1
|
Gardner L, Rossi J, Armstrong B, Muse M, LaVeck A, Blevins MA, Zhang L, Ford HL, Zhao R, Wang X. Rational Design of Novel Allosteric EYA2 Inhibitors as Potential Therapeutics for Multiple Brain Cancers. ChemMedChem 2024; 19:e202400179. [PMID: 38861151 DOI: 10.1002/cmdc.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Eyes Absent (EYA) family of developmental proteins, often in partnership with the sine oculis (SIX) homeobox proteins, promote cancer metastasis and recurrence in numerous tumor types. In addition to being a transcriptional coactivator, EYA2 is a Tyr phosphatase that dephosphorylates H2AX which leads to repair instead of apoptosis upon DNA damage and ERβ which inhibits the anti-tumor transcriptional activity of ERβ. The SIX members of the EYA-SIX complex are difficult to target, therefore, we targeted the EYA2 to promote cell death and prevent cancer progression. We conducted structural optimization of a previously discovered allosteric inhibitor of EYA2, 9987, using the combination of in silico modeling, biochemical and cell-based assays. A new series of compounds was developed with significantly improved cellular activity and physiochemical properties desirable for brain targets. Specifically, compound 2 e showed >30-fold improvement in the medulloblastoma cell line D458, relative to 9987, while maintaining potent and selective inhibitory activity against EYA2 Tyr phosphatase activity and a good multiparameter optimization score for central nervous system drugs.
Collapse
Affiliation(s)
- Lukas Gardner
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
| | - Brock Armstrong
- Department of Pharmacology, University of Colorado Anschutz School of Medicine, 12800 East 19th Avenue, Mailstop 6126, Aurora, CO, 80045
| | - Mia Muse
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| | - Alex LaVeck
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
- Department of Research & Development, LICORbio, 4647 Superior St, Lincoln, NE, 68504
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
- Arnatar Therapeutics, Inc., San Diego, CA, 92121
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz School of Medicine, 12800 East 19th Avenue, Mailstop 6126, Aurora, CO, 80045
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
| | - Xiang Wang
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| |
Collapse
|
2
|
Neal SJ, Rajasekaran A, Jusić N, Taylor L, Read M, Alfandari D, Pignoni F, Moody SA. Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:212-240. [PMID: 37830236 PMCID: PMC11014897 DOI: 10.1002/jez.b.23222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.
Collapse
Affiliation(s)
- Scott J. Neal
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Anindita Rajasekaran
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Nisveta Jusić
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Louis Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mai Read
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Francesca Pignoni
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
3
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
4
|
Hwang GH, Pazyra-Murphy MF, Seo HS, Dhe-Paganon S, Stopka SA, DiPiazza M, Sutter N, Gero TW, Volkert A, Ombelets L, Dittemore G, Rees MG, Ronan MM, Roth JA, Agar NYR, Scott DA, Segal RA. A Benzarone Derivative Inhibits EYA to Suppress Tumor Growth in SHH Medulloblastoma. Cancer Res 2024; 84:872-886. [PMID: 38486486 PMCID: PMC10948029 DOI: 10.1158/0008-5472.can-22-3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.
Collapse
Affiliation(s)
- Grace H. Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Maria F. Pazyra-Murphy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Marina DiPiazza
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nizhoni Sutter
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Brigham Young University-Hawaii, Kulanui St, HI, USA
| | - Thomas W. Gero
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Volkert
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lincoln Ombelets
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Georgia Dittemore
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Nathalie Y. R. Agar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David A. Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Rosalind A. Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Alderman C, Krueger A, Rossi J, Ford HL, Zhao R. In Vitro Phosphatase Assays for the Eya2 Tyrosine Phosphatase. Methods Mol Biol 2024; 2743:285-300. [PMID: 38147222 DOI: 10.1007/978-1-0716-3569-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Protein tyrosine phosphatases (PTP), such as the Eyes Absent (Eya) family of proteins, play important roles in diverse biological processes. In vitro phosphatase assays are essential tools for characterizing the enzymatic activity as well as discovering inhibitors and regulators of these phosphatases. Two common types of in vitro phosphatase assays use either a small molecule substrate that produces a fluorescent or colored product, or a peptide substrate that produces a colorimetric product in a malachite green assay. In this chapter, we describe detailed protocols of a phosphatase assay using small molecule 3-O-methylfluorescein phosphate (OMFP) as a substrate and a malachite green assay using the pH2AX peptide as a substrate to evaluate the phosphatase activity of EYA2 and the effect of small molecule inhibitors of EYA2. These protocols can be easily adapted to study other protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aaron Krueger
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- KBI Biopharma, Inc., Boulder, CO, USA
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Jones S, Matos B, Dennison S, Fardilha M, Howl J. Stem Cell Bioengineering with Bioportides: Inhibition of Planarian Head Regeneration with Peptide Mimetics of Eyes Absent Proteins. Pharmaceutics 2023; 15:2018. [PMID: 37631231 PMCID: PMC10458859 DOI: 10.3390/pharmaceutics15082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into planarian tissues, would reduce the ability of neoblasts (totipotent stem cells) and their progeny to regenerate the anterior pole in decapitated S. mediterranea. As a strategy to increase the propensity for helix formation, molecular bioengineering of Djeya1 was achieved by the mono-substitution of the helicogenic aminoisobutyric acid (Aib) at three species-variable sites: 10, 13, and 16. CD analyses indicated that Djeya1 is highly helical, and that Aib-substitution had subtle influences upon the secondary structures of bioengineered analogues. Aib-substituted Djeya1 analogues are highly efficient CPPs, devoid of influence upon cell viability or proliferation. All three peptides increase the migration of PC-3 cells, a prostate cancer line that expresses high concentrations of Eya. Two peptides, [Aib13]Djeya1 and [Aib16]Djeya1, are bioportides which delay planarian head regeneration. As neoblasts are the only cell population capable of division in planaria, these data indicate that bioportide technologies could be utilised to directly manipulate other stem cells in situ, thus negating any requirement for genetic manipulation.
Collapse
Affiliation(s)
- Sarah Jones
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - Sarah Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - John Howl
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
7
|
Anantharajan J, Baburajendran N, Lin G, Loh YY, Xu W, Ahmad NHB, Liu S, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Hung AW, Joy J, Hill J, Ford HL, Zhao R, Keller TH, Kang C. Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase. Protein Sci 2022; 31:422-431. [PMID: 34761455 PMCID: PMC8819961 DOI: 10.1002/pro.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nithya Baburajendran
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Grace Lin
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yong Yao Loh
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Weijun Xu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Shuang Liu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
- Chemical Biology and Therapeutics ScienceBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Anna E. Jansson
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - John Wee Liang Kuan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yee Khoon Yeo
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Alvin W. Hung
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Joma Joy
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Jeffrey Hill
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Heide L. Ford
- Department of Obstetrics and GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas H. Keller
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - CongBao Kang
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| |
Collapse
|
8
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Roychoudhury K, Hegde RS. The Eyes Absent Proteins: Unusual HAD Family Tyrosine Phosphatases. Int J Mol Sci 2021; 22:ijms22083925. [PMID: 33920226 PMCID: PMC8069645 DOI: 10.3390/ijms22083925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 01/21/2023] Open
Abstract
Here, we review the haloacid dehalogenase (HAD) class of protein phosphatases, with a particular emphasis on an unusual group of enzymes, the eyes absent (EYA) family. EYA proteins have the unique distinction of being structurally and mechanistically classified as HAD enzymes, yet, unlike other HAD phosphatases, they are protein tyrosine phosphatases (PTPs). Further, the EYA proteins are unique among the 107 classical PTPs in the human genome because they do not use a Cysteine residue as a nucleophile in the dephosphorylation reaction. We will provide an overview of HAD phosphatase structure-function, describe unique features of the EYA family and their tyrosine phosphatase activity, provide a brief summary of the known substrates and cellular functions of the EYA proteins, and speculate about the evolutionary origins of the EYA family of proteins.
Collapse
|
10
|
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. Int J Mol Sci 2020; 21:ijms21155262. [PMID: 32722222 PMCID: PMC7432558 DOI: 10.3390/ijms21155262] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022] Open
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. We also demonstrate that structural biology provides insights into the function of a target and identifies a druggable site for rational drug design.
Collapse
|
11
|
Medvedev KE, Kinch LN, Schaeffer RD, Grishin NV. Functional analysis of Rossmann-like domains reveals convergent evolution of topology and reaction pathways. PLoS Comput Biol 2019; 15:e1007569. [PMID: 31869345 PMCID: PMC6957218 DOI: 10.1371/journal.pcbi.1007569] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/13/2020] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Rossmann folds are ancient, frequently diverged domains found in many biological reaction pathways where they have adapted for different functions. Consequently, discernment and classification of their homologous relations and function can be complicated. We define a minimal Rossmann-like structure motif (RLM) that corresponds for the common core of known Rossmann domains and use this motif to identify all RLM domains in the Protein Data Bank (PDB), thus finding they constitute about 20% of all known 3D structures. The Evolutionary Classification of protein structure Domains (ECOD) classifies RLM domains in a number of groups that lack evidence for homology (X-groups), which suggests that they could have evolved independently multiple times. Closely related, homologous RLM enzyme families can diverge to bind different ligands using similar binding sites and to catalyze different reactions. Conversely, non-homologous RLM domains can converge to catalyze the same reactions or to bind the same ligand with alternate binding modes. We discuss a special case of such convergent evolution that is relevant to the polypharmacology paