1
|
Jayaraman S, Urdaneta A, Fandrich M, Gursky O. Serum Amyloid A Binding to Glycosaminoglycans is Synergistic with Amyloid Formation: Therapeutic Targeting in the Inflammation-linked Amyloidosis. J Mol Biol 2025; 437:169007. [PMID: 39954777 DOI: 10.1016/j.jmb.2025.169007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Serum amyloid A (SAA), a small lipophilic plasma protein elevated in inflammation, is a precursor of amyloid A (AA) amyloidosis, the major life-threatening complication of chronic inflammation in animals and humans. Although heparan sulfate (HS) is a potent amyloid agonist, particularly in AA amyloidosis, therapeutic targeting of SAA-HS interactions using a small-molecule HS/heparin decoy was unsuccessful. To understand molecular underpinnings, we used recombinant lipid-free human and murine SAA1 and human SAA2 to explore their interactions with various glycosaminoglycans at pH 5.5-7.4 during amyloid formation, from native protein to amyloid oligomers and fibrils. Effects of pH and glycosaminoglycan sulfation/charge supported by prior computational studies indicate electrostatic origin of SAA-glycosaminoglycan interactions. HS/heparin can promote amyloidogenesis by inducing non-native β-sheet and apparently causing liquid droplet formation in SAA in solution. Structural and binding studies by spectroscopy and ELISA reveal previously unknown synergy between amyloid formation and heparin/HS binding by SAA. We propose that this synergy potentially extends to other protein amyloids and stems from longitudinal binding of HS polyanions to basic residue arrays on amyloid oligomers or fibrils. This binding mode explains our finding that a minimal heparin chain length exceeding 20 monosaccharides is necessary to compete with HS for binding to amyloid oligomers. The results help explain prior failure of a small-molecule drug in targeting of SAA-HS interactions and consider alternative HS-targeting approaches for AA and, potentially, other amyloid diseases.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston MA, USA.
| | - Angela Urdaneta
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston MA, USA
| | - Marcus Fandrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston MA, USA
| |
Collapse
|
2
|
Abraham CB, Lewkowicz E, Gursky O, Straub JE. Elucidating the Mechanism of Recognition and Binding of Heparin to Amyloid Fibrils of Serum Amyloid A. Biochemistry 2024. [PMID: 39688935 DOI: 10.1021/acs.biochem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Amyloid diseases feature pathologic deposition of normally soluble proteins and peptides as insoluble fibrils in vital organs. Amyloid fibrils co-deposit with various nonfibrillar components including heparan sulfate (HS), a glycosaminoglycan that promotes amyloid formation in vitro for many unrelated proteins. HS-amyloid interactions have been proposed as a therapeutic target for inflammation-linked amyloidosis wherein N-terminal fragments of serum amyloid A (SAA) protein deposit in the kidney and liver. The structural basis for these interactions is unclear. Here, we exploit the high-resolution cryoelectron microscopy (cryo-EM) structures of ex vivo murine and human SAA fibrils in a computational study employing molecular docking, Brownian dynamics simulations, and molecular dynamics simulations to elucidate how heparin, a highly sulfated HS mimetic, recognizes and binds to amyloid protein fibrils. Our results demonstrate that negatively charged heparin chains bind to linear arrays of uncompensated positively charged basic residues along the spines of amyloid fibrils facilitated by electrostatic steering. The predicted heparin binding sites match the location of unidentified densities observed in cryo-EM maps of SAA amyloids, suggesting that these extra densities represent bound HS. Since HS is constitutively found in various amyloid deposits, our results suggest a common mechanism for HS-amyloid recognition and binding.
Collapse
Affiliation(s)
- Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Lauth LM, Voigt B, Bhatia T, Machner L, Balbach J, Ott M. Heparin promotes rapid fibrillation of the basic Parathyroid Hormone at physiological pH. FEBS Lett 2022; 596:2928-2939. [PMID: 35903816 DOI: 10.1002/1873-3468.14455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
In acidic secretory granules of mammalian cells, peptide hormones including the parathyroid hormone (PTH) are presumably stored in the form of functional amyloid fibrils. Mature PTH, however, is considerably positively charged in acidic environments, a condition known to impede unassisted self-aggregation into fibrils. Here, we studied the role of the polyanion heparin on promoting fibril formation of PTH. Employing ITC, CD spectroscopy, NMR, SAXS and fluorescence-based assays we could demonstrate that heparin binds PTH with submicromolar affinity and facilitates its conversion into fibrillar seeds, enabling rapid formation of amyloid fibrils under acidic conditions. In absence of heparin, PTH remained in a soluble monomeric state. We suspect that heparin-like surfaces are required in vivo to convert PTH efficiently into fibrillar deposits.
Collapse
Affiliation(s)
- Luca M Lauth
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bruno Voigt
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Twinkle Bhatia
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Lisa Machner
- Department of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jochen Balbach
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Maria Ott
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Zhang X, Liu X, Su G, Li M, Liu J, Wang C, Xu D. pH-dependent and dynamic interactions of cystatin C with heparan sulfate. Commun Biol 2021; 4:198. [PMID: 33580179 PMCID: PMC7881039 DOI: 10.1038/s42003-021-01737-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Cystatin C (Cst-3) is a potent inhibitor of cysteine proteases with diverse biological functions. As a secreted protein, the potential interaction between Cst-3 and extracellular matrix components has not been well studied. Here we investigated the interaction between Cst-3 and heparan sulfate (HS), a major component of extracellular matrix. We discovered that Cst-3 is a HS-binding protein only at acidic pH. By NMR and site-directed mutagenesis, we identified two HS binding regions in Cst-3: the highly dynamic N-terminal segment and a flexible region located between residue 70-94. The composition of the HS-binding site by two highly dynamic halves is unique in known HS-binding proteins. We further discovered that HS-binding severely impairs the inhibitory activity of Cst-3 towards papain, suggesting the interaction could actively regulate Cst-3 activity. Using murine bone tissues, we showed that Cst-3 interacts with bone matrix HS at low pH, again highlighting the physiological relevance of our discovery.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, USA
| | - Xinyue Liu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Guowei Su
- Division of Chemical Biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, USA
| | - Miaomiao Li
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, USA
| | - Jian Liu
- Division of Chemical Biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, USA
| | - Chunyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Ding Xu
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
Ahanger I, Parray ZA, Nasreen K, Ahmad F, Hassan MI, Islam A, Sharma A. Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS OMEGA 2021; 6:2328-2339. [PMID: 33521471 PMCID: PMC7841943 DOI: 10.1021/acsomega.0c05638] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Heparin is one of the members of the glycosaminoglycan (GAG) family, which has been associated with protein aggregation diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. Here, we investigate heparin-induced aggregation of bovine serum albumin (BSA) using different spectroscopic techniques [absorption, 8-anilino-1-naphthalene sulfonic acid (ANS) and thioflavin T (ThT) fluorescence binding, and far- and near-UV circular dichroism]. Kinetic measurements revealed that heparin is involved in the significant enhancement of aggregation of BSA. The outcomes showed dearth of the lag phase and a considerable change in rate constant, which provides conclusive evidence, that is, heparin-induced BSA aggregation involves the pathway of the downhill polymerization mechanism. Heparin also causes enhancement of fluorescence intensity of BSA significantly. Moreover, heparin was observed to form amyloids and amorphous aggregates of BSA which were confirmed by ThT and ANS fluorescence, respectively. Circular dichroism measurements exhibit a considerable change in the secondary and tertiary structure of the protein due to heparin. In addition, binding studies of heparin with BSA to know the cause of aggregation, isothermal titration calorimetry measurements were exploited, from which heparin was observed to promote the aggregation of BSA by virtue of electrostatic interactions between positively charged amino acid residues of protein and negatively charged groups of GAG. The nature of binding of heparin with BSA is very much apparent with an appreciable heat of interaction and is largely exothermic in nature. Moreover, the Gibbs free energy change (ΔG) is negative, which indicates spontaneous nature of binding, and the enthalpy change (ΔH) and entropy change (ΔS) are also largely negative, which suggest that the interaction is driven by hydrogen bonding.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Ahanger
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khalida Nasreen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anurag Sharma
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
| |
Collapse
|
6
|
Chandrasekhar G, Rajasekaran R. Investigating the pernicious effects of heparan sulfate in serum amyloid A1 protein aggregation: a structural bioinformatics approach. J Biomol Struct Dyn 2020; 40:1776-1790. [PMID: 33050843 DOI: 10.1080/07391102.2020.1833756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid-A mediated (AA) amyloidosis is the pathogenic byproduct of body's prolonged exposure to inflammatory conditions. It is described by the aggregation of mutated/misfolded serum amyloid A1 (SAA1) protein in various tissues and organs. Genetic polymorphism G90D is suspected to cause AA amyloidosis, although the causal mechanism remains cryptic. Recent experimental findings insinuate that heparan sulphate (HS), a glycosaminoglycans, exhibits binding with SAA1 to promote its aggregation. To foster the enhanced binding of HS, we computationally determined the pernicious modifications in G90D mutant SAA1 protein. Also, we examined the influence of HS on the dynamic conformation of mutant SAA1 that could potentially succor amyloidosis. Accordingly, the protein-ligand binding studies indicate that upon SNP G90D, SAA1 protein exhibited an augmented association with HS. Further, the simulation of HS bound mutant SAA1 complex delineates an increase in RMSD, Rg, and RMSF. Also, both RMSD and Rg evinced a fluctuating trajectory. Further, the complex showed increase of beta turn in its secondary structural composition. Additionally, the free energy landscape of mutant SAA1-HS complex posits the occurrence of multiple global minima conformers as opposed to the presence of a single global energy minima conformation in native SAA1 protein. In conclusion, the aforementioned conformational ramifications induced by HS on SAA1 could potentially be the proteopathic incendiary behind AA amyloidosis; this incendiary will need to be considered in future studies for developing effective therapeutics against AA amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Skibiszewska S, Żaczek S, Dybala-Defratyka A, Jędrzejewska K, Jankowska E. Influence of short peptides with aromatic amino acid residues on aggregation properties of serum amyloid A and its fragments. Arch Biochem Biophys 2020; 681:108264. [PMID: 31945312 DOI: 10.1016/j.abb.2020.108264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022]
Abstract
Serum amyloid A variant 1.1 (SAA1.1) is an acute phase protein. In response to injury, inflammation or infection its production increases highly, which may lead to aggregation of the protein and accumulation of its deposits in various organs. Due to the cellular toxicity of the aggregates, as well as the fact that accumulated deposits are a burden that obstructs proper functioning of the affected tissues, it is vital to find a way to suppress the process of pathological aggregates formation. To make this possible, it is necessary to investigate thoroughly the oligomerization process and recognize factors that may influence its course. Some previous studies showed that aromatic interactions are important to the potential of an inhibitor to suppress the aggregation process. In our research we had proved that a five-residue peptide RSFFS (saa1-5) is an efficient inhibitor of aggregation of the most amyloidogenic fragment of SAA1.1, SAA1-12. In the present work the oligomerization and aggregation propensity of SAA1-12 was compared to that of SAA1-27, in order to determine the contribution of the sequence which extends beyond the most amyloidogenic region but encompasses residues reportedly involved in the stabilization of the SAA native conformation. Thioflavin T fluorescence assay, quantitative chromatographic analysis of the insoluble fraction and transmission electron microscopy allowed for a deeper insight into the SAA aggregation process and the morphology of aggregates. Substitutions of Phe3 and/or Phe4 residues in saa1-5 sequence with tryptophan, tyrosine, homophenylalanine, naphthylalanine and β,β-diphenylalanine allowed to study the influence of different aromatic systems on the aggregation of SAA1-12 and SAA1-27, and evaluate these results in relation to hSAA1.1 protein. Our results indicate that compounds with aromatic moieties can affect the course of the aggregation process and change the ratio between the soluble and insoluble aggregates.
Collapse
Affiliation(s)
- Sandra Skibiszewska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Katarzyna Jędrzejewska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
8
|
Santoro D, Postorino A, Lucanto C, Costa S, Cristadoro S, Pellegrino S, Conti G, Buemi M, Magazzù G, Bellinghieri G. Cystic Fibrosis: A Risk Condition for Renal Disease. J Ren Nutr 2018; 27:470-473. [PMID: 29056168 DOI: 10.1053/j.jrn.2017.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Cystic fibrosis (CF) is the most common autosomal recessive disease affecting the Caucasian population, with a birth incidence ranging between 1:2,500 and 1:1,800. It is caused by mutations in the CF transmembrane regulator gene which is localized on 7 chromosomes. Renal disease is reported as a relatively rare complication in adult patient with CF. We evaluated proteinuria and chronic renal failure (CRF) in a population of patients with CF. METHODS A retrospective study was carried out in a referral center for CF at University of Messina in Italy. We identified all patients with renal disease, characterized by proteinuria and/or CRF, during the period 2007 to 2012 and reviewed their medical records to assess influence on renal disease of genotype, number of pulmonary exacerbation, pancreatic insufficiency, pulmonary function, CF-related diabetes, and antibiotics courses. RESULTS From a population of 77 adult patients with CF, we identified 9 patients with proteinuria (11.7%), and 11 patients (14.28%) with CRF. Mean age was 35.6 (+5.1 standard deviation) years, 55% were female and 33% had diabetes mellitus. Renal biopsy was performed in 3 patients because of nephrotic syndrome in 1 patient and proteinuria with renal failure in the other 2 patients. Renal amyloidosis was disclosed in 2, whereas IgA nephropathy in 1 patient. The ΔF508 mutation in homozygosis was present in 44% of patients with proteinuria (vs. 27% of our CF population, relative risk 2.07), whereas genotype ΔF508/N1303K in 22%. ΔF508 allele mutation was present in 77.7% of proteinuric patients. CONCLUSIONS Our study shows a higher prevalence of renal disease in patients with CF, than was previously described. The main reason may be related to increased life expectancy because of better management. Moreover, patients with ΔF508 homozygosis had higher risk of proteinuria.
Collapse
Affiliation(s)
- Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University Hospital AOU G. Martino, Messina, Italy.
| | - Adele Postorino
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University Hospital AOU G. Martino, Messina, Italy
| | - Cristina Lucanto
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, Unit of Pediatric Nephrology, University Hospital AOU G. Martino, Messina, Italy
| | - Stefano Costa
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, Unit of Pediatric Nephrology, University Hospital AOU G. Martino, Messina, Italy
| | - Simona Cristadoro
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, Unit of Pediatric Nephrology, University Hospital AOU G. Martino, Messina, Italy
| | - Salvatore Pellegrino
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, Unit of Pediatric Nephrology, University Hospital AOU G. Martino, Messina, Italy
| | - Giovanni Conti
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, Unit of Pediatric Nephrology, University Hospital AOU G. Martino, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University Hospital AOU G. Martino, Messina, Italy
| | - Giuseppe Magazzù
- Unit of Pediatric Gastroenterology and Cystic Fibrosis, Unit of Pediatric Nephrology, University Hospital AOU G. Martino, Messina, Italy
| | - Guido Bellinghieri
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University Hospital AOU G. Martino, Messina, Italy
| |
Collapse
|
9
|
Maïza A, Chantepie S, Vera C, Fifre A, Huynh MB, Stettler O, Ouidja MO, Papy-Garcia D. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett 2018; 592:3806-3818. [PMID: 29729013 DOI: 10.1002/1873-3468.13082] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aβ, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Auriane Maïza
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Cecilia Vera
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Alexandre Fifre
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Minh Bao Huynh
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Olivier Stettler
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Mohand Ouidir Ouidja
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| |
Collapse
|
10
|
Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorg Chem 2018; 82:74-85. [PMID: 30273836 DOI: 10.1016/j.bioorg.2018.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/11/2022]
Abstract
A series of pentamethinium salts with benzothiazolium and indolium side units comprising one or two positive charges were designed and synthesized to determine the relationships among the molecular structure, charge density, affinity to sulfated polysaccharides, and biological activity. Firstly, it was found that the affinity of the pentamethinium salts to sulfated polysaccharides correlated with their biological activity. Secondly, the side heteroaromates displayed a strong effect on the cytotoxicity and selectivity towards cancer cells. Finally, doubly charged pentamethinium salts possessing benzothiazolium side units exhibited remarkably high efficacy against a taxol-resistant cancer cell line.
Collapse
|
11
|
Westermark GT, Fändrich M, Lundmark K, Westermark P. Noncerebral Amyloidoses: Aspects on Seeding, Cross-Seeding, and Transmission. Cold Spring Harb Perspect Med 2018; 8:a024323. [PMID: 28108533 PMCID: PMC5749146 DOI: 10.1101/cshperspect.a024323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 30 proteins form amyloid in humans, most of them outside of the brain. Deposition of amyloid in extracerebral tissues is very common and seems inevitable for an aging person. Most deposits are localized, small, and probably without consequence, but in some instances, they are associated with diseases such as type 2 diabetes. Other extracerebral amyloidoses are systemic, with life-threatening effects on the heart, kidneys, and other organs. Here, we review how amyloid may spread through seeding and whether transmission of amyloid diseases may occur between humans. We also discuss whether cross-seeding is important in the development of amyloidosis, focusing specifically on the amyloid proteins AA, transthyretin, and islet amyloid polypeptide (IAPP).
Collapse
Affiliation(s)
- Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, D-89081 Ulm, Germany
| | - Katarzyna Lundmark
- Department of Clinical Pathology and Clinical Genetics, and Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
12
|
Risør MW, Juhl DW, Bjerring M, Mathiesen J, Enghild JJ, Nielsen NC, Otzen DE. Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils. Biophys J 2017; 113:580-596. [PMID: 28793213 DOI: 10.1016/j.bpj.2017.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022] Open
Abstract
Many proteins and peptides self-associate into highly ordered and structurally similar amyloid cross-β aggregates. This fibrillation is critically dependent on properties of the protein and the surrounding environment that alter kinetic and thermodynamic equilibria. Here, we report on dominating surface and solution effects on the fibrillogenic behavior and amyloid assembly of the C-36 peptide, a circulating bioactive peptide from the α1-antitrypsin serine protease inhibitor. C-36 converts from an unstructured peptide to mature amyloid twisted-ribbon fibrils over a few hours when incubated on polystyrene plates under physiological conditions through a pathway dominated by surface-enhanced nucleation. In contrast, in plates with nonbinding surfaces, slow bulk nucleation takes precedence over surface catalysis and leads to fibrillar polymorphism. Fibrillation is strongly ion-sensitive, underlining the interplay between hydrophilic and hydrophobic forces in molecular self-assembly. The addition of exogenous surfaces in the form of silica glass beads and polyanionic heparin molecules potently seeds the amyloid conversion process. In particular, heparin acts as an interacting template that rapidly forces β-sheet aggregation of C-36 to distinct amyloid species within minutes and leads to a more homogeneous fibril population according to solid-state NMR analysis. Heparin's template effect highlights its role in amyloid seeding and homogeneous self-assembly, which applies both in vitro and in vivo, where glycosaminoglycans are strongly associated with amyloid deposits. Our study illustrates the versatile thermodynamic landscape of amyloid formation and highlights how different experimental conditions direct C-36 into distinct macromolecular structures.
Collapse
Affiliation(s)
- Michael W Risør
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Dennis W Juhl
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Jan J Enghild
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Niels C Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Daniel E Otzen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
14
|
Mikawa S, Mizuguchi C, Nishitsuji K, Baba T, Shigenaga A, Shimanouchi T, Sakashita N, Otaka A, Akaji K, Saito H. Heparin promotes fibril formation by the N-terminal fragment of amyloidogenic apolipoprotein A-I. FEBS Lett 2016; 590:3492-3500. [DOI: 10.1002/1873-3468.12426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shiho Mikawa
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | | | - Naomi Sakashita
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Akira Otaka
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
15
|
Digre A, Nan J, Frank M, Li JP. Heparin interactions with apoA1 and SAA in inflammation-associated HDL. Biochem Biophys Res Commun 2016; 474:309-314. [PMID: 27105909 DOI: 10.1016/j.bbrc.2016.04.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
Apolipoprotein A1 (apoA1) is the main protein component responsible for transportation of cholesterol on high-density lipoprotein (HDL). Serum amyloid A (SAA) is an acute phase protein associated with HDL. Apart from their physiological functions, both apoA1 and SAA have been identified as 'amyloidogenic peptides'. We report herein that the polysaccharide heparin interacts with both apoA1 and SAA in HDL isolated from plasma of inflamed mice. The reaction is rapid, forming complex aggregates composed of heparin, apoA1 and SAA as revealed by gel electrophoresis. This interaction is dependent on the size and concentration of added heparin. Mass spectrometry analysis of peptides derived from chemically crosslinked HDL-SAA particles detected multiple crosslinks between apoA1 and SAA, indicating close proximity (within 25 Å) of these two proteins on the HDL surface, providing a molecular and structural mechanism for the simultaneous binding of heparin to apoA1 and SAA.
Collapse
Affiliation(s)
- Andreas Digre
- Department of Medical Biochemistry and Microbiology/SciLifeLab, University of Uppsala, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | | | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology/SciLifeLab, University of Uppsala, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
16
|
Nguyen K, Rabenstein DL. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides. J Phys Chem B 2016; 120:2187-97. [PMID: 26872053 DOI: 10.1021/acs.jpcb.5b12235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes.
Collapse
Affiliation(s)
- Khanh Nguyen
- Department of Chemistry University of California, Riverside , Riverside, California 92521, United States
| | - Dallas L Rabenstein
- Department of Chemistry University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
17
|
Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering. Int J Mol Sci 2015; 16:27391-400. [PMID: 26580613 PMCID: PMC4661883 DOI: 10.3390/ijms161126025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 01/05/2023] Open
Abstract
Over the last two decades, the potential usage of cell-penetrating peptides (CPPs) for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38) has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH) superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs). Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.
Collapse
|
18
|
Knittel D, Savatier A, Upert G, Lortat-Jacob H, Léonetti M. Acidosis increases MHC class II-restricted presentation of a protein endowed with a pH-dependent heparan sulfate-binding ability. THE JOURNAL OF IMMUNOLOGY 2015; 194:3601-11. [PMID: 25754736 DOI: 10.4049/jimmunol.1401902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/08/2015] [Indexed: 02/06/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed molecules that participate in numerous biological processes. We previously showed that HSPGs expressed on the surface of APCs can serve as receptors for a hybrid protein containing an HS ligand and an Ag, which leads to more efficient stimulation of Th cells. To investigate whether such behavior is shared by proteins with inherent HS-binding ability, we looked for proteins endowed with this characteristic. We found that diphtheria toxin and its nontoxic mutant, called CRM197, can interact with HS. However, we observed that their binding ability is higher at pH 6 than at pH 7.4. Therefore, as extracellular acidosis occurs during infection by various micro-organisms, we assessed whether HS-binding capacity affects MHC class II-restricted presentation at different pHs. We first observed that pH decrease allows CRM197 binding to HSPG-expressing cells, including APCs. Then, we showed that this interaction enhances Ag uptake and presentation to Th cells. Lastly, we observed that pH decrease does not affect processing and presentation abilities of the APCs. Our findings show that acidic pH causes an HSPG-mediated uptake and an enhancement of T cell stimulation of Ags with the inherent ability to bind HSPGs pH-dependently. Furthermore, they suggest that proteins from micro-organisms with this binding characteristic might be supported more efficiently by the adaptive immune system when acidosis is triggered during infection.
Collapse
Affiliation(s)
- Delphine Knittel
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude et de Recherche en Immunoanalyse, 91191 Gif-Sur-Yvette, France
| | - Alexandra Savatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude et de Recherche en Immunoanalyse, 91191 Gif-Sur-Yvette, France
| | - Grégory Upert
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Laboratoire de Toxinologie Moléculaire et Biotechnologies, 91191 Gif-Sur-Yvette, France
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes, Institut de Biologie Structurale, 38000 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, 38000 Grenoble, France; and Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Michel Léonetti
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie et Technologies de Saclay, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude et de Recherche en Immunoanalyse, 91191 Gif-Sur-Yvette, France;
| |
Collapse
|
19
|
Maszota M, Karska N, Spodzieja M, Ciarkowski J, Kołodziejczyk AS, Rodziewicz-Motowidło S, Czaplewska P. Structural studies of the C-terminal 19-peptide of serum amyloid A and its Pro → Ala variants interacting with human cystatin C. J Mol Recognit 2015; 28:413-26. [PMID: 25736604 DOI: 10.1002/jmr.2457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022]
Abstract
Serum amyloid A (SAA) is a multifunctional acute-phase protein whose concentration in serum increases markedly following a number of chronic inflammatory and neoplastic diseases. Prolonged high SAA level may give rise to reactive systemic amyloid A (AA) amyloidosis, where the N-terminal segment of SAA is deposited as amyloid fibrils. Besides, recently, well-documented association of SAA with high-density lipoprotein or glycosaminoglycans, in particular heparin/heparin sulfate (HS), and specific interaction between SAA and human cystatin C (hCC), the ubiquitous inhibitor of cysteine proteases, was proved. Using a combination of selective proteolytic excision and high-resolution mass spectrometry, a hCC binding site in the SAA sequence was determined as SAA(86-104). The role of this SAA C-terminal fragment as a ligand-binding locus is still not clear. It was postulated important in native SAA folding and in pathogenesis of AA amyloidosis. In the search of conformational details of this SAA fragment, we did its structure and affinity studies, including its selected double/triple Pro → Ala variants. Our results clearly show that the SAA(86-104) 19-peptide has rather unordered structure with bends in its C-terminal part, which is consistent with the previous results relating to the whole protein. The results of affinity chromatography, fluorescent ELISA-like test, CD and NMR studies point to an importance of proline residues on structure of SAA(86-104). Conformational details of SAA fragment, responsible for hCC binding, may help to understand the objective of hCC-SAA complex formation and its importance for pathogenesis of reactive amyloid A amyloidosis.
Collapse
Affiliation(s)
- Martyna Maszota
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Natalia Karska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Marta Spodzieja
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | - Jerzy Ciarkowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952, Gdańsk, Poland
| | | | | | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822, Gdańsk, Poland
| |
Collapse
|
20
|
Colón W, Aguilera JJ, Srinivasan S. Intrinsic Stability, Oligomerization, and Amyloidogenicity of HDL-Free Serum Amyloid A. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:117-34. [PMID: 26149928 DOI: 10.1007/978-3-319-17344-3_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serum amyloid A (SAA) is an acute-phase reactant protein predominantly bound to high-density lipoprotein in serum and presumed to play various biological and pathological roles. Upon tissue trauma or infection, hepatic expression of SAA increases up to 1,000 times the basal levels. Prolonged increased levels of SAA may lead to amyloid A (AA) amyloidosis, a usually fatal systemic disease in which the amyloid deposits are mostly comprised of the N-terminal 1-76 fragment of SAA. SAA isoforms may differ across species in their ability to cause AA amyloidosis, and the mechanism of pathogenicity remains poorly understood. In vitro studies have shown that SAA is a marginally stable protein that folds into various oligomeric species at 4 °C. However, SAA is largely disordered at 37 °C, reminiscent of intrinsically disordered proteins. Non-pathogenic murine (m)SAA2.2 spontaneously forms amyloid fibrils in vitro at 37 °C whereas pathogenic mSAA1.1 has a long lag (nucleation) phase, and eventually forms fibrils of different morphology than mSAA2.2. Remarkably, human SAA1.1 does not form mature fibrils in vitro. Thus, it appears that the intrinsic amyloidogenicity of SAA is not a key determinant of pathogenicity, and that other factors, including fibrillation kinetics, ligand binding effects, fibril stability, nucleation efficiency, and SAA degradation may play key roles. This chapter will focus on the known structural and biophysical properties of SAA and discuss how these properties may help better understand the molecular mechanism of AA amyloidosis.
Collapse
Affiliation(s)
- Wilfredo Colón
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,
| | | | | |
Collapse
|
21
|
Gaffney PM, Imai DM, Clifford DL, Ghassemian M, Sasik R, Chang AN, O’Brien TD, Coppinger J, Trejo M, Masliah E, Munson L, Sigurdson C. Proteomic analysis of highly prevalent amyloid A amyloidosis endemic to endangered island foxes. PLoS One 2014; 9:e113765. [PMID: 25429466 PMCID: PMC4245998 DOI: 10.1371/journal.pone.0113765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
Amyloid A (AA) amyloidosis is a debilitating, often fatal, systemic amyloid disease associated with chronic inflammation and persistently elevated serum amyloid A (SAA). Elevated SAA is necessary but not sufficient to cause disease and the risk factors for AA amyloidosis remain poorly understood. Here we identify an extraordinarily high prevalence of AA amyloidosis (34%) in a genetically isolated population of island foxes (Urocyon littoralis) with concurrent chronic inflammatory diseases. Amyloid deposits were most common in kidney (76%), spleen (58%), oral cavity (45%), and vasculature (44%) and were composed of unbranching, 10 nm in diameter fibrils. Peptide sequencing by mass spectrometry revealed that SAA peptides were dominant in amyloid-laden kidney, together with high levels of apolipoprotein E, apolipoprotein A-IV, fibrinogen-α chain, and complement C3 and C4 (false discovery rate ≤ 0.05). Reassembled peptide sequences showed island fox SAA as an 111 amino acid protein, most similar to dog and artic fox, with 5 unique amino acid variants among carnivores. SAA peptides extended to the last two C-terminal amino acids in 5 of 9 samples, indicating that near full length SAA was often present in amyloid aggregates. These studies define a remarkably prevalent AA amyloidosis in island foxes with widespread systemic amyloid deposition, a unique SAA sequence, and the co-occurrence of AA with apolipoproteins.
Collapse
Affiliation(s)
- Patricia M. Gaffney
- Departments of Pathology and Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pathology, Immunology, and Microbiology, University of California Davis, Davis, California, United States of America
| | - Denise M. Imai
- Department of Pathology, Immunology, and Microbiology, University of California Davis, Davis, California, United States of America
| | - Deana L. Clifford
- Wildlife Investigations Laboratory, California Department of Fish and Wildlife, Rancho Cordova, California, United States of America
- Department of Veterinary Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Roman Sasik
- Center for Computational Biology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Aaron N. Chang
- Center for Computational Biology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Timothy D. O’Brien
- Veterinary Population Medicine Department, Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Judith Coppinger
- Departments of Pathology and Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Margarita Trejo
- Departments of Pathology and Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Eliezer Masliah
- Departments of Pathology and Neuroscience, University of California San Diego, La Jolla, California, United States of America
| | - Linda Munson
- Department of Pathology, Immunology, and Microbiology, University of California Davis, Davis, California, United States of America
| | - Christina Sigurdson
- Departments of Pathology and Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Pathology, Immunology, and Microbiology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Westermark GT, Fändrich M, Westermark P. AA amyloidosis: pathogenesis and targeted therapy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:321-44. [PMID: 25387054 DOI: 10.1146/annurev-pathol-020712-163913] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The understanding of why and how proteins misfold and aggregate into amyloid fibrils has increased considerably during recent years. Central to amyloid formation is an increase in the frequency of the β-sheet structure, leading to hydrogen bonding between misfolded monomers and creating a fibril that is comparably resistant to degradation. Generation of amyloid fibrils is nucleation dependent, and once formed, fibrils recruit and catalyze the conversion of native molecules. In AA amyloidosis, the expression of cytokines, particularly interleukin 6, leads to overproduction of serum amyloid A (SAA) by the liver. A chronically high plasma concentration of SAA results in the aggregation of amyloid into cross-β-sheet fibrillar deposits by mechanisms not fully understood. Therefore, AA amyloidosis can be thought of as a consequence of long-standing inflammatory disease. This review summarizes current knowledge about AA amyloidosis. The systemic amyloidoses have been regarded as intractable conditions, but improvements in the understanding of fibril composition and pathogenesis over the past decade have led to the development of a number of different therapeutic approaches with promising results.
Collapse
|
23
|
Geneste A, André C, Magy-Bertrand N, Lethier L, Tijani G, Guillaume YC. Thermodynamic study of transthyretin association (wild-type and senile forms) with heparan sulfate proteoglycan: pH effect and implication of the reactive histidine residue. Biomed Chromatogr 2014; 29:514-22. [DOI: 10.1002/bmc.3306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/02/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ambre Geneste
- Université de Franche-Comté, UFR SMP, EA 4662: Nanomedecine, Imagery Therapeupic Lab’, Laboratoire de Chimie Analytique Bioanalytique et Physique; 25030 Besançon cedex France
| | - Claire André
- Université de Franche-Comté, UFR SMP, EA 4662: Nanomedecine, Imagery Therapeupic Lab’, Laboratoire de Chimie Analytique Bioanalytique et Physique; 25030 Besançon cedex France
| | - Nadine Magy-Bertrand
- Université de Franche-Comté, UFR SMP, EA 4662: Nanomedecine, Imagery Therapeupic Lab’, Laboratoire de Chimie Analytique Bioanalytique et Physique; 25030 Besançon cedex France
- Département de Médecine Interne; CHRU Besançon; 25030 Besançon cedex France
| | - Lydie Lethier
- Université de Franche-Comté, UFR SMP, EA 4662: Nanomedecine, Imagery Therapeupic Lab’, Laboratoire de Chimie Analytique Bioanalytique et Physique; 25030 Besançon cedex France
| | - Gharbi Tijani
- Université de Franche-Comté, UFR SMP, EA 4662: Nanomedecine, Imagery Therapeupic Lab’, Laboratoire de Chimie Analytique Bioanalytique et Physique; 25030 Besançon cedex France
| | - Yves Claude Guillaume
- Université de Franche-Comté, UFR SMP, EA 4662: Nanomedecine, Imagery Therapeupic Lab’, Laboratoire de Chimie Analytique Bioanalytique et Physique; 25030 Besançon cedex France
- Pôle Pharmacie; CHRU Besançon; 25030 Besançon cedex France
| |
Collapse
|
24
|
Aguilera JJ, Zhang F, Beaudet JM, Linhardt RJ, Colón W. Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid A. Biochimie 2014; 104:70-80. [PMID: 24878279 DOI: 10.1016/j.biochi.2014.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
Serum amyloid A (SAA) is an apolipoprotein involved in poorly understood roles in inflammation. Upon trauma, hepatic expression of SAA rises 1000 times the basal levels. In the case of inflammatory diseases like rheumatoid arthritis, there is a risk for deposition of SAA fibrils in various organs leading to Amyloid A (AA) amyloidosis. Although the amyloid deposits in AA amyloidosis accumulate with the glycosaminoglycan (GAG) heparan sulfate, the role GAGs play in the function and pathology of SAA is an enigma. It has been shown that GAG sulfation is a contributing factor in protein fibrillation and for co-aggregating with a plethora of amyloidogenic proteins. Herein, the effects of heparin, heparan sulfate, hyaluronic acid, chondroitin sulfate A, and heparosan on the oligomerization and aggregation properties of pathogenic mouse SAA1.1 were investigated. Delipidated SAA was used to better understand the interactions between SAA and GAGs without the complicating involvement of lipids. The results revealed-to varying degrees-that all GAGs accelerated SAA1.1 aggregation, but had variable effects on its fibrillation. Heparan sulfate, hyaluronic acid, and heparosan did not affect much the fibrillation of SAA1.1. In contrast, chondroitin sulfate A blocked SAA fibril formation and facilitated the formation of spherical aggregates of various sizes. Interestingly, heparin caused formation of spherical SAA1.1 aggregates of various sizes, vast amounts of thin protofibrils, and few long fibrils of various heights. These results suggest that GAGs may have an intrinsic and divergent influence on the aggregation and fibrillation of HDL-free SAA1.1 in vivo, with functional and pathological implications.
Collapse
Affiliation(s)
- J Javier Aguilera
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Julie M Beaudet
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
25
|
Abstract
Serum amyloid A (SAA) represents an evolutionarily conserved family of inflammatory acute-phase proteins. It is also a major constituent of secondary amyloidosis. To understand its function and structural transition to amyloid, we determined a structure of human SAA1.1 in two crystal forms, representing a prototypic member of the family. Native SAA1.1 exists as a hexamer, with subunits displaying a unique four-helix bundle fold stabilized by its long C-terminal tail. Structure-based mutational studies revealed two positive-charge clusters, near the center and apex of the hexamer, that are involved in SAA association with heparin. The binding of high-density lipoprotein involves only the apex region of SAA and can be inhibited by heparin. Peptide amyloid formation assays identified the N-terminal helices 1 and 3 as amyloidogenic peptides of SAA1.1. Both peptides are secluded in the hexameric structure of SAA1.1, suggesting that the native SAA is nonpathogenic. Furthermore, dissociation of the SAA hexamer appears insufficient to initiate amyloidogenic transition, and proteolytic cleavage or removal of the C-terminal tail of SAA resulted in formation of various-sized structural aggregates containing ∼5-nm regular repeating protofibril-like units. The combined structural and functional studies provide mechanistic insights into the pathogenic contribution of glycosaminoglycan in SAA1.1-mediated AA amyloid formation.
