1
|
Adeluola AA, Radomska HS, Wilson TA, Kulp SK, Kabat A, Helms TH, Mayo AK, Montgomery EJ, Thomas J, Marcho LM, Costa T, Fukuda M, Kang DD, Vibhute S, Wang D, Bennett CE, Coss CC. The elucidation of species-specific receptor pharmacology: A case study using subtype-selective para- and meta-carborane estrogen receptor agonists. J Pharmacol Exp Ther 2025; 392:100001. [PMID: 39892992 DOI: 10.1124/jpet.123.001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Estrogen receptors (ERs) are essential pharmacological targets for treating hormonal disorders and estrogen-dependent malignancies. Selective activation of ERβ is hypothesized to provide therapeutic benefit with reduced risk of unwanted estrogenic side-effects associated with ERα activity. However, activating ERβ without activating ERα is challenging due to the high sequence and structural homology between the receptor subtypes. We assessed the impact of structural modifications to the parent compound OSU-ERβ-12 on receptor subtype binding selectivity using cell-free binding assays. Functional selectivity was evaluated by transactivation in HEK-293 cells overexpressing human or murine ERs. In vivo selectivity was examined through the uterotrophic effects of the analogs after oral administration in estrogen-naïve female mice. Furthermore, we evaluated the in vivo pharmacokinetics of the analogs following single-dose intravenous and oral administration. Regarding selectivity, a single compound exhibited greater functional selectivity than OSU-ERβ-12 for human ERβ. However, like others in the meta-carborane series, its poor in vivo pharmacokinetics limit its suitability for further development. Surprisingly, and at odds with their pharmacokinetic and in vitro human activity data, most analogs potently induced uterotrophic effects in estrogen-naïve female mice. Further investigation of activity in HEK-293 cells expressing murine ERs revealed species-specific differences in the ER subtype selectivity of these analogs. Our findings highlight species-specific receptor pharmacology and the challenges it poses to characterizing developmental therapeutics in preclinical species. SIGNIFICANCE STATEMENT: This study investigates para- and meta-substituted carborane analogs targeting estrogen receptors (ERs), revealing the greater selectivity of carborane analogs for human ERβ compared to the mouse ortholog. These findings shed light on the intricacies of using preclinical species in drug development to predict human pharmacology. The report also provides insights for the refinement and optimization of carborane analogs as potential therapeutic agents for estrogen-related disease states.
Collapse
Affiliation(s)
- Adeoluwa A Adeluola
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hanna S Radomska
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Tyler A Wilson
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alyssa Kabat
- Charles River Laboratories, Worcester, Massachusetts
| | - Timothy H Helms
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Abigail K Mayo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Emma J Montgomery
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Justin Thomas
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Lynn M Marcho
- Division of Medical Oncology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Travis Costa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mayu Fukuda
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Diana D Kang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sandip Vibhute
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dasheng Wang
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Chad E Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio; Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio; Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
2
|
Cignarella A, Bolego C, Barton M. Sex and sex steroids as determinants of cardiovascular risk. Steroids 2024; 206:109423. [PMID: 38631602 DOI: 10.1016/j.steroids.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
There are considerable sex differences regarding the risk of cardiovascular disease (CVD), including arterial hypertension, coronary artery disease (CAD) and stroke, as well as chronic renal disease. Women are largely protected from these conditions prior to menopause, and the risk increases following cessation of endogenous estrogen production or after surgical menopause. Cardiovascular diseases in women generally begin to occur at a later age than in men (on average with a delay of 10 years). Cessation of estrogen production also impacts metabolism, increasing the risk of developing obesity and diabetes. In middle-aged individuals, hypertension develops earlier and faster in women than in men, and smoking increases cardiovascular risk to a greater degree in women than it does in men. It is not only estrogen that affects female cardiovascular health and plays a protective role until menopause: other sex hormones such as progesterone and androgen hormones generate a complex balance that differentiates heart and blood vessel function in women compared to men. Estrogens improve vasodilation of epicardial coronary arteries and the coronary microvasculature by augmenting the release of vasodilating factors such as nitric oxide and prostacyclin, which are mechanisms of coronary vasodilatation that are more pronounced in women compared to men. Estrogens are also powerful inhibitors of inflammation, which in part explains their protective effects on CVD and chronic renal disease. Emerging evidence suggests that sex chromosomes also play a significant role in shaping cardiovascular risk. The cardiovascular protection conferred by endogenous estrogens may be extended by hormone therapy, especially using bioidentical hormones and starting treatment early after menopause.
Collapse
Affiliation(s)
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
3
|
Dama A, Baggio C, Trevisi L, Bolego C, Cignarella A. Regulation of human endothelial cell migration by oral contraceptive estrogen receptor ligands. Eur J Pharmacol 2023; 945:175591. [PMID: 36804546 DOI: 10.1016/j.ejphar.2023.175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Ethinylestradiol (EE) and estetrol (E4) are the two main estrogenic agents used in combined oral contraceptives. These compounds have different binding affinity to and efficacy on estrogen receptors (ER) subtypes. We previously reported that treatment with estrogenic agents enhances angiogenesis via nongenomic, G protein-coupled estrogen receptor (GPER)-dependent mechanisms. However, the impact of EE and E4 on human endothelial function has been little investigated. EE and E4 (10-9- 10-7 M) significantly enhanced migration of human umbilical vein endothelial cells (HUVECs) using scratch and Boyden chamber assays. Mechanistically, both agents increased accumulation of phosphorylated protein tyrosine kinase 2 on tyrosine 397 (FAK Y397), a key player in endothelial cell motility, after 30-min treatment. Treatment with increasing concentrations of EE, but not E4, enhanced accumulation of the glycolysis activator PFKFB3. Of note, effects of EE and E4 on endothelial migration and signalling proteins were abolished by addition of the GPER antagonist G36 (10-6 M). Thus, EE and E4 induced comparable endothelial responses in vitro, suggesting no apparent alterations of vascular remodelling and regeneration capacity by oral contraceptives containing these agents.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, Padova, Italy; Albanian University, Tirana, Albania
| | - Chiara Baggio
- Department of Medicine, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
4
|
Frump AL, Yakubov B, Walts A, Fisher A, Cook T, Chesler NC, Lahm T. Estrogen Receptor-α Exerts Endothelium-Protective Effects and Attenuates Pulmonary Hypertension. Am J Respir Cell Mol Biol 2023; 68:341-344. [PMID: 36856412 PMCID: PMC9989477 DOI: 10.1165/rcmb.2022-0224le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Affiliation(s)
| | | | | | - Amanda Fisher
- Indiana University School of MedicineIndianapolis, Indiana
| | - Todd Cook
- Indiana University School of MedicineIndianapolis, Indiana
| | | | - Tim Lahm
- National Jewish HealthDenver, Colorado
- University of ColoradoDenver, Colorado
- Rocky Mountain Regional Veterans Affairs Medical CenterAurora, Colorado
| |
Collapse
|
5
|
Peavey J, Parmar VM, Malek G. Nuclear Receptor Atlases of Choroidal Tissues Reveal Candidate Receptors Associated with Age-Related Macular Degeneration. Cells 2022; 11:2386. [PMID: 35954227 PMCID: PMC9367936 DOI: 10.3390/cells11152386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
The choroid is a vulnerable tissue site in the eye, impacted in several blinding diseases including age related macular degeneration (AMD), which is the leading cause of central vision loss in the aging population. Choroidal thinning and choriocapillary dropout are features of the early form of AMD, and endothelial dysfunction and vascular changes are primary characteristics of the neovascular clinical sub-type of AMD. Given the importance, the choroidal endothelium and outer vasculature play in supporting visual function, a better understanding of baseline choroidal signaling pathways engaged in tissue and cellular homeostasis is needed. Nuclear receptors are a large family of transcription factors responsible for maintaining various cellular processes during development, aging and disease. Herein we developed a comprehensive nuclear receptor atlas of human choroidal endothelial cells and freshly isolated choroidal tissue by examining the expression levels of all members of this transcription family using quantitative real time PCR. Given the close relationship between the choroid and retinal pigment epithelium (RPE), this data was cross-referenced with the expression profile of nuclear receptors in human RPE cells, to discover potential overlap versus cell-specific nuclear receptor expression. Finally, to identify candidate receptors that may participate in the pathobiology of AMD, we cataloged nuclear receptor expression in a murine model of wet AMD, from which we discovered a subset of nuclear receptors differentially regulated following neovascularization. Overall, these databases serve as useful resources establishing the influence of nuclear receptor signaling pathways on the outer vascular tissue of the eye, while providing a list of receptors, for more focused investigations in the future, to determine their suitability as potential therapeutic targets for diseases, in which the choroid is affected.
Collapse
Affiliation(s)
- Jeremy Peavey
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
| | - Vipul M. Parmar
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA; (J.P.); (V.M.P.)
