1
|
Zhou X, Liu Y, Wu Z, Zhang X, Tao H. Alzheimer's disease and epilepsy: Research hotspots for comorbidity in the era of global aging. Epilepsy Behav 2024; 157:109849. [PMID: 38820684 DOI: 10.1016/j.yebeh.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Neurological conditions such as Alzheimer's disease (AD) and epilepsy share a significant clinical overlap, particularly in the elderly, with each disorder potentiating the risk of the other. This interplay is significant amidst an aging global demographic. The review explores the classical pathologies of AD, including amyloid-beta plaques and hyperphosphorylated tau, and their potential role in the genesis of epilepsy. It also delves into the imbalance of glutamate and gamma-amino butyric acid activities, a key mechanism in epilepsy that may be influenced by AD pathology. The impact of age of onset on comorbidity is examined, with early-onset AD and Down syndrome presenting higher risks of epilepsy. The review suggests that epilepsy might precede cognitive symptoms in AD, indicating a complex interaction. Sleep modulation is highlighted as a factor, with sleep disturbances potentially contributing to AD progression. The necessity for cautious medication management is emphasized due to the cognitive effects of certain antiepileptic drugs. Animal models are recognized for their importance in understanding the relationship between AD and epilepsy, though creating fully representative models presents a challenge. The review concludes by noting the efficacy of medications such as lamotrigine, levetiracetam, and memantine in managing both conditions and suggests the ketogenic diet and cannabidiol as emerging treatment options, warranting further investigation for comprehensive patient care strategies.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yang Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Zhengjuan Wu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xiaolu Zhang
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
2
|
Torok J, Mezias C, Raj A. Directionality bias underpins divergent spatiotemporal progression of Alzheimer-related tauopathy in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597478. [PMID: 38895243 PMCID: PMC11185722 DOI: 10.1101/2024.06.04.597478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mounting evidence implicates trans-synaptic connectome-based spread as a shared mechanism behind different tauopathic conditions, yet also suggests there is divergent spatiotemporal progression between them. A potential parsimonious explanation for this apparent contradiction could be that different conditions incur differential rates and directional biases in tau transmission along fiber tracts. In this meta-analysis we closely examined this hypothesis and quantitatively tested it using spatiotemporal tau pathology patterns from 11 distinct models across 4 experimental studies. For this purpose, we extended a network-based spread model by incorporating net directionality along the connectome. Our data unambiguously supports the directional transmission hypothesis. First, retrograde bias is an unambiguously better predictor of tau progression than anterograde bias. Second, while spread exhibits retrograde character, our best-fitting biophysical models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. We also found a nontrivial association between directionality bias and tau strain aggressiveness, with more virulent strains exhibiting less retrograde character. Taken together, our study implicates directional transmission bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate explanation for the diversity of spatiotemporal tau progression between conditions. This simple and parsimonious mechanism may potentially fill a critical gap in our knowledge of the spatiotemporal ramification of divergent tauopathies.
Collapse
Affiliation(s)
- Justin Torok
- University of California at San Francisco, Department of Radiology
| | | | - Ashish Raj
- University of California at San Francisco, Department of Radiology
| |
Collapse
|
3
|
Sequeira RC, Godad A. Understanding Glycogen Synthase Kinase-3: A Novel Avenue for Alzheimer's Disease. Mol Neurobiol 2024; 61:4203-4221. [PMID: 38064104 DOI: 10.1007/s12035-023-03839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of age-related dementia. Even though a century has passed since the discovery of AD, the exact cause of the disease still remains unknown. As a result, this poses a major hindrance in developing effective therapies for treating AD. Glycogen synthase kinase-3 (GSK-3) is one of the kinases that has been investigated recently as a potential therapeutic target for the treatment of AD. It is also known as human tau protein kinase and is a proline-directed serine-threonine kinase. Since dysregulation of this kinase affects all the major characteristic features of the disease, such as tau phosphorylation, amyloid formation, memory, and synaptic function, it is thought to be a major player in the pathogenesis of AD. In this review, we present the most recent information on the role of this kinase in the onset and progression of AD, as well as significant findings that identify GSK-3 as one of the most important targets for AD therapy. We further discuss the potential of treating AD by targeting GSK-3 and give an overview of the ongoing studies aimed at developing GSK-3 inhibitors in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Ronnita C Sequeira
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Angel Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
4
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
5
|
Khan MI, Jeong ES, Khan MZ, Shin JH, Kim JD. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer's pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci Rep 2023; 13:15731. [PMID: 37735227 PMCID: PMC10514272 DOI: 10.1038/s41598-023-42485-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Amyloid beta (Aβ) aggregation and tau hyper phosphorylation (p-tau) are key molecular factors in Alzheimer's disease (AD). The abnormal formation and accumulation of Aβ and p-tau lead to the formation of amyloid plaques and neurofibrillary tangles (NFTs) which ultimately leads to neuroinflammation and neurodegeneration. β- and γ-secretases produce Aβ peptides via the amyloidogenic pathway, and several kinases are involved in tau phosphorylation. Exosomes, a recently developed method of intercellular communication, derived from neuronal stem cells (NSC-exos), are intriguing therapeutic options for AD. Exosomes have ability to cross the BBB hence highly recommended for brain related diseases and disorders. In the current study, we examined how NSC-exos could protect human neuroblastoma cells SH-SY5Y (ATCC CRL-2266). NSC-exos were derived from Human neural stem cells (ATCC-BYS012) by ultracentrifugation and the therapeutic effects of the NSC-exos were then investigated in vitro. NSC-exos controlled the associated molecular processes to drastically lower Aβ and p-tau. A dose dependent reduction in β- and γ-secretase, acetylcholinesterase, GSK3β, CDK5, and activated α-secretase activities was also seen. We further showed that BACE1, PSEN1, CDK5, and GSK-3β mRNA expression was suppressed and downregulated, while ADAM10 mRNA was increased. NSC- Exos downregulate NF-B/ERK/JNK-related signaling pathways in activated glial cells HMC3 (ATCC-CRL-3304) and reduce inflammatory mediators such iNOS, IL-1β, TNF-α, and IL-6, which are associated with neuronal inflammation. The NSC-exos therapy ameliorated the neurodegeneration of human neuroblastoma cells SH-SY5Y by enhancing viability. Overall, these findings support that exosomes produced from stem cells can be a neuro-protective therapy to alleviate AD pathology.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Faculty of Biomedical and Life Sciences, Kohsar University, Murree, Pakistan
| | - Eun Sun Jeong
- Department of Laboratory Medicine, Yeosu Chonnam Hospital, Yeosu, Korea
| | - Muhammad Zubair Khan
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea.
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea.
| |
Collapse
|
6
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
7
|
Tabeshmehr P, Eftekharpour E. Tau; One Protein, So Many Diseases. BIOLOGY 2023; 12:244. [PMID: 36829521 PMCID: PMC9953016 DOI: 10.3390/biology12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
Tau, a member of the microtubule-associated proteins, is a known component of the neuronal cytoskeleton; however, in the brain tissue, it is involved in other vital functions beyond maintaining the cellular architecture. The pathologic tau forms aggregates inside the neurons and ultimately forms the neurofibrillary tangles. Intracellular and extracellular accumulation of different tau isoforms, including dimers, oligomers, paired helical filaments and tangles, lead to a highly heterogenous group of diseases named "Tauopathies". About twenty-six different types of tauopathy diseases have been identified that have different clinical phenotypes or pathophysiological characteristics. Although all these diseases are identified by tau aggregation, they are distinguishable based on the specific tau isoforms, the affected cell types and the brain regions. The neuropathological and phenotypical heterogeneity of these diseases impose significant challenges for discovering new diagnostic and therapeutic strategies. Here, we review the recent literature on tau protein and the pathophysiological mechanisms of tauopathies. This article mainly focuses on physiologic and pathologic tau and aims to summarize the upstream and downstream events and discuss the current diagnostic approaches and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eftekhar Eftekharpour
- Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
8
|
Amyloid-β in Alzheimer's disease - front and centre after all? Neuronal Signal 2023; 7:NS20220086. [PMID: 36687366 PMCID: PMC9829960 DOI: 10.1042/ns20220086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The amyloid hypothesis, which proposes that accumulation of the peptide amyloid-β at synapses is the key driver of Alzheimer's disease (AD) pathogenesis, has been the dominant idea in the field of Alzheimer's research for nearly 30 years. Recently, however, serious doubts about its validity have emerged, largely motivated by disappointing results from anti-amyloid therapeutics in clinical trials. As a result, much of the AD research effort has shifted to understanding the roles of a variety of other entities implicated in pathogenesis, such as microglia, astrocytes, apolipoprotein E and several others. All undoubtedly play an important role, but the nature of this has in many cases remained unclear, partly due to their pleiotropic functions. Here, we propose that all of these AD-related entities share at least one overlapping function, which is the local regulation of amyloid-β levels, and that this may be critical to their role in AD pathogenesis. We also review what is currently known of the actions of amyloid-β at the synapse in health and disease, and consider in particular how it might interact with the key AD-associated protein tau in the disease setting. There is much compelling evidence in support of the amyloid hypothesis; rather than detract from this, the implication of many disparate AD-associated cell types, molecules and processes in the regulation of amyloid-β levels may lend further support.
Collapse
|
9
|
Zhu Y, Gandy L, Zhang F, Liu J, Wang C, Blair LJ, Linhardt RJ, Wang L. Heparan Sulfate Proteoglycans in Tauopathy. Biomolecules 2022; 12:1792. [PMID: 36551220 PMCID: PMC9776397 DOI: 10.3390/biom12121792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, and are characterized by intraneuronal tau inclusion in the brain and the patient's cognitive decline with obscure pathogenesis. Heparan sulfate proteoglycans, a major type of extracellular matrix, have been believed to involve in tauopathies. The heparan sulfate proteoglycans co-deposit with tau in Alzheimer's patient brain, directly bind to tau and modulate tau secretion, internalization, and aggregation. This review summarizes the current understanding of the functions and the modulated molecular pathways of heparan sulfate proteoglycans in tauopathies, as well as the implication of dysregulated heparan sulfate proteoglycan expression in tau pathology and the potential of targeting heparan sulfate proteoglycan-tau interaction as a novel therapeutic option.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lauren Gandy
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Liu
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33613, USA
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Selvarasu K, Singh AK, Iyaswamy A, Gopalkrishnashetty Sreenivasmurthy S, Krishnamoorthi S, Bera AK, Huang JD, Durairajan SSK. Reduction of kinesin I heavy chain decreases tau hyperphosphorylation, aggregation, and memory impairment in Alzheimer's disease and tauopathy models. Front Mol Biosci 2022; 9:1050768. [PMID: 36387285 PMCID: PMC9641281 DOI: 10.3389/fmolb.2022.1050768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 08/29/2023] Open
Abstract
Many neurodegenerative diseases, such as Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17, are characterized by tau pathology. Numerous motor proteins, many of which are involved in synaptic transmission, mediate transport in neurons. Dysfunction in motor protein-mediated neuronal transport mechanisms occurs in several neurodegenerative disorders but remains understudied in AD. Kinesins are the most important molecular motor proteins required for microtubule-dependent transport in neurons, and kinesin-1 is crucial for neuronal transport among all kinesins. Although kinesin-1 is required for normal neuronal functions, the dysfunction of these motor domains leading to neurodegenerative diseases is not fully understood. Here, we reported that the kinesin-I heavy chain (KIF5B), a key molecular motor protein, is involved in tau homeostasis in AD cells and animal models. We found that the levels of KIF5B in P301S tau mice are high. We also found that the knockdown and knockout (KO) of KIFf5B significantly decreased the tau stability, and overexpression of KIF5B in KIF5B-KO cells significantly increased the expression of phosphorylated and total tau levels. This suggested that KIF5B might prevent tau accumulation. By conducting experiments on P301S tau mice, we showed that partially reducing KIF5B levels can reduce hyperphosphorylation of the human tau protein, formation of insoluble aggregates, and memory impairment. Collectively, our results suggested that decreasing KIF5B levels is sufficient to prevent and/or slow down abnormal tau behavior of AD and other tauopathies.
Collapse
Affiliation(s)
- Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Senthilkumar Krishnamoorthi
- Centre for Trans-Disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
11
|
Hromadkova L, Siddiqi MK, Liu H, Safar JG. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells 2022; 11:2997. [PMID: 36230957 PMCID: PMC9562632 DOI: 10.3390/cells11192997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells. Although human prion research presents beneficial lessons and methods to study the mechanism of strain diversity of protein-only pathogens, the fundamental molecular mechanism by which tau conformers are formed and replicate in diverse tauopathies is still poorly understood. In this review, we summarize up to date advances in identification of diverse tau conformers through biophysical and cellular experimental paradigms, and the impact of heterogeneity of pathological tau strains on personalized structure- and strain-specific therapeutic approaches in major tauopathies.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - He Liu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Lee S, Jo M, Kwon Y, Jeon YM, Kim S, Lee KJ, Kim HJ. PTK2 regulates tau-induced neurotoxicity via phosphorylation of p62 at Ser403. J Neurogenet 2022:1-10. [PMID: 36000467 DOI: 10.1080/01677063.2022.2114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tau is a microtubule-associated protein that forms insoluble filaments that accumulate as neurofibrillary tangles in neurodegenerative diseases such as Alzheimer's disease and other related tauopathies. A relationship between abnormal Tau accumulation and ubiquitin-proteasome system impairment has been reported. However, the molecular mechanism linking Tau accumulation and ubiquitin proteasome system (UPS) dysfunction remains unclear. Here, we show that overexpression of wild-type or mutant (P301L) Tau increases the abundance of polyubiquitinated proteins and activates the autophagy-lysosome pathway in mammalian neuronal cells. Previous studies found that PTK2 inhibition mitigates toxicity induced by UPS impairment. Thus, we investigated whether PTK2 inhibition can attenuate Tau-induced UPS impairment and cell toxicity. We found that PTK2 inhibition significantly reduces Tau-induced death in mammalian neuronal cells. Moreover, overexpression of WT or mutant Tau increased the phosphorylation levels of PTK2 and p62. We also confirmed that PTK2 inhibition suppresses Tau-induced phosphorylation of PTK2 and p62. Furthermore, PTK2 inhibition significantly attenuated the climbing defect and shortened the lifespan in the Drosophila model of tauopathy. In addition, we observed that phosphorylation of p62 is markedly increased in Alzheimer's disease patients with tauopathies. Taken together, our results indicate that the UPS dysfunction induced by Tau accumulation might contribute directly to neurodegeneration in tauopathies and that PTK2 could be a promising therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, DGIST, Daegu, South Korea
| |
Collapse
|
13
|
Alpha-synuclein and tau are abundantly expressed in the ENS of the human appendix and monkey cecum. PLoS One 2022; 17:e0269190. [PMID: 35687573 PMCID: PMC9187115 DOI: 10.1371/journal.pone.0269190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein (α-syn) proteinopathy in the neurons of the Enteric Nervous System (ENS) is proposed to have a critical role in Parkinson's disease (PD) onset and progression. Interestingly, the ENS of the human appendix harbors abundant α-syn and appendectomy has been linked to a decreased risk and delayed onset of PD, suggesting that the appendix may influence PD pathology. Common marmosets and rhesus macaques lack a distinct appendix (a narrow closed-end appendage with a distinct change in diameter at the junction with the cecum), yet the cecal microanatomy of these monkeys is similar to the human appendix. Sections of human appendix (n = 3) and ceca from common marmosets (n = 4) and rhesus macaques (n = 3) were evaluated to shed light on the microanatomy and the expression of PD-related proteins. Analysis confirmed that the human appendix and marmoset and rhesus ceca present thick walls comprised of serosa, muscularis externa, submucosa, and mucosa plus abundant lymphoid tissue. Across all three species, the myenteric plexus of the ENS was located within the muscularis externa with nerve fibers innervating all layers of the appendix/ceca. Expression of α-syn and tau in the appendix/cecum was present within myenteric ganglia and along nerve fibers of the muscularis externa and mucosa in all species. In the myenteric ganglia α-syn, p-α-syn, tau and p-tau immunoreactivities (ir) were not significantly different across species. The percent area above threshold of α-syn-ir and tau-ir in the nerve fibers of the muscularis externa and mucosa were greater in the human appendix than in the NHP ceca (α-syn-ir p<0.05; tau-ir p<0.05). Overall, this study provides critical translational evidence that the common marmoset and rhesus macaque ceca are remarkably similar to the human appendix and, thus, that these NHP species are suitable for studying the development of PD linked to α-syn and tau pathological changes in the ENS.
Collapse
|
14
|
Neuroprotective Effects of Green Tea Seed Isolated Saponin Due to the Amelioration of Tauopathy and Alleviation of Neuroinflammation: A Therapeutic Approach to Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072079. [PMID: 35408478 PMCID: PMC9000224 DOI: 10.3390/molecules27072079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023]
Abstract
Tauopathy is one of the major causes of neurodegenerative disorders and diseases such as Alzheimer’s disease (AD). Hyperphosphorylation of tau proteins by various kinases leads to the formation of PHF and NFT and eventually results in tauopathy and AD; similarly, neuroinflammation also exaggerates and accelerates neuropathy and neurodegeneration. Natural products with anti-tauopathy and anti-neuroinflammatory effects are highly recommended as safe and feasible ways of preventing and /or treating neurodegenerative diseases, including AD. In the present study, we isolated theasaponin E1 from ethanol extract of green tea seed and evaluated its therapeutic inhibitory effects on tau hyper-phosphorylation and neuroinflammation in neuroblastoma (SHY-5Y) and glioblastoma (HTB2) cells, respectively, to elucidate the mechanism of the inhibitory effects. The expression of tau-generating and phosphorylation-promoting genes under the effects of theasaponin E1 were determined and assessed by RT- PCR, ELISA, and western blotting. It was found that theasaponin E1 reduced hyperphosphorylation of tau and Aβ concentrations significantly, and dose-dependently, by suppressing the expression of GSK3 β, CDK5, CAMII, MAPK, EPOE4(E4), and PICALM, and enhanced the expression of PP1, PP2A, and TREM2. According to the ELISA and western blotting results, the levels of APP, Aβ, and p-tau were reduced by treatment with theasaponin E1. Moreover, theasaponin E1 reduced inflammation by suppressing the Nf-kB pathway and dose-dependently reducing the levels of inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha etc.
Collapse
|
15
|
Torres AK, Rivera BI, Polanco CM, Jara C, Tapia-Rojas C. Phosphorylated tau as a toxic agent in synaptic mitochondria: implications in aging and Alzheimer's disease. Neural Regen Res 2022; 17:1645-1651. [PMID: 35017410 PMCID: PMC8820692 DOI: 10.4103/1673-5374.332125] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During normal aging, there is a decline in all physiological functions in the organism. One of the most affected organs is the brain, where neurons lose their proper synaptic function leading to cognitive impairment. Aging is one of the main risk factors for the development of neurodegenerative diseases, such as Alzheimer’s disease. One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates. The most studied brain aggregates are the senile plaques, formed by Aβ peptide; however, the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity. It is reported that neurons undergo severe mitochondrial dysfunction with age, with a decrease in adenosine 5′-triphosphate production, loss of the mitochondrial membrane potential, redox imbalance, impaired mitophagy, and loss of calcium buffer capacity. Interestingly, abnormal tau protein interacts with several mitochondrial proteins, suggesting that it could induce mitochondrial dysfunction. Nevertheless, whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown. A recent study of our laboratory shows that phosphorylated tau at Ser396/404 (known as PHF-1), an epitope commonly related to pathology, accumulates inside mitochondria during normal aging. This accumulation occurs preferentially in synaptic mitochondria, which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals. Here, we review the main tau modifications promoting mitochondrial dysfunction, and the possible mechanism involved. Also, we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging. Finally, we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer’s disease, which could be considered as an early event in the neurodegenerative process. Thus, phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Bastián I Rivera
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| |
Collapse
|
16
|
Murchison AG. Hypothesis: Modulation of microglial phenotype in Alzheimer's disease drives neurodegeneration. Alzheimers Dement 2021; 18:1537-1544. [PMID: 34786841 DOI: 10.1002/alz.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
The pathophysiology of Alzheimer's disease (AD) remains to be elucidated. The amyloid hypothesis holds explanatory power but has limitations. This article suggests that amyloid deposition and increased permeability of the blood-brain barrier are independent early events in the disease process, which together fashion a distinct microglial activation phenotype. Downstream events including, phagocytosis of synapses and persistent glutamate signaling through N-methyl-D-aspartate receptors drive neurodegeneration and tau pathology. This hypothesis draws on several strands of evidence and aims to illuminate several of the unexplained temporal and spatial features of AD.
Collapse
|
17
|
Tan LY, Yeo XY, Bae HG, Lee DPS, Ho RC, Kim JE, Jo DG, Jung S. Association of Gut Microbiome Dysbiosis with Neurodegeneration: Can Gut Microbe-Modifying Diet Prevent or Alleviate the Symptoms of Neurodegenerative Diseases? Life (Basel) 2021; 11:698. [PMID: 34357070 PMCID: PMC8305650 DOI: 10.3390/life11070698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
The central nervous system was classically perceived as anatomically and functionally independent from the other visceral organs. But in recent decades, compelling evidence has led the scientific community to place a greater emphasis on the role of gut microbes on the brain. Pathological observations and early gastrointestinal symptoms highlighted that gut dysbiosis likely precedes the onset of cognitive deficits in Alzheimer's disease (AD) and Parkinson's disease (PD) patients. The delicate balance in the number and functions of pathogenic microbes and alternative probiotic populations is critical in the modulation of systemic inflammation and neuronal health. However, there is limited success in restoring healthy microbial biodiversity in AD and PD patients with general probiotics interventions and fecal microbial therapies. Fortunately, the gut microflora is susceptible to long-term extrinsic influences such as lifestyle and dietary choices, providing opportunities for treatment through comparatively individual-specific control of human behavior. In this review, we examine the impact of restrictive diets on the gut microbiome populations associated with AD and PD. The overall evidence presented supports that gut dysbiosis is a plausible prelude to disease onset, and early dietary interventions are likely beneficial for the prevention and treatment of progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Yang Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Delia Pei Shan Lee
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Roger C. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore; (L.Y.T.); (X.Y.Y.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
18
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
19
|
Rai SK, Savastano A, Singh P, Mukhopadhyay S, Zweckstetter M. Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease. Protein Sci 2021; 30:1294-1314. [PMID: 33930220 PMCID: PMC8197432 DOI: 10.1002/pro.4093] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Biomolecular condensation via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins/regions (IDPs/IDRs), with and without nucleic acids, has drawn widespread interest due to the rapidly unfolding role of phase-separated condensates in a diverse range of cellular functions and human diseases. Biomolecular condensates form via transient and multivalent intermolecular forces that sequester proteins and nucleic acids into liquid-like membrane-less compartments. However, aberrant phase transitions into gel-like or solid-like aggregates might play an important role in neurodegenerative and other diseases. Tau, a microtubule-associated neuronal IDP, is involved in microtubule stabilization, regulates axonal outgrowth and transport in neurons. A growing body of evidence indicates that tau can accomplish some of its cellular activities via LLPS. However, liquid-to-solid transition resulting in the abnormal aggregation of tau is associated with neurodegenerative diseases. The physical chemistry of tau is crucial for governing its propensity for biomolecular condensation which is governed by various intermolecular and intramolecular interactions leading to simple one-component and complex multi-component condensates. In this review, we aim at capturing the current scientific state in unveiling the intriguing molecular mechanism of phase separation of tau. We particularly focus on the amalgamation of existing and emerging biophysical tools that offer unique spatiotemporal resolutions on a wide range of length- and time-scales. We also discuss the link between quantitative biophysical measurements and novel biological insights into biomolecular condensation of tau. We believe that this account will provide a broad and multidisciplinary view of phase separation of tau and its association with physiology and disease.
Collapse
Affiliation(s)
- Sandeep K. Rai
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Adriana Savastano
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Priyanka Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, and Department of Chemical SciencesIndian Institute of Science Education and Research (IISER)MohaliIndia
| | - Markus Zweckstetter
- Research group Translational Structural BiologyGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for NMR‐based Structural BiologyMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
20
|
Torok J, Maia PD, Verma P, Mezias C, Raj A. Emergence of directional bias in tau deposition from axonal transport dynamics. PLoS Comput Biol 2021; 17:e1009258. [PMID: 34314441 PMCID: PMC8345857 DOI: 10.1371/journal.pcbi.1009258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/06/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Defects in axonal transport may partly underpin the differences between the observed pathophysiology of Alzheimer's disease (AD) and that of other non-amyloidogenic tauopathies. Particularly, pathological tau variants may have molecular properties that dysregulate motor proteins responsible for the anterograde-directed transport of tau in a disease-specific fashion. Here we develop the first computational model of tau-modified axonal transport that produces directional biases in the spread of tau pathology. We simulated the spatiotemporal profiles of soluble and insoluble tau species in a multicompartment, two-neuron system using biologically plausible parameters and time scales. Changes in the balance of tau transport feedback parameters can elicit anterograde and retrograde biases in the distributions of soluble and insoluble tau between compartments in the system. Aggregation and fragmentation parameters can also perturb this balance, suggesting a complex interplay between these distinct molecular processes. Critically, we show that the model faithfully recreates the characteristic network spread biases in both AD-like and non-AD-like mouse tauopathy models. Tau transport feedback may therefore help link microscopic differences in tau conformational states and the resulting variety in clinical presentations.
Collapse
Affiliation(s)
- Justin Torok
- Department of Computational Biology and Medicine, Weill Cornell Medical School, New York, New York, United States of America
| | - Pedro D. Maia
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, United States of America
| | - Christopher Mezias
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, United States of America
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, United States of America
| |
Collapse
|
21
|
Sayas CL, Ávila J. GSK-3 and Tau: A Key Duet in Alzheimer's Disease. Cells 2021; 10:721. [PMID: 33804962 PMCID: PMC8063930 DOI: 10.3390/cells10040721] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a ubiquitously expressed serine/threonine kinase with a plethora of substrates. As a modulator of several cellular processes, GSK-3 has a central position in cell metabolism and signaling, with important roles both in physiological and pathological conditions. GSK-3 has been associated with a number of human disorders, such as neurodegenerative diseases including Alzheimer's disease (AD). GSK-3 contributes to the hyperphosphorylation of tau protein, the main component of neurofibrillary tangles (NFTs), one of the hallmarks of AD. GSK-3 is further involved in the regulation of different neuronal processes that are dysregulated during AD pathogenesis, such as the generation of amyloid-β (Aβ) peptide or Aβ-induced cell death, axonal transport, cholinergic function, and adult neurogenesis or synaptic function. In this review, we will summarize recent data about GSK-3 involvement in these processes contributing to AD pathology, mostly focusing on the crucial interplay between GSK-3 and tau protein. We further discuss the current development of potential AD therapies targeting GSK-3 or GSK-3-phosphorylated tau.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
22
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
23
|
Boumil EF, Vohnoutka RB, Lee S, Shea TB. Tau interferes with axonal neurite stabilization and cytoskeletal composition independently of its ability to associate with microtubules. Biol Open 2020; 9:9/9/bio052530. [PMID: 32978225 PMCID: PMC7522022 DOI: 10.1242/bio.052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau impacts overall axonal transport particularly when overexpressed by interfering with translocation of kinesin along microtubules (MTs) and/or as a cargo of kinesin by outcompeting other kinesin cargo. To discern between which of these mechanisms was more robust during axonal outgrowth, we overexpressed phosphomimetic (E18; which is incapable of MT binding), phospho-null (A18) or wild-type (WT) full-length human tau conjugated to EGFP, the latter two of which bind MTs. Expression of WT and A18 displayed increased acetylated MTs and resistance to colchicine, while expression of E18 did not, indicating that E18 did not contribute to MT stabilization. Expression of all tau constructs reduced overall levels of neurofilaments (NFs) within axonal neurites, and distribution of NFs along neurite lengths. Since NFs are another prominent cargo of kinesin during axonal neurite outgrowth, this finding is consistent with WT, A18 and E18 inhibiting NF transport to the same extent by competing as cargo of kinesin. These findings indicate that tau can impair axonal transport independently of association with MTs in growing axonal neurites.
Collapse
Affiliation(s)
- Edward F Boumil
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Rishel B Vohnoutka
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Sangmook Lee
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA 01854, USA
| |
Collapse
|
24
|
Kuznetsov IA, Kuznetsov AV. Modeling tau transport in the axon initial segment. Math Biosci 2020; 329:108468. [PMID: 32920097 DOI: 10.1016/j.mbs.2020.108468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
By assuming that tau protein can be in seven kinetic states, we developed a model of tau protein transport in the axon and in the axon initial segment (AIS). Two separate sets of kinetic constants were determined, one in the axon and the other in the AIS. This was done by fitting the model predictions in the axon with experimental results and by fitting the model predictions in the AIS with the assumed linear increase of the total tau concentration in the AIS. The calibrated model was used to make predictions about tau transport in the axon and in the AIS. To the best of our knowledge, this is the first paper that presents a mathematical model of tau transport in the AIS. Our modeling results suggest that binding of free tau to microtubules creates a negative gradient of free tau in the AIS. This leads to diffusion-driven tau transport from the soma into the AIS. The model further suggests that slow axonal transport and diffusion-driven transport of tau work together in the AIS, moving tau anterogradely. Our numerical results predict an interplay between these two mechanisms: as the distance from the soma increases, the diffusion-driven transport decreases, while motor-driven transport becomes larger. Thus, the machinery in the AIS works as a pump, moving tau into the axon.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
25
|
Agnello L, Gambino CM, Lo Sasso B, Bivona G, Milano S, Ciaccio AM, Piccoli T, La Bella V, Ciaccio M. Neurogranin as a Novel Biomarker in Alzheimer's Disease. Lab Med 2020; 52:188-196. [PMID: 32926148 DOI: 10.1093/labmed/lmaa062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In this study, we investigated the possible role of 2 novel biomarkers of synaptic damage, namely, neurogranin and α-synuclein, in Alzheimer disease (AD). METHODS The study was performed in a cohort consisting of patients with AD and those without AD, including individuals with other neurological diseases. Cerebrospinal fluid (CSF) neurogranin and α-synuclein levels were measured by sensitive enzyme-linked immunosorbent assays (ELISAs). RESULTS We found significantly increased levels of CSF neurogranin and α-synuclein in patients with AD than those without AD. Neurogranin was correlated with total tau (tTau) and phosphorylated tau (pTau), as well as with cognitive decline, in patients with AD. Receiver operating characteristic (ROC) curve analysis showed good diagnostic accuracy of neurogranin for AD at a cutoff point of 306 pg per mL with an area under the curve (AUC) of 0.872 and sensitivity and specificity of 84.2% and 78%, respectively. CONCLUSIONS Our findings support the use of CSF neurogranin as a biomarker of synapsis damage in patients with AD.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy.,Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy.,Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| | - Salvatore Milano
- Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| | | | - Tommaso Piccoli
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Neurology Unit, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Neurology Unit, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, Palermo, Italy.,Department of Laboratory Medicine, University Hospital "P. Giaccone," Palermo, Italy
| |
Collapse
|
26
|
Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, Jimenez S, Nuñez-Diaz C, Gomez-Arboledas A, Moreno-Gonzalez I, Vizuete M, Davila JC, Vitorica J, Gutierrez A. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep 2020; 10:14776. [PMID: 32901091 PMCID: PMC7479116 DOI: 10.1038/s41598-020-71767-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
In Alzheimer's disease (AD), and other tauopathies, microtubule destabilization compromises axonal and synaptic integrity contributing to neurodegeneration. These diseases are characterized by the intracellular accumulation of hyperphosphorylated tau leading to neurofibrillary pathology. AD brains also accumulate amyloid-beta (Aβ) deposits. However, the effect of microtubule stabilizing agents on Aβ pathology has not been assessed so far. Here we have evaluated the impact of the brain-penetrant microtubule-stabilizing agent Epothilone D (EpoD) in an amyloidogenic model of AD. Three-month-old APP/PS1 mice, before the pathology onset, were weekly injected with EpoD for 3 months. Treated mice showed significant decrease in the phospho-tau levels and, more interesting, in the intracellular and extracellular hippocampal Aβ accumulation, including the soluble oligomeric forms. Moreover, a significant cognitive improvement and amelioration of the synaptic and neuritic pathology was found. Remarkably, EpoD exerted a neuroprotective effect on SOM-interneurons, a highly AD-vulnerable GABAergic subpopulation. Therefore, our results suggested that EpoD improved microtubule dynamics and axonal transport in an AD-like context, reducing tau and Aβ levels and promoting neuronal and cognitive protection. These results underline the existence of a crosstalk between cytoskeleton pathology and the two major AD protein lesions. Therefore, microtubule stabilizers could be considered therapeutic agents to slow the progression of both tau and Aβ pathology.
Collapse
Affiliation(s)
- Juan Jose Fernandez-Valenzuela
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Clara Muñoz-Castro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Vanessa De Castro
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Elisabeth Sanchez-Mejias
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victoria Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Sebastian Jimenez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Nuñez-Diaz
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Jose Carlos Davila
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain.
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
27
|
Teravskis PJ, Ashe KH, Liao D. The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases? Neuroscientist 2020; 26:503-520. [PMID: 32389059 DOI: 10.1177/1073858420916696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasingly, research suggests that neurodegenerative diseases and dementias are caused not by unique, solitary cellular mechanisms, but by multiple contributory mechanisms manifesting as heterogeneous clinical presentations. However, diverse neurodegenerative diseases also share common pathological hallmarks and cellular mechanisms. One such mechanism involves the redistribution of the microtubule associated protein tau from the axon into the somatodendritic compartment of neurons, followed by the mislocalization of tau into dendritic spines, resulting in postsynaptic functional deficits. Here we review various signaling pathways that trigger the redistribution of tau to the cell body and dendritic tree, and its mislocalization to dendritic spines. The convergence of multiple pathways in different disease models onto this final common pathway suggests that it may be an attractive pathway to target for developing new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Budd Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020; 176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States.
| |
Collapse
|
29
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin-Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-β (Aβ) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aβ and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aβ; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.
Collapse
|
30
|
Pfutzenreuter G, Nieradka K, Pincerati MR, da Silva IS. Intracerebroventricular streptozotocin induces behavioral impairments and increases short-term C3 gene expression in the hippocampus of Wistar rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Sabharwal V, Koushika SP. Crowd Control: Effects of Physical Crowding on Cargo Movement in Healthy and Diseased Neurons. Front Cell Neurosci 2019; 13:470. [PMID: 31708745 PMCID: PMC6823667 DOI: 10.3389/fncel.2019.00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
High concentration of cytoskeletal filaments, organelles, and proteins along with the space constraints due to the axon's narrow geometry lead inevitably to intracellular physical crowding along the axon of a neuron. Local cargo movement is essential for maintaining steady cargo transport in the axon, and this may be impeded by physical crowding. Molecular motors that mediate active transport share movement mechanisms that allow them to bypass physical crowding present on microtubule tracks. Many neurodegenerative diseases, irrespective of how they are initiated, show increased physical crowding owing to the greater number of stalled organelles and structural changes associated with the cytoskeleton. Increased physical crowding may be a significant factor in slowing cargo transport to synapses, contributing to disease progression and culminating in the dying back of the neuronal process. This review explores the idea that physical crowding can impede cargo movement along the neuronal process. We examine the sources of physical crowding and strategies used by molecular motors that might enable cargo to circumvent physically crowded locations. Finally, we describe sub-cellular changes in neurodegenerative diseases that may alter physical crowding and discuss the implications of such changes on cargo movement.
Collapse
Affiliation(s)
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
32
|
Mroczko B, Groblewska M, Litman-Zawadzka A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer's Disease (AD). Int J Mol Sci 2019; 20:E4661. [PMID: 31547024 PMCID: PMC6802364 DOI: 10.3390/ijms20194661] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Although the causative role of the accumulation of amyloid β 1-42 (Aβ42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AβOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.