Collapse
|
26
|
Kennel SJ, Macy S, Wooliver C, Huang Y, Richey T, Heidel E, Wall JS. Phagocyte depletion inhibits AA amyloid accumulation in AEF-induced huIL-6 transgenic mice. Amyloid 2014; 21:45-53. [PMID: 24446872 PMCID: PMC4112139 DOI: 10.3109/13506129.2013.876400] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Determine the role of phagocytosis in the deposition of acute phase SAA protein in peripheral organs as AA amyloid. METHODS AA amyloidosis was induced by injection of amyloid enhancing factor (AEF) in huIL-6 transgenic mice. Clodronate liposomes were injected at different times, and the amyloid load evaluated by Congo red birefringence staining and monitoring with the amyloid specific probe (125)I-labeled peptide p5R. RESULTS Injection of clodronate containing liposomes depleted Iba-1 positive and F4/80 positive phagocytic cells in liver and spleen for up to 5 days. Treatment prior to administration of intravenous AEF did not alter the pattern of deposition of the AEF in spleen, but inhibited the catabolism of the (125)I-labeled AEF. Clodronate treatment 1 day before or 1 day after AEF administration had little effect on AA amyloid accumulation at 2 weeks; however, mice treated with clodronate liposomes 5 days after AEF induction and evaluated at 2 weeks post-AEF induction showed reduced amyloid load relative to controls. At 6 weeks post-AEF there was no significant effect on amyloid load following a single clodronate treatment. CONCLUSION Macrophages have been shown to be instrumental in both accumulation and clearance of AA amyloid after cessation of inflammation. Our data indicate that when SAA protein is continuously present, depletion of phagocytic cells during the early course of the disease progression temporarily reduces amyloid load.
Collapse
|
27
|
Madine J, Davies HA, Hughes E, Middleton DA. Heparin promotes the rapid fibrillization of a peptide with low intrinsic amyloidogenicity. Biochemistry 2013; 52:8984-92. [PMID: 24279288 DOI: 10.1021/bi401231u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid deposits in vivo are complex mixtures composed of protein fibrils and nonfibrillar components, including polysaccharides of the glycosaminoglycan (GAG) class. It has been widely documented that GAGs influence the initiation and progress of self-assembly by several disease-associated amyloidogenic proteins and peptides in vitro. Here we investigated whether the GAG heparin can serve as a cofactor to induce amyloid-like fibril formation in a peptide predicted to have a weak propensity to aggregate and not associated with amyloid disorders. We selected the 23-residue peptide PLB(1-23), which corresponds to the acetylated cytoplasmic domain of the phospholamban transmembrane protein. PLB(1-23) remains unfolded in aqueous solution for >24 h and does not bind thioflavin T over this time period, in agreement with computer predictions that the peptide has a very low intrinsic amyloidogenicity. In the presence of low-molecular mass (5 kDa) heparin, which binds PLB(1-23) with micromolar affinity, the peptide undergoes spontaneous and rapid assembly into amyloid-like fibrils, the effect being more pronounced at pH 5.5 than at pH 7.4. At the lower pH, peptide aggregation is accompanied by a transition to a β-sheet rich structure. These results are consistent with the polyanionic heparin serving as a scaffold to enhance aggregation by aligning the peptide molecules in the correct orientation and with the appropriate periodicity. PLB(1-23) is toxic to cells when added in isolation, and promotion of fibril formation by heparin can reduce the toxicity of this peptide, consistent with the notion that amyloid-like fibrils represent a benign end stage of fibrillization. This work provides insight into the role that heparin and other glycosaminoglycans may play in amyloid formation and provides therapeutic avenues targeting the reduction of cytotoxicity of species along the amyloid formation pathway.
Collapse
Affiliation(s)
- Jillian Madine
- Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | | | |
Collapse
|
28
|
Abstract
Amyloid is an abnormal extracellular fibrillar protein deposit in the tissues. In humans, more than 25 different proteins can adopt a fibrillar conformation in vivo that results in the pathognomonic tinctorial property of amyloid (that is, green birefringence when an affected tissue specimen is stained with Congo red dye and viewed by microscopy under cross-polarized light). Amyloid deposition is associated with disturbance of organ function and causes a wide variety of clinical syndromes that are classified according to the respective fibril protein precursor. Systemic amyloidosis, in which amyloid deposits are widespread and typically accumulate gradually, continues to be fatal and is responsible for about one in 1,500 deaths per year in the UK. Advances in our understanding of the pathogenesis of systemic amyloidosis have resulted in the identification of new therapeutic targets, and several drugs with novel mechanisms of action are currently under development. Meanwhile, an increased awareness of amyloidosis coupled with enhancements to existing diagnostic techniques and therapeutic strategies have already resulted in better outcomes for patients with the disease.
Collapse
|
29
|
Ishii W, Liepnieks JJ, Yamada T, Benson MD, Kluve-Beckerman B. Human SAA1-derived amyloid deposition in cell culture: a consistent model utilizing human peripheral blood mononuclear cells and serum-free medium. Amyloid 2013; 20:61-71. [PMID: 23461622 DOI: 10.3109/13506129.2013.775941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid A (AA) amyloidosis is a fatal disease caused by extracellular deposition of fibrils derived from serum AA (SAA). AA amyloid fibril formation has previously been modeled in macrophage cultures using highly amyloidogenic mouse SAA1.1, but attempts to do the same with human SAA invariably failed. Our objective was to define conditions that support human SAA-derived amyloid formation in peripheral blood mononuclear cell (PBMC) cultures. Two conditions were found to be critical - omission of fetal calf serum and use of StemPro34, a lipid-enriched medium formulated for hematopoietic progenitor cells. Cultures maintained in serum-free StemPro34 and provided with recombinant human SAA1 in the complete absence of amyloid-enhancing factor exhibited amyloid deposition within 7 d. Amyloid co-localized with cell clusters that characteristically included cells of fibrocytic/dendritic morphology as well as macrophages. These cells formed networks that appeared to serve as scaffolding within and upon which amyloid accumulated. Cells in amyloid-forming cultures demonstrated increased adherence, survival and expression of extracellular matrix components. Of the three human SAA1 isoforms, SAA1.3 showed the most extensive amyloid deposition, consistent with it being the most prevalent isoform in Japanese patients with AA amyloidosis. Attesting to the reproducibility and general applicability of this model, amyloid formation has been documented in cultures established from eight PBMC donors.
Collapse
Affiliation(s)
- Wataru Ishii
- Department of Medicine (Neurology and Rheumatology), Shinshu Unviersity School of Medicine, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Heparan sulphate (HS) polysaccharides are covalently attached to the core proteins of various proteoglycans at cell surfaces and in the extracellular matrix. They are composed of alternating units of hexuronic acid and glucosamine, with sulphate substituents in complex and variable yet cell-specific patterns. Whereas HS is produced by virtually all cells in the body, heparin, a highly sulphated HS variant, is confined to connective-tissue-type mast cells. The polysaccharides interact with a multitude of proteins, mainly through ionic binding, and thereby control key processes in development and homoeostasis. Similar interactions also implicate HS in various pathophysiological settings, including cancer, amyloid diseases, infectious diseases, inflammatory conditions and some developmental disorders. Prospects for the development of HS-based drugs, which are still largely unrealized, are discussed.
Collapse
Affiliation(s)
- U Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
31
|
Noborn F, Ancsin JB, Ubhayasekera W, Kisilevsky R, Li JP. Heparan sulfate dissociates serum amyloid A (SAA) from acute-phase high-density lipoprotein, promoting SAA aggregation. J Biol Chem 2012; 287:25669-77. [PMID: 22654109 DOI: 10.1074/jbc.m112.363895] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inflammation-related (AA) amyloidosis is a severe clinical disorder characterized by the systemic deposition of the acute-phase reactant serum amyloid A (SAA). SAA is normally associated with the high-density lipoprotein (HDL) fraction in plasma, but under yet unclear circumstances, the apolipoprotein is converted into amyloid fibrils. AA amyloid and heparan sulfate (HS) display an intimate relationship in situ, suggesting a role for HS in the pathogenic process. This study reports that HS dissociates SAA from HDLs isolated from inflamed mouse plasma. Application of surface plasmon resonance spectroscopy and molecular modeling suggests that HS simultaneously binds to two apolipoproteins of HDL, SAA and ApoA-I, and thereby induce SAA dissociation. The activity requires a minimum chain length of 12-14 sugar units, proposing an explanation to previous findings that short HS fragments preclude AA amyloidosis. The results address the initial events in the pathogenesis of AA amyloidosis.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Husargatan 3, Box 582, Uppsala University, 751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Patke S, Maheshwari R, Litt J, Srinivasan S, Aguilera JJ, Colón W, Kane RS. Influence of the carboxy terminus of serum amyloid A on protein oligomerization, misfolding, and fibril formation. Biochemistry 2012; 51:3092-9. [PMID: 22448726 PMCID: PMC3332083 DOI: 10.1021/bi201903s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fibrillar deposition of serum amyloid A (SAA) has been linked to the disease amyloid A (AA) amyloidosis. We have used the SAA isoform, SAA2.2, from the CE/J mouse strain, as a model system to explore the inherent structural and biophysical properties of SAA. Despite its nonpathogenic nature in vivo, SAA2.2 spontaneously forms fibrils in vitro, suggesting that SAA proteins are inherently amyloidogenic. However, whereas the importance of the amino terminus of SAA for fibril formation has been well documented, the influence of the proline-rich and presumably disordered carboxy terminus remains poorly understood. To clarify the inherent role of the carboxy terminus in the oligomerization and fibrillation of SAA, we truncated the proline-rich final 13 residues of SAA2.2. We found that unlike full-length SAA2.2, the carboxy-terminal truncated SAA2.2 (SAA2.2ΔC) did not oligomerize to a hexamer or octamer, but formed a high molecular weight soluble aggregate. Moreover, SAA2.2ΔC also exhibited a pronounced decrease in the rate of fibril formation. Intriguingly, when equimolar amounts of denatured SAA2.2 and SAA2.2ΔC were mixed and allowed to refold together, the mixture formed an octamer and exhibited rapid fibrillation kinetics, similar to those for full-length SAA2.2. These results suggest that the carboxy terminus of SAA, which is highly conserved among SAA sequences in all vertebrates, might play important structural roles, including modulating the folding, oligomerization, misfolding, and fibrillation of SAA.
Collapse
Affiliation(s)
- Sanket Patke
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ronak Maheshwari
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jeffrey Litt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Saipraveen Srinivasan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - J. Javier Aguilera
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Wilfredo Colón
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ravi S. Kane
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
33
|
Cengiz Mİ, Cengiz K. Letter to the Editor: Does Periodontal Disease Cause Amyloidosis? J Periodontol 2012; 83:140-2. [DOI: 10.1902/jop.2012.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Ge R, Sun X. The in vivo functions of a histidine-rich protein Hpn in Helicobacter pylori: linking gastric and Alzheimer's diseases together? Med Hypotheses 2011; 77:788-90. [PMID: 21852052 DOI: 10.1016/j.mehy.2011.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/18/2011] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori causes such gastric diseases as gastritis, peptic ulcerations, gastric cancer and MALT lymphoma. Hpn is a histidine-rich protein abundant in this bacterium and forms amyloid-like oligomers in physiologically relevant conditions. Here we proposed the in vivo functions of this protein with relevance to its physical locations. The collective evidence presented here shed some light on the pathologic mechanisms of H. pylori infections, with emphasis on the bacterial colonization in the gastric environment, pathological effects to the gastric epithelial cells and the possible link to Alzheimer's disease.
Collapse
Affiliation(s)
- Ruiguang Ge
- The Laboratory of Integrative Biosciences, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
35
|
Ge R, Sun X, Wang D, Zhou Q, Sun H. Histidine-rich protein Hpn from Helicobacter pylori forms amyloid-like fibrils in vitro and inhibits the proliferation of gastric epithelial AGS cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1422-7. [PMID: 21539864 DOI: 10.1016/j.bbamcr.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 02/06/2023]
|
36
|
Heparin induces harmless fibril formation in amyloidogenic W7FW14F apomyoglobin and amyloid aggregation in wild-type protein in vitro. PLoS One 2011; 6:e22076. [PMID: 21779376 PMCID: PMC3135624 DOI: 10.1371/journal.pone.0022076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/14/2011] [Indexed: 12/02/2022] Open
Abstract
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.
Collapse
|
37
|
Egashira M, Takase H, Yamamoto I, Tanaka M, Saito H. Identification of regions responsible for heparin-induced amyloidogenesis of human serum amyloid A using its fragment peptides. Arch Biochem Biophys 2011; 511:101-6. [PMID: 21569756 DOI: 10.1016/j.abb.2011.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 02/08/2023]
Abstract
Human serum amyloid A (SAA) is a precursor protein of amyloid fibrils. Although several studies have been performed, a detailed understanding of the molecular mechanism for SAA fibrillation remains elusive. Glycosaminoglycans such as heparin are suggested to serve as scaffolds in amyloid fibril formation in some cases. In the present study, amyloidogenic properties of synthetic fragment peptides corresponding to the N-terminal (residues 1-27), central (residues 43-63), and C-terminal (residues 77-104) regions of SAA molecule induced by heparin were examined using fluorescence, circular dichroism (CD), and electron microscopy. Fluorescence and CD measurements demonstrated that SAA (1-27) peptide is evidently involved in heparin-induced amyloidogenesis. Correspondingly, relatively minor changes in fluorescence and a quite different pattern in the CD spectrum were observed in SAA (43-63) peptide. In contrast, SAA (77-104) peptide did not show any changes induced by heparin. Transmission electron microscopy indicated that SAA (1-27) peptide forms short and straight fibrils, whereas SAA (43-63) peptide forms much longer and seemingly elastic fibrils. These results suggest that the N-terminal region plays a crucial role as a rigid core and the central region facilitates the elongation of fibrils in heparin-induced amyloidogenesis of SAA molecule.
Collapse
Affiliation(s)
- Masashi Egashira
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | | | | | | | | |
Collapse
|
38
|
Hopfer H, Wiech T, Mihatsch MJ. Renal amyloidosis revisited: amyloid distribution, dynamics and biochemical type. Nephrol Dial Transplant 2011; 26:2877-84. [PMID: 21427073 DOI: 10.1093/ndt/gfq831] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Renal amyloidosis results from protein misfolding and leads to progressive renal insufficiency. Few data are available concerning the relevance of the histomorphological patterns and the dynamics of the disease process. METHODS Cases of renal amyloidosis in native kidney biopsies (n = 203) were retrospectively evaluated for the pattern of amyloid distribution, the extent of glomerular amyloid deposition and the amount of interstitial fibrosis and tubular atrophy. One hundred and fifty-eight cases were characterized by immunohistochemistry to determine the biochemical amyloid type. Morphological findings were correlated with available clinical data. RESULTS According to the predominant site of amyloid deposition, 84.6% showed a glomerular, 9.4% a vascular and 6% a tubulointerstitial distribution pattern. Within the glomeruli, amyloid was initially deposited in a focal segmental fashion that became diffuse and global in later stages. Most cases were identified as AL lambda (84/158) or AA (68/158). There was no correlation between the biochemical type and the distribution pattern. Serum creatinine correlated well with interstitial fibrosis and tubular atrophy and proteinuria with the glomerular amyloid load. CONCLUSIONS The relevance of the different distribution patterns is unclear at the moment, but they may be due to the physicochemical properties of the amyloid fibrils in a given patient. This may become important in future anti-fibrillar therapies.
Collapse
Affiliation(s)
- Helmut Hopfer
- Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | |
Collapse
|
39
|
Heparan sulfate/heparin promotes transthyretin fibrillization through selective binding to a basic motif in the protein. Proc Natl Acad Sci U S A 2011; 108:5584-9. [PMID: 21422279 DOI: 10.1073/pnas.1101194108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transthyretin (TTR) is a homotetrameric protein that transports thyroxine and retinol. Tetramer destabilization and misfolding of the released monomers result in TTR aggregation, leading to its deposition as amyloid primarily in the heart and peripheral nervous system. Over 100 mutations of TTR have been linked to familial forms of TTR amyloidosis. Considerable effort has been devoted to the study of TTR aggregation of these mutants, although the majority of TTR-related amyloidosis is represented by sporadic cases due to the aggregation and deposition of the otherwise stable wild-type (WT) protein. Heparan sulfate (HS) has been found as a pertinent component in a number of amyloid deposits, suggesting its participation in amyloidogenesis. This study aimed to investigate possible roles of HS in TTR aggregation. Examination of heart tissue from an elderly cardiomyopathic patient revealed substantial accumulation of HS associated with the TTR amyloid deposits. Studies demonstrated that heparin/HS promoted TTR fibrillization through selective interaction with a basic motif of TTR. The importance of HS for TTR fibrillization was illustrated in a cell model; TTR incubated with WT Chinese hamster ovary cells resulted in fibrillization of the protein, but not with HS-deficient cells (pgsD-677). The effect of heparin on TTR fibril formation was further demonstrated in a Drosophila model that overexpresses TTR. Heparin was colocalized with TTR deposits in the head of the flies reared on heparin-supplemented medium, whereas no heparin was detected in the nontreated flies. Heparin of low molecular weight (Klexane) did not demonstrate this effect.
Collapse
|
40
|
Abstract
Amyloids are common protein aggregates in nature. Some amyloids fulfill important biological tasks while others are known to cause diseases. Despite the fact that the ultrastructure of amyloid is highly conserved, the mechanism of amyloidogenesis remains a challenging research topic. In humans, amyloidoses may develop in the skin or lead to skin signs due to secondary cutaneous involvement. An accurate diagnostic procedure is crucial for planning the therapy of this heterogeneous group of diseases. Therefore, the aim of this paper is to give an overview on the different kinds of amyloidoses as well as on diagnostic and therapeutic approaches. Furthermore, the discrimination between functional and disease-causing amyloid is briefly presented.
Collapse
Affiliation(s)
- S Schreml
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg.
| | | | | | | |
Collapse
|
41
|
Cengiz Mİ, Yayla N, Cengiz K, Bagci H, Taşkın E. Interaction between periodontal disease and systemic secondary amyloidosis: from inflammation to amyloidosis. J Periodontol 2010; 82:566-74. [PMID: 21043797 DOI: 10.1902/jop.2010.100439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND It has become increasingly clear in recent years that periodontal disease can cause a dramatic increase in the levels of markers of systemic inflammation, and that periodontal treatment can result in reduction in the levels of these markers. We have previously shown that the prevalence of moderate to severe periodontitis was significantly higher in patients with familial Mediterranean fever (FMF) with amyloidosis than in patients with FMF without amyloidosis. Thus, the aim of this study is to investigate if chronic periodontitis is associated with secondary amyloidosis in the Black Sea region of Turkey. METHODS A total of 112 patients with biopsy-proven secondary amyloidosis (59 patients with FMF, 40 patients who were either chronically infected or had malignant disease, 13 patients with periodontitis) and 22 healthy subjects, were included in this study. Periodontal health and disease were evaluated using gingival index (GI), papillary bleeding index (PBI), plaque index (PI), and periodontal disease index (PDI). The concentrations of serum acute phase reactants (APRs) were measured at baseline and at 4 to 6 weeks after completion of the non-surgical periodontal therapy. RESULTS The prevalence of moderate to severe periodontitis was 47.5% in patients with FMF, 72.5% in patients who were either chronically infected or had malignant disease, and 84.6% in patients with periodontitis. Serum levels of APRs in patients with amyloidosis were reduced significantly after non-surgical periodontal therapy (P <0.01). CONCLUSIONS Periodontitis can increase the levels of APRs and potentiate the development of amyloidosis either by themselves or association with traditional factors, such as FMF and other chronic inflammatory diseases. Thus, preventing or treating periodontitis might prevent or at least alleviate the progression of amyloidosis. Periodontal evaluation should be performed as part of a medical assessment and considered as an etiologic factor for secondary amyloidosis.
Collapse
Affiliation(s)
- Murat İnanç Cengiz
- Department of Periodontology, Faculty of Dentistry, Zonguldak Karaelmas University, Zonguldak, Turkey.
| | | | | | | | | |
Collapse
|
42
|
Ren R, Hong Z, Gong H, Laporte K, Skinner M, Seldin DC, Costello CE, Connors LH, Trinkaus-Randall V. Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J Biol Chem 2010; 285:37672-82. [PMID: 20870723 DOI: 10.1074/jbc.m110.149575] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary amyloidosis (AL) results from overproduction of unstable monoclonal immunoglobulin light chains (LCs) and the deposition of insoluble fibrils in tissues, leading to fatal organ disease. Glycosaminoglycans (GAGs) are associated with AL fibrils and have been successfully targeted in the treatment of other forms of amyloidosis. We investigated the role of GAGs in LC fibrillogenesis. Ex vivo tissue amyloid fibrils were extracted and examined for structure and associated GAGs. The GAGs were detected along the length of the fibril strand, and the periodicity of heparan sulfate (HS) along the LC fibrils generated in vitro was similar to that of the ex vivo fibrils. To examine the role of sulfated GAGs on AL oligomer and fibril formation in vitro, a κ1 LC purified from urine of a patient with AL amyloidosis was incubated in the presence or absence of GAGs. The fibrils generated in vitro at physiologic concentration, temperature, and pH shared morphologic characteristics with the ex vivo κ1 amyloid fibrils. The presence of HS and over-O-sulfated-heparin enhanced the formation of oligomers and fibrils with HS promoting the most rapid transition. In contrast, GAGs did not enhance fibril formation of a non-amyloidogenic κ1 LC purified from urine of a patient with multiple myeloma. The data indicate that the characteristics of the full-length κ1 amyloidogenic LC, containing post-translational modifications, possess key elements that influence interactions of the LC with HS. These findings highlight the importance of the variable and constant LC regions in GAG interaction and suggest potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Ruiyi Ren
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schreml S, Kaiser E, Landthaler M, Szeimies RM, Babilas P. Amyloid in skin and brain: What′s the link? Exp Dermatol 2010; 19:953-7. [DOI: 10.1111/j.1600-0625.2010.01166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|