1
|
Bisi N, Pinzi L, Rastelli G, Tonali N. Early Diagnosis of Neurodegenerative Diseases: What Has Been Undertaken to Promote the Transition from PET to Fluorescence Tracers. Molecules 2024; 29:722. [PMID: 38338465 PMCID: PMC10856728 DOI: 10.3390/molecules29030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble β-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble β-sheet-rich amyloid deposits (amyloid β1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Collapse
Affiliation(s)
- Nicolò Bisi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Nicolò Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| |
Collapse
|
2
|
Cario A, Wickramasinghe SP, Rhoades E, Berger CL. The N-terminal disease-associated R5L Tau mutation increases microtubule shrinkage rate due to disruption of microtubule-bound Tau patches. J Biol Chem 2022; 298:102526. [PMID: 36162501 PMCID: PMC9589210 DOI: 10.1016/j.jbc.2022.102526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Regulation of the neuronal microtubule cytoskeleton is achieved through the coordination of microtubule-associated proteins (MAPs). MAP-Tau, the most abundant MAP in the axon, functions to modulate motor motility, participate in signaling cascades, as well as directly mediate microtubule dynamics. Tau misregulation is associated with a class of neurodegenerative diseases, known as tauopathies, including progressive supranuclear palsy, Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau are found in the C-terminal microtubule-binding domain. These mutations decrease microtubule-binding affinity and are proposed to reduce microtubule stability, leading to disease. N-terminal disease-associated mutations also exist, but the mechanistic details of their downstream effects are not as clear. Here, we investigate the effect of the progressive supranuclear palsy–associated N-terminal R5L mutation on Tau-mediated microtubule dynamics using an in vitro reconstituted system. We show that the R5L mutation does not alter Tau interactions with tubulin by fluorescence correlation spectroscopy. Using total internal reflection fluorescence microscopy, we determined that the R5L mutation has no effect on microtubule growth rate, catastrophe frequency, or rescue frequency. Rather, the R5L mutation increases microtubule shrinkage rate. We determine this is due to disruption of Tau patches, larger order Tau complexes known to form on the GDP-microtubule lattice. Altogether, these results provide insight into the role of Tau patches in mediating microtubule dynamics and suggesting a novel mechanism by which mutations in the N-terminal projection domain reduce microtubule stability.
Collapse
Affiliation(s)
- Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Sanjula P Wickramasinghe
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth Rhoades
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
3
|
The pathogenic R5L mutation disrupts formation of Tau complexes on the microtubule by altering local N-terminal structure. Proc Natl Acad Sci U S A 2022; 119:2114215119. [PMID: 35135879 PMCID: PMC8851524 DOI: 10.1073/pnas.2114215119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein (MAP) Tau is an intrinsically disordered protein (IDP) primarily expressed in axons, where it functions to regulate microtubule dynamics, modulate motor protein motility, and participate in signaling cascades. Tau misregulation and point mutations are linked to neurodegenerative diseases, including progressive supranuclear palsy (PSP), Pick's disease, and Alzheimer's disease. Many disease-associated mutations in Tau occur in the C-terminal microtubule-binding domain of the protein. Effects of C-terminal mutations in Tau have led to the widely accepted disease-state theory that missense mutations in Tau reduce microtubule-binding affinity or increase Tau propensity to aggregate. Here, we investigate the effect of an N-terminal arginine to leucine mutation at position 5 in Tau (R5L), associated with PSP, on Tau-microtubule interactions using an in vitro reconstituted system. Contrary to the canonical disease-state theory, we determine that the R5L mutation does not reduce Tau affinity for the microtubule using total internal reflection fluorescence microscopy. Rather, the R5L mutation decreases the ability of Tau to form larger-order complexes, or Tau patches, at high concentrations of Tau. Using NMR, we show that the R5L mutation results in a local structural change that reduces interactions of the projection domain in the presence of microtubules. Altogether, these results challenge both the current paradigm of how mutations in Tau lead to disease and the role of the projection domain in modulating Tau behavior on the microtubule surface.
Collapse
|
4
|
Xiao S, Wu Q, Yao X, Zhang J, Zhong W, Zhao J, Liu Q, Zhang M. Inhibitory Effects of Isobavachalcone on Tau Protein Aggregation, Tau Phosphorylation, and Oligomeric Tau-Induced Apoptosis. ACS Chem Neurosci 2021; 12:123-132. [PMID: 33320518 DOI: 10.1021/acschemneuro.0c00617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases without any effective medicine treatments. The neurofibrillary tangles containing hyperphosphorylated tau protein are one important pathological characteristic. Thus, one practicable strategy for AD drug design is to discover compounds that could inhibit tau protein aggregation and/or phosphorylation. In this study, isobavachalcone, a natural plant-derived compound, has been shown to inhibit tau protein aggregation and disaggregate tau fibrils in vitro by directly interacting with tau protein at amino acids I278, V309, etc. It is able to reduce tau phosphorylation at four disease-related sites in vivo by regulating the critical kinase and protein phosphatase, GSK3β and PP2A. The compound also exhibits protection against tau oligomers-induced apoptosis through the mitochondria and ER mediated apoptotic pathways. In summary, isobavachalcone is a promising candidate for further evaluation as a potential preventive and therapeutic medicine for AD.
Collapse
Affiliation(s)
- Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Qiuping Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuanbao Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiahao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Weicong Zhong
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mohan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
5
|
Truong DJJ, Phlairaharn T, Eßwein B, Gruber C, Tümen D, Baligács E, Armbrust N, Vaccaro FL, Lederer EM, Beck EM, Geilenkeuser J, Göppert S, Krumwiede L, Grätz C, Raffl G, Schwarz D, Zirngibl M, Živanić M, Beyer M, Körner JD, Santl T, Evsyukov V, Strauß T, Schwarz SC, Höglinger GU, Heutink P, Doll S, Conrad M, Giesert F, Wurst W, Westmeyer GG. Non-invasive and high-throughput interrogation of exon-specific isoform expression. Nat Cell Biol 2021; 23:652-663. [PMID: 34083785 PMCID: PMC8189919 DOI: 10.1038/s41556-021-00678-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.
Collapse
Affiliation(s)
- Dong-Jiunn Jeffery Truong
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Teeradon Phlairaharn
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Bianca Eßwein
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Christoph Gruber
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Deniz Tümen
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.411941.80000 0000 9194 7179Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Enikő Baligács
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas Armbrust
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Francesco Leandro Vaccaro
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Maria Lederer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Magdalena Beck
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julian Geilenkeuser
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Göppert
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Krumwiede
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Grätz
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerald Raffl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominic Schwarz
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Zirngibl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Milica Živanić
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Beyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Johann Dietmar Körner
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Santl
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Valentin Evsyukov
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tabea Strauß
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany
| | - Sigrid C. Schwarz
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany
| | - Günter U. Höglinger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966Department of Neurology, Technical University Munich, Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Peter Heutink
- grid.10392.390000 0001 2190 1447Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sebastian Doll
- grid.4567.00000 0004 0483 2525Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Marcus Conrad
- grid.4567.00000 0004 0483 2525Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.78028.350000 0000 9559 0613Laboratory of Experimental Oncology, National Research Medical University, Moscow, Russia
| | - Florian Giesert
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Wolfgang Wurst
- grid.4567.00000 0004 0483 2525Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.6936.a0000000123222966TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gil Gregor Westmeyer
- grid.4567.00000 0004 0483 2525Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany ,grid.6936.a0000000123222966Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
6
|
Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2020; 109:103553. [PMID: 32956830 DOI: 10.1016/j.mcn.2020.103553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) describes a group of clinically heterogeneous conditions that frequently affect people under the age of 65 (Le Ber et al., 2013). There are multiple genetic causes of FTD, including coding or splice-site mutations in MAPT, GRN mutations that lead to haploinsufficiency of progranulin protein, and a hexanucleotide GGGGCC repeat expansion in C9ORF72. Pathologically, FTD is characterised by abnormal protein accumulations in neurons and glia. These aggregates can be composed of the microtubule-associated protein tau (observed in FTD with MAPT mutations), the DNA/RNA-binding protein TDP-43 (seen in FTD with mutations in GRN or C9ORF72 repeat expansions) or dipeptide proteins generated by repeat associated non-ATG translation of the C9ORF72 repeat expansion. There are currently no disease-modifying therapies for FTD and the availability of in vitro models that recapitulate pathologies in a disease-relevant cell type would accelerate the development of novel therapeutics. It is now possible to generate patient-specific stem cells through the reprogramming of somatic cells from a patient with a genotype/phenotype of interest into induced pluripotent stem cells (iPSCs). iPSCs can subsequently be differentiated into a plethora of cell types including neurons, astrocytes and microglia. Using this approach has allowed researchers to generate in vitro models of genetic FTD in human cell types that are largely inaccessible during life. In this review we explore the recent progress in the use of iPSCs to model FTD, and consider the merits, limitations and future prospects of this approach.
Collapse
|
7
|
Ectopic Expression Induces Abnormal Somatodendritic Distribution of Tau in the Mouse Brain. J Neurosci 2019; 39:6781-6797. [PMID: 31235644 DOI: 10.1523/jneurosci.2845-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tau is a microtubule (MT)-associated protein that is localized to the axon. In Alzheimer's disease, the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. To investigate how this mislocalization occurs, we recently developed immunohistochemical tools that can separately detect endogenous mouse and exogenous human tau with high sensitivity, which allows us to visualize not only the pathological but also the pre-aggregated tau in mouse brain tissues of both sexes. Using these antibodies, we found that in tau-transgenic mouse brains, exogenous human tau was abundant in dendrites and somata even in the presymptomatic period, whereas the axonal localization of endogenous mouse tau was unaffected. In stark contrast, exogenous tau was properly localized to the axon in human tau knock-in mice. We tracked this difference to the temporal expression patterns of tau. Endogenous mouse tau and exogenous human tau in human tau knock-in mice exhibited high expression levels during the neonatal period and strong suppression into the adulthood. However, human tau in transgenic mice was expressed continuously and at high levels in adult animals. These results indicated the uncontrolled expression of exogenous tau beyond the developmental period as a cause of mislocalization in the transgenic mice. Superresolution microscopic and biochemical analyses also indicated that the interaction between MTs and exogenous tau was impaired only in the tau-transgenic mice, but not in knock-in mice. Thus, the ectopic expression of tau may be critical for its somatodendritic mislocalization, a key step of the tauopathy.SIGNIFICANCE STATEMENT Somatodendritic localization of tau may be an early step leading to the neuronal degeneration in tauopathies. However, the mechanisms of the normal axonal distribution of tau and the mislocalization of pathological tau remain obscure. Our immunohistochemical and biochemical analyses demonstrated that the endogenous mouse tau is transiently expressed in neonatal brains, that exogenous human tau expressed corresponding to such tau expression profile can distribute into the axon, and that the constitutive expression of tau into adulthood (e.g., human tau in transgenic mice) results in abnormal somatodendritic localization. Thus, the expression profile of tau is tightly associated with the localization of tau, and the ectopic expression of tau in matured neurons may be involved in the pathogenesis of tauopathy.
Collapse
|
8
|
Kubo A, Misonou H, Matsuyama M, Nomori A, Wada-Kakuda S, Takashima A, Kawata M, Murayama S, Ihara Y, Miyasaka T. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol 2018; 527:985-998. [PMID: 30408165 PMCID: PMC6587864 DOI: 10.1002/cne.24577] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023]
Abstract
Tau is a microtubule‐associated protein (MAP) that is localized to the axon. In Alzheimer's disease (AD), the distribution of tau undergoes a remarkable alteration, leading to the formation of tau inclusions in the somatodendritic compartment. While the abnormal aggregated tau has been extensively studied in human patient tissues and animal models of AD, how normal tau localizes to the axon, which would be the foundation to understand how the mis‐localization occurs, has not been well studied due to the poor detectability of normal unaggregated tau in vivo. Therefore, we developed immunohistochemical techniques that can detect normal mouse and human tau in brain tissues with high sensitivity. Using these techniques, we demonstrate the global distribution of tau in the mouse brain and confirmed that normal tau is exclusively localized to the axonal compartment in vivo. Interestingly, tau antibodies strongly labeled nonmyelinated axons such as hippocampal mossy fibers, while white matters generally exhibited low levels of immunoreactivity. Furthermore, mouse tau is highly expressed not only in neurons but also in oligodendrocytes. With super resolution imaging using the stimulated‐depletion microscopy, axonal tau appeared punctate rather than fibrous, indicating that tau decorates microtubules sparsely. Co‐labeling with presynaptic and postsynaptic markers revealed that normal tau is not localized to synapses but sparsely distributes in the axon. Taken together, this study reports novel antibodies to investigate the localization and mis‐localization of tau in vivo and novel findings of normal tau localization in the mouse brain.
Collapse
Affiliation(s)
- Atsuko Kubo
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Hiroaki Misonou
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Akane Nomori
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Satoko Wada-Kakuda
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
| | - Mitsuhiro Kawata
- Department of Physical Therapy, School of Health Sciences, Bukkyo University, Nakagyo-ku, Kyoto, 604-8418, Japan
| | - Shigeo Murayama
- Neuropathology, The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan.,Laboratory of Cognition and Aging, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan.,Center for Research in Neurodegenerative Diseases, Doshisha University, Kyoto, Japan
| |
Collapse
|
9
|
Balaji V, Kaniyappan S, Mandelkow E, Wang Y, Mandelkow EM. Pathological missorting of endogenous MAPT/Tau in neurons caused by failure of protein degradation systems. Autophagy 2018; 14:2139-2154. [PMID: 30145931 DOI: 10.1080/15548627.2018.1509607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Missorting of MAPT/Tau represents one of the early signs of neurodegeneration in Alzheimer disease. The triggers for this are still a matter of debate. Here we investigated the sorting mechanisms of endogenous MAPT in mature primary neurons using microfluidic chambers (MFCs) where cell compartments can be observed separately. Blocking protein degradation pathways with proteasomal or autophagy inhibitors dramatically increased the missorting of MAPT in dendrites on the neuritic side, suggesting that degradation of MAPT in dendrites is a major determinant for the physiological axonal distribution of MAPT. Such missorted dendritic MAPT differed in its phosphorylation pattern from axonal MAPT. By contrast, enhancing autophagy or proteasomal pathways strongly reduced MAPT missorting, thereby confirming the role of protein degradation pathways in the polar distribution of MAPT. Dendritic missorting of MAPT by blocking protein degradation resulted in the loss of spines but not in overall cell toxicity. Inhibition of local protein synthesis in dendrites eliminated the missorting of MAPT, indicating that the accumulation of dendritic MAPT is locally generated. In support of this, a substantial fraction of Mapt/Tau mRNA was detected in dendrites. Taken together, our results indicate that the autophagy and proteasomal pathways play important roles in fine-tuning dendritic MAPT levels and thereby prevent synaptic toxicity caused by MAPT accumulation. Abbreviations Ani: anisomycin; Baf: bafilomycin A1; BSA: bovine serum albumin; cAMP: cyclic adenosine monophosphate; CHX: cycloheximide; DMSO: dimethyl sulfoxide; DIV: days in vitro; Epo: epoxomicin; E18: embryonic day 18; FISH: fluorescence in situ hybridization; IgG: immunoglobulin; kDa: kilodalton; Lac: lactacystin; LDH: lactate dehydrogenase; MFC: microfluidic chambers; MAPs: microtubule-associated proteins; MAPT/Tau: microtubule-associated protein tau; PVDF: polyvinylidene difluoride; PBS: phosphate-buffered saline; PRKA: protein kinase AMP-activated; RD150: round device 150; RT: room temperature; SDS: sodium dodecyl sulfate; SEM: standard error of the mean; Wor: wortmannin.
Collapse
Affiliation(s)
- Varun Balaji
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany
| | | | - Eckhard Mandelkow
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany.,b CAESAR Research Center , Bonn , Germany.,c MPI for Metabolism Research, Hamburg Outstation c/o DESY , Hamburg , Germany
| | - Yipeng Wang
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany
| | - Eva-Maria Mandelkow
- a DZNE, German Center for Neurodeg. Diseases , Bonn , Germany.,b CAESAR Research Center , Bonn , Germany.,c MPI for Metabolism Research, Hamburg Outstation c/o DESY , Hamburg , Germany
| |
Collapse
|
10
|
Wray S. Modeling tau pathology in human stem cell derived neurons. Brain Pathol 2018; 27:525-529. [PMID: 28585382 DOI: 10.1111/bpa.12521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tau pathology is a defining characteristic of multiple neurodegenerative disorders including Alzheimer's disease (AD) and Frontotemporal Dementia (FTD) with tau pathology. There is strong evidence from genetics and experimental models to support a central role for tau dysfunction in neuronal death, suggesting tau is a promising therapeutic target for AD and FTD. However, the development of tau pathology can precede symptom onset by several years, so understanding the earliest molecular events in tauopathy is a priority area of research. Induced pluripotent stem cells (iPSC) derived from patients with genetic causes of tauopathy provide an opportunity to derive limitless numbers of human neurons with physiologically appropriate expression levels of mutated genes for in vitro studies into disease mechanisms. This review discusses the progress made to date using this approach and highlights some of the challenges and unanswered questions this technology has the potential to address.
Collapse
Affiliation(s)
- Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 1PJ, UK
| |
Collapse
|
11
|
Hoeprich GJ, Mickolajczyk KJ, Nelson SR, Hancock WO, Berger CL. The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching. Traffic 2017; 18:304-314. [PMID: 28267259 DOI: 10.1111/tra.12478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023]
Abstract
Axonal transport involves kinesin motors trafficking cargo along microtubules that are rich in microtubule-associated proteins (MAPs). Much attention has focused on the behavior of kinesin-1 in the presence of MAPs, which has overshadowed understanding the contribution of other kinesins such as kinesin-2 in axonal transport. We have previously shown that, unlike kinesin-1, kinesin-2 in vitro motility is insensitive to the neuronal MAP Tau. However, the mechanism by which kinesin-2 efficiently navigates Tau on the microtubule surface is unknown. We hypothesized that mammalian kinesin-2 side-steps to adjacent protofilaments to maneuver around MAPs. To test this, we used single-molecule imaging to track the characteristic run length and protofilament switching behavior of kinesin-1 and kinesin-2 motors in the absence and presence of 2 different microtubule obstacles. Under all conditions tested, kinesin-2 switched protofilaments more frequently than kinesin-1. Using computational modeling that recapitulates run length and switching frequencies in the presence of varying roadblock densities, we conclude that kinesin-2 switches protofilaments to navigate around microtubule obstacles. Elucidating the kinesin-2 mechanism of navigation on the crowded microtubule surface provides a refined view of its contribution in facilitating axonal transport.
Collapse
Affiliation(s)
- Gregory J Hoeprich
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania.,Intercollege Graduate Degree Program in Bioengineering, Pennsylvania State University, University Park, Pennsylvania
| | - Shane R Nelson
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Christopher L Berger
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont
| |
Collapse
|
12
|
Asadollahi K, Rafiee S, Riazi GH, Pooyan S, Afrasiabi A. Trichloroacetic acid treatment as a tricky way for rapid purification of 1N/4R tau protein. Protein Expr Purif 2016; 118:98-104. [DOI: 10.1016/j.pep.2015.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022]
|
13
|
Rodríguez-Martín T, Pooler AM, Lau DHW, Mórotz GM, De Vos KJ, Gilley J, Coleman MP, Hanger DP. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiol Dis 2015; 85:1-10. [PMID: 26459111 PMCID: PMC4684147 DOI: 10.1016/j.nbd.2015.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022] Open
Abstract
Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies. Expression of P301L tau reduces the number of axonal mitochondria in mice. Motile mitochondria exhibit increased volume in axons of neurons with P301L tau. P301L tau expressed in knockin mice is hypophosphorylated. The P301L tau mutation impairs microtubule binding but does not affect tau membrane localization.
Collapse
Affiliation(s)
- Teresa Rodríguez-Martín
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, SE5 9NU, UK.
| | - Amy M Pooler
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, SE5 9NU, UK.
| | - Dawn H W Lau
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, SE5 9NU, UK.
| | - Gábor M Mórotz
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, SE5 9NU, UK.
| | - Kurt J De Vos
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, SE5 9NU, UK.
| | - Jonathan Gilley
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
| | - Michael P Coleman
- Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
| | - Diane P Hanger
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, SE5 9NU, UK.