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Zhao H, Wang Q, Hu L, Xing S, Gong H, Liu Z, Qin P, Xu J, Du J, Ai W, Peng S, Li Y. Dynamic Alteration of the Gut Microbiota Associated with Obesity and Intestinal Inflammation in Ovariectomy C57BL/6 Mice. Int J Endocrinol 2022; 2022:6600158. [PMID: 35103060 PMCID: PMC8800624 DOI: 10.1155/2022/6600158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Estrogen is a critical hormone that is mainly produced by the ovary in females. Estrogen deficiency leads to various syndromes and diseases, partly due to gut microbiota alterations. Previous studies have shown that estrogen deficiency affects the gut microbiota at 6-8 weeks after ovariectomy, but the immediate effect of estrogen deficiency on the gut microbiota remains poorly understood. METHODS To investigate the short time and dynamic effects of decreased estrogen levels on the gut microbiota and their potential impact on estrogen deficiency-related diseases, we performed metagenomic sequencing of 260 fecal samples from 50 ovariectomy (OVX) and 15 control C57BL/6 female mice at four time points after surgery. RESULTS We found that seven gut microbiota species, including E. coli, Parabacteroides unclassified, Lachnospiraceae bacterium 8_1_57FAA, Bacteroides uniformis, Veillonella unclassified, Bacteroides xylanisolvens, and Firmicutes bacterium M10_2, were abundant in OVX mice. The abundance of these species increased with time after OVX surgery. The relative abundance of the opportunistic pathogen E. coli and the Crohn's disease-related Veillonella spp. was significantly correlated with mouse weight gain in the OVX group. Butyrate production and the Entner-Doudoroff pathway were significantly enriched in the control mouse group, while the degradation of glutamic acid and aspartic acid was enriched in the OVX mouse group. As the time after OVX surgery increased, the bacterial species and metabolic pathways significantly changed and tended to suggest an inflammatory environment, indicating a subhealthy state of the gut microbiota in the OVX mouse group. CONCLUSIONS Taken together, our results show that the dynamic gut microbiota profile alteration caused by estrogen deficiency is related to obesity and inflammation, which may lead to immune and metabolic disorders. This study provides new clues for the treatment of estrogen deficiency-related diseases.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730010, Gansu, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Hui Gong
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhe Liu
- Department of Computer Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Panpan Qin
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Jie Xu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730010, Gansu, China
| | - Jihui Du
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Wen Ai
- Medical Research Center of Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518102, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Yifan Li
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
7
|
Neugarten J, Golestaneh L. Gender-dependent mechanisms of injury and repair. REGENERATIVE NEPHROLOGY 2022:303-318. [DOI: 10.1016/b978-0-12-823318-4.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Dama A, Baggio C, Boscaro C, Albiero M, Cignarella A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int J Mol Sci 2021; 22:4254. [PMID: 33923905 PMCID: PMC8073008 DOI: 10.3390/ijms22084254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovascular system. ERα and ERβ are ligand-activated transcription factors of the nuclear hormone receptor superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals by modulating non-nuclear second messengers, including activation of the MAP kinase signaling cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects while nuclear localizations are associated with nuclear activities/transcriptional modulation of target genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk increases as women transition to menopause. Estrogen pathways control angiogenesis progression through complex mechanisms. The classic ERs have been acknowledged to function in mediating estrogen effects on glucose metabolism, but 17β-estradiol also rapidly promotes endothelial glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g., secretion of cytokines/chemokines/growth factors) that impact macrophage function. The pharmacological modulation of ERs for therapeutic purposes, however, is particularly challenging due to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of biological responses to estrogenic agents at the vascular immune interface and developing targeted pharmacological interventions may result in novel improved therapeutic solutions.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| |
Collapse
|
9
|
Cignarella A, Fadini GP, Bolego C, Trevisi L, Boscaro C, Sanga V, Seccia TM, Rosato A, Rossi GP, Barton M. Clinical Efficacy and Safety of Angiogenesis Inhibitors: Sex Differences and Current Challenges. Cardiovasc Res 2021; 118:988-1003. [PMID: 33739385 DOI: 10.1093/cvr/cvab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Vasoactive molecules, such as vascular endothelial growth factor (VEGF) and endothelins, share cytokine-like activities and regulate endothelial cell (EC) growth, migration and inflammation. Some endothelial mediators and their receptors are targets for currently approved angiogenesis inhibitors, drugs that are either monoclonal antibodies raised towards VEGF, or inhibitors of vascular receptor protein kinases and signaling pathways. Pharmacological interference with the protective functions of ECs results in a similar spectrum of adverse effects. Clinically, the most common side effects of VEGF signaling pathway inhibition include an increase in arterial pressure, left ventricular (LV) dysfunction ultimately causing heart failure, and thromboembolic events, including pulmonary embolism, stroke, and myocardial infarction. Sex steroids such as androgens, progestins, and estrogen and their receptors (ERα, ERβ, GPER; PR-A, PR-B; AR) have been identified as important modifiers of angiogenesis, and sex differences have been reported for anti-angiogenic drugs. This review article discusses the current challenges clinicians are facing with regard to angiogenesis inhibitor treatments, including the need to consider sex differences affecting clinical efficacy and safety. We also propose areas for future research taking into account the role of sex hormone receptors and sex chromosomes. Development of new sex-specific drugs with improved target and cell-type selectivity likely will open the way personalized medicine in men and women requiring antiangiogenic therapy and result in reduced adverse effects and improved therapeutic efficacy.
Collapse
Affiliation(s)
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | - Viola Sanga
- Department of Medicine, University of Padova, Italy
| | | | - Antonio Rosato
- Venetian Cancer Institute IOV - IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | | | - Matthias Barton
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.,Molecular Internal Medicine, University of Zürich, Switzerland.,Andreas Grüntzig Foundation, Zürich, Switzerland
| |
Collapse
|
10
|
Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, Potus F, Omura J, Cook T, Fisher A, Rodriguez B, Brown RD, Stenmark KR, Rubinstein CD, Krentz K, Tabima DM, Li R, Sun X, Chesler NC, Provencher S, Bonnet S, Lahm T. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest 2021; 131:129433. [PMID: 33497359 DOI: 10.1172/jci129433] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Women with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α-null or ER-β-null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marjorie Albrecht
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brooke Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - R Dale Brown
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - C Dustin Rubinstein
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | - Kathy Krentz
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | | | - Rongbo Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xin Sun
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Gao W, Yang X, Du J, Wang H, Zhong H, Jiang J, Yang C. Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling. Stem Cell Res Ther 2021; 12:16. [PMID: 33413641 PMCID: PMC7791823 DOI: 10.1186/s13287-020-02071-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization. Methods The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, −/−) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H). Results Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh+/+ mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh−/− mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 μM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 μM). Conclusion Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Graphical abstract Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02071-1.
Collapse
Affiliation(s)
- Wenting Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, People's Republic of China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Chinese PLA 952th Hospital, Geermu, 816000, Qinghai, People's Republic of China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Hejiang Zhong
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
12
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Effectiveness of Cardiometabolic Therapy in the Treatment of Acute Coronary Syndrome without ST-segment Elevation in Perimenopausal Women. Fam Med 2019. [DOI: 10.30841/2307-5112.2.2019.175140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Tal R, Dong D, Shaikh S, Mamillapalli R, Taylor HS. Bone-marrow-derived endothelial progenitor cells contribute to vasculogenesis of pregnant mouse uterus†. Biol Reprod 2019; 100:1228-1237. [PMID: 30601943 PMCID: PMC6497522 DOI: 10.1093/biolre/ioy265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/02/2018] [Accepted: 01/01/2019] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is essential for cyclic endometrial growth, implantation, and pregnancy maintenance. Vasculogenesis, the formation of new blood vessels by bone marrow (BM)-derived endothelial progenitor cells (EPCs), has been shown to contribute to endometrial vasculature. However, it is unknown whether vasculogenesis occurs in neovascularization of the decidua during pregnancy. To investigate the contribution of BM-derived EPCs to vascularization of the pregnant uterus, we induced non-gonadotoxic submyeloablation by 5-fluorouracil administration to wild-type FVB/N female mice recipients followed by BM transplantation from transgenic mice expressing green fluorescent protein (GFP) under regulation of Tie2 endothelial-specific promoter. Following 1 month, Tie2-GFP BM-transplanted mice were bred and sacrificed at various gestational days (ED6.5, ED10.5, ED13.5, ED18.5, and postpartum). Bone-marrow-transplanted non-pregnant and saline-injected pregnant mice served as controls (n = 5-6/group). Implantation sites were analyzed by flow cytometry, immunohistochemistry, and immunofluorescence. While no GFP-positive EPCs were found in non-pregnant or early pregnant uteri of BM-transplanted mice, GFP-positive EPCs were first detected in pregnant uterus on ED10.5 (0.12%) and increased as the pregnancy progressed (1.14% on ED13.5), peaking on ED18.5 (1.42%) followed by decrease in the postpartum (0.9%). The percentage of endothelial cells that were BM-derived out of the total endothelial cell population in the implantation sites (GFP+CD31+/CD31+) were 9.3%, 15.8%, and 6.1% on ED13.5, ED18.5, and postpartum, respectively. Immunohistochemistry demonstrated that EPCs incorporated into decidual vasculature, and immunofluorescence showed that GFP-positive EPCs colocalized with CD31 in vascular endothelium of uterine implantation sites, confirming their endothelial lineage. Our findings indicate that BM-derived EPCs contribute to vasculogenesis of the pregnant mouse decidua.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dirong Dong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle. Int J Mol Sci 2018; 19:ijms19030859. [PMID: 29543707 PMCID: PMC5877720 DOI: 10.3390/ijms19030859] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Serena Tedesco
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | | |
Collapse
|
16
|
Trenti A, Tedesco S, Boscaro C, Ferri N, Cignarella A, Trevisi L, Bolego C. The Glycolytic Enzyme PFKFB3 Is Involved in Estrogen-Mediated Angiogenesis via GPER1. J Pharmacol Exp Ther 2017; 361:398-407. [PMID: 28348059 DOI: 10.1124/jpet.116.238212] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/22/2017] [Indexed: 01/08/2023] Open
Abstract
The endogenous estrogen 17β-estradiol (E2) is a key factor in promoting endothelial healing and angiogenesis. Recently, proangiogenic signals including vascular endothelial growth factor and others have been shown to converge in endothelial cell metabolism. Because inhibition of the glycolytic enzyme activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) reduces pathologic angiogenesis and estrogen receptor (ER) signaling stimulates glucose uptake and glycolysis by inducing PFKFB3 in breast cancer, we hypothesized that E2 triggers angiogenesis in endothelial cells via rapid ER signaling that requires PFKFB3 as a downstream effector. We report that treatment with the selective G protein-coupled estrogen receptor (GPER1) agonist G-1 (10-10 to 10-7 M) mimicked the chemotactic and proangiogenic effect of E2 as measured in a number of short-term angiogenesis assays in human umbilical vein endothelial cells (HUVECs); in addition, E2 treatment upregulated PFKFB3 expression in a time- and concentration-dependent manner. Such an effect peaked at 3 hours and was also induced by G-1 and abolished by pretreatment with the GPER1 antagonist G-15 or GPER1 siRNA, consistent with engagement of membrane ER. Experiments with the PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one showed that PFKFB3 activity was required for estrogen-mediated HUVEC migration via GPER1. In conclusion, E2-induced angiogenesis was mediated at least in part by the membrane GPER1 and required upregulation of the glycolytic activator PFKFB3 in HUVECs. These findings unravel a previously unrecognized mechanism of estrogen-dependent endocrine-metabolic crosstalk in HUVECs and may have implications in angiogenesis occurring in ischemic or hypoxic tissues.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Serena Tedesco
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Andrea Cignarella
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences (A.T., S.T., Ca.B., N.F., L.T., Ch.B) and Department of Medicine (A.C.), University of Padova, Padova, Italy
| |
Collapse
|
17
|
Kitajima Y, Doi H, Ono Y, Urata Y, Goto S, Kitajima M, Miura K, Li TS, Masuzaki H. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice. Sci Rep 2015; 5:12861. [PMID: 26245252 PMCID: PMC4526849 DOI: 10.1038/srep12861] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders.
Collapse
Affiliation(s)
- Yuriko Kitajima
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hanako Doi
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yusuke Ono
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshishige Urata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Michio Kitajima
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
18
|
Wakui S, Shirai M, Motohashi M, Mutou T, Oyama N, Wempe MF, Takahashi H, Inomata T, Ikegami M, Endou H, Asari M. Effects of in utero exposure to di(n-butyl) phthalate for estrogen receptors α, β, and androgen receptor of Leydig cell on rats. Toxicol Pathol 2014; 42:877-87. [PMID: 24067674 DOI: 10.1177/0192623313502879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Estrogens and androgens affect male and female reproductive systems. Recently, we reported that prenatal di(n-butyl) phthalate (DBP) exposure induced atypical Leydig cells (LCs) hyperplasia during adulthood. The present study investigated the expression of estrogen receptor α (ERα), estrogen receptor β (ERβ), and androgen receptor (AR) in LCs of 5-, 7-, 9-, 14-, and 17-week-old Sprague-Dawley (srl) rats whose dams had been administered DBP intragastrically at 100 mg/kg/day or the vehicle (corn oil) from days 12 to 21 postconception. Immunohistochemical, Western blotting, and reverse transcription polymerase chain reaction analyses revealed that the expressions of ERα, ERβ, and AR proteins and mRNAs in the DBP group were similar to those of the vehicle group at 5 and 7 weeks, but significantly higher ERα and lower ERβ and AR levels were observed in the DBP group at 9 to 17 weeks. The rats prenatally exposed to DBP had seminiferous tubule degeneration and atypical hyperplasia of LCs during adulthood, which was associated with an increase in expression of ERα and a decrease of ERβ and AR in the testis.
Collapse
Affiliation(s)
- Shin Wakui
- Department of Toxicology, Laboratory Animal Science and Veterinary Anatomy, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| | - Masaru Shirai
- Department of Toxicology, Laboratory Animal Science and Veterinary Anatomy, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| | - Masaya Motohashi
- Department of Toxicology, Laboratory Animal Science and Veterinary Anatomy, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| | | | | | - Michael F Wempe
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomoo Inomata
- Department of Toxicology, Laboratory Animal Science and Veterinary Anatomy, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Masao Asari
- Department of Toxicology, Laboratory Animal Science and Veterinary Anatomy, Azabu University School of Veterinary Medicine, Kanagawa, Japan
| |
Collapse
|
19
|
Lee SH, Lee JH, Asahara T, Kim YS, Jeong HC, Ahn Y, Jung JS, Kwon SM. Genistein promotes endothelial colony-forming cell (ECFC) bioactivities and cardiac regeneration in myocardial infarction. PLoS One 2014; 9:e96155. [PMID: 24830850 PMCID: PMC4022670 DOI: 10.1371/journal.pone.0096155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Although stem cell-mediated treatment of ischemic diseases offers significant therapeutic promise, the limitation in the therapeutic efficacy of transplanted stem cells in vivo because of poor engraftment remains a challenge. Several strategies aimed at improving survival and engraftment of stem cells in the ischemic myocardium have been developed, such as cell transplantation in combination with growth factor delivery, genetic modification of stem cells, and/or cell therapy using scaffolds. To improve therapeutic efficacy, we investigated the effects of genistein on the engraftment of transplanted ECFCs in an acute myocardial ischemia model. RESULTS We found that genistein treatment enhanced ECFCs' migration and proliferation, which was accompanied by increases in the expression of ILK, α-parvin, F-actin, and phospholylation of ERK 1/2 signaling. Transplantation of genistein-stimulates ECFCs (GS-ECFCs) into myocardial ischemic sites in vivo induced cellular proliferation and secretion of angiogenic cytokines at the ischemic sites and thereby enhanced neovascularization and decreased myocardial fibrosis as well as improved cardiac function, as shown by echocardiography. Taken together, these data suggest that pretreatment of ECFCs with genistein prior to transplantation can improve the regenerative potential in ischemic tissues, providing a novel strategy in adult stem cell therapy for ischemic diseases.
