1
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
2
|
Wang K, Zeng H, Yang H. Daidzein improves muscle atrophy caused by lovastatin by regulating the AMPK/FOXO3a axis. Chin Med 2024; 19:180. [PMID: 39741316 DOI: 10.1186/s13020-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Lovastatin, the main lipid-lowering component in red yeast rice, is a golden anti-lipid drug, but its long-term application is continuously challenged by potential skeletal muscle atrophy. Daidzein, an isoflavone derived from soybeans and many Chinese medicines, shows therapeutic potential in treating muscle-related diseases and metabolic disorders. However, whether daidzein can improve lovastatin-induced muscle atrophy and the specific mechanism needs to further study. METHODS Lovastatin-induced mice and zebrafish muscle atrophy models were used to validate the protective effect of daidzein in vivo. And the lovastatin-induced C2C12 myotube atrophy model was employed to validate the therapeutic efficacy and investigate the specific mechanism of daidzein in vitro. We combined specific siRNA targeting FOXO3a and AMPK-selective inhibitor, agonist to elucidate AMPK/FOXO3a-dependent muscle-protective mechanism of daidzein. The anti-atrophy effects of daidzein through blockage of abnormal activation of AMPK/FOXO3a was presented in Immunofluorescence, H&E staining, Western blot, qRT-PCR. Serum creatine kinase level was detected by ELISA and we used mouse muscle grip instrument to detect the strength of mouse muscles. RESULTS In this study, we demonstrated that daidzein could dose-dependently alleviate lovastatin-induced mice skeletal muscle atrophy, reduce serum creatine kinase, and improve muscle grip strength in mice. Mechanistically, daidzein inhibited lovastatin-induced FOXO3a phosphorylation caused by AMPK activation, thereby inhibiting FOXO3a nuclear translocation to restrain the expression of muscle-related proteins Atrogin-1 and MuRF-1. In C2C12 myotube, administration of AMPK-selective inhibitor Compound C recapitulated the therapeutic effects of daidzein against lovastatin-induced myotubes atrophy, while the anti-atrophy effects of daidzein were lost in the presence of AMPK-selective agonist MK-3903. In lovastatin-induced mice muscle atrophy models, Compound C elicited similar anti-atrophy effects as daidzein, but this effect was not potentiated when it was applied in combination with daidzein, suggesting that daidzein exerted therapeutic efficacy dependent on blockage of AMPK activity. CONCLUSIONS Our study identified daidzein as an effective component that ameliorated lovastatin-induced skeletal muscle atrophy through blockage of abnormal activation of AMPK/FOXO3a and transcriptional activation of genes encoding downstream muscle-related proteins. Our results also highlighted the therapeutic potential by regulating the AMPK/FOXO3a axis in management of statin-induced myotoxicity.
Collapse
Affiliation(s)
- Keke Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Duranti E, Villa C. From Brain to Muscle: The Role of Muscle Tissue in Neurodegenerative Disorders. BIOLOGY 2024; 13:719. [PMID: 39336146 PMCID: PMC11428675 DOI: 10.3390/biology13090719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs), like amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and Parkinson's disease (PD), primarily affect the central nervous system, leading to progressive neuronal loss and motor and cognitive dysfunction. However, recent studies have revealed that muscle tissue also plays a significant role in these diseases. ALS is characterized by severe muscle wasting as a result of motor neuron degeneration, as well as alterations in gene expression, protein aggregation, and oxidative stress. Muscle atrophy and mitochondrial dysfunction are also observed in AD, which may exacerbate cognitive decline due to systemic metabolic dysregulation. PD patients exhibit muscle fiber atrophy, altered muscle composition, and α-synuclein aggregation within muscle cells, contributing to motor symptoms and disease progression. Systemic inflammation and impaired protein degradation pathways are common among these disorders, highlighting muscle tissue as a key player in disease progression. Understanding these muscle-related changes offers potential therapeutic avenues, such as targeting mitochondrial function, reducing inflammation, and promoting muscle regeneration with exercise and pharmacological interventions. This review emphasizes the importance of considering an integrative approach to neurodegenerative disease research, considering both central and peripheral pathological mechanisms, in order to develop more effective treatments and improve patient outcomes.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
4
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Gilda JE, Nahar A, Kasiviswanathan D, Tropp N, Gilinski T, Lahav T, Alexandrovich D, Mandel-Gutfreund Y, Park S, Shemer S. Proteasome gene expression is controlled by coordinated functions of multiple transcription factors. J Cell Biol 2024; 223:e202402046. [PMID: 38767572 PMCID: PMC11104393 DOI: 10.1083/jcb.202402046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).
Collapse
Affiliation(s)
- Jennifer E Gilda
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | | | - Nadav Tropp
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Tamar Gilinski
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | | | | | - Shenhav Shemer
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Dear AJ, Garcia GA, Meisl G, Collins GA, Knowles TPJ, Goldberg AL. Maximum entropy determination of mammalian proteome dynamics. Proc Natl Acad Sci U S A 2024; 121:e2313107121. [PMID: 38652742 PMCID: PMC11067036 DOI: 10.1073/pnas.2313107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Full understanding of proteostasis and energy utilization in cells will require knowledge of the fraction of cell proteins being degraded with different half-lives and their rates of synthesis. We therefore developed a method to determine such information that combines mathematical analysis of protein degradation kinetics obtained in pulse-chase experiments with Bayesian data fitting using the maximum entropy principle. This approach will enable rapid analyses of whole-cell protein dynamics in different cell types, physiological states, and neurodegenerative disease. Using it, we obtained surprising insights about protein stabilities in cultured cells normally and upon activation of proteolysis by mTOR inhibition and increasing cAMP or cGMP. It revealed that >90% of protein content in dividing mammalian cell lines is long-lived, with half-lives of 24 to 200 h, and therefore comprises much of the proteins in daughter cells. The well-studied short-lived proteins (half-lives < 10 h) together comprise <2% of cell protein mass, but surprisingly account for 10 to 20% of measurable newly synthesized protein mass. Evolution thus appears to have minimized intracellular proteolysis except to rapidly eliminate misfolded and regulatory proteins.
Collapse
Affiliation(s)
- Alexander J. Dear
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Gonzalo A. Garcia
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Meisl
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Galen A. Collins
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS39762
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Alfred L. Goldberg
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
7
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Uno H, Kamiya S, Akimoto R, Hosoki K, Tadano S, Isemura M, Kouzaki K, Tamura Y, Kotani T, Nakazato K. Belt electrode tetanus muscle stimulation reduces denervation-induced atrophy of rat multiple skeletal muscle groups. Sci Rep 2024; 14:5848. [PMID: 38462654 PMCID: PMC10925608 DOI: 10.1038/s41598-024-56382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
Belt electrode-skeletal muscle electrical stimulation (B-SES) involves the use of belt-shaped electrodes to contract multiple muscle groups simultaneously. Twitch contractions have been demonstrated to protect against denervation-induced muscle atrophy in rats, possibly through mitochondrial biosynthesis. This study examined whether inducing tetanus contractions with B-SES suppresses muscle atrophy and identified the underlying molecular mechanisms. We evaluated the effects of acute (60 Hz, 5 min) and chronic (60 Hz, 5 min, every alternate day for one week) B-SES on the tibialis anterior (TA) and gastrocnemius (GAS) muscles in Sprague-Dawley rats using belt electrodes attached to both ankle joints. After acute stimulation, a significant decrease in the glycogen content was observed in the left and right TA and GAS, suggesting that B-SES causes simultaneous contractions in multiple muscle groups. B-SES enhanced p70S6K phosphorylation, an indicator of the mechanistic target of rapamycin complex 1 activity. During chronic stimulations, rats were divided into control (CONT), denervation-induced atrophy (DEN), and DEN + electrically stimulated with B-SES (DEN + ES) groups. After seven days of treatment, the wet weight (n = 8-11 for each group) and muscle fiber cross-sectional area (CSA, n = 6 for each group) of the TA and GAS muscles were reduced in the DEN and DEN + ES groups compared with that in the CON group. The DEN + ES group showed significantly higher muscle weight and CSA than those in the DEN group. Although RNA-seq and pathway analysis suggested that mitochondrial biogenesis is a critical event in this phenomenon, mitochondrial content showed no difference. In contrast, ribosomal RNA 28S and 18S (n = 6) levels in the DEN + ES group were higher than those in the DEN group, even though RNA-seq showed that the ribosome biogenesis pathway was reduced by electrical stimulation. The mRNA levels of the muscle proteolytic molecules atrogin-1 and MuRF1 were significantly higher in DEN than those in CONT. However, they were more suppressed in DEN + ES than those in DEN. In conclusion, tetanic electrical stimulation of both ankles using belt electrodes effectively reduced denervation-induced atrophy in multiple muscle groups. Furthermore, ribosomal biosynthesis plays a vital role in this phenomenon.
Collapse
Affiliation(s)
- Hiroyuki Uno
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan.
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan.
| | - Shohei Kamiya
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Ryuji Akimoto
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Katsu Hosoki
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Shunta Tadano
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Mako Isemura
- HOMERION LABORATORY Co., Ltd., Shinsen 17-2, Shibuya-Ku, Tokyo, 150-0045, Japan
| | - Karina Kouzaki
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Yuki Tamura
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Takaya Kotani
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| | - Koichi Nakazato
- School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-Ku, Tokyo, 158-8508, Japan
| |
Collapse
|
9
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
10
|
Lifante J, Moreno-Rupérez Á, Ximendes E, Marin R, Priego T, López-Calderón A, Martín AI, Nieto-Bona MP, Nebot E, Lifante-Pedrola G, Jaque D, Monge L, Fernández N, Granado M. Early in vivo detection of denervation-induced atrophy by luminescence transient nanothermometry. JOURNAL OF BIOPHOTONICS 2024; 17:e202300249. [PMID: 38010860 DOI: 10.1002/jbio.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required. In this work, we demonstrate how the combination of transient thermometry, a technique already used for early diagnosis of tumors, and infrared-emitting nanothermometers makes possible the in vivo detection of the onset of muscle atrophy at short (<1 day) times after a denervation event. The physiological reasons behind these experimental results have been explored by performing three dimensional numerical simulations based on the Pennes' bioheat equation. It is concluded that the alterations in muscle thermal dynamics at the onset of muscle atrophy are consequence of the skin perfusion increment caused by the alteration of peripheral nervous autonomous system. This work demonstrates the potential of infrared luminescence thermometry for early detection of diseases of the nervous system opening the venue toward the development of new diagnosis tools.