| |
Collapse
|
14
|
Michalski B, Corrada MM, Kawas CH, Fahnestock M. Brain-derived neurotrophic factor and TrkB expression in the "oldest-old," the 90+ Study: correlation with cognitive status and levels of soluble amyloid-beta. Neurobiol Aging 2015; 36:3130-3139. [PMID: 26410307 DOI: 10.1016/j.neurobiolaging.2015.08.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Factors associated with maintaining good cognition into old age are unclear. Decreased brain-derived neurotrophic factor (BDNF) contributes to memory loss in Alzheimer's disease (AD), and soluble assemblies of amyloid-beta (Aβ) and tau contribute to neurodegeneration. However, it is unknown whether AD-type neuropathology, soluble Aβ and tau, or levels of BDNF and its receptor tropomyosin-related kinase B (TrkB) correlate with dementia in the oldest-old. We examined these targets in postmortem Brodmann's areas 7 and 9 (BA7 and BA9) in 4 groups of subjects >90 years old: (1) no dementia/no AD pathology, (2) no dementia/AD pathology, (3) dementia/no AD pathology, (4) dementia/AD pathology. In BA7, BDNF messenger RNA correlated with Mini-Mental State Examination scores and was decreased in demented versus nondemented subjects, regardless of pathology. Soluble Aβ42 was increased in both groups with AD pathology, demented or not, compared to no dementia/no AD pathology subjects. Groups did not differ in TrkB isoform levels or in levels of total soluble tau, individual tau isoforms, threonine-181 tau phosphorylation, or ratio of phosphorylated 3R-4R isoforms. In BA9, soluble Aβ42 correlated with Mini-Mental State Examination scores and with BDNF messenger RNA expression. Thus, soluble Aβ42 and BDNF, but not TrkB or soluble tau, correlate with dementia in the oldest-old.
Collapse
Affiliation(s)
- Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Maria M Corrada
- Department of Epidemiology, University of California, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E. Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103. Sci Rep 2015; 5:12584. [PMID: 26223541 PMCID: PMC4519789 DOI: 10.1038/srep12584] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/29/2015] [Indexed: 12/22/2022] Open
Abstract
Orexins are neuropeptides that regulate the sleep-wake cycle and feeding behaviour. QRFP is a newly discovered neuropeptide which exerts similar orexigenic activity, thus playing an important role in energy homeostasis and regulation of appetite. The exact expression and signalling characteristics and physiological actions of QRFP and its receptor GPR103 are poorly understood. Alzheimer's disease (AD) patients experience increased nocturnal activity, excessive daytime sleepiness, and weight loss. We hypothesised therefore that orexins and QRFP might be implicated in the pathophysiology of AD. We report that the down-regulation of hippocampal orexin receptors (OXRs) and GPR103 particularly in the cornu ammonis (CA) subfield from AD patients suffering from early onset familial AD (EOFAD) and late onset familial AD (LOAD). Using an in vitro model we demonstrate that this downregulation is due to to Aβ-plaque formation and tau hyper-phosphorylation. Transcriptomics revealed a neuroprotective role for both orexins and QRFP. Finally we provide conclusive evidence using BRET and FRET that OXRs and GPR103 form functional hetero-dimers to exert their effects involving activation of ERK1/2. Pharmacological intervention directed at the orexigenic system may prove to be an attractive avenue towards the discovery of novel therapeutics for diseases such as AD and improving neuroprotective signalling pathways.
Collapse
Affiliation(s)
- Julie Davies
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| | - Jing Chen
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Ryan Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, UK
| | - David Carter
- Department of Biological and Medical Sciences, Oxford Brookes University, UK
| | - Nigel Saunders
- Centre for Systems and Synthetic Biology, Brunel University, Uxbridge UB83PH, UK
| | - Georgios Sotiriadis
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - David Howlett
- Wolfson Centre for Age Related Diseases, King’s College London, London, SE11UL, UK
| | - Annette Payne
- Department of Computer Science, College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, UK
| | - Harpal Randeva
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University, Uxbridge, UB8 3PH, UK
| |
Collapse
|
16
|
Tasi YC, Chin TY, Chen YJ, Huang CC, Lee SL, Wu TY. Potential natural products for Alzheimer's disease: targeted search using the internal ribosome entry site of tau and amyloid-β precursor protein. Int J Mol Sci 2015; 16:8789-810. [PMID: 25903151 PMCID: PMC4425109 DOI: 10.3390/ijms16048789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/28/2022] Open
Abstract
Overexpression of the amyloid precursor protein (APP) and the hyperphosphorylation of the tau protein are vital in the understanding of the cause of Alzheimer’s disease (AD). As a consequence, regulation of the expression of both APP and tau proteins is one important approach in combating AD. The APP and tau proteins can be targeted at the levels of transcription, translation and protein structural integrity. This paper reports the utilization of a bi-cistronic vector containing either APP or tau internal ribosome entry site (IRES) elements flanked by β-galactosidase gene (cap-dependent) and secreted alkaline phosphatase (SEAP) (cap-independent) to discern the mechanism of action of memantine, an N-methyl-d-aspartate (NMDA) receptor antagonist. Results indicate that memantine could reduce the activity of both the APP and tau IRES at a concentration of ~10 μM (monitored by SEAP activity) without interfering with the cap-dependent translation as monitored by the β-galactosidase assay. Western blot analysis of the tau protein in neuroblastoma (N2A) and rat hippocampal cells confirmed the halting of the expression of the tau proteins. We also employed this approach to identify a preparation named NB34, extracts of Boussingaultia baselloides (madeira-vine) fermented with Lactobacillus spp., which can function similarly to memantine in both IRES of APP and Tau. The water maze test demonstrated that NB34 could improve the spatial memory of a high fat diet induced neurodegeneration in apolipoprotein E-knockout (ApoE−/−) mice. These results revealed that the bi-cistronic vector provided a simple, and effective platform in screening and establishing the mechanistic action of potential compounds for the treatment and management of AD.
Collapse
Affiliation(s)
- Yun-Chieh Tasi
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 32032, Taiwan.
- Program and Center of Nanoscience Technology, Chung Yuan Christian University, Taoyuan 32032, Taiwan.
| | - Ying-Ju Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 32032, Taiwan.
| | | | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 32032, Taiwan.
- Program and Center of Nanoscience Technology, Chung Yuan Christian University, Taoyuan 32032, Taiwan.
| |
Collapse
|
17
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
18
|
Platt TL, Reeves VL, Murphy MP. Transgenic models of Alzheimer's disease: better utilization of existing models through viral transgenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1437-48. [PMID: 23619198 DOI: 10.1016/j.bbadis.2013.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 12/30/2022]
Abstract
Animal models have been used for decades in the Alzheimer's disease (AD) research field and have been crucial for the advancement of our understanding of the disease. Most models are based on familial AD mutations of genes involved in the amyloidogenic process, such as the amyloid precursor protein (APP) and presenilin 1 (PS1). Some models also incorporate mutations in tau (MAPT) known to cause frontotemporal dementia, a neurodegenerative disease that shares some elements of neuropathology with AD. While these models are complex, they fail to display pathology that perfectly recapitulates that of the human disease. Unfortunately, this level of pre-existing complexity creates a barrier to the further modification and improvement of these models. However, as the efficacy and safety of viral vectors improves, their use as an alternative to germline genetic modification is becoming a widely used research tool. In this review we discuss how this approach can be used to better utilize common mouse models in AD research. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Thomas L Platt
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
19
|
Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0144-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the extracellular deposits of β amyloid peptides (Aβ) in senile plaques, and intracellular aggregates of hyperphosphorylated tau in neurofibrillary tangles (NFT). Although accumulation of Aβ has been long considered a leading hypothesis in the disease pathology, it is increasingly evident that the role hyperphosphorylation of tau in destabilization of microtubule assembly and disturbance of axonal transport is equally detrimental in the neurodegenerative process. The main kinase involved in phosphorylation of tau is glycogen-synthase kinase 3-beta (GSK-3β). Intracellular accumulation of Aβ also likely induces increase in hyperphosphorylated tau by a mechanism dependent on GSK-3β. In addition, Aβ affects production of ceramides, the major sphingolipids in mammalian cells, by acting on sphingomyelinases, enzymes responsible for the catabolic formation of ceramides from the sphingomyelin. Generated ceramides in turn increase production of Aβ by acting on β-secretase, a key enzyme in the proteolytic processing of the amyloid precursor protein (APP), altogether leading to a ceramide-Aβ-hyperphosphorylated tau cascade that ends in neuronal death. Modulators and inhibitors acting on members of this devastating cascade are considered as potential targets for AD therapy. There is still no adequate treatment for AD patients. Novel therapeutic strategies increasingly consider the combination of multiple targets and interactions among the key members of implicated molecular pathways. This review summarizes recent findings and therapeutic perspectives in the pathology and treatment of AD, with the emphasis on the interplay between hyperphosphorylated tau, amyloid β, and sphingolipid mediators.
Collapse
|
20
|
Yin X, Jin N, Gu J, Shi J, Zhou J, Gong CX, Iqbal K, Grundke-Iqbal I, Liu F. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) modulates serine/arginine-rich protein 55 (SRp55)-promoted Tau exon 10 inclusion. J Biol Chem 2012; 287:30497-506. [PMID: 22767602 PMCID: PMC3436298 DOI: 10.1074/jbc.m112.355412] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/10/2012] [Indexed: 11/06/2022] Open
Abstract
Tau exon 10, which encodes the second microtubule-binding repeat, is regulated by alternative splicing. Its alternative splicing generates Tau isoforms with three- or four-microtubule-binding repeats, named 3R-tau and 4R-tau. Adult human brain expresses equal levels of 3R-tau and 4R-tau. Imbalance of 3R-tau and 4R-tau causes Tau aggregation and neurofibrillary degeneration. In the present study, we found that splicing factor SRp55 (serine/arginine-rich protein 55) promoted Tau exon 10 inclusion. Knockdown of SRp55 significantly promoted Tau exon 10 exclusion. The promotion of Tau exon 10 inclusion by SRp55 required the arginine/serine-rich region, which was responsible for the subnucleic speckle localization. Dyrk1A (dual specificity tyrosine-phosphorylated and regulated kinase 1A) interacted with SRp55 and mainly phosphorylated its proline-rich domain. Phosphorylation of SRp55 by Dyrk1A suppressed its ability to promote Tau exon 10 inclusion. Up-regulation of Dyrk1A as in Down syndrome could lead to neurofibrillary degeneration by shifting the alternative splicing of Tau exon 10 to an increase in the ratio of 3R-tau/4R-tau.