Collapse
Affiliation(s)
- Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
| |
Collapse
|
33
|
Ghalandari B, Asadollahi K, Shakerizadeh A, Komeili A, Riazi G, Kamrava SK, Attaran N. Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:131-140. [PMID: 30735954 DOI: 10.1016/j.jphotobiol.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/27/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Abstract
Photothermal therapy is achieving ever-increasing attention as a promising method for killing cancer cells. Although, gold nanoparticles are regarded as one of the most effective photothermal therapy agents, the mechanisms underlying their action have to be addressed. Moreover, studies have showed that gold nanoparticles induce apoptosis in treated cultures. Hence, in this study, we investigated the interaction of folic acid functionalized gold nanoparticles and gold-shelled Fe3O4 nanoparticles with microtubule and microtubule associated protein tau in order to introduce intracellular targets of these nanoparticles and provide a holistic view about the mechanism of action of gold nanoparticles used in photothermal therapy. Various spectroscopic methods were used to find gold nanoparticles interaction with Tubulin and Tau. Our results indicated that these gold nanoparticles interact with both Tau and Tubulin and their affinity increases as temperature rises. Also, the results illustrated that quenching mechanism for gold nanoparticles interaction with Tubulin and Tau was static. The hydrophobic interaction was determined as driving force for gold nanoparticles binding to Tubulin and Tau. Moreover, it was showed that both type of gold nanoparticles stabilize microtubule polymers. These results suggest Tau and Tubulin as intracellular target of gold nanoparticles and propose that microtubule network is at the heart of apoptosis mechanisms initiated by photothermal therapy.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Kazem Asadollahi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Shakerizadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Clinical Nanomedicine Laboratory, ENT and Head and Neck Surgery Research Center, RasoulAkram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Komeili
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Kamran Kamrava
- Clinical Nanomedicine Laboratory, ENT and Head and Neck Surgery Research Center, RasoulAkram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
34
|
Kuznetsov IA, Kuznetsov AV. Investigating sensitivity coefficients characterizing the response of a model of tau protein transport in an axon to model parameters. Comput Methods Biomech Biomed Engin 2018; 22:71-83. [PMID: 30580604 DOI: 10.1080/10255842.2018.1534233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Evaluating the sensitivity of biological models to various model parameters is a critical step towards advancing our understanding of biological systems. In this paper, we investigated sensitivity coefficients for a model simulating transport of tau protein along the axon. This is an important problem due to the relevance of tau transport and agglomeration to Alzheimer's disease and other tauopathies, such as some forms of parkinsonism. The sensitivity coefficients that we obtained characterize how strongly three observables (the tau concentration, average tau velocity, and the percentage of tau bound to microtubules) depend on model parameters. The fact that the observables strongly depend on a parameter characterizing tau transition from the retrograde to the anterograde kinetic states suggests the importance of motor-driven transport of tau. The observables are sensitive to kinetic constants characterizing tau concentration in the free (cytosolic) state only at small distances from the soma. Cytosolic tau can only be transported by diffusion, suggesting that diffusion-driven transport of tau only plays a role in the proximal axon. Our analysis also shows the location in the axon in which an observable has the greatest sensitivity to a certain parameter. For most parameters, this location is in the proximal axon. This could be useful for designing an experiment aimed at determining the value of this parameter. We also analyzed sensitivity of the average tau velocity, the total tau concentration, and the percentage of microtubule-bound tau to cytosolic diffusivity of tau and diffusivity of bound tau along the MT lattice. The model predicts that at small distances from the soma the effect of these two diffusion processes is comparable.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- a Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA.,b Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| | - Andrey V Kuznetsov
- c Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
35
|
Kuznetsov IA, Kuznetsov AV. Simulating the effect of formation of amyloid plaques on aggregation of tau protein. Proc Math Phys Eng Sci 2018; 474:20180511. [PMID: 30602936 PMCID: PMC6304026 DOI: 10.1098/rspa.2018.0511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
In this paper, we develop a mathematical model that enables the investigation of the production and intracellular transport of amyloid precursor protein (APP) and tau protein in a neuron. We also investigate the aggregation of APP fragments into amyloid-β (Aβ) as well as tau aggregation into tau oligomers and neurofibrillary tangles. Using the developed model, we investigate how Aβ aggregation can influence tau transport and aggregation in both the soma and the axon. We couple the Aβ and tau agglomeration processes by assuming that the value of the kinetic constant that describes the autocatalytic growth (self-replication) reaction step of tau aggregation is proportional to the Aβ concentration. The model predicts that APP and tau are distributed differently in the axon. While APP has a uniform distribution along the axon, tau's concentration first decreases and then increases towards the synapse. Aβ is uniformly produced along the axon while misfolded tau protein is mostly produced in the proximal axon. The number of Aβ and tau polymers originating from the axon is much smaller than the number of Aβ and tau polymers originating from the soma. The rate of production of misfolded tau polymers depends on how strongly their production is facilitated by Aβ.
Collapse
Affiliation(s)
- I. A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A. V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
| |
Collapse
|
36
|
Rao SS, Adlard PA. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front Mol Neurosci 2018; 11:276. [PMID: 30174587 PMCID: PMC6108061 DOI: 10.3389/fnmol.2018.00276] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer’s disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.
Collapse
Affiliation(s)
- Shalini S Rao
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Anthony Adlard
- Division of Mental Health, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Pérez MJ, Jara C, Quintanilla RA. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front Neurosci 2018; 12:441. [PMID: 30026680 PMCID: PMC6041396 DOI: 10.3389/fnins.2018.00441] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Tau is an essential protein that physiologically promotes the assembly and stabilization of microtubules, and participates in neuronal development, axonal transport, and neuronal polarity. However, in a number of neurodegenerative diseases, including Alzheimer’s disease (AD), tau undergoes pathological modifications in which soluble tau assembles into insoluble filaments, leading to synaptic failure and neurodegeneration. Mitochondria are responsible for energy supply, detoxification, and communication in brain cells, and important evidence suggests that mitochondrial failure could have a pivotal role in the pathogenesis of AD. In this context, our group and others investigated the negative effects of tau pathology on specific neuronal functions. In particular, we observed that the presence of these tau forms could affect mitochondrial function at three different levels: (i) mitochondrial transport, (ii) morphology, and (iii) bioenergetics. Therefore, mitochondrial dysfunction mediated by anomalous tau modifications represents a novel mechanism by which these forms contribute to the pathogenesis of AD. In this review, we will discuss the main results reported on pathological tau modifications and their effects on mitochondrial function and their importance for the synaptic communication and neurodegeneration.
Collapse
Affiliation(s)
- María J Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
38
|
|
39
|
Park HJ, Lee KW, Oh S, Yan R, Zhang J, Beach TG, Adler CH, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM. Protein Phosphatase 2A and Its Methylation Modulating Enzymes LCMT-1 and PME-1 Are Dysregulated in Tauopathies of Progressive Supranuclear Palsy and Alzheimer Disease. J Neuropathol Exp Neurol 2018; 77:139-148. [PMID: 29281045 PMCID: PMC6251692 DOI: 10.1093/jnen/nlx110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hyperphosphorylated tau aggregates are characteristic of tauopathies including progressive supranuclear palsy (PSP) and Alzheimer disease (AD), but factors contributing to pathologic tau phosphorylation are not well understood. Here, we studied the regulation of the major tau phosphatase, the heterotrimeric AB55αC protein phosphatase 2 A (PP2A), in PSP and AD. The assembly and activity of this PP2A isoform are regulated by reversible carboxyl methylation of its catalytic C subunit, while the B subunit confers substrate specificity. We sought to address whether the decreases in PP2A methylation and its methylating enzyme, leucine carboxyl methyltransferase (LCMT-1), which are reported in AD, relate to tau pathology or to concomitant amyloid pathology by comparing them in the relatively pure tauopathy PSP. Immunohistochemical analysis of frontal cortices showed that methyl-PP2A is reduced while demethyl-PP2A is increased, with no changes in total PP2A or B55α subunit, resulting in a reduction in the methyl/demethyl PP2A ratio of 63% in PSP and 75% in AD compared to controls. Similarly, Western blot analyses showed a decrease of methyl-PP2A and an increase of demethyl-PP2A with a concomitant reduction in the methyl/demethyl PP2A ratio in both PSP (74%) and AD (76%) brains. This was associated with a decrease in LCMT-1 and an increase in the demethylating enzyme, protein phosphatase methylesterase (PME-1), in both diseases. These findings suggest that PP2A dysregulation in tauopathies may contribute to the accumulation of hyperphosphorylated tau and to neurodegeneration.
Collapse
Affiliation(s)
- Hye-Jin Park
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers—Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Kang-Woo Lee
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers—Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Stephanie Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers—Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Run Yan
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers—Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Jie Zhang
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers—Robert Wood Johnson Medical School, Piscataway, New Jersey
| | | | | | | | | | - Jeffry B Stock
- Signum Biosciences, Princeton, New Jersey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers—Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
40
|
Kuznetsov IA, Kuznetsov AV. How the formation of amyloid plaques and neurofibrillary tangles may be related: a mathematical modelling study. Proc Math Phys Eng Sci 2018; 474:20170777. [PMID: 29507520 PMCID: PMC5832841 DOI: 10.1098/rspa.2017.0777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
We develop a mathematical model that enables us to investigate possible mechanisms by which two primary markers of Alzheimer's disease (AD), extracellular amyloid plaques and intracellular tangles, may be related. Our model investigates the possibility that the decay of anterograde axonal transport of amyloid precursor protein (APP), caused by toxic tau aggregates, leads to decreased APP transport towards the synapse and APP accumulation in the soma. The developed model thus couples three processes: (i) slow axonal transport of tau, (ii) tau misfolding and agglomeration, which we simulated by using the Finke-Watzky model and (iii) fast axonal transport of APP. Because the timescale for tau agglomeration is much larger than that for tau transport, we suggest using the quasi-steady-state approximation for formulating and solving the governing equations for these three processes. Our results suggest that misfolded tau most likely accumulates in the beginning of the axon. The analysis of APP transport suggests that APP will also likely accumulate in the beginning of the axon, causing an increased APP concentration in this region, which could be interpreted as a 'traffic jam'. The APP flux towards the synapse is significantly reduced by tau misfolding, but not due to the APP traffic jam, which can be viewed as a symptom, but rather due to the reduced affinity of kinesin-1 motors to APP-transporting vesicles.
Collapse
Affiliation(s)
- I. A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A. V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695–7910, USA
| |
Collapse
|
41
|
Rafiee S, Asadollahi K, Riazi G, Ahmadian S, Saboury AA. Vitamin B12 Inhibits Tau Fibrillization via Binding to Cysteine Residues of Tau. ACS Chem Neurosci 2017; 8:2676-2682. [PMID: 28841372 DOI: 10.1021/acschemneuro.7b00230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two mechanisms underlie the inhibitory/acceleratory action of chemical compounds on tau aggregation including the regulation of cellular kinases and phosphatases activity and direct binding to tau protein. Vitamin B12 is one of the tau polymerization inhibitors, and its deficiency is linked to inactivation of protein phosphatase 2A and subsequently hyperphosphorylation and aggregation of tau protein. Regarding the structure and function of vitamin B12 and tau protein, we assumed that vitamin B12 is also able to directly bind to tau protein. Hence, we investigated the interaction of vitamin B12 with tau protein in vitro using fluorometry and circular dichrosim. Interaction studies was followed by investigation into the effect of vitamin B12 on tau aggregation using ThT fluorescence, circular dichroism, transmission electron microscopy, and SDS-PAGE. The results indicated that vitamin B12 interacts with tau protein and prevents fibrillization of tau protein. Blocking the cysteine residues of tau confirmed the cysteine-mediated binding of vitamin B12 to tau and showed that binding to cysteine is essential for inhibitory effect of vitamin B12 on tau aggregation. SDS-PAGE analysis indicated that vitamin B12 inhibits tau aggregation and that tau oligomers formed in the presence of vitamin B12 are mostly SDS-soluble. We propose that direct binding of vitamin B12 is another mechanism underlying the inhibitory role of vitamin B12 on tau aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Saharnaz Rafiee
- Institute of Biochemistry and Biophysics
(IBB), University of Tehran, Tehran, Iran
| | - Kazem Asadollahi
- Institute of Biochemistry and Biophysics
(IBB), University of Tehran, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics
(IBB), University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics
(IBB), University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics
(IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
42
|
Landrock KK, Sullivan P, Martini-Stoica H, Goldstein DS, Graham BH, Yamamoto S, Bellen HJ, Gibbs RA, Chen R, D'Amelio M, Stoica G. Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat Model. Brain Res 2017; 1679:155-170. [PMID: 29217155 DOI: 10.1016/j.brainres.2017.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
Abstract
In this study, we analyze the neuropathological and biochemical alterations involved in the pathogenesis of a neurodegenerative/movement disorder during different developmental stages in juvenile rats with a mutant Myosin5a (Myo5a). In mutant rats, a spontaneous autosomal recessive mutation characterized by the absence of Myo5a protein expression in the brain is associated with a syndrome of locomotor dysfunction, altered coat color, and neuroendocrine abnormalities. Myo5a encodes a myosin motor protein required for transport and proper distribution of subcellular organelles in somatodendritic processes in neurons. Here we report marked hyperphosphorylation of alpha-synuclein and tau, as well as region-specific buildup of the autotoxic dopamine metabolite, 3,4-dihydroxyphenyl-acetaldehyde (DOPAL), related to decreased aldehyde dehydrogenases activity and neurodegeneration in mutant rats. Alpha-synuclein accumulation in mitochondria of dopaminergic neurons is associated with impaired enzymatic respiratory complex I and IV activity. The behavioral and biochemical lesions progress after 15 days postnatal, and by 30-40 days the animals must be euthanized because of neurological impairment. Based on the obtained results, we propose a pleiotropic pathogenesis that links the Myo5a gene mutation to deficient neuronal development and progressive neurodegeneration. This potential model of a neurodevelopmental disorder with neurodegeneration and motor deficits may provide further insight into molecular motors and their associated proteins responsible for altered neurogenesis and neuronal disease pathogenesis.
Collapse
Affiliation(s)
- Kerstin K Landrock
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| | - Patti Sullivan
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Heidi Martini-Stoica
- Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - David S Goldstein
- Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Marcello D'Amelio
- University Campus Bio-Medico, Department of Medicine, Unit of Molecular Neurosciences, Rome, Italy.
| | - George Stoica
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
43
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
44
|
Kuznetsov IA, Kuznetsov AV. What mechanisms of tau protein transport could be responsible for the inverted tau concentration gradient in degenerating axons? MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 34:125-150. [PMID: 27034421 DOI: 10.1093/imammb/dqv041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 11/30/2015] [Indexed: 12/27/2022]
Abstract
In tauopathies, such as Alzheimer's disease (AD), microtubule (MT)-associated protein tau detaches from MTs and aggregates, eventually forming insoluble neurofibrillary tangles. In a healthy axon, the tau concentration increases toward the axon terminal, but in a degenerating axon, the tau concentration gradient is inverted and the highest tau concentration is in the soma. In this article, we developed a mathematical model of tau transport in axons. We calibrated and tested the model by using published distributions of tau concentration and tau average velocity in a healthy axon. According to published research, the inverted tau concentration gradient may be one of the reasons leading to AD. We therefore used the model to investigate what modifications in tau transport can lead to the inverted tau concentration gradient. We investigated whether tau detachment from MTs due to tau hyperphosphorylation can cause the inverted tau concentration gradient. We found that the assumption that most tau molecules are detached from MTs does not consistently predict the inverted tau concentration gradient; the predicted tau distribution becomes more uniform if the axon length is increased. We then hypothesized that in degenerating axons some tau remains bound to MTs and participates in the component 'a' of slow axonal transport but that the rate of tau reversals from anterograde to retrograde motion increases. We demonstrated that this hypothesis results in a tau distribution where the tau concentration has its maximum value at the axon hillock and its minimum value at the axon terminal, in agreement with what is observed in AD. Our results thus suggest that defects in active transport of tau may be a contributing factor to the onset of neural degeneration.