Collapse
Affiliation(s)
- José Lifante
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Álvaro Moreno-Rupérez
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, Madrid, Spain
| | - Teresa Priego
- Facultad de Enfermería, Fisioterapia y Podología, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Asunción López-Calderón
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Isabel Martín
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - María Paz Nieto-Bona
- Facultad de Ciencias de la Salud, Departamento de Ciencias Básicas, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elena Nebot
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ginés Lifante-Pedrola
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
- Departamento de Física de Materiales, Facultad de Ciencias, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Autonomous University of Madrid, Madrid, Spain
| | - Luis Monge
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nuria Fernández
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miriam Granado
- Facultad de Medicina, Departamento de Fisiología, Nanomaterials for Bioimaging Group (NanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
11
|
Gilad N, Mohanam MP, Darlyuk-Saadon I, Heng CKM, Plaschkes I, Benyamini H, Berezhnoy NV, Engelberg D. Asynchronous Pattern of MAPKs' Activity during Aging of Different Tissues and of Distinct Types of Skeletal Muscle. Int J Mol Sci 2024; 25:1713. [PMID: 38338990 PMCID: PMC10855984 DOI: 10.3390/ijms25031713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The MAPK p38α was proposed to be a prominent promoter of skeletal muscle aging. The skeletal muscle tissue is composed of various muscle types, and it is not known if p38α is associated with aging in all of them. It is also not known if p38α is associated with aging of other tissues. JNK and ERK were also proposed to be associated with aging of several tissues. Nevertheless, the pattern of p38α, JNK, and ERK activity during aging was not documented. Here, we documented the levels of phosphorylated/active p38α, Erk1/2, and JNKs in several organs as well as the soleus, tibialis anterior, quadriceps, gastrocnemius, and EDL muscles of 1-, 3-, 6-, 13-, 18-, and 24-month-old mice. We report that in most tissues and skeletal muscles, the MAPKs' activity does not change in the course of aging. In most tissues and muscles, p38α is in fact active at younger ages. The quadriceps and the lungs are exceptions, where p38α is significantly active only in mice 13 months old or older. Curiously, levels of active JNK and ERKs are also elevated in aged lungs and quadriceps. RNA-seq analysis of the quadriceps during aging revealed downregulation of proteins related to the extra-cellular matrix (ECM) and ERK signaling. A panel of mRNAs encoding cell cycle inhibitors and senescence-associated proteins, considered to be aging markers, was not found to be elevated. It seems that the pattern of MAPKs' activation in aging, as well as expression of known 'aging' components, are tissue- and muscle type-specific, supporting a notion that the process of aging is tissue- and even cell-specific.
Collapse
Affiliation(s)
- Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
| | - Manju Payini Mohanam
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
| | - C. K. Matthew Heng
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Nikolay V. Berezhnoy
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
12
|
Ebert SM, Nicolas CS, Schreiber P, Lopez JG, Taylor AT, Judge AR, Judge SM, Rasmussen BB, Talley JJ, Rème CA, Adams CM. Ursolic Acid Induces Beneficial Changes in Skeletal Muscle mRNA Expression and Increases Exercise Participation and Performance in Dogs with Age-Related Muscle Atrophy. Animals (Basel) 2024; 14:186. [PMID: 38254356 PMCID: PMC10812546 DOI: 10.3390/ani14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Muscle atrophy and weakness are prevalent and debilitating conditions in dogs that cannot be reliably prevented or treated by current approaches. In non-canine species, the natural dietary compound ursolic acid inhibits molecular mechanisms of muscle atrophy, leading to improvements in muscle health. To begin to translate ursolic acid to canine health, we developed a novel ursolic acid dietary supplement for dogs and confirmed its safety and tolerability in dogs. We then conducted a randomized, placebo-controlled, proof-of-concept efficacy study in older beagles with age-related muscle atrophy, also known as sarcopenia. Animals received placebo or ursolic acid dietary supplements once a day for 60 days. To assess the study's primary outcome, we biopsied the quadriceps muscle and quantified atrophy-associated mRNA expression. Additionally, to determine whether the molecular effects of ursolic acid might have functional correlates consistent with improvements in muscle health, we assessed secondary outcomes of exercise participation and T-maze performance. Importantly, in canine skeletal muscle, ursolic acid inhibited numerous mRNA expression changes that are known to promote muscle atrophy and weakness. Furthermore, ursolic acid significantly improved exercise participation and T-maze performance. These findings identify ursolic acid as a natural dietary compound that inhibits molecular mechanisms of muscle atrophy and improves functional performance in dogs.
Collapse
Affiliation(s)
- Scott M. Ebert
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Paul Schreiber
- Research & Development—Biopharmacy Department, Virbac SA, 06511 Carros, France
| | - Jaime G. Lopez
- US Petcare Innovation, Virbac NA, Westlake, TX 76262, USA
| | - Alan T. Taylor
- Innovation, Business Development, Virbac NA, Westlake, TX 76262, USA
| | - Andrew R. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Judge
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Physical Therapy and Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Blake B. Rasmussen
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Department of Biochemistry and Structural Biology and Center for Metabolic Health, University of Texas Health Science Center, San Antonio, TX 77021, USA
| | - John J. Talley
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
| | | | - Christopher M. Adams
- Emmyon, Inc., Rochester, MN 55902, USA; (S.M.E.); (A.R.J.); (S.M.J.); (J.J.T.); (C.M.A.)
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
I S Júnior I, Zanetti GO, Vieira TS, Albuquerque FP, Gomes DA, Paula-Gomes S, Valentim RR, Graça FA, Kettlhut IC, Navegantes LCC, Gonçalves DAP, Lira EC. Resveratrol directly suppresses proteolysis possibly via PKA/CREB signaling in denervated rat skeletal muscle. AN ACAD BRAS CIENC 2023; 95:e20220877. [PMID: 38055559 DOI: 10.1590/0001-3765202320220877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/07/2022] [Indexed: 12/08/2023] Open
Abstract
Although there are reports that polyphenol resveratrol (Rsv) may cause muscle hypertrophy in basal conditions and attenuate muscle wasting in catabolic situations, its mechanism of action is still unclear. Our study evaluated the ex vivo effects of Rsv on protein metabolism and intracellular signaling in innervated (sham-operated; Sham) and 3-day sciatic denervated (Den) rat skeletal muscles. Rsv (10-4 M) reduced total proteolysis (40%) in sham muscles. Den increased total proteolysis (~40%) in muscle, which was accompanied by an increase in the activities of ubiquitin-proteasome (~3-fold) and lysosomal (100%) proteolytic systems. Rsv reduced total proteolysis (59%) in Den muscles by inhibiting the hyperactivation of ubiquitin-proteasome (50%) and lysosomal (~70%) systems. Neither Rsv nor Den altered calcium-dependent proteolysis in muscles. Mechanistically, Rsv stimulated PKA/CREB signaling in Den muscles, and PKA blockage by H89 (50μM) abolished the antiproteolytic action of the polyphenol. Rsv reduced FoxO4 phosphorylation (~60%) in both Sham and Den muscles and Akt phosphorylation (36%) in Den muscles. Rsv also caused a homeostatic effect in Den muscles by returning their protein synthesis rates to levels similar to Sham muscles. These data indicate that Rsv directly inhibits the proteolytic activity of lysosomal and ubiquitin-proteasome systems, mainly in Den muscles through, at least in part, the activation of PKA/CREB signaling.
Collapse
Affiliation(s)
- Ivanildo I S Júnior
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Fisiologia e Farmacologia, Laboratório de Neuroendocrinologia e Metabolismo, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Gustavo O Zanetti
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Setor de Fisiologia Esportiva do Centro de Treinamento Esportivo e Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Tales S Vieira
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Setor de Fisiologia Esportiva do Centro de Treinamento Esportivo e Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Flávia P Albuquerque
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Fisiologia e Farmacologia, Laboratório de Neuroendocrinologia e Metabolismo, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Dayane A Gomes
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Fisiologia e Farmacologia, Laboratório de Neuroendocrinologia e Metabolismo, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Silva Paula-Gomes
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica & Imunologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Rafael R Valentim
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica & Imunologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Flavia A Graça
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento Fisiologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Isis C Kettlhut
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica & Imunologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Luiz C C Navegantes
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento Fisiologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Dawit A P Gonçalves
- Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Setor de Fisiologia Esportiva do Centro de Treinamento Esportivo e Laboratório de Fisiologia do Exercício, Av. Presidente Antônio Carlos, 6627, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica & Imunologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento Fisiologia, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Eduardo C Lira
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Fisiologia e Farmacologia, Laboratório de Neuroendocrinologia e Metabolismo, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
14
|
Marcotte GR, Miller MJ, Kunz HE, Ryan ZC, Strub MD, Vanderboom PM, Heppelmann CJ, Chau S, Von Ruff ZD, Kilroe SP, McKeen AT, Dierdorff JM, Stern JI, Nath KA, Grueter CE, Lira VA, Judge AR, Rasmussen BB, Nair KS, Lanza IR, Ebert SM, Adams CM. GADD45A is a mediator of mitochondrial loss, atrophy, and weakness in skeletal muscle. JCI Insight 2023; 8:e171772. [PMID: 37815864 PMCID: PMC10721312 DOI: 10.1172/jci.insight.171772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle-specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss. These cellular changes were at least partly mediated by MAP kinase kinase kinase 4, a protein kinase that is directly activated by GADD45A. By inducing these changes, GADD45A decreased the mass of muscles that are enriched in glycolytic fibers, and it impaired strength, specific force, and endurance exercise capacity. Furthermore, as predicted by data from mouse models, we found that GADD45A expression in skeletal muscle was associated with muscle weakness in humans. Collectively, these findings identify GADD45A as a mediator of mitochondrial loss, atrophy, and weakness in mouse skeletal muscle and a potential target for muscle weakness in humans.