Collapse
Affiliation(s)
- Xiaomin Yin
- From the Jiangsu Key Laboratory of Neuroregeneration and
- the Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, 226001, China and
| | - Nana Jin
- From the Jiangsu Key Laboratory of Neuroregeneration and
| | - Jianlan Gu
- From the Jiangsu Key Laboratory of Neuroregeneration and
- the Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, 226001, China and
| | - Jianhua Shi
- From the Jiangsu Key Laboratory of Neuroregeneration and
- the Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, 226001, China and
| | - Jianhua Zhou
- From the Jiangsu Key Laboratory of Neuroregeneration and
| | - Cheng-Xin Gong
- From the Jiangsu Key Laboratory of Neuroregeneration and
- the Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Khalid Iqbal
- the Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Inge Grundke-Iqbal
- the Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Fei Liu
- From the Jiangsu Key Laboratory of Neuroregeneration and
- the Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| |
Collapse
|
21
|
Control of Aβ release from human neurons by differentiation status and RET signaling. Neurobiol Aging 2012; 34:184-99. [PMID: 22534065 DOI: 10.1016/j.neurobiolaging.2012.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 02/14/2012] [Accepted: 03/24/2012] [Indexed: 12/28/2022]
Abstract
Few studies have compared the processing of endogenous human amyloid precursor protein (APP) in younger and older neurons. Here, we characterized LUHMES cells as a human model to study Alzheimer's disease-related processes during neuronal maturation and aging. Differentiated LUHMES expressed and spontaneously processed APP via the secretase pathways, and they secreted amyloid β (Aβ) peptide. This was inhibited by cholesterol depletion or secretase inhibition, but not by block of tau phosphorylation. In vitro aged cells increased Aβ secretion without upregulation of APP or secretases. We identified the medium constituent glial cell line-derived neurotrophic factor (GDNF) as responsible for this effect. GDNF-triggered Aβ release was associated with rapid upregulation of the GDNF coreceptor "rearranged during transfection" (RET). Other direct (neurturin) or indirect (nerve growth factor) RET activators also increased Aβ, whereas different neurotrophins were ineffective. Downstream of RET, we found activation of protein kinase B (AKT) to be involved. Accordingly, inhibitors of the AKT regulator phosphatidylinositol-3-kinase completely blocked GDNF-triggered AKT phosphorylation and Aβ increase. This suggests that RET signaling affects Aβ release from aging neurons.
Collapse
|
22
|
Jones EM, Dubey M, Camp PJ, Vernon BC, Biernat J, Mandelkow E, Majewski J, Chi EY. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Biochemistry 2012; 51:2539-50. [PMID: 22401494 DOI: 10.1021/bi201857v] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misfolding and aggregation of the intrinsically disordered, microtubule-associated tau protein into neurofibrillary tangles is implicated in the pathogenesis of Alzheimer's disease. However, the mechanisms of tau aggregation and toxicity remain unknown. Recent work has shown that anionic lipid membranes can induce tau aggregation and that membrane permeabilization may serve as a pathway by which protein aggregates exert toxicity, suggesting that the plasma membrane may play dual roles in tau pathology. This prompted our investigation to assess tau's propensity to interact with membranes and to elucidate the mutually disruptive structural perturbations the interactions induce in both tau and the membrane. We show that although highly charged and soluble, the full-length tau (hTau40) is also highly surface active, selectively inserts into anionic DMPG lipid monolayers and induces membrane morphological changes. To resolve molecular-scale structural details of hTau40 associated with lipid membranes, X-ray and neutron scattering techniques are utilized. X-ray reflectivity indicates hTau40s presence underneath a DMPG monolayer and penetration into the lipid headgroups and tailgroups, whereas grazing incidence X-ray diffraction shows that hTau40 insertion disrupts lipid packing. Moreover, both air/water and DMPG lipid membrane interfaces induce the disordered hTau40 to partially adopt a more compact conformation with density similar to that of a folded protein. Neutron reflectivity shows that tau completely disrupts supported DMPG bilayers while leaving the neutral DPPC bilayer intact. Our results show that hTau40s strong interaction with anionic lipids induces tau structural compaction and membrane disruption, suggesting possible membrane-based mechanisms of tau aggregation and toxicity in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmalee M Jones
- Department of Chemical and Nuclear Engineering, Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Garcia O, Torres M, Helguera P, Coskun P, Busciglio J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down's syndrome. PLoS One 2010; 5:e14200. [PMID: 21152035 PMCID: PMC2996288 DOI: 10.1371/journal.pone.0014200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Down's syndrome (DS) is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology. METHODOLOGY/PRINCIPAL FINDINGS Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1), an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes. CONCLUSIONS/SIGNIFICANCE These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.
Collapse
Affiliation(s)
- Octavio Garcia
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Maria Torres
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Pablo Helguera
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Pinar Coskun
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), Center for the Neurobiology of Learning and Memory (CNLM), University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
24
|
Schraen-Maschke S, Sergeant N, Dhaenens CM, Bombois S, Deramecourt V, Caillet-Boudin ML, Pasquier F, Maurage CA, Sablonnière B, Vanmechelen E, Buée L. Tau as a biomarker of neurodegenerative diseases. Biomark Med 2010; 2:363-84. [PMID: 20477391 DOI: 10.2217/17520363.2.4.363] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The microtubule-associated protein Tau is mainly expressed in neurons of the CNS and is crucial in axonal maintenance and axonal transport. The rationale for Tau as a biomarker of neurodegenerative diseases is that it is a major component of abnormal intraneuronal aggregates observed in numerous tauopathies, including Alzheimer's disease. The molecular diversity of Tau is very useful when analyzing it in the brain or in the peripheral fluids. Immunohistochemical and biochemical characterization of Tau aggregates in the brain allows the postmortem classification and differential diagnosis of tauopathies. As peripheral biomarkers of Alzheimer's disease in the cerebrospinal fluid, Tau proteins are now validated for diagnosis and predictive purposes. For the future, the detailed characterization of Tau in the brain and in peripheral fluids will lead to novel promising biomarkers for differential diagnosis of dementia and monitoring of therapeutics.