Collapse
Affiliation(s)
- Sang Hun Lee
- Medical Science Research Institute Soonchunhyang University Seoul Hospital Seoul, Korea
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University Yangsan, Korea
- Department of Medical Bioscience, Soonchunhyang University Asan, Asan, Korea
| | - Jun Hee Lee
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University Yangsan, Korea
- Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Department of Physiology, School of Medicine, Pusan National University Yangsan, Korea
| | - Takayuki Asahara
- Stem Cell Translational Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - Yong Sook Kim
- Heart Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Chang Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Jin Sup Jung
- Department of Physiology, School of Medicine, Pusan National University, Yangsan, Gyeongnam, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University Yangsan, Korea
- Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Department of Physiology, School of Medicine, Pusan National University Yangsan, Korea
- * E-mail:
| |
Collapse
|
20
|
Balayla J, Edwards M, Lefkowitz A. Uterine artery as an arterial conduit for coronary artery bypass graft (CABG) surgery in women: A role for estrogen-receptor alpha (ER-α) in the prevention of post-CABG accelerated atherosclerosis and graft disease. Med Hypotheses 2013; 80:162-6. [DOI: 10.1016/j.mehy.2012.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/15/2012] [Indexed: 11/15/2022]
|
21
|
Fadini GP, Albiero M, Seeger F, Poncina N, Menegazzo L, Angelini A, Castellani C, Thiene G, Agostini C, Cappellari R, Boscaro E, Zeiher A, Dimmeler S, Avogaro A. Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Res Cardiol 2012. [PMID: 23184393 DOI: 10.1007/s00395-012-0313-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone marrow (BM) derived stem and progenitor cells contribute to cardiovascular homeostasis and are affected by cardiovascular risk factors. We devised a clinical data-driven approach to test candidate stem cell mobilizing mechanisms in pre-clinical models. We found that PB and BM CD34+ cell counts were directly correlated, and that most circulating CD34+ cells were viable, non-proliferating and derived from the BM. Thus, we analyzed PB and BM CD34+ cell levels as a two-compartment model in 72 patients with or without cardiovascular disease. Self-organizing maps showed that disturbed compartmentalization of CD34+ cells was associated with aging and cardiovascular risk factors especially diabetes. High activity of DPP-4, a regulator of the mobilizing chemokine SDF-1α, was associated with altered stem cell compartmentalization. For validation of these findings, we assessed the role of DPP-4 in the BM mobilization response of diabetic rats. Diabetes differentially affected DPP-4 activity in PB and BM and impaired stem/progenitor cell mobilization after ischemia or G-CSF administration. DPP-4 activity in the BM was required for the mobilizing effect of G-CSF, while in PB it blunted ischemia-induced mobilization. Indeed, DPP-4 deficiency restored ischemia (but not G-CSF)-induced stem cell mobilization and improved vascular recovery in diabetic animals. In conclusion, the analysis of stem cell compartmentalization in humans led us to discover mechanisms of BM unresponsiveness in diabetes determined by tissue-specific DPP-4 dysregulation.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani, 2, 35100 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Estrogen is a potent steroid with pleiotropic effects, which have yet to be fully elucidated. Estrogen has both nuclear and non-nuclear effects. The rapid response to estrogen, which involves a membrane associated estrogen receptor(ER) and is protective, involves signaling through PI3K, Akt, and ERK 1/2. The nuclear response is much slower, as the ER-estrogen complex moves to the nucleus, where it functions as a transcription factor, both activating and repressing gene expression. Several different ERs regulate the specificity of response to estrogen, and appear to have specific effects in cardiac remodeling and the response to injury. However, much remains to be understood about the selectivity of these receptors and their specific effects on gene expression. Basic studies have demonstrated that estrogen treatment prevents apoptosis and necrosis of cardiac and endothelial cells. Estrogen also attenuates pathologic cardiac hypertrophy. Estrogen may have great benefit in aging as an anti-inflammatory agent. However, clinical investigations of estrogen have had mixed results, and not shown the clear-cut benefit of more basic investigations. This can be explained in part by differences in study design: in basic studies estrogen treatment was used immediately or shortly after ovariectomy, while in some key clinical trials, estrogen was given years after menopause. Further basic research into the underlying molecular mechanisms of estrogen's actions is essential to provide a better comprehension of the many properties of this powerful hormone.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular and Cellular Cardiology, Department of Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
23
|
Burns KA, Korach KS. Estrogen receptors and human disease: an update. Arch Toxicol 2012; 86:1491-504. [PMID: 22648069 DOI: 10.1007/s00204-012-0868-5] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/14/2012] [Indexed: 02/06/2023]
Abstract
A myriad of physiological processes in mammals are influenced by estrogens and the estrogen receptors (ERs), ERα and ERβ. As we reviewed previously, given the widespread role for estrogen in normal human physiology, it is not surprising that estrogen is implicated in the development or progression of a number of diseases. In this review, we are giving a 5-year update of the literature regarding the influence of estrogens on a number of human cancers (breast, ovarian, colorectal, prostate, and endometrial), endometriosis, fibroids, and cardiovascular disease. A large number of sophisticated experimental studies have provided insights into human disease, but for this review, the literature citations were limited to articles published after our previous review (Deroo and Korach in J Clin Invest 116(3):561-570, 2006) and will focus in most cases on human data and clinical trials. We will describe the influence in which estrogen's action, through one of or both of the ERs, mediates the aforementioned human disease states.
Collapse
Affiliation(s)
- Katherine A Burns
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
24
|
Abstract
Estrogens not only play a pivotal role in sexual development but are also involved in several physiological processes in various tissues including vasculature. While several epidemiological studies documented an inverse relationship between plasma estrogen levels and the incidence of cardiovascular disease and related it to the inhibition of atherosclerosis, an interventional trial showed an increase in cardiovascular events among postmenopausal women on estrogen treatment. The development of atherosclerotic lesions involves complex interplay between various pro- or anti-atherogenic processes that can be effectively studied only in vivo in appropriate animal models. With the advent of genetic engineering, transgenic mouse models of atherosclerosis have supplemented classical dietary cholesterol-induced disease models such as the cholesterol-fed rabbit. In the last two decades, these models were widely applied along with in vitro cell systems to specifically investigate the influence of estrogens on the development of early and advanced atherosclerotic lesions. The present review summarizes the results of these studies and assesses their contribution toward better understanding of molecular mechanisms underlying anti- and/or pro-atherogenic effects of estrogens in humans.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Albert Schweizer Campus 1, Gebäude A1, 48129 Münster, Germany.
| |
Collapse
|
25
|
Shen C, Chen J, Fan S, Li Z, Hu Y, Zhong Q. Association between the polymorphism of estrogen receptor α and coronary artery disease in a Chinese population. Eur J Intern Med 2012; 23:175-8. [PMID: 22284250 DOI: 10.1016/j.ejim.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 04/26/2011] [Accepted: 05/15/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND The role of estrogen receptor α (ERα) polymorphism in coronary artery disease (CAD) was investigated previously in several populations. There are few data on relation between ERa polymorphism and CAD in Chinese population. Our study was to investigate the possible association between ERα polymorphism and CAD in Chinese population. METHODS A total of 539 patients with CAD and 539 age and sex matched controls were examined for ERa polymorphism. DNA was obtained and ERa polymorphism was analyzed by the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP). RESULTS The frequencies of the PvuII C allele were significantly higher in CAD patients than in control individuals (P<0.05). Using T allele as a reference, the odds ratio for CAD patients with C allele was 1.24 (95%CI=1.03-1.48). Using TT genotype as a reference, the odds ratio for TC genotype was 1.17 (95%CI=0.90-1.50), and for CC genotype was 1.58 (95%CI=1.05-2.38). The odds ratio for CC genotype was 1.42 (95%CI=0.94-2.15) in women and 1.72 (95%CI=1.41-2.10) in men. There were no significant differences in XbaI allele and genotype between CAD patients and control individuals. CONCLUSIONS The ERa PvuII polymorphism is associated with the increased risk of CAD in men of a Chinese population. Further research is needed to investigate the mechanism underlying the association between ERα polymorphism and CAD.
Collapse
Affiliation(s)
- Cheng Shen
- Department of Cardiovascular Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | |
Collapse
|
26
|
Izumiyama K, Osanai T, Sagara S, Yamamoto Y, Itoh T, Sukekawa T, Nishizaki F, Magota K, Okumura K. Estrogen attenuates coupling factor 6-induced salt-sensitive hypertension and cardiac systolic dysfunction in mice. Hypertens Res 2012; 35:539-46. [PMID: 22258022 DOI: 10.1038/hr.2011.232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In male coupling factor 6 (CF6)-overexpressing transgenic (TG) mice, a high-salt diet induces hypertension and cardiac systolic dysfunction with excessive reactive oxygen species generation. However, the role of gender in CF6-mediated pathophysiology is unknown. We investigated the effects of ovariectomy and estrogen replacement on hypertension, cardiac dysfunction and Rac1 activity, which activates radical generation and the mineralocorticoid receptor, in female TG mice. Fifteen-week-old male and female TG and wild-type (WT) mice were fed a normal- or high-salt diet for 60 weeks. Systolic and diastolic blood pressures were higher in the TG mice fed a high-salt diet than in those fed a normal-salt diet at 20-60 weeks in males but only at 60 weeks in females. The blood pressure elevation under high-salt diet conditions was concomitant with a decrease in left ventricular fractional shortening. In the WT mice, neither blood pressure nor cardiac systolic function was influenced by a high-salt diet. In the female TG mice, bilateral ovariectomy induced hypertension with cardiac systolic dysfunction 8 weeks after the initiation of a high-salt diet. The ratios of Rac1 bound to guanosine triphosphate (Rac1-GTP) to total Rac1 in the heart and kidneys were increased in the ovariectomized TG mice, and estrogen replacement abolished the CF6-mediated pathophysiology induced under the high-salt diet conditions. The overexpression of CF6 induced salt-sensitive hypertension, complicated by systolic cardiac dysfunction, but its onset was delayed in females. Estrogen has an important role in the regulation of CF6-mediated pathophysiology, presumably via the downregulation of Rac1.
