slow cycling and contained the majority of side population (SP) and all the holoclone forming progenitors. CD200+ cells displayed higher expression of LSCs markers including PAX6, WNT7A, CDH3, CK14, CK15, and ABCB5 and lower expression of Ki67 when compared to CD200- . Downregulation of CD200 abrogated the ability of limbal epithelial cells to form holoclones, suggesting an important function for CD200 in the maintenance and/or self-renewal of LSCs. A second marker, CD109, which was expressed in 56.29% ± 13.96% of limbal epithelial cells, was also found to co-localize with ΔNp63 in both human and mouse cornea, albeit more abundantly than CD200. CD109 expression decreased slowly through calcium induced cell differentiation and CD109+ cells were characterized by higher expression of Ki67, when compared to CD109- subpopulation. Together our data suggest that CD200 expression marks a quiescent population of LSCs with holoclone forming potential, while CD109 expression is associated with a proliferative progenitor phenotype. Stem Cells 2018;36:1723-1735.
Collapse
Affiliation(s)
- Sanja Bojic
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Nuno Alcada
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Ali Ghareeb
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Rachel Queen
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Sagoo Pervinder
- UCL Institute of Immunology and Transplantation, London, United Kingdom
| | - Harley Buck
- UCL Institute of Immunology and Transplantation, London, United Kingdom
| | - Aya Amitai Lange
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gustavo Figueiredo
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Paul Rooney
- Tissue Services, NHS Blood and Transplant, Liverpool, United Kingdom
| | - Miodrag Stojkovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Serbia.,SPEBO Medical, Leskovac, Kragujevac, Serbia
| | - Alex Shortt
- UCL Institute of Immunology and Transplantation, London, United Kingdom
| | - Francisco C Figueiredo
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom.,Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
38
|
Mii S, Hoshino A, Enomoto A, Murakumo Y, Ito M, Yamaguchi A, Takahashi M. CD109 deficiency induces osteopenia with an osteoporosis-like phenotype in vivo. Genes Cells 2018; 23:590-598. [PMID: 29767469 DOI: 10.1111/gtc.12593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a global public health problem that is increasing along with an aging population. A major determinant of osteoporosis is high bone turnover, which results from osteoclast activation. CD109 is a glycosylphosphatidylinositol-anchored glycoprotein, a deficiency that leads to a psoriasis-like skin inflammation in mice. Although the expression of CD109 has been reported in mouse pre-osteoclast cells, its function in osteoclasts in vivo remains largely unknown. To investigate the physiological role of CD109 in bone metabolism, we analyzed bones from wild-type and CD109-deficient adult mice. Micro-computed tomography analysis of the femur (thigh bone) showed that bone volume was lower in CD109-deficient mice than in wild-type mice. Bone histomorphometric analysis showed not only a reduction in bone volume but also an increase in bone turnover in CD109-deficient mice as compared with wild-type mice. Additionally, we measured serum levels of several markers of bone turnover and found a significant increase in the N-terminal telopeptide of type I collagen, a bone resorption marker, as well as alkaline phosphatase, a bone formation marker, in CD109-deficient mice. These results indicate that CD109 deficiency induces a high-turnover, osteoporosis-like phenotype, which suggests that CD109 plays a role in bone metabolism in vivo.
Collapse
Affiliation(s)
- Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiyoshi Hoshino
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masako Ito
- Center for Diversity and Inclusion, Nagasaki University, Nagasaki, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Visualization of Proliferative Vascular Endothelial Cells in Tumors in Vivo by Imaging Their Partner of Sld5-1 Promoter Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1300-1314. [DOI: 10.1016/j.ajpath.2018.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023]
|
40
|
Qi R, Dong F, Liu Q, Murakumo Y, Liu J. CD109 and squamous cell carcinoma. J Transl Med 2018; 16:88. [PMID: 29625613 PMCID: PMC5889571 DOI: 10.1186/s12967-018-1461-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
Squamous cell carcinoma (SCC) is well-known for its high rate of metastasis with poor prognosis. CD109 is a glycosylphosphatidylinositol-anchored cell-surface glycoprotein. Recently, CD109 emerges as a potential biomarker and a therapeutic target for SCCs. Accumulating studies have reported that CD109 is highly expressed in human SCCs of multiple organs, and may contribute to the progression of SCCs. In this review, we summarized the findings on expression pattern of CD109 in SCCs, and discussed the molecular mechanisms underlying the roles of CD109 in pathogenesis of SCCs.
Collapse
Affiliation(s)
- Ruixia Qi
- Taishan Medical College, Tai'an, Shandong, China.,Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Qiang Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
41
|
Endoglin haploinsufficiency is associated with differential regulation of extracellular matrix production during skin fibrosis and cartilage repair in mice. J Cell Commun Signal 2018; 12:379-388. [PMID: 29488175 DOI: 10.1007/s12079-018-0461-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional growth factor with potent pro-fibrotic effects. Endoglin is a TGF-β co-receptor that strongly regulates TGF-β signaling in a variety of cell types. Although aberrant regulation of TGF-β signaling is known to play a key role in fibrotic diseases such as scleroderma and impaired cartilage repair, the significance of endoglin function in regulating these processes is poorly understood. Here we examined whether endoglin haploinsufficiency regulates extracellular (ECM) protein expression and fibrotic responses during bleomycin induced skin fibrosis and surgically induced osteoarthritis, using endoglin-heterozygous (Eng+/-) mice and wild-type (Eng+/+) littermates. Skin fibrosis was induced by injecting mice intradermally with bleomycin or vehicle. Osteoarthritis was induced surgically by destabilization of medial meniscus. Dermal thickness, cartilage integrity and ECM protein expression were then determined. Eng+/- mice subjected to bleomycin challenge show a marked decrease in dermal thickness (P < 0.005) and reduced collagen content and decreased collagen I, fibronectin, alpha-smooth muscle actin levels as compared to Eng+/+ mice, both under basal and bleomycin treated conditions. Eng+/- mice undergoing surgically induced osteoarthritis show no differences in the degree of cartilage degradation, as compared to Eng+/+ mice, although chondrocytes isolated from Eng+/- display markedly enhanced collagen II levels. Our findings suggest that endoglin haploinsufficiency in mice ameliorates bleomycin-induced skin fibrosis suggesting that endoglin represents a pro-fibrotic factor in the mouse skin. However, endoglin haploinsufficiency does not protect these mice from surgically indiced cartilage degradation, demonstrating differential regulation of endoglin action during skin and cartilage repair.
Collapse
|
42
|
Suppression of skin tumorigenesis in CD109-deficient mice. Oncotarget 2018; 7:82836-82850. [PMID: 27756876 PMCID: PMC5347736 DOI: 10.18632/oncotarget.12653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/02/2016] [Indexed: 12/17/2022] Open
Abstract
CD109 is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed in several types of human cancers, particularly squamous cell carcinomas. We previously reported that CD109-deficient mice exhibit epidermal hyperplasia and chronic skin inflammation. Although we found that CD109 regulates differentiation of keratinocytes in vivo, the function of CD109 in tumorigenesis remains unknown. In this study, we investigated the role of CD109 in skin tumorigenesis using a two-stage carcinogenesis model in CD109-deficient mice with chronic skin inflammation. Immunohistochemical analysis revealed a higher level of TGF-β protein expression in the dermis of CD109-deficient mice than in that of wild-type mice. Additionally, immunofluorescence analysis showed that Smad2 phosphorylation and Nrf2 expression were enhanced in primary keratinocytes from CD109-deficient mice compared with in those from wild-type mice. Although no significant difference was found in conversion rates from papilloma to carcinoma between wild-type and CD109-deficient mice in the carcinogenesis model, we observed fewer and smaller papillomas in CD109-deficient mice than in wild-type mice. Apoptosis and DNA damage marker levels were significantly reduced in CD109-deficient skin compared with in wild-type skin at 24 h after 7, 12-dimethylbenz (α) anthracene treatment. Furthermore, mutation-specific PCR revealed that the mutation frequency of the H-ras gene was less in CD109-deficient skin than in wild-type skin in this model. These results suggest that CD109 deficiency suppresses skin tumorigenesis by enhancing TGF-β/Smad/Nrf2 pathway activity and decreasing the mutation frequency of the H-ras gene.
Collapse
|
43
|
Ye BG, Sun HC, Zhu XD, Chai ZT, Zhang YY, Ao JY, Cai H, Ma DN, Wang CH, Qin CD, Gao DM, Tang ZY. Reduced expression of CD109 in tumor-associated endothelial cells promotes tumor progression by paracrine interleukin-8 in hepatocellular carcinoma. Oncotarget 2017; 7:29333-45. [PMID: 27121053 PMCID: PMC5045399 DOI: 10.18632/oncotarget.8787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/28/2016] [Indexed: 01/22/2023] Open
Abstract
Tumor-associated endothelial cells (TEC) directly facilitate tumor progression, but little is known about the mechanisms. We investigated the function of CD109 in TEC and its clinical significance in hepatocellular carcinoma (HCC). The correlation between CD109 expressed on tumor vessels and the prognosis after surgical resection of HCC was studied. The effect of human umbilical vein endothelial cells (HUVEC) with different CD109 expression on hepatoma cell proliferation, migration, and invasion was compared in co-culture assay. Associated key factors were screened by human cytokine antibody array and validated thereafter. HUVEC with different CD109 expression were co-implanted with HCCLM3 or HepG2 cells in nude mice to investigate the effect of CD109 expression on tumor growth and metastasis. Reduced expression of CD109 on tumor vessels was associated with large tumor size, microvascular invasion, and advanced tumor stage. CD109 was an independent risk factor for disease-free survival (P = 0.001) after curative resection of HCC. CD109 knockdown in HUVEC promoted hepatoma cell proliferation, migration, and invasion. Interleukin-8 (IL-8) was a key tumor-promoting factor secreted from CD109 knockdown HUVEC. CD109 knockdown upregulated IL-8 expression through activation of TGF-β/Akt/NF-κB pathway in HUVEC. Co-implantation with CD109 knockdown HUVEC accelerated tumor growth and metastasis in mice models. In conclusion, CD109 expression on tumor vessels is a potential prognostic marker for HCC, and its reduced expression on TEC promoted tumor progression by paracrine IL-8.
Collapse
Affiliation(s)
- Bo-Gen Ye
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hui-Chuan Sun
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Xiao-Dong Zhu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Zong-Tao Chai
- General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan-Yuan Zhang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jian-Yang Ao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Cai
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - De-Ning Ma
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Cheng-Hao Wang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Cheng-Dong Qin
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dong-Mei Gao
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
44
|
Shiraki Y, Mii S, Enomoto A, Momota H, Han YP, Kato T, Ushida K, Kato A, Asai N, Murakumo Y, Aoki K, Suzuki H, Ohka F, Wakabayashi T, Todo T, Ogawa S, Natsume A, Takahashi M. Significance of perivascular tumour cells defined by CD109 expression in progression of glioma. J Pathol 2017; 243:468-480. [DOI: 10.1002/path.4981] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/29/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yukihiro Shiraki
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Shinji Mii
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Atsushi Enomoto
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Hiroyuki Momota
- Division of Innovative Cancer Therapy, The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - Yi-Peng Han
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Takuya Kato
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kaori Ushida
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Akira Kato
- Department of Neurosurgery; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Naoya Asai
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yoshiki Murakumo
- Department of Pathology; Kitasato University School of Medicine; Sagamihara Japan
| | - Kosuke Aoki
- Department of Neurosurgery; Nagoya University Graduate School of Medicine; Nagoya Japan
- Department of Pathology and Tumor Biology, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Hiromichi Suzuki
- Department of Neurosurgery; Nagoya University Graduate School of Medicine; Nagoya Japan
- Department of Pathology and Tumor Biology, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Fumiharu Ohka
- Department of Neurosurgery; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Institute of Medical Science; The University of Tokyo; Tokyo Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Atsushi Natsume
- Department of Neurosurgery; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Masahide Takahashi
- Department of Pathology; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
45
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
46
|
Zhou S, Cecere R, Philip A. CD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma. Oncotarget 2017; 8:95632-95647. [PMID: 29221155 PMCID: PMC5707049 DOI: 10.18632/oncotarget.21067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD109, a glycosylphosphatidylinositol-anchored protein, is a TGF-β co-receptor and a strong inhibitor of TGF-β signalling. Moreover, CD109 can be released from the cell surface. In the current study, we examined whether hBM-MSCs regulate the malignant properties of squamous cell carcinoma cells, and whether CD109 plays a role in mediating the effect of hBM-MSCs on cancer cells. Here we show that hBM-MSC-conditioned medium decreases proliferation and induces apoptosis in human squamous carcinoma cell lines, A431 and FaDu. Importantly, hBM-MSC-conditioned medium markedly suppresses markers of epithelial-to-mesenchymal transition and stemness, and concomitantly decreases cell migration, invasion, and spheroid formation in A431 and FaDu cells. In addition, knockdown of CD109 in hBM-MSCs abrogates the anti-malignant activity of hBM-MSC-conditioned medium on A431 and FaDu cells. Furthermore, overexpression of CD109 in A431 cells decreases their malignant traits. Together, our findings suggest that hBM-MSCs inhibit the malignant traits of squamous cell carcinoma cells by a paracrine effect via released factors and that CD109 released from hBM-MSCs, at least partially, mediates these effects.
Collapse
Affiliation(s)
- Shufeng Zhou
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Renzo Cecere
- Division of Cardiac Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Thude H, Bischoff W, Sterneck M, Marget M, Nashan B, Koch M. Polymorphisms of the human platelet antigen-1, -2, -3, -5, and -15 systems and acute cellular liver transplant rejection. Hum Immunol 2017; 78:534-539. [PMID: 28705752 DOI: 10.1016/j.humimm.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
Abstract
The human platelet antigen (HPA)-1, -2, -3, -5, and -15 systems are characterized as polymorphic alloantigens expressed on platelets and endothelial cells. In this retrospective study, we investigated, whether HPA-1, -2, -3, -5, and -15 incompatibilities are associated with acute cellular liver transplant rejection. A total of 96 Caucasian liver transplant recipients and corresponding donors were analyzed, 43 with biopsy proven acute cellular rejection (BPAR) and 53 without acute cellular rejection (No-BPAR). Polymorphisms of mentioned HPA systems were determined by polymerase chain reaction-sequence specific primers (PCR-SSP). Our data demonstrate that acute cellular rejection episodes were associated with HPA-3 incompatibility (58% HPA-3 incompatibility in BPAR group vs. 32% HPA-3 incompatibility in No-BPAR group, p=0.013). Furthermore, the frequency of HPA-3bb genotype was significantly higher in BPAR recipients as compared to No-BPAR recipients (30% vs 6%, p=0.002). On the other hand, there was no association between acute cellular rejection and the other tested HPA systems. We conclude that in the Caucasian population the HPA-3 system confers susceptibility to acute cellular rejection after liver transplantation.
Collapse
Affiliation(s)
- Hansjörg Thude
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany.
| | - Wiebke Bischoff
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| | - Martina Sterneck
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Marget
- University Medical Center Hamburg-Eppendorf, Institute for Transfusion Medicine, Martinistraße 52, 20246 Hamburg, Germany
| | - Björn Nashan
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany; University Medical Center Hamburg-Eppendorf, Institute for Transfusion Medicine, Martinistraße 52, 20246 Hamburg, Germany
| | - Martina Koch
- University Medical Center Hamburg-Eppendorf, Department of Hepatobiliary and Transplant Surgery, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
48
|
Bartakova A, Alvarez-Delfin K, Weisman AD, Salero E, Raffa GA, Merkhofer RM, Kunzevitzky NJ, Goldberg JL. Novel Identity and Functional Markers for Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2017; 57:2749-62. [PMID: 27196322 PMCID: PMC4884060 DOI: 10.1167/iovs.15-18826] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Human corneal endothelial cell (HCEC) density decreases with age, surgical complications, or disease, leading to vision impairment. Such endothelial dysfunction is an indication for corneal transplantation, although there is a worldwide shortage of transplant-grade tissue. To overcome the current poor donor availability, here we isolate, expand, and characterize HCECs in vitro as a step toward cell therapy. Methods Human corneal endothelial cells were isolated from cadaveric corneas and expanded in vitro. Cell identity was evaluated based on morphology and immunocytochemistry, and gene expression analysis and flow cytometry were used to identify novel HCEC-specific markers. The functional ability of HCEC to form barriers was assessed by transendothelial electrical resistance (TEER) assays. Results Cultured HCECs demonstrated canonical morphology for up to four passages and later underwent endothelial-to-mesenchymal transition (EnMT). Quality of donor tissue influenced cell measures in culture including proliferation rate. Cultured HCECs expressed identity markers, and microarray analysis revealed novel endothelial-specific markers that were validated by flow cytometry. Finally, canonical HCECs expressed higher levels of CD56, which correlated with higher TEER than fibroblastic HCECs. Conclusions In vitro expansion of HCECs from cadaveric donor corneas yields functional cells identifiable by morphology and a panel of novel markers. Markers described correlated with function in culture, suggesting a basis for cell therapy for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Alena Bartakova
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Karen Alvarez-Delfin
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alejandra D Weisman
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Enrique Salero
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Gabriella A Raffa
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Richard M Merkhofer
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Noelia J Kunzevitzky
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States 2Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States 3Emmecell, K
| | - Jeffrey L Goldberg
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States 2Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States 4Byers Eye I
| |
Collapse
|
49
|
Tiller H, Husebekk A, Ahlen MT, Stuge TB, Skogen B. Current perspectives on fetal and neonatal alloimmune thrombocytopenia - increasing clinical concerns and new treatment opportunities. Int J Womens Health 2017; 9:223-234. [PMID: 28458583 PMCID: PMC5402885 DOI: 10.2147/ijwh.s90753] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Differences in platelet type between the fetus and the mother can lead to maternal immunization and destruction of the fetal platelets, a condition named fetal and neonatal alloimmune thrombocytopenia (FNAIT). FNAIT is reported to occur in ~1 per 1,000 live born neonates. The major risk is intracranial hemorrhage in the fetus or newborn, which is associated with severe neurological complications or death. Since no countries have yet implemented a screening program to detect pregnancies at risk, the diagnosis is typically established after the birth of a child with symptoms. Reports on broader clinical impact have increased clinical concern and awareness. Along with new treatment options for FNAIT, the debate around antenatal screening to detect pregnancies at risk of FNAIT has been revitalized.
Collapse
Affiliation(s)
- Heidi Tiller
- Immunology Research Group, Faculty of Health Sciences, UiT, The Arctic University of Norway
| | - Anne Husebekk
- Immunology Research Group, Faculty of Health Sciences, UiT, The Arctic University of Norway
| | | | - Tor B Stuge
- Immunology Research Group, Faculty of Health Sciences, UiT, The Arctic University of Norway
| | - Bjørn Skogen
- Department of Laboratory Medicine, Norwegian National Unit for Platelet Immunology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
50
|
Chuang CH, Greenside PG, Rogers ZN, Brady JJ, Yang D, Ma RK, Caswell DR, Chiou SH, Winters AF, Grüner BM, Ramaswami G, Spencley AL, Kopecky KE, Sayles LC, Sweet-Cordero EA, Li JB, Kundaje A, Winslow MM. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med 2017; 23:291-300. [PMID: 28191885 DOI: 10.1038/nm.4285] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival. Small-scale in vivo screening identified several genes, including Cd109, that encode novel pro-metastatic factors. We uncovered signaling mediated by Janus kinases (Jaks) and the transcription factor Stat3 as a critical, pharmacologically targetable effector of CD109-driven lung cancer metastasis. In summary, by coupling the systematic genomic analysis of purified cancer cells in distinct malignant states from mouse models with extensive human validation, we uncovered several key regulators of metastatic ability, including an actionable pro-metastatic CD109-Jak-Stat3 axis.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Peyton G Greenside
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Rosanna K Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Deborah R Caswell
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Aidan F Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew L Spencley
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Kimberly E Kopecky
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Leanne C Sayles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - E Alejandro Sweet-Cordero
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Department of Computer Science, Stanford University, Stanford, California, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|