Collapse
|
25
|
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J Neurochem 2009; 112:1353-67. [PMID: 19943854 DOI: 10.1111/j.1471-4159.2009.06511.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center of Research and Advanced Studies CINVESTAV-IPN, México DF, Mexico.
| | | | | | | | | |
Collapse
|
26
|
A role for synaptic zinc in activity-dependent Abeta oligomer formation and accumulation at excitatory synapses. J Neurosci 2009; 29:4004-15. [PMID: 19339596 DOI: 10.1523/jneurosci.5980-08.2009] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Soluble amyloid beta oligomers (AbetaOs) interfere with synaptic function and bind with high affinity to synapses, but the mechanism underlying AbetaO synaptic targeting is not known. Here, we show that the accumulation of synthetic or native Alzheimer's disease (AD)-brain oligomers at synapses is regulated by synaptic activity. Electrical or chemical stimulation increased AbetaO synaptic localization and enhanced oligomer formation at synaptic terminals, whereas inhibition with TTX blocked AbetaO synaptic localization and reduced AbetaO synaptic load. The zinc-binding 8-OH-quinoline clioquinol markedly reduced AbetaO synaptic targeting, which was also reduced in brain sections of animals deficient in the synaptic vesicle zinc transporter ZnT3, indicating that vesicular zinc released during neurotransmission is critical for AbetaO synaptic targeting. Oligomers were not internalized in recycled vesicles but remained at the cell surface, where they colocalized with NR2B NMDA receptor subunits. Furthermore, NMDA antagonists blocked AbetaO synaptic targeting, implicating excitatory receptor activity in oligomer formation and accumulation at synapses. In AD brains, oligomers of different size colocalized with synaptic markers in hippocampus and cortex, where oligomer synaptic accumulation correlated with synaptic loss.
Collapse
|
27
|
Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Mol Neurodegener 2009; 4:13. [PMID: 19284597 PMCID: PMC2663562 DOI: 10.1186/1750-1326-4-13] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/11/2009] [Indexed: 01/31/2023] Open
Abstract
Since the identification of tau as the main component of neurofibrillary tangles in Alzheimer's disease and related tauopathies, and the discovery that mutations in the tau gene cause frontotemporal dementia, much effort has been directed towards determining how the aggregation of tau into fibrillar inclusions causes neuronal death. As evidence emerges that tau-mediated neuronal death can occur even in the absence of tangle formation, a growing number of studies are focusing on understanding how abnormalities in tau (e.g. aberrant phosphorylation, glycosylation or truncation) confer toxicity. Though data obtained from experimental models of tauopathies strongly support the involvement of pathologically modified tau and tau aggregates in neurodegeneration, the exact neurotoxic species remain unclear, as do the mechanism(s) by which they cause neuronal death. Nonetheless, it is believed that tau-mediated neurodegeneration is likely to result from a combination of toxic gains of function as well as from the loss of normal tau function. To truly appreciate the detrimental consequences of aberrant tau function, a better understanding of all functions carried out by tau, including but not limited to the role of tau in microtubule assembly and stabilization, is required. This review will summarize what is currently known regarding the involvement of tau in the initiation and development of neurodegeneration in tauopathies, and will also highlight some of the remaining questions in need of further investigation.
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
| | | |
Collapse
|
28
|
Suzuki K, Kawakami F, Sasaki H, Maruyama H, Ohtsuki K. Biochemical characterization of tau protein and its associated syndapin 1 and protein kinase Cepsilon for their functional regulation in rat brain. Biochim Biophys Acta Gen Subj 2008; 1790:188-97. [PMID: 19101610 DOI: 10.1016/j.bbagen.2008.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND We recently reported that both sulfatide and cholesterol-3-sulfate (SCS) function as potent stimulators for the GSK-3beta-mediated phosphorylation of tau protein (TP) in vitro [J. Biochem. 143 (2008) 359-367]. METHODS By means of successive gel filtration on a Superdex 200 pg column and three distinct ion-exchange column chromatographies, TP and its associated proteins were highly purified from the extract of rat brain. RESULTS We found that (i) syndapin 1 and novel protein kinase Cepsilon (nPKCepsilon) were identified as the TP-associated proteins; (ii) SCS highly stimulated the phosphorylation of TP and syndapin 1 by nPKCepsilon as well as CK1; (iii) the full phosphorylation of TP and syndapin 1 by nPKCepsilon in the presence of sulfatide resulted in their dissociation; (iv) TP primed by CK1 functioned as an effective phosphate acceptor for GSK-3beta; (v) syndapin 1 highly stimulated the GSK-3beta-mediated phosphorylation of TP; and (vi) TP isoforms were highly expressed in aged brain, whereas syndapin 1 was consistently detected in adult brain, but not in newborn brain. GENERAL SIGNIFICANCE These results provided here suggest that (i) TP-associated nPKCepsilon suppresses the GSK-3beta-mediated phosphorylation of TP through the phosphorylation of GSK-3beta by the kinase in vitro; and (ii) SCS act as effective sole mediators to induce the GSK-3beta-mediated high phosphorylation of both TP and its associated syndapin 1 involved in the biochemical processes of neuronal diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Kanzo Suzuki
- Laboratory of Molecular Signal Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 228-8555, Japan
| | | | | | | | | |
Collapse
|