Collapse
|
45
|
Siedlak SL, Jiang Y, Huntley ML, Wang L, Gao J, Xie F, Liu J, Su B, Perry G, Wang X. TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer’s Disease. J Alzheimers Dis 2017; 58:1027-1033. [DOI: 10.3233/jad-170190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Yinfei Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mikayla L. Huntley
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Fei Xie
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jingyi Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Bo Su
- Department of Neurobiology, Shandong University, Shandong Sheng, China
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
46
|
Milenkovic I, Jarc J, Dassler E, Aronica E, Iyer A, Adle-Biassette H, Scharrer A, Reischer T, Hainfellner JA, Kovacs GG. The physiological phosphorylation of tau is critically changed in fetal brains of individuals with Down syndrome. Neuropathol Appl Neurobiol 2017; 44:314-327. [PMID: 28455903 DOI: 10.1111/nan.12406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/17/2017] [Accepted: 04/15/2017] [Indexed: 01/15/2023]
Abstract
AIMS Down syndrome (DS) is a common cause of mental retardation accompanied by cognitive impairment. Comprehensive studies suggested a link between development and ageing, as nearly all individuals with DS develop Alzheimer disease (AD)-like pathology. However, there is still a paucity of data on tau in early DS to support this notion. METHODS Using morphometric immunohistochemistry we compared tau phosphorylation in normal brains and in brains of individuals with DS from early development until early postnatal life. RESULTS We observed in DS a critical loss of physiological phosphorylation of tau. Rhombencephalic structures showed prominent differences between controls and DS using antibodies AT8 (Ser-202/Thr-205) and AT180 (Thr-231). In contrast, in the subiculum only a small portion of controls deviated from DS using antibodies AT100 (Thr-212/Ser-214) and AT270 (Thr-181). With exception of the subiculum, phosphorylation-independent tau did not differ between groups, as confirmed by immunostaining for the HT-7 antibody (epitope between 159 and 163 of the human tau) as well. DISCUSSION Our observations suggest functional tau disturbance in DS brains during development, rather than axonal loss. This supports the role of tau as a further important player in the pathophysiology of cognitive impairment in DS and related AD.
Collapse
Affiliation(s)
- I Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - J Jarc
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - E Dassler
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.,SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - A Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - H Adle-Biassette
- Inserm U1141, Paris, France.,Univ Paris Diderot, Sorbonne Paris Cité, UMRS 676, Paris, France.,Lariboisière Hospital, APHP, Paris, France
| | - A Scharrer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - T Reischer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - J A Hainfellner
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| | - G G Kovacs
- Institute of Neurology, Neurodegeneration Research Group, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Kuznetsov IA, Kuznetsov AV. Simulating tubulin-associated unit transport in an axon: using bootstrapping for estimating confidence intervals of best-fit parameter values obtained from indirect experimental data. Proc Math Phys Eng Sci 2017; 473:20170045. [PMID: 28588409 DOI: 10.1098/rspa.2017.0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
In this paper, we first develop a model of axonal transport of tubulin-associated unit (tau) protein. We determine the minimum number of parameters necessary to reproduce published experimental results, reducing the number of parameters from 18 in the full model to eight in the simplified model. We then address the following questions: Is it possible to estimate parameter values for this model using the very limited amount of published experimental data? Furthermore, is it possible to estimate confidence intervals for the determined parameters? The idea that is explored in this paper is based on using bootstrapping. Model parameters were estimated by minimizing the objective function that simulates the discrepancy between the model predictions and experimental data. Residuals were then identified by calculating the differences between the experimental data and model predictions. New, surrogate 'experimental' data were generated by randomly resampling residuals. By finding sets of best-fit parameters for a large number of surrogate data the histograms for the model parameters were produced. These histograms were then used to estimate confidence intervals for the model parameters, by using the percentile bootstrap. Once the model was calibrated, we applied it to analysing some features of tau transport that are not accessible to current experimental techniques.
Collapse
Affiliation(s)
- I A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
| |
Collapse
|
48
|
Helboe L, Egebjerg J, Barkholt P, Volbracht C. Early depletion of CA1 neurons and late neurodegeneration in a mouse tauopathy model. Brain Res 2017; 1665:22-35. [PMID: 28411086 DOI: 10.1016/j.brainres.2017.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) and tauopathies, such as frontotemporal dementia (FTD), are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau. Further neuropathological characteristics include synaptic loss, neurodegeneration and brain atrophy. Here, we explored the association between hyperphosphorylated tau species, brain atrophy, synaptic and neuronal loss in a mouse model (rTg4510) carrying the human tau (hTau) P301L mutation found in a familiar form of FTD. We established that hTau expression during the first 6 postnatal weeks was important for the progression of tauopathy in rTg4510 mice. Short term suppression of postnatal hTau expression delayed the onset of tau pathology by approximately 6months in this model. Early postnatal hTau expression was detrimental to CA1 neurons of the hippocampus and reduced neuronal numbers in 6-10weeks young rTg4510 mice prior to the appearance of hyperphosphorylated hTau species in the hippocampus. Hyperphosphorylated hTau species emerged from 10 to 24weeks of age and were associated with increased ubiquitin levels, gliosis, and brain atrophy and preceded the synaptic loss and CA1 neurodegeneration that occurred at 48weeks of age. We present two consequences of hTau expression in CA1 in rTg4510 mice: an early decrease in neuron number already established prior to the presence of hyperphosphorylated tau species and a later neurodegeneration dependent on hyperphosphorylated tau. Neurodegeneration and synaptic protein loss were completely prevented when hTau expression was suppressed prior to the appearance of hyperphosphorylated tau species. Suppression of hTau expression after the onset of tau hyperphosphorylation and tangle pathology initiated at 16weeks partially rescued neuronal loss at 48weeks of age, while a reduction of neurodegeneration was no longer possible when hTau suppression was introduced as late as at 24weeks of age. Our results in rTg4510 mice argue that it is promising to lower hyperphosphorylated tau species at early stages of tau pathology to protect from neurodegeneration.
Collapse
Affiliation(s)
- Lone Helboe
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Jan Egebjerg
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | | | - Christiane Volbracht
- Department of Neurodegeneration, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark.
| |
Collapse
|
49
|
Buccarello L, Grignaschi G, Castaldo AM, Di Giancamillo A, Domeneghini C, Melcangi RC, Borsello T. Sex Impact on Tau-Aggregation and Postsynaptic Protein Levels in the P301L Mouse Model of Tauopathy. J Alzheimers Dis 2017; 56:1279-1292. [DOI: 10.3233/jad-161087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lucia Buccarello
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Italy
| | - Giuliano Grignaschi
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Anna Maria Castaldo
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Biomedical Sciences for Health, Universitá degli Studi di Milano, Italy
| | - Alessia Di Giancamillo
- Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Italy
| | - Cinzia Domeneghini
- Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Universitá degli Studi di Milano, Italy
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Universitá degli Studi di Milano, Italy
| |
Collapse
|
50
|
Wilson GN, Smith MA, Inman DM, Dengler-Crish CM, Crish SD. Early Cytoskeletal Protein Modifications Precede Overt Structural Degeneration in the DBA/2J Mouse Model of Glaucoma. Front Neurosci 2016; 10:494. [PMID: 27857681 PMCID: PMC5093131 DOI: 10.3389/fnins.2016.00494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins, and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau), calpain-mediated spectrin breakdown product (145/150 kDa), β–tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC; the main retinal target in mice). Phosphorylated neurofilament-heavy chain (pNF-H) was elevated within the optic nerve (ON) and SC of 8–10 month-old DBA/2J mice, but was not evident in the retina until 12–15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau) occurred in ON and SC between 3 and 8 month of age while retinal ptau accumulations occurred at 12–15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein dynactin. We observed a transport-related decrease of β-tubulin in ON of 10–12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport-independent elevations of amyloid-β42, unlike pNF-H or ptau, occurred first in the retina of DBA/2J mice, and then progressed to SC. These data demonstrate distal-to-proximal progression of cytoskeletal modifications in the progression of glaucoma, with many of these changes occurring prior to complete loss of functional transport and axon degeneration. The earliest changes, such as elevated spectrin breakdown and amyloid-β levels, may make retinal ganglion cells susceptible to future stressors. As such, targeting modification of the axonal cytoskeleton in glaucoma may provide unique opportunities to slow disease progression.
Collapse
Affiliation(s)
- Gina N Wilson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA; School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical UniversityRootstown, OH, USA; Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical UniversityRootstown, OH, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| | | | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|