Collapse
Affiliation(s)
- George R. Marcotte
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- University of Iowa, Iowa City, Iowa, USA
| | - Matthew J. Miller
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- University of Iowa, Iowa City, Iowa, USA
| | - Hawley E. Kunz
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Zachary C. Ryan
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D. Strub
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick M. Vanderboom
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Carrie J. Heppelmann
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Chau
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Sean P. Kilroe
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew T. McKeen
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- University of Iowa, Iowa City, Iowa, USA
| | | | | | - Karl A. Nath
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Andrew R. Judge
- University of Florida, Gainesville, Florida, USA
- Emmyon, Inc., Rochester, Minnesota, USA
| | - Blake B. Rasmussen
- University of Texas Medical Branch, Galveston, Texas, USA
- Emmyon, Inc., Rochester, Minnesota, USA
- University of Texas Health Science Center, San Antonio, Texas, USA
| | - K. Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian R. Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott M. Ebert
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Emmyon, Inc., Rochester, Minnesota, USA
| | - Christopher M. Adams
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Emmyon, Inc., Rochester, Minnesota, USA
| |
Collapse
|
15
|
Ninfali C, Cortés M, Martínez-Campanario MC, Domínguez V, Han L, Tobías E, Esteve-Codina A, Enrich C, Pintado B, Garrabou G, Postigo A. The adaptive antioxidant response during fasting-induced muscle atrophy is oppositely regulated by ZEB1 and ZEB2. Proc Natl Acad Sci U S A 2023; 120:e2301120120. [PMID: 37948583 PMCID: PMC10655555 DOI: 10.1073/pnas.2301120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
Reactive oxygen species (ROS) serve important homeostatic functions but must be constantly neutralized by an adaptive antioxidant response to prevent supraphysiological levels of ROS from causing oxidative damage to cellular components. Here, we report that the cellular plasticity transcription factors ZEB1 and ZEB2 modulate in opposing directions the adaptive antioxidant response to fasting in skeletal muscle. Using transgenic mice in which Zeb1 or Zeb2 were specifically deleted in skeletal myofibers, we show that in fasted mice, the deletion of Zeb1, but not Zeb2, increased ROS production and that the adaptive antioxidant response to fasting essentially requires ZEB1 and is inhibited by ZEB2. ZEB1 expression increased in fasted muscles and protected them from atrophy; conversely, ZEB2 expression in muscles decreased during fasting and exacerbated muscle atrophy. In fasted muscles, ZEB1 reduces mitochondrial damage and increases mitochondrial respiratory activity; meanwhile, ZEB2 did the opposite. Treatment of fasting mice with Zeb1-deficient myofibers with the antioxidant triterpenoid 1[2-cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoro-ethylamide (CDDO-TFEA) completely reversed their altered phenotype to that observed in fasted control mice. These results set ZEB factors as potential therapeutic targets to modulate the adaptive antioxidant response in physiopathological conditions and diseases caused by redox imbalance.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - M. C. Martínez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Verónica Domínguez
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC-CBMSO), Transgenesis Facility, High Research Council (CSIC) and Autonomous University of Madrid, Cantoblanco, Madrid28049, Spain
| | - Lu Han
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Ester Tobías
- Group of Muscle Research and Mitochondrial Function, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), University of Barcelona School of Medicine, Hospital Clínic of Barcelona, and Rare Diseases Networking Biomedical Research Center (CIBERer), Barcelona08036, Spain
| | | | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine, and Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
| | - Belén Pintado
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC-CBMSO), Transgenesis Facility, High Research Council (CSIC) and Autonomous University of Madrid, Cantoblanco, Madrid28049, Spain
| | - Gloria Garrabou
- Group of Muscle Research and Mitochondrial Function, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), University of Barcelona School of Medicine, Hospital Clínic of Barcelona, and Rare Diseases Networking Biomedical Research Center (CIBERer), Barcelona08036, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona08036, Spain
- Molecular Targets Program, Department of Medicine, James Graham Brown Cancer Center, Louisville, KY40202
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona08010, Spain
| |
Collapse
|
16
|
Ferreira RP, Duarte JA. Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle. Int J Sports Med 2023; 44:763-777. [PMID: 36854391 DOI: 10.1055/a-2044-8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Skeletal muscle is a highly plastic tissue, able to change its mass and functional properties in response to several stimuli. Skeletal muscle mass is influenced by the balance between protein synthesis and breakdown, which is regulated by several signaling pathways. The relative contribution of Akt/mTOR signaling, ubiquitin-proteasome pathway, autophagy among other signaling pathways to protein turnover and, therefore, to skeletal muscle mass, differs depending on the wasting or loading condition and muscle type. By modulating mitochondria biogenesis, PGC-1α has a major role in the cell's bioenergetic status and, thus, on protein turnover. In fact, rates of protein turnover regulate differently the levels of distinct protein classes in response to atrophic or hypertrophic stimuli. Mitochondrial protein turnover rates may be enhanced in wasting conditions, whereas the increased turnover of myofibrillar proteins triggers muscle mass gain. The present review aims to update the knowledge on the molecular pathways implicated in the regulation of protein turnover in skeletal muscle, focusing on how distinct muscle proteins may be modulated by lifestyle interventions with emphasis on exercise training. The comprehensive analysis of the anabolic effects of exercise programs will pave the way to the tailored management of muscle wasting conditions.
Collapse
Affiliation(s)
- Rita Pinho Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jose Alberto Duarte
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
17
|
Parafati M, Giza S, Shenoy TS, Mojica-Santiago JA, Hopf M, Malany LK, Platt D, Moore I, Jacobs ZA, Kuehl P, Rexroat J, Barnett G, Schmidt CE, McLamb WT, Clements T, Coen PM, Malany S. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. NPJ Microgravity 2023; 9:77. [PMID: 37714852 PMCID: PMC10504373 DOI: 10.1038/s41526-023-00322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLabTM payloads on the ISS.
Collapse
Affiliation(s)
- Maddalena Parafati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Shelby Giza
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Tushar S Shenoy
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jorge A Mojica-Santiago
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | - Meghan Hopf
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | | | - Don Platt
- Micro Aerospace Solutions, INC, Melbourne, FL, 32935, USA
| | | | | | - Paul Kuehl
- Space Tango, LLC, Lexington, KY, 40505, USA
| | | | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Paul M Coen
- Translational Research Institute, AdventHealth, Orlando, FL, 32804, USA
| | - Siobhan Malany
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
GrönholdtKlein M, Gorzi A, Wang L, Edström E, Rullman E, Altun M, Ulfhake B. Emergence and Progression of Behavioral Motor Deficits and Skeletal Muscle Atrophy across the Adult Lifespan of the Rat. BIOLOGY 2023; 12:1177. [PMID: 37759577 PMCID: PMC10526071 DOI: 10.3390/biology12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
The facultative loss of muscle mass and function during aging (sarcopenia) poses a serious threat to our independence and health. When activities of daily living are impaired (clinical phase), it appears that the processes leading to sarcopenia have been ongoing in humans for decades (preclinical phase). Here, we examined the natural history of sarcopenia in male outbred rats to compare the occurrence of motor behavioral deficits with the degree of muscle wasting and to explore the muscle-associated processes of the preclinical and clinical phases, respectively. Selected metrics were validated in female rats. We used the soleus muscle because of its long duty cycles and its importance in postural control. Results show that gait and coordination remain intact through middle age (40-60% of median lifespan) when muscle mass is largely preserved relative to body weight. However, the muscle shows numerous signs of remodeling with a shift in myofiber-type composition toward type I. As fiber-type prevalence shifted, fiber-type clustering also increased. The number of hybrid fibers, myofibers with central nuclei, and fibers expressing embryonic myosin increased from being barely detectable to a significant number (5-10%) at late middle age. In parallel, TGFβ1, Smad3, FBXO32, and MuRF1 mRNAs increased. In early (25-month-old) and advanced (30-month-old) aging, gait and coordination deteriorate with the progressive loss of muscle mass. In late middle age and early aging due to type II atrophy (>50%) followed by type I atrophy (>50%), the number of myofibers did not correlate with this process. In advanced age, atrophy is accompanied by a decrease in SCs and βCatenin mRNA, whereas several previously upregulated transcripts were downregulated. The re-expression of embryonic myosin in myofibers and the upregulation of mRNAs encoding the γ-subunit of the nicotinic acetylcholine receptor, the neuronal cell adhesion molecule, and myogenin that begins in late middle age suggest that one mechanism driving sarcopenia is the disruption of neuromuscular connectivity. We conclude that sarcopenia in rats, as in humans, has a long preclinical phase in which muscle undergoes extensive remodeling to maintain muscle mass and function. At later time points, these adaptive mechanisms fail, and sarcopenia becomes clinically manifest.
Collapse
Affiliation(s)
- Max GrönholdtKlein
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Lingzhan Wang
- Department of Human Anatomy, Histology and Embryology, Inner Mongolia Minzu University, Tongliao 028000, China;
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Eric Rullman
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Mikael Altun
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (E.R.); (M.A.)
| |
Collapse
|
19
|
Machamer JB, Vazquez-Cintron EJ, Stenslik MJ, Pagarigan KT, Bradford AB, Ondeck CA, McNutt PM. Neuromuscular recovery from botulism involves multiple forms of compensatory plasticity. Front Cell Neurosci 2023; 17:1226194. [PMID: 37650071 PMCID: PMC10463753 DOI: 10.3389/fncel.2023.1226194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Botulinum neurotoxin (BoNT) causes neuroparalytic disease and death by blocking neuromuscular transmission. There are no specific therapies for clinical botulism and the only treatment option is supportive care until neuromuscular function spontaneously recovers, which can take weeks or months after exposure. The highly specialized neuromuscular junction (NMJ) between phrenic motor neurons and diaphragm muscle fibers is the main clinical target of BoNT. Due to the difficulty in eliciting respiratory paralysis without a high mortality rate, few studies have characterized the neurophysiological mechanisms involved in diaphragm recovery from intoxication. Here, we develop a mouse model of botulism that involves partial paralysis of respiratory muscles with low mortality rates, allowing for longitudinal analysis of recovery. Methods and results Mice challenged by systemic administration of 0.7 LD50 BoNT/A developed physiological signs of botulism, such as respiratory depression and reduced voluntary running activity, that persisted for an average of 8-12 d. Studies in isolated hemidiaphragm preparations from intoxicated mice revealed profound reductions in nerve-elicited, tetanic and twitch muscle contraction strengths that recovered to baseline 21 d after intoxication. Despite apparent functional recovery, neurophysiological parameters remained depressed for 28 d, including end plate potential (EPP) amplitude, EPP success rate, quantal content (QC), and miniature EPP (mEPP) frequency. However, QC recovered more quickly than mEPP frequency, which could explain the discrepancy between muscle function studies and neurophysiological recordings. Hypothesizing that differential modulation of voltage-gated calcium channels (VGCC) contributed to the uncoupling of QC from mEPP frequency, pharmacological inhibition studies were used to study the contributions of different VGCCs to neurophysiological function. We found that N-type VGCC and P/Q-type VGCC partially restored QC but not mEPP frequency during recovery from paralysis, potentially explaining the accelerated recovery of evoked release versus spontaneous release. We identified additional changes that presumably compensate for reduced acetylcholine release during recovery, including increased depolarization of muscle fiber resting membrane potential and increased quantal size. Discussion In addition to identifying multiple forms of compensatory plasticity that occur in response to reduced NMJ function, it is expected that insights into the molecular mechanisms involved in recovery from neuromuscular paralysis will support new host-targeted treatments for multiple neuromuscular diseases.
Collapse
Affiliation(s)
- James B. Machamer
- BASF, Research Triangle Park, NC, United States
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | | | - Mallory J. Stenslik
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Kathleen T. Pagarigan
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Aaron B. Bradford
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
| | - Celinia A. Ondeck
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD, United States
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
20
|
Implications of mitochondrial fusion and fission in skeletal muscle mass and health. Semin Cell Dev Biol 2023; 143:46-53. [PMID: 35168898 DOI: 10.1016/j.semcdb.2022.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as FGF21 and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.
Collapse
|
21
|
Wang S, Wang L, Gu S, Han Y, Li L, Jia Z, Gao N, Liu Y, Lin S, Hou Y, Wang X, Mao J. Effect of optimized new Shengmai powder on exercise tolerance in rats with heart failure by regulating the ubiquitin-proteasome signaling pathway. Front Cardiovasc Med 2023; 10:1168341. [PMID: 37288261 PMCID: PMC10242132 DOI: 10.3389/fcvm.2023.1168341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Decreased exercise tolerance is a common symptom in patients with heart failure, which is closely related to protein degradation and apoptosis regulated by the ubiquitin-proteasome signaling (UPS) pathway. In this study, the effect of Chinese medicine, optimized new Shengmai powder, on exercise tolerance in rats with heart failure was investigated via the UPS pathway. Methods The heart failure model was prepared by ligating the left anterior descending branch of the coronary artery in rats, in which the sham-operated group was only threaded and not ligated. Rats (left ventricular ejection fraction ≤ 45%) were randomly divided into the following groups: model group, YHXSMS group, Benazepril group, and proteasome inhibitor Oprozomib group, and they were administered the corresponding drugs by gavage for 4 weeks. The cardiac function of rats was evaluated by performing an echocardiography examination and a hemodynamic test and the exercise tolerance was done by conducting an exhaustive swimming test. The mechanism was revealed by TUNEL detection, immunohistochemistry, immunofluorescence analysis, Western blot, and quantitative real-time PCR. Results The study showed that there was a decrease in cardiac function and exercise tolerance of rats in the model group and also destruction of cardiac and skeletal muscle fibers, a proliferation of collagen tissue, and an increment of apoptosis. Our study suggested that optimized new Shengmai powder could exert antiapoptotic effects on myocardial and skeletal muscle cells and improve myocardial contractility and exercise tolerance by inhibiting the overactivation of the UPS pathway, downregulating MAFbx, and Murf-1 overexpression, inhibiting the activation of the JNK signaling pathway, upregulating bcl-2 expression, and decreasing bax and caspase-3 levels. Conclusions The study showed that the optimized new Shengmai powder could improve cardiac function and exercise tolerance in rats with heart failure through the UPS pathway.
Collapse
Affiliation(s)
- Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoke Gu
- Department of Geratology, Shijiazhuang Hospital of Traditional Chinese Medicine, He Bei, China
| | - Yixiao Han
- Department of Cardiology, ShenZhen Traditional Chinese Medicine Hospital, Shen Zhen, China
| | - Linfeng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhuangzhuang Jia
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ning Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shanshan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yazhu Hou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
22
|
Zhou HH, Liao Y, Peng Z, Liu F, Wang Q, Yang W. Association of muscle wasting with mortality risk among adults: A systematic review and meta-analysis of prospective studies. J Cachexia Sarcopenia Muscle 2023. [PMID: 37209044 PMCID: PMC10401550 DOI: 10.1002/jcsm.13263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 05/22/2023] Open
Abstract
The relationship between muscle wasting and mortality risk in the general population remains unclear. Our study was conducted to examine and quantify the associations between muscle wasting and all-cause and cause-specific mortality risks. PubMed, Web of Science and Cochrane Library were searched until 22 March 2023 for main data sources and references of retrieved relevant articles. Prospective studies investigating the associations of muscle wasting with risks of all-cause and cause-specific mortality in the general population were eligible. A random-effect model was used to calculate the pooled relative risk (RR) and 95% confidence intervals (CIs) for the lowest versus normal categories of muscle mass. Subgroup analyses and meta-regression were performed to investigate the potential sources of heterogeneities among studies. Dose-response analyses were conducted to evaluate the relationship between muscle mass and mortality risk. Forty-nine prospective studies were included in the meta-analysis. A total of 61 055 deaths were ascertained among 878 349 participants during the 2.5- to 32-year follow-up. Muscle wasting was associated with higher mortality risks of all causes (RR = 1.36, 95% CI, 1.28 to 1.44, I2 = 94.9%, 49 studies), cardiovascular disease (CVD) (RR = 1.29, 95% CI, 1.05 to 1.58, I2 = 88.1%, 8 studies), cancer (RR = 1.14, 95% CI, 1.02 to 1.27, I2 = 38.7%, 3 studies) and respiratory disease (RR = 1.36, 95% CI, 1.11 to 1.67, I2 = 62.8%, 3 studies). Subgroup analyses revealed that muscle wasting, regardless of muscle strength, was significantly associated with a higher all-cause mortality risk. Meta-regression showed that risks of muscle wasting-related all-cause mortality (P = 0.06) and CVD mortality (P = 0.09) were lower in studies with longer follow-ups. An approximately inverse linear dose-response relationship was observed between mid-arm muscle circumference and all-cause mortality risk (P < 0.01 for non-linearity). Muscle wasting was associated with higher mortality risks of all causes, CVD, cancer and respiratory disease in the general population. Early detection and treatment for muscle wasting might be crucial for reducing mortality risk and promoting healthy longevity.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Liu
- School of Public Health, Wuhan University, Wuhan, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Gilda JE, Nahar A, Kasiviswanathan D, Tropp N, Gilinski T, Lahav T, Mandel-Gutfreund Y, Park S, Cohen S. Proteasome gene expression is controlled by the coordinated functions of multiple transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536627. [PMID: 37205440 PMCID: PMC10187252 DOI: 10.1101/2023.04.12.536627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo , we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 d after denervation) it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PAL NRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PAL NRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g. type-2 diabetes, cancer).
Collapse
|
24
|
Sawano S, Fukushima M, Akasaka T, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Up- and Downregulated Genes after Long-Term Muscle Atrophy Induced by Denervation in Mice Detected Using RNA-Seq. Life (Basel) 2023; 13:life13051111. [PMID: 37240756 DOI: 10.3390/life13051111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Skeletal muscle atrophy occurs rapidly as a result of inactivity. Although there are many reports on changes in gene expression during the early phase of muscle atrophy, the patterns of up-and downregulated gene expression after long-term and equilibrated muscle atrophy are poorly understood. In this study, we comprehensively examined the changes in gene expression in long-term denervated mouse muscles using RNA-Seq. The murine right sciatic nerve was denervated, and the mice were housed for five weeks. The cross-sectional areas of the hind limb muscles were measured using an X-ray CT system 35 days after denervation. After 28 d of denervation, the cross-sectional area of the muscle decreased to approximately 65% of that of the intact left muscle and reached a plateau. Gene expression in the soleus and extensor digitorum longus (EDL) muscles on the 36th day was analyzed using RNA-Seq and validated using RT-qPCR. RNA-Seq analysis revealed that three genes-Adora1, E230016M11Rik, and Gm10718-were upregulated and one gene-Gm20515-was downregulated in the soleus muscle; additionally, four genes-Adora1, E230016M11Rik, Pigh, and Gm15557-were upregulated and one gene-Fzd7-was downregulated in the EDL muscle (FDR < 0.05). Among these genes, E230016M11Rik, one of the long non-coding RNAs, was significantly upregulated in both the muscles. These findings indicate that E230016M11Rik could be a candidate gene for the maintenance of atrophied skeletal muscle size and an atrophic state.
Collapse
Affiliation(s)
- Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan
| | - Misaki Fukushima
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Taiki Akasaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| |
Collapse
|
25
|
Hayashi T, Fujita R, Okada R, Hamada M, Suzuki R, Fuseya S, Leckey J, Kanai M, Inoue Y, Sadaki S, Nakamura A, Okamura Y, Abe C, Morita H, Aiba T, Senkoji T, Shimomura M, Okada M, Kamimura D, Yumoto A, Muratani M, Kudo T, Shiba D, Takahashi S. Lunar gravity prevents skeletal muscle atrophy but not myofiber type shift in mice. Commun Biol 2023; 6:424. [PMID: 37085700 PMCID: PMC10121599 DOI: 10.1038/s42003-023-04769-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.
Collapse
Affiliation(s)
- Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryo Fujita
- Divsion of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - James Leckey
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayano Nakamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yui Okamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
- Department of Nutrition Management, Tokai Gakuin University, Gifu, 504-8511, Japan
| | - Tatsuya Aiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Teruhiro Senkoji
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Michihiko Shimomura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Maki Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Daisuke Kamimura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| |
Collapse
|
26
|
Combined prenatal to postnatal protein restriction augments protein quality control processes and proteolysis in the muscle of rat offspring. J Nutr Biochem 2023; 114:109273. [PMID: 36681307 DOI: 10.1016/j.jnutbio.2023.109273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Several human epidemiological and animal studies suggest that a maternal low-protein (MLP) diet affects skeletal muscle (SM) health in the offspring. However, effect of combined prenatal to postnatal protein restriction (chronic PR) and prenatal to perinatal protein restriction (PR) with postnatal rehabilitation maternal protein restriction (MPR) on protein quality control (PQC) processes and proteolysis in the offspring remains poorly understood. The current study explored the impact of chronic PR and MPR on SM protein degradation rates, chaperones, unfolded protein response (UPR), ubiquitin-proteasome system (UPS), autophagy, and apoptosis, in the adult offspring. Wistar rats were randomly assigned to a normal protein (NP; 20% casein), or low-protein (LP; 8% casein) isocaloric diets from 7 weeks prior to breeding through weaning. Offspring born to NP dams received the same diet (NP offspring) while a group of LP offspring remained on LP diet and another group was rehabilitated with NP diet (LPR offspring) from weaning for 16 weeks. LP offspring displayed lower body weight, lean mass, and myofiber cross-sectional area than NP. Furthermore, LP offspring demonstrated increased total protein degradation, urinary 3-methyl histidine, ER stress, autophagy, UPS components, proteasomal activity, muscle atrophy markers, and apoptosis-related proteins than NP. However, MPR showed little or no effect on muscle proteolysis, UPR, UPS, autophagy, apoptosis, and muscle atrophy in LPR offspring. These results indicate that exposure to chronic PR diets induces muscle atrophy and accelerates SM proteolysis via augmenting PQC processes in the offspring, while MPR shows little or no effect.
Collapse
|
27
|
Takayama S, Inoue K, Ogura Y, Hoshino S, Sugaya T, Ohata K, Kotake H, Ichikawa D, Watanabe M, Kimura K, Shibagaki Y, Kamijo-Ikemori A. Angiotensin II type 1a receptor deficiency alleviates muscle atrophy after denervation. Sci Rep 2023; 13:519. [PMID: 36627369 PMCID: PMC9832142 DOI: 10.1038/s41598-023-27737-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The study aim was to determine if suppressed activation of angiotensin II type 1 receptor (AT1) prevents severe muscle atrophy after denervation. The sciatic nerves in right and left inferior limbs were cut in AT1a knockout homo (AT1a-/-) male mice and wild-type (AT1a+/+) male mice. Muscle weight and cross-sectional areas of type IIb muscle fibers in gastrocnemius muscle decreased at 7 and 21 days postdenervation in both AT1a-/- mice and AT1a+/+ mice, and the reduction was significantly attenuated in the denervated muscles of AT1a-/- mice compared to the AT1a+/+ mice. Gene expressions in the protein degradation system [two E3 ubiquitin ligases (muscle RING-finger protein-1 and Atrogin-1)] upregulated at 7 days postdenervation in all denervated mice were significantly lower in AT1a-/- mice than in AT1a+/+ mice. Activations of nuclear factor κB and Forkhead box subgroup O1, and protein expression of monocyte chemoattractant protein-1 were significantly suppressed in the AT1a-/- mice compared with those in the AT1a+/+ mice. In addition, suppressed apoptosis, lower infiltration of M1 macrophages, and higher infiltration of M2 macrophages were significantly observed at 21 days postdenervation in the AT1a-/- mice compared with those in the AT1a+/+ mice. In conclusion, the AT1 receptor deficiency retarded muscle atrophy after denervation.
Collapse
Affiliation(s)
- Suguru Takayama
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Kazuho Inoue
- grid.412764.20000 0004 0372 3116Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yuji Ogura
- grid.412764.20000 0004 0372 3116Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Seiko Hoshino
- grid.412764.20000 0004 0372 3116Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takeshi Sugaya
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Keiichi Ohata
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Hitoshi Kotake
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Daisuke Ichikawa
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan
| | | | - Yugo Shibagaki
- grid.412764.20000 0004 0372 3116Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511 Japan
| | - Atsuko Kamijo-Ikemori
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, 216-8511, Japan. .,Department of Anatomy, St. Marianna University School of Medicine, Kanagawa, Japan. .,Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
28
|
Induction of ATF4-Regulated Atrogenes Is Uncoupled from Muscle Atrophy during Disuse in Halofuginone-Treated Mice and in Hibernating Brown Bears. Int J Mol Sci 2022; 24:ijms24010621. [PMID: 36614063 PMCID: PMC9820832 DOI: 10.3390/ijms24010621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-β (TGF-β) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-β inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-β/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-β/BMP balance and could be used to preserve muscle mass during catabolic situations.
Collapse
|
29
|
Nagendra AH, Ray A, Chaudhury D, Mitra A, Ranade AV, Bose B, Shenoy P. S. Sodium fluoride induces skeletal muscle atrophy via changes in mitochondrial and sarcomeric proteomes. PLoS One 2022; 17:e0279261. [PMID: 36548359 PMCID: PMC9779014 DOI: 10.1371/journal.pone.0279261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Sodium Fluoride (NaF) can change the expression of skeletal muscle proteins. Since skeletal muscle is rich in mitochondrial and contractile (sarcomeric) proteins, these proteins are sensitive to the effects of NaF, and the changes are dose-and time-dependent. In the current study, we have analysed the effect of high concentrations of NaF (80ppm) on mouse skeletal muscle at two different time points, i.e., 15 days and 60 days. At the end of the experimental time, the animals were sacrificed, skeletal muscles were isolated, and proteins were extracted and subjected to bioinformatic (Mass Spectrometric) analysis. The results were analysed based on changes in different mitochondrial complexes, contractile (sarcomeric) proteins, 26S proteasome, and ubiquitin-proteasome pathway. The results showed that the mitochondrial proteins of complex I, II, III, IV and V were differentially regulated in the groups treated with 80ppm of NaF for 15 days and 60 days. The network analysis indicated more changes in mitochondrial proteins in the group treated with the higher dose for 15 days rather than 60 days. Furthermore, differential expression of (sarcomeric) proteins, downregulation of 26S proteasome subunits, and differential expression in proteins related to the ubiquitin-proteasome pathway lead to muscle atrophy. The differential expression might be due to the adaptative mechanism to counteract the deleterious effects of NaF on energy metabolism. Data are available via ProteomeXchange with identifier PXD035014.
Collapse
Affiliation(s)
- Apoorva H. Nagendra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Animikh Ray
- Father Muller Research Centre, Father Muller Medical College, Father Muller Charitable Institutions, Kankanady, Mangalore, Karnataka, India
| | - Debajit Chaudhury
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Anu Vinod Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| | - Sudheer Shenoy P.
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangalore, India
| |
Collapse
|
30
|
Uno H, Kamiya S, Akimoto R, Hosoki K, Tadano S, Kouzaki K, Tamura Y, Kotani T, Isemura M, Nakazato K. Low-frequency electrical stimulation of bilateral hind legs by belt electrodes is effective for preventing denervation-induced atrophies in multiple skeletal muscle groups in rats. Sci Rep 2022; 12:21275. [PMID: 36481829 PMCID: PMC9732041 DOI: 10.1038/s41598-022-25359-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Belt electrode skeletal muscle electrical stimulation (B-SES) can simultaneously contract multiple muscle groups. Although the beneficial effects of B-SES in clinical situations have been elucidated, its molecular mechanism remains unknown. In this study, we developed a novel rodent B-SES ankle stimulation system to test whether low-frequency stimulation prevents denervation-induced muscle atrophy. Electrical stimulations (7‒8 Hz, 30 min) with ankle belt electrodes were applied to Sprague-Dawley rats daily for one week. All animals were assigned to the control (CONT), denervation-induced atrophy (DEN), and DEN + electrical stimulation (ES) groups. The tibialis anterior (TA) and gastrocnemius (GAS) muscles were used to examine the effect of ES treatment. After seven daily sessions of continuous stimulation, muscle wet weight (n = 8-11), and muscle fiber cross-sectional area (CSA, n = 4-6) of TA and GAS muscles were lower in DEN and DEN + ES than in CON. However, it was significantly higher in DEN than DEN + ES, showing that ES partially prevented muscle atrophy. PGC-1α, COX-IV, and citrate synthase activities (n = 6) were significantly higher in DEN + ES than in DEN. The mRNA levels of muscle proteolytic molecules, Atrogin-1 and Murf1, were significantly higher in DEN than in CONT, while B-SES significantly suppressed their expression (p < 0.05). In conclusion, low-frequency electrical stimulation of the bilateral ankles using belt electrodes (but not the pad electrodes) is effective in preventing denervation-induced atrophy in multiple muscles, which has not been observed with pad electrodes. Maintaining the mitochondrial quantity and enzyme activity by low-frequency electrical stimulation is key to suppressing muscle protein degradation.
Collapse
Affiliation(s)
- Hiroyuki Uno
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan ,grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Shohei Kamiya
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Ryuji Akimoto
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Katsu Hosoki
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Shunta Tadano
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan
| | - Karina Kouzaki
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Yuki Tamura
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Takaya Kotani
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Mako Isemura
- HOMER ION Co., Ltd., Shinsen 17-2, Shibuya-ku, Tokyo, 150-0045 Japan ,grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| | - Koichi Nakazato
- grid.412200.50000 0001 2228 003XSchool of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukazawa, Setagaya-ku, Tokyo, 158-8508 Japan
| |
Collapse
|
31
|
Wei L, Wang R, Lin K, Jin X, Li L, Wazir J, Pu W, Lian P, Lu R, Song S, Zhao Q, Li J, Wang H. Creatine modulates cellular energy metabolism and protects against cancer cachexia-associated muscle wasting. Front Pharmacol 2022; 13:1086662. [PMID: 36569317 PMCID: PMC9767983 DOI: 10.3389/fphar.2022.1086662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome defined by progressive loss of body weight with specific depletion of skeletal muscle and adipose tissue. Since there are no FDA-approved drugs that are available, nutritional intervention is recommended as a supporting therapy. Creatine supplementation has an ergogenic effect in various types of sports training, but the regulatory effects of creatine supplementation in cancer cachexia remain unknown. In this study, we investigated the impact of creatine supplementation on cachectic weight loss and muscle loss protection in a tumor-bearing cachectic mouse model, and the underlying molecular mechanism of body weight protection was further assessed. We observed decreased serum creatine levels in patients with cancer cachexia, and the creatine content in skeletal muscle was also significantly decreased in cachectic skeletal muscle in the C26 tumor-bearing mouse model. Creatine supplementation protected against cancer cachexia-associated body weight loss and muscle wasting and induced greater improvements in grip strength. Mechanistically, creatine treatment altered the dysfunction and morphological abnormalities of mitochondria, thus protecting against cachectic muscle wasting by inhibiting the abnormal overactivation of the ubiquitin proteasome system (UPS) and autophagic lysosomal system (ALS). In addition, electron microscopy revealed that creatine supplementation alleviated the observed increase in the percentage of damaged mitochondria in C26 mice, indicating that nutritional intervention with creatine supplementation effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cancer cachexia. These results uncover a previously uncharacterized role for creatine in cachectic muscle wasting by modulating cellular energy metabolism to reduce the level of muscle cell atrophy.
Collapse
Affiliation(s)
- Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xiaolu Jin
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Panpan Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Renwei Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China,*Correspondence: Quan Zhao, ; Jiabin Li, ; Hongwei Wang,
| | - Jiabin Li
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng, China,*Correspondence: Quan Zhao, ; Jiabin Li, ; Hongwei Wang,
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Medical School of Nanjing University, Nanjing, China,Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China,*Correspondence: Quan Zhao, ; Jiabin Li, ; Hongwei Wang,
| |
Collapse
|
32
|
Peker N, Sharma M, Kambadur R. Parkin deficiency exacerbates fasting-induced skeletal muscle wasting in mice. NPJ Parkinsons Dis 2022; 8:159. [DOI: 10.1038/s41531-022-00419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractParkinson’s Disease (PD) is a chronic and progressive neurodegenerative disease manifesting itself with tremors, muscle stiffness, bradykinesia, dementia, and depression. Mutations of mitochondrial E3 ligase, PARKIN, have been associated with juvenile PD. Previous studies have characterized muscle atrophy and motor deficits upon loss of functional Parkin in fly and rodent models. However, the mechanisms behind pathophysiology of Parkin deficient muscle remains to be elusive. Here, results suggested that knock down of Parkin significantly increases proteolytic activities in skeletal muscle cell line, the C2C12 myotubes. However, the atrogene levels increase moderately in Parkin deficient cell line. To further investigate the role of Parkin in skeletal muscle atrophy, Parkin knock out (KO) and wild type mice were subjected to 48 h starvation. After 48 h fasting, a greater reduction in skeletal muscle weights was observed in Parkin KO mice as compared to age matched wild type control, suggesting elevated proteolytic activity in the absence of Parkin. Subsequent microarray analyses revealed further enhanced expression of FOXO and ubiquitin pathway in fasted Parkin KO mice. Furthermore, a greater reduction in the expression of cytoskeleton genes was observed in Parkin KO mice following 48 h fasting. Collectively, these results suggest that Parkin deficiency exacerbates fasting-induced skeletal muscle wasting, through upregulating genes involved in catabolic activities in skeletal muscle.
Collapse
|
33
|
Volpe P, Bosutti A, Nori A, Filadi R, Gherardi G, Trautmann G, Furlan S, Massaria G, Sciancalepore M, Megighian A, Caccin P, Bernareggi A, Salanova M, Sacchetto R, Sandonà D, Pizzo P, Lorenzon P. Nerve-dependent distribution of subsynaptic type 1 inositol 1,4,5-trisphosphate receptor at the neuromuscular junction. J Gen Physiol 2022; 154:213498. [PMID: 36149386 PMCID: PMC9513380 DOI: 10.1085/jgp.202213128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are enriched at postsynaptic membrane compartments of the neuromuscular junction (NMJ), surrounding the subsynaptic nuclei and close to nicotinic acetylcholine receptors (nAChRs) of the motor endplate. At the endplate level, it has been proposed that nerve-dependent electrical activity might trigger IP3-associated, local Ca2+ signals not only involved in excitation-transcription (ET) coupling but also crucial to the development and stabilization of the NMJ itself. The present study was undertaken to examine whether denervation affects the subsynaptic IP3R distribution in skeletal muscles and which are the underlying mechanisms. Fluorescence microscopy, carried out on in vivo denervated muscles (following sciatectomy) and in vitro denervated skeletal muscle fibers from flexor digitorum brevis (FDB), indicates that denervation causes a reduction in the subsynaptic IP3R1-stained region, and such a decrease appears to be determined by the lack of muscle electrical activity, as judged by partial reversal upon field electrical stimulation of in vitro denervated skeletal muscle fibers.
Collapse
Affiliation(s)
- Pompeo Volpe
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- Correspondence to Pompeo Volpe:
| | | | - Alessandra Nori
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- National Research Council, Neuroscience Institute, Padova, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Gabor Trautmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
| | - Sandra Furlan
- National Research Council, Neuroscience Institute, Padova, Italy
| | | | | | - Aram Megighian
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Paola Caccin
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | | | - Michele Salanova
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Institute of Integrative Neuroanatomy, Berlin, Germany
- Neuromuscular Signaling, Center of Space Medicine Berlin, Berlin, Germany
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), University of Padova, Padova, Italy
- National Research Council, Neuroscience Institute, Padova, Italy
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
34
|
Kaiser MS, Milan G, Ham DJ, Lin S, Oliveri F, Chojnowska K, Tintignac LA, Mittal N, Zimmerli CE, Glass DJ, Zavolan M, Rüegg MA. Dual roles of mTORC1-dependent activation of the ubiquitin-proteasome system in muscle proteostasis. Commun Biol 2022; 5:1141. [PMID: 36302954 PMCID: PMC9613904 DOI: 10.1038/s42003-022-04097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Muscle size is controlled by the PI3K-PKB/Akt-mTORC1-FoxO pathway, which integrates signals from growth factors, energy and amino acids to activate protein synthesis and inhibit protein breakdown. While mTORC1 activity is necessary for PKB/Akt-induced muscle hypertrophy, its constant activation alone induces muscle atrophy. Here we show that this paradox is based on mTORC1 activity promoting protein breakdown through the ubiquitin-proteasome system (UPS) by simultaneously inducing ubiquitin E3 ligase expression via feedback inhibition of PKB/Akt and proteasome biogenesis via Nuclear Factor Erythroid 2-Like 1 (Nrf1). Muscle growth was restored by reactivation of PKB/Akt, but not by Nrf1 knockdown, implicating ubiquitination as the limiting step. However, both PKB/Akt activation and proteasome depletion by Nrf1 knockdown led to an immediate disruption of proteome integrity with rapid accumulation of damaged material. These data highlight the physiological importance of mTORC1-mediated PKB/Akt inhibition and point to juxtaposed roles of the UPS in atrophy and proteome integrity. Exploring the relationship between mTORC1 and the ubiquitin-proteasome system, light is shed on the paradox between mTORC1-mediated muscle hypertrophy induced by PKB/Akt and the muscle atrophy induced by mTORC1 alone.
Collapse
Affiliation(s)
- Marco S Kaiser
- Biozentrum, University of Basel, Basel, Switzerland.,BIOREBA AG, Christoph Merian-Ring 7, 4153, Reinach, Switzerland
| | - Giulia Milan
- Biozentrum, University of Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Kathrin Chojnowska
- Biozentrum, University of Basel, Basel, Switzerland.,AstraZeneca AG, Neuhofstrasse 34, 6340, Baar, Switzerland
| | - Lionel A Tintignac
- Biozentrum, University of Basel, Basel, Switzerland.,Neuromuscular Research Group, Departments of Neurology and Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | | | - Christian E Zimmerli
- Biozentrum, University of Basel, Basel, Switzerland.,Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.,Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | |
Collapse
|
35
|
Gao S, Zhang G, Zhang Z, Zhu JZ, Li L, Zhou Y, Rodney GG, Abo-Zahrah RS, Anderson L, Garcia JM, Kwon YT, Li YP. UBR2 targets myosin heavy chain IIb and IIx for degradation: Molecular mechanism essential for cancer-induced muscle wasting. Proc Natl Acad Sci U S A 2022; 119:e2200215119. [PMID: 36252004 PMCID: PMC9618047 DOI: 10.1073/pnas.2200215119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.
Collapse
Affiliation(s)
- Song Gao
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - James Z. Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Li Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - George G. Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Reem S. Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Lindsey Anderson
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA98018
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA98108
| | - Jose M. Garcia
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA98018
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA98108
| | - Yong Tae Kwon
- World Class University Program, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul 110-799, Korea
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
36
|
Protective effects of saffron extract and resistance training against atrophic markers: a study on rats with dexamethasone-induced muscle atrophy. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-01002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
37
|
Re Cecconi AD, Barone M, Gaspari S, Tortarolo M, Bendotti C, Porcu L, Terribile G, Piccirillo R. The p97-Nploc4 ATPase complex plays a role in muscle atrophy during cancer and amyotrophic lateral sclerosis. J Cachexia Sarcopenia Muscle 2022; 13:2225-2241. [PMID: 35611892 PMCID: PMC9397562 DOI: 10.1002/jcsm.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The p97 complex participates in the degradation of muscle proteins during atrophy upon fasting or denervation interacting with different protein adaptors. We investigated whether and how it might also be involved in muscle wasting in cancer, where loss of appetite occurs, or amyotrophic lateral sclerosis (ALS), where motoneuron death causes muscle denervation and fatal paralysis. METHODS As cancer cachexia models, we used mice bearing colon adenocarcinoma C26, human renal carcinoma RXF393, or Lewis lung carcinoma, with breast cancer 4T1-injected mice as controls. As ALS models, we employed 129/SvHsd mice carrying the mutation G93A in human SOD1. The expression of p97 and its adaptors was analysed in their muscles by quantitative real-time polymerase chain reaction (qPCR) and western blot. We electroporated plasmids into muscles or treated mice with disulfiram (DSF) to test the effects of inhibiting p97 and nuclear protein localization protein 4 (Nploc4), one of its adaptors, on atrophy. RESULTS The mRNA levels of p97 were induced by 1.5-fold to 2-fold in tibialis anterior (TA) of all the cachectic models but not in the non-cachectic 4T1 tumour-bearing mice (P ≤ 0.05). Similarly, p97 was high both in mRNA and protein in TA from 17-week-old SOD1G93A mice (P ≤ 0.01). Electroporation of a shRNA for murine p97 into mouse muscle reduced the fibre atrophy caused by C26 (P = 0.0003) or ALS (P ≤ 0.01). When we interrogated a microarray, we had previously generated for the expression of p97 adaptors, we found Derl1, Herpud1, Nploc4, Rnf31, and Hsp90ab1 induced in cachectic TA from C26-mice (Fold change > 1.2, adjusted P ≤ 0.05). By qPCR, we validated their inductions in TA of cachectic and ALS models and selected Nploc4 as the one also induced at the protein level by 1.5-fold (P ≤ 0.01). Electroporation of a CRISPR/Cas9 vector against Nploc4 into muscle reduced the fibre atrophy caused by C26 (P = 0.01) or ALS (P ≤ 0.0001). Because DSF uncouples p97 from Nploc4, we treated atrophying myotubes with DSF, and found accumulated mono and polyubiquitinated proteins and reduced degradation of long-lived proteins by 35% (P ≤ 0.0001), including actin (P ≤ 0.05). DSF halves Nploc4 in the soluble muscle fraction (P ≤ 0.001) and given to C26-bearing mice limited the body and muscle weight loss (P ≤ 0.05), with no effect on tumour growth. CONCLUSIONS Overall, cancer cachexia and ALS seem to display similar mechanisms of muscle wasting at least at the catabolic level. The p97-Nploc4 complex appears to have a crucial role in muscle atrophy during these disorders and disrupting this complex might serve as a novel drug strategy.
Collapse
Affiliation(s)
- Andrea David Re Cecconi
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Mara Barone
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Simona Gaspari
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Massimo Tortarolo
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Caterina Bendotti
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Luca Porcu
- Department of OncologyMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giulia Terribile
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Rosanna Piccirillo
- Department of NeurosciencesMario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
38
|
Morena da Silva F, Rosa-Caldwell ME, Schrems ER, Martinez L, Amos MG, Lim S, Cabrera AR, Brown JL, Washington TA, Greene NP. PGC-1α overexpression is not sufficient to mitigate cancer cachexia in either male or female mice. Appl Physiol Nutr Metab 2022; 47:933-948. [PMID: 35700525 DOI: 10.1139/apnm-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer-cachexia accounts for 20-40% of cancer-related deaths. Mitochondrial aberrations have been shown to precede muscle atrophy in different atrophy models, including cancer. Therefore, this study investigated potential protection from the cachectic phenotype through overexpression of PGC-1α. First, to establish potential of mitochondria-based approaches we showed that the mitochondrial antioxidant mitoTEMPO attenuates myotube atrophy induced by Lewis Lung Carcinoma (LLC) cell conditioned media. Next, cachexia was induced in muscle specific PGC-1α overexpressing (MCK-PCG1α) or wildtype (WT) littermate mice by LLC implantation. MCK-PCG1α did not protect LLC-induced muscle mass loss. In plantaris, Atrogin mRNA content was 6.2-fold and ~11-fold greater in WT-LLC vs. WT-PBS for males and females, respectively (p<0.05). MitoTimer red:green ratio for male PGC was ~65% higher than WT groups (p<0.05), with ~3-fold more red puncta in LLC than PBS (p<0.05). Red:green ratio was ~56% lower in females WT-LLC vs. PGC-LLC (p<0.05). In females, no change in red puncta was noted across conditions. Lc3 mRNA content was ~ 73% and 2-fold higher in male and female LLC mice respectively vs. PBS (p<0.05). While MitoTEMPO could mitigate cancer-induced atrophy in vitro, PGC1α overexpression was insufficient to protect muscle mass and mitochondrial health in vivo despite mitigation of cachexia-associated signaling pathways.
Collapse
Affiliation(s)
| | | | - Eleanor R Schrems
- University of Arkansas Fayetteville, 3341, Fayetteville, Arkansas, United States;
| | - Lauren Martinez
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Madeline G Amos
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Seongkyun Lim
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Ana Regina Cabrera
- University of Arkansas Fayetteville, 3341, HHPR, Fayetteville, Arkansas, United States;
| | - Jacob L Brown
- University of Arkansas Fayetteville, 3341, Health, Human Performance and Recreation, Fayetteville, Arkansas, United States;
| | - Tyrone A Washington
- University of Arkansas Fayetteville, 3341, Health, Human Performance, and Recreation, Fayetteville, Arkansas, United States;
| | - Nicholas P Greene
- University of Arkansas Fayetteville, 3341, Health, Human Performance and Recreation, Fayetteville, Arkansas, United States;
| |
Collapse
|
39
|
Li J, Chen R, Zheng Y, Yuan W, Yang T, Zhu X, Yan Y, Jin B, Xu W, Zhang Z, Li G, Gokulnath P, Lei Z, Xiao J. Engineered Circular RNA CircmiR‐29b Attenuates Muscle Atrophy by Sponging MiR‐29b. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jin Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Rui Chen
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Yongjun Zheng
- Division of Pain Management Huadong Hospital Affiliated to Fudan University Shanghai 200040 China
| | - Weilin Yuan
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Tingting Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Xiaolan Zhu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Yuwei Yan
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Bing Jin
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Wanru Xu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Zhongrong Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Zhiyong Lei
- Department of Cardiology Laboratory of Experimental Cardiology University Medical Center Utrecht 3508GA Utrecht The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) School of Medicine Shanghai University Nantong 226011 China
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences Shanghai Engineering Research Center of Organ Repair School of Life Science Shanghai University Shanghai 200444 China
| |
Collapse
|
40
|
Ebert SM, Rasmussen BB, Judge AR, Judge SM, Larsson L, Wek RC, Anthony TG, Marcotte GR, Miller MJ, Yorek MA, Vella A, Volpi E, Stern JI, Strub MD, Ryan Z, Talley JJ, Adams CM. Biology of Activating Transcription Factor 4 (ATF4) and Its Role in Skeletal Muscle Atrophy. J Nutr 2022; 152:926-938. [PMID: 34958390 PMCID: PMC8970988 DOI: 10.1093/jn/nxab440] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
Activating transcription factor 4 (ATF4) is a multifunctional transcription regulatory protein in the basic leucine zipper superfamily. ATF4 can be expressed in most if not all mammalian cell types, and it can participate in a variety of cellular responses to specific environmental stresses, intracellular derangements, or growth factors. Because ATF4 is involved in a wide range of biological processes, its roles in human health and disease are not yet fully understood. Much of our current knowledge about ATF4 comes from investigations in cultured cell models, where ATF4 was originally characterized and where further investigations continue to provide new insights. ATF4 is also an increasingly prominent topic of in vivo investigations in fully differentiated mammalian cell types, where our current understanding of ATF4 is less complete. Here, we review some important high-level concepts and questions concerning the basic biology of ATF4. We then discuss current knowledge and emerging questions about the in vivo role of ATF4 in one fully differentiated cell type, mammalian skeletal muscle fibers.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Emmyon, Inc., Rochester, MN, USA
| | - Blake B Rasmussen
- Emmyon, Inc., Rochester, MN, USA
- Department of Nutrition, Metabolism and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew R Judge
- Emmyon, Inc., Rochester, MN, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska, Stockholm, Sweden
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - George R Marcotte
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew J Miller
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Mark A Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, Iowa City VA Medical Center, Iowa City, IA, USA
| | - Adrian Vella
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Emmyon, Inc., Rochester, MN, USA
| | - Elena Volpi
- Department of Nutrition, Metabolism and Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer I Stern
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Matthew D Strub
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Zachary Ryan
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | | | - Christopher M Adams
- Department of Internal Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
- Emmyon, Inc., Rochester, MN, USA
- Department of Internal Medicine, Iowa City VA Medical Center, Iowa City, IA, USA
| |
Collapse
|
41
|
Bijeh N, Mohammadnia-Ahmadi M, Hooshamnd-Moghadam B, Eskandari M, Golestani F. Effects of Soy Milk in Conjunction With Resistance Training on Physical Performance and Skeletal Muscle Regulatory Markers in Older Men. Biol Res Nurs 2022; 24:294-307. [PMID: 35332795 DOI: 10.1177/10998004211073123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose: We aimed to determine the effects of 12 weeks of soy milk consumption combined with resistance training (RT) on body composition, physical performance, and skeletal muscle regulatory markers in older men. Methods: In this randomized clinical trial study, 60 healthy elderly men (age = 65.63 ± 3.16 years) were randomly assigned to four groups: resistance training (RT; n = 15), soy milk consumption (SMC; n = 15), resistance training + soy milk (RSM; n = 15), and control (CON; n = 15) groups. The study was double-blind for the soy milk/placebo. Participants in RT and RSM groups performed resistance training (3 times/week) for 12 weeks. Participants in the SMC and RSM groups consumed 240 mL of soy milk daily. Body composition [body mass (BM), body fat percent (BFP), waist-hip ratio (WHR), and fat mass (FM)], physical performance [upper body strength (UBS), lower body strength (LBS), VO2max, upper anaerobic power, lower anaerobic power, and handgrip strength], and serum markers [follistatin, myostatin, myostatin-follistatin ratio (MFR), and growth and differentiation factor 11 (GDF11)] were evaluated before and after interventions. Results: All 3 interventions significantly (p < 0.05) increased serum follistatin concentrations (RT = 1.7%, SMC = 2.9%, RSM = 7.8%) and decreased serum myostatin (RT = -1.3% SMC = -5.4%, RSM = -0.5%) and GDF11 concentrations (RT = -1.4%, SMC = -1.4%, RSM = -9.0%), and MFR (RT = -2.6%, SMC = -3.2%, RSM = -12%). In addition, we observed significant reduction in all 3 intervention groups in BFP (RT = -3.6%, SMC = -1.4%, RSM = -6.0%), WHR (RT = -2.2%, SMC = -2.1%, RSM = -4.3%), and FM (RT = -9.6%, SMC = -3.8%, RSM = -11.0%). Moreover, results found significant increase only in RT and RSM groups for muscle mass (RT = 3.8% and RSM = 11.8%), UBS (RT = 10.9% and RSM = 21.8%), LBS (RT = 4.3% and RSM = 7.8%), upper anaerobic power (RT = 7.8% and RSM = 10.3%), and lower anaerobic power (RT = 4.6% and RSM = 8.9%). Handgrip strength were significantly increased in all 3 intervention groups (RT = 7.0%, SMC = 6.9%, RSM = 43.0%). VO2max significantly increased only in RSM (1.7%) after 12 weeks of intervention. Additionally, significant differences were observed between the changes for all variables in the RSM group compared to RT, SMC, and CON groups (p < 0.05). Conclusions: There were synergistic effects of soy milk and RT for skeletal muscle regulatory markers, body composition, and physical performance. Results of the present study support the importance of soy milk in conjunction with RT for older men.
Collapse
Affiliation(s)
- Nahid Bijeh
- Department of Exercise Physiology, 48440Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | - Mozhgan Eskandari
- Department of Exercise Physiology, 48528University of Birjand, Birjand, Iran
| | - Fateme Golestani
- Department of Exercise Physiology, 48528University of Birjand, Birjand, Iran
| |
Collapse
|
42
|
Chang YB, Ahn Y, Suh HJ, Jo K. Yeast hydrolysate ameliorates dexamethasone-induced muscle atrophy by suppressing MuRF-1 expression in C2C12 cells and C57BL/6 mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Oyabu M, Takigawa K, Mizutani S, Hatazawa Y, Fujita M, Ohira Y, Sugimoto T, Suzuki O, Tsuchiya K, Suganami T, Ogawa Y, Ishihara K, Miura S, Kamei Y. FOXO1 cooperates with C/EBPδ and ATF4 to regulate skeletal muscle atrophy transcriptional program during fasting. FASEB J 2022; 36:e22152. [DOI: 10.1096/fj.202101385rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Mamoru Oyabu
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Kaho Takigawa
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Sako Mizutani
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Yukino Hatazawa
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Mariko Fujita
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Yuto Ohira
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Takumi Sugimoto
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| | - Osamu Suzuki
- Laboratory of Animal Models for Human Diseases National Institutes of Biomedical Innovation, Health and Nutrition Osaka Japan
| | - Kyoichiro Tsuchiya
- Third Department of Internal Medicine Interdisciplinary Graduate School of Medicine and Engineering University of Yamanashi Yamanashi Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Kengo Ishihara
- Department of Food Science and Human Nutrition Faculty of Agriculture Ryukoku University Shiga Japan
| | - Shinji Miura
- Graduate School of Nutritional and Environmental Sciences University of Shizuoka Shizuoka Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan
| |
Collapse
|
44
|
Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 2021; 23:ijms23010468. [PMID: 35008893 PMCID: PMC8745071 DOI: 10.3390/ijms23010468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is capable of changing its structural parameters, metabolic rate and functional characteristics within a wide range when adapting to various loading regimens and states of the organism. Prolonged muscle inactivation leads to serious negative consequences that affect the quality of life and work capacity of people. This review examines various conditions that lead to decreased levels of muscle loading and activity and describes the key molecular mechanisms of muscle responses to these conditions. It also details the theoretical foundations of various methods preventing adverse muscle changes caused by decreased motor activity and describes these methods. A number of recent studies presented in this review make it possible to determine the molecular basis of the countermeasure methods used in rehabilitation and space medicine for many years, as well as to identify promising new approaches to rehabilitation and to form a holistic understanding of the mechanisms of gravity force control over the muscular system.
Collapse
|
45
|
Brocca L, Rossi M, Canepari M, Bottinelli R, Pellegrino MA. Exercise Preconditioning Blunts Early Atrogenes Expression and Atrophy in Gastrocnemius Muscle of Hindlimb Unloaded Mice. Int J Mol Sci 2021; 23:ijms23010148. [PMID: 35008572 PMCID: PMC8745338 DOI: 10.3390/ijms23010148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
A large set of FoxOs-dependent genes play a primary role in controlling muscle mass during hindlimb unloading. Mitochondrial dysfunction can modulate such a process. We hypothesized that endurance exercise before disuse can protect against disuse-induced muscle atrophy by enhancing peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) expression and preventing mitochondrial dysfunction and energy-sensing AMP-activated protein kinase (AMPK) activation. We studied cross sectional area (CSA) of muscle fibers of gastrocnemius muscle by histochemistry following 1, 3, 7, and 14 days of hindlimb unloading (HU). We used Western blotting and qRT-PCR to study mitochondrial dynamics and FoxOs-dependent atrogenes’ expression at 1 and 3 days after HU. Preconditioned animals were submitted to moderate treadmill exercise for 7 days before disuse. Exercise preconditioning protected the gastrocnemius from disuse atrophy until 7 days of HU. It blunted alterations in mitochondrial dynamics up to 3 days after HU and the expression of most atrogenes at 1 day after disuse. In preconditioned mice, the activation of atrogenes resumed 3 days after HU when mitochondrial dynamics, assessed by profusion and pro-fission markers (mitofusin 1, MFN1, mitofusin 2, MFN2, optic atrophy 1, OPA1, dynamin related protein 1, DRP1 and fission 1, FIS1), PGC1α levels, and AMPK activation were at a basal level. Therefore, the normalization of mitochondrial dynamics and function was not sufficient to prevent atrogenes activation just a few days after HU. The time course of sirtuin 1 (SIRT1) expression and content paralleled the time course of atrogenes’ expression. In conclusion, seven days of endurance exercise counteracted alterations of mitochondrial dynamics and the activation of atrogenes early into disuse. Despite the normalization of mitochondrial dynamics, the effect on atrogenes’ suppression died away within 3 days of HU. Interestingly, muscle protection lasted until 7 days of HU. A longer or more intense exercise preconditioning may prolong atrogenes suppression and muscle protection.
Collapse
Affiliation(s)
- Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (L.B.); (M.R.); (M.C.); (R.B.)
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (L.B.); (M.R.); (M.C.); (R.B.)
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (L.B.); (M.R.); (M.C.); (R.B.)
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (L.B.); (M.R.); (M.C.); (R.B.)
- ICS-Maugeri (IRCCS), Scientific Institute of Pavia, 27100 Pavia, Italy
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (L.B.); (M.R.); (M.C.); (R.B.)
- Interdipartimental Centre of Biology and Sport Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987-935
| |
Collapse
|
46
|
Albadrani H, Ammar T, Bader M, Renaud JM. Angiotensin 1-7 prevents the excessive force loss resulting from 14- and 28-day denervation in mouse EDL and soleus muscle. J Gen Physiol 2021; 153:212748. [PMID: 34739541 PMCID: PMC8576869 DOI: 10.1085/jgp.201912556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Denervation leads to muscle atrophy, which is described as muscle mass and force loss, the latter exceeding expectation from mass loss. The objective of this study was to determine the efficiency of angiotensin (Ang) 1–7 at reducing muscle atrophy in mouse extensor digitorum longus (EDL) and soleus following 14- and 28-d denervation periods. Some denervated mice were treated with Ang 1–7 or diminazene aceturate (DIZE), an ACE2 activator, to increase Ang 1–7 levels. Ang 1–7/DIZE treatment had little effect on muscle mass loss and fiber cross-sectional area reduction. Ang 1–7 and DIZE fully prevented the loss of tetanic force normalized to cross-sectional area and accentuated the increase in twitch force in denervated muscle. However, they did not prevent the shift of the force–frequency relationship toward lower stimulation frequencies. The Ang 1–7/DIZE effects on twitch and tetanic force were completely blocked by A779, a MasR antagonist, and were not observed in MasR−/− muscles. Ang 1–7 reduced the extent of membrane depolarization, fully prevented the loss of membrane excitability, and maintained the action potential overshoot in denervated muscles. Ang 1–7 had no effect on the changes in α-actin, myosin, or MuRF-1, atrogin-1 protein content or the content of total or phosphorylated Akt, S6, and 4EPB. This is the first study that provides evidence that Ang 1–7 maintains normal muscle function in terms of maximum force and membrane excitability during 14- and 28-d periods after denervation.
Collapse
Affiliation(s)
- Hind Albadrani
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Majmaah University, Department of Medical Laboratory Sciences, Al Majma'ah, Saudi Arabia
| | - T Ammar
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.,University of Lübeck, Institute for Biology, Lübeck, Germany.,Charité University Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Jean-Marc Renaud
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Rosa-Caldwell ME, Lim S, Haynie WS, Brown JL, Lee DE, Dunlap KR, Jansen LT, Washington TA, Wiggs MP, Greene NP. Mitochondrial aberrations during the progression of disuse atrophy differentially affect male and female mice. J Cachexia Sarcopenia Muscle 2021; 12:2056-2068. [PMID: 34585846 PMCID: PMC8718086 DOI: 10.1002/jcsm.12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Disuse decreases muscle size and is predictive of mortality across multiple pathologies. Detriments to mitochondrial function are hypothesized to underlie disuse-induced muscle atrophy. Little data exist on early mechanisms contributing to onset of these pathologies, nor is it known how they differ between sexes. The purpose of this study was to examine differential and conserved responses to mitochondrial quality control in male and female mice during the development and progression of disuse-induced atrophy. METHODS One hundred C57BL/6J mice (50 male and 50 female) were hindlimb unloaded to induce disuse atrophy for 0 (con), 24, 48, 72, or 168 h. At designated time-points, extensor digitorum longus, gastrocnemius, and soleus muscles were collected for analysis of mitochondrial quality control markers. RESULTS One hundred sixty-eight hours of disuse resulted in ~25% lower oxidative muscle fibre CSA in both male (P = 0.003) and female (P = 0.02) mice without any differences due to disuse in glycolytic fibres. In male mice, 48 h of unloading was sufficient to result in ~67% greater mitochondrial oxidative stress as assessed by the reporter gene pMitoTimer compared with 0 h (P = 0.002), this mitochondrial stress preceded detectable muscle loss. However in female mice, mitochondrial oxidative stress did not occur until 168 h of disuse (~40% greater mitochondrial oxidative stress in 168 h compared with 0 h of disuse, P < 0.0001). Blunted oxidative stress in female mice appeared to coincide with greater inductions of autophagy and mitophagy in female mice (~3-fold greater BNIP3 and ~6-fold greater LC3II/I ratio P < 0.0001 and P = 0.038 respectively). Male mice overall had greater reactive oxygen species (ROS) production compared with female mice. Female mice had a greater induction of ROS within 24 h of disuse (~4-fold greater compared with 0 h, P < 0.0001); whereas male mice did not have greater ROS production until 168 h of disuse (~2-fold greater, P < 0.0001). Although all muscle types exhibited some alterations to mitochondrial quality control, such as increased markers of mitophagy and fission, the soleus muscle in both male and female mice exhibited consistent alterations to various markers of mitochondrial quality. Markers of mitochondrial translation were approximately 30-50% lower within 24 h of unloading in both male and female soleus muscle (P value ranges: <0.0001-0.03). CONCLUSIONS Disuse negatively affects mitochondria differentially between sexes during development of muscle wasting. Acutely, female mice may forgo muscle mass to maintain mitochondrial quality compared with male mice. These differences may contribute to divergent clinical manifestations of atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jacob L Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
48
|
Kobak KA, Lawrence MM, Pharaoh G, Borowik AK, Peelor FF, Shipman PD, Griffin TM, Van Remmen H, Miller BF. Determining the contributions of protein synthesis and breakdown to muscle atrophy requires non-steady-state equations. J Cachexia Sarcopenia Muscle 2021; 12:1764-1775. [PMID: 34418329 PMCID: PMC8718081 DOI: 10.1002/jcsm.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 07/10/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Ageing and cachexia cause a loss of muscle mass over time, indicating that protein breakdown exceeds protein synthesis. Deuterium oxide (D2 O) is used for studies of protein turnover because of the advantages of long-term labelling, but these methods introduce considerations that have been largely overlooked when studying conditions of protein gain or loss. The purpose of this study was to demonstrate the importance of accounting for a change in protein mass, a non-steady state, during D2 O labelling studies while also exploring the contribution of protein synthesis and breakdown to denervation-induced muscle atrophy. METHODS Adult (6 months) male C57BL/6 mice (n = 14) were labelled with D2 O for a total of 7 days following unilateral sciatic nerve transection to induce denervation of hindlimb muscles. The contralateral sham limb and nonsurgical mice (n = 5) were used as two different controls to account for potential crossover effects of denervation. We calculated gastrocnemius myofibrillar and collagen protein synthesis and breakdown assuming steady-state or using non-steady-state modelling. We measured RNA synthesis rates to further understand ribosomal turnover during atrophy. RESULTS Gastrocnemius mass was less in denervated muscle (137 ± 9 mg) compared with sham (174 ± 15 mg; P < 0.0001) or nonsurgical control (162 ± 5 mg; P < 0.0001). With steady-state calculations, fractional synthesis and breakdown rates (FSR and FBR) were lower in the denervated muscle (1.49 ± 0.06%/day) compared with sham (1.81 ± 0.09%/day; P < 0.0001) or nonsurgical control (2.27 ± 0.04%/day; P < 0.0001). When adjusting for change in protein mass, FSR was 4.21 ± 0.19%/day in denervated limb, whereas FBR was 4.09 ± 0.22%/day. When considering change in protein mass (ksyn ), myofibrillar synthesis was lower in denervated limb (2.44 ± 0.14 mg/day) compared with sham (3.43 ± 0.22 mg/day; P < 0.0001) and non-surgical control (3.74 ± 0.12 mg/day; P < 0.0001), whereas rate of protein breakdown (kdeg, 1/t) was greater in denervated limb (0.050 ± 0.003) compared with sham (0.019 ± 0.001; P < 0.0001) and nonsurgical control (0.023 ± 0.000; P < 0.0001). Muscle collagen breakdown was completely inhibited during denervation. There was a strong correlation (r = 0.83, P < 0.001) between RNA and myofibrillar protein synthesis in sham but not denervated muscle. CONCLUSIONS We show conflicting results between steady- and non-steady-state calculations on myofibrillar protein synthesis and breakdown during periods of muscle loss. We also found that collagen accumulation was largely from a decrease in collagen breakdown. Comparison between sham and non-surgical control demonstrated a crossover effect of denervation on myofibrillar protein synthesis and ribosomal biogenesis, which impacts study design for unilateral atrophy studies. These considerations are important because not accounting for them can mislead therapeutic attempts to maintain muscle mass.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Laboratory for Applied Research on Cardiovascular System, Department of Heart DiseasesWroclaw Medical UniversityWroclawPoland
| | - Marcus M. Lawrence
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedar CityUTUSA
| | - Gavin Pharaoh
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Frederick F. Peelor
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | | | - Timothy M. Griffin
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma City VA Medical CenterOklahoma CityOKUSA
| | - Holly Van Remmen
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma City VA Medical CenterOklahoma CityOKUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| |
Collapse
|
49
|
Bigford GE, Donovan A, Webster MT, Dietrich WD, Nash MS. Selective Myostatin Inhibition Spares Sublesional Muscle Mass and Myopenia-Related Dysfunction after Severe Spinal Cord Contusion in Mice. J Neurotrauma 2021; 38:3440-3455. [PMID: 34714134 DOI: 10.1089/neu.2021.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinically relevant myopenia accompanies spinal cord injury (SCI), and compromises function, metabolism, body composition, and health. Myostatin, a transforming growth factor (TGF)β family member, is a key negative regulator of skeletal muscle mass. We investigated inhibition of myostatin signaling using systemic delivery of a highly selective monoclonal antibody - muSRK-015P (40 mg/kg) - that blocks release of active growth factor from the latent form of myostatin. Adult female mice (C57BL/6) were subjected to a severe SCI (65 kdyn) at T9 and were then immediately and 1 week later administered test articles: muSRK-015P (40 mg/kg) or control (vehicle or IgG). A sham control group (laminectomy only) was included. At euthanasia, (2 weeks post-SCI) muSRK-015P preserved whole body lean mass and sublesional gastrocnemius and soleus mass. muSRK-015P-treated mice with SCI also had significantly attenuated myofiber atrophy, lipid infiltration, and loss of slow-oxidative phenotype in soleus muscle. These outcomes were accompanied by significantly improved sublesional motor function and muscle force production at 1 and 2 weeks post-SCI. At 2 weeks post-SCI, lean mass was significantly decreased in SCI-IgG mice, but was not different in SCI-muSRK-015P mice than in sham controls. Total energy expenditure (kCal/day) at 2 weeks post-SCI was lower in SCI-immunoglobulin (Ig)G mice, but not different in SCI-muSRK-015P mice than in sham controls. We conclude that in a randomized, blinded, and controlled study in mice, myostatin inhibition using muSRK-015P had broad effects on physical, metabolic, and functional outcomes when compared with IgG control treated SCI animals. These findings may identify a useful, targeted therapeutic strategy for treating post-SCI myopenia and related sequelae in humans.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - W Dalton Dietrich
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mark S Nash
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physical Therapy, University of Miami, Miami, Florida, USA
| |
Collapse
|
50
|
Hunt LC, Graca FA, Pagala V, Wang YD, Li Y, Yuan ZF, Fan Y, Labelle M, Peng J, Demontis F. Integrated genomic and proteomic analyses identify stimulus-dependent molecular changes associated with distinct modes of skeletal muscle atrophy. Cell Rep 2021; 37:109971. [PMID: 34758314 PMCID: PMC8852763 DOI: 10.1016/j.celrep.2021.109971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as “atroproteins”) such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms. Skeletal muscle wasting is caused by many catabolic stimuli, which were thought to act via shared mechanisms. Hunt et al. now show that distinct catabolic stimuli induce muscle wasting via largely different molecular changes. The authors identify atrophy-associated proteins (“atroproteins”) that may represent diagnostic biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Vishwajeeth Pagala
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Structural Biology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|