Collapse
Affiliation(s)
- Kei Izumiyama
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Puzianowska-Kuźnicka M. ESR1 in myocardial infarction. Clin Chim Acta 2012; 413:81-7. [DOI: 10.1016/j.cca.2011.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
|
28
|
Laschke M, Giebels C, Menger M. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update 2011; 17:628-636. [DOI: 10.1093/humupd/dmr023] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
29
|
Abstract
PURPOSE OF REVIEW Premenopausal women have a lower risk and incidence of hypertension and cardiovascular disease (CVD) compared to age-matched men and this sex advantage for women gradually disappears after menopause, suggesting that sexual hormones play a cardioprotective role in women. However, randomized prospective primary or secondary prevention trials failed to confirm that hormone replacement therapy (HRT) affords cardioprotection. This review highlights the factors that may contribute to this divergent outcome and could reveal why young or premenopausal women are protected from CVD and yet postmenopausal women do not benefit from HRT. RECENT FINDINGS In addition to the two classical estrogen receptors, ERα and ERβ, a third, G-protein-coupled estrogen receptor GPR30, has been identified. New intracellular signaling pathways and actions for the cardiovascular protective properties of estrogen have been proposed. In addition, recent Women's Health Initiative (WHI) studies restricted to younger postmenopausal women showed that initiation of HRT closer to menopause reduced the risk of CVD. Moreover, dosage, duration, the type of estrogen and route of administration all merit consideration when determining the outcome of HRT. SUMMARY HRT has become one of the most controversial topics related to women's health. Future studies are necessary if we are to understand the divergent published findings regarding HRT and develop new therapeutic strategies to improve the quality of life for women.
Collapse
|
30
|
Masood DEN, Roach EC, Beauregard KG, Khalil RA. Impact of sex hormone metabolism on the vascular effects of menopausal hormone therapy in cardiovascular disease. Curr Drug Metab 2011; 11:693-714. [PMID: 21189141 DOI: 10.2174/138920010794233477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/25/2010] [Indexed: 12/24/2022]
Abstract
Epidemiological studies have shown that cardiovascular disease (CVD) is less common in pre-menopausal women (Pre-MW) compared to men of the same age or post-menopausal women (Post-MW), suggesting cardiovascular benefits of estrogen. Estrogen receptors (ERs) have been identified in the vasculature, and experimental studies have demonstrated vasodilator effects of estrogen/ER on the endothelium, vascular smooth muscle (VSM) and extracellular matrix. Several natural and synthetic estrogenic preparations have been developed for relief of menopausal vasomotor symptoms. However, whether menopausal hormone therapy (MHT) is beneficial in postmenopausal CVD remains controversial. Despite reports of vascular benefits of MHT from observational and experimental studies, randomized clinical trials (RCTs), such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women's Health Initiative (WHI), have suggested that, contrary to expectations, MHT may increase the risk of CVD. These discrepancies could be due to agerelated changes in sex hormone synthesis and metabolism, which would influence the effective dose of MHT and the sex hormone environment in Post-MW. Age-related changes in the vascular ER subtype, structure, expression, distribution, and post-ER signaling pathways in the endothelium and VSM, along with factors related to the design of RCTs, preexisting CVD condition, and structural changes in the blood vessels architecture have also been suggested as possible causes of MHT failure in CVD. Careful examination of these factors should help in identifying the causes of the changes in the vascular effects of estrogen with age. The sex hormone metabolic pathways, the active versus inactive estrogen metabolites, and their effects on vascular function, the mitochondria, the inflammatory process and angiogenesis should be further examined. Also, the genomic and non-genomic effects of estrogenic compounds should be viewed as integrated rather than discrete responses. The complex interactions between these factors highlight the importance of careful design of MHT RCTs, and the need of a more customized approach for each individual patient in order to enhance the vascular benefits of MHT in postmenopausal CVD.
Collapse
Affiliation(s)
- Durr-e-Nayab Masood
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Kränkel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther 2010; 129:62-81. [PMID: 20965213 DOI: 10.1016/j.pharmthera.2010.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
Regenerative cardiovascular medicine is the frontline of 21st-century health care. Cell therapy trials using bone marrow progenitor cells documented that the approach is feasible, safe and potentially beneficial in patients with ischemic disease. However, cardiovascular prevention and rehabilitation strategies should aim to conserve the pristine healing capacity of a healthy organism as well as reactivate it under disease conditions. This requires an increased understanding of stem cell microenvironment and trafficking mechanisms. Engagement and disengagement of stem cells of the osteoblastic niche is a dynamic process, finely tuned to allow low amounts of cells move out of the bone marrow and into the circulation on a regular basis. The balance is altered under stress situations, like tissue injury or ischemia, leading to remarkably increased cell egression. Individual populations of circulating progenitor cells could give rise to mature tissue cells (e.g. endothelial cells or cardiomyocytes), while the majority may differentiate to leukocytes, affecting the environment of homing sites in a paracrine way, e.g. promoting endothelial survival, proliferation and function, as well as attenuating or enhancing inflammation. This review focuses on the dynamics of the stem cell niche in healthy and disease conditions and on therapeutic means to direct stem cell/progenitor cell mobilization and recruitment into improved tissue repair.
Collapse
Affiliation(s)
- Nicolle Kränkel
- Institute of Physiology/Cardiovascular Research, University of Zürich, and Cardiovascular Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
32
|
Pickar JH, MacNeil T, Ohleth K. SERMs: Progress and future perspectives. Maturitas 2010; 67:129-38. [DOI: 10.1016/j.maturitas.2010.05.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 01/21/2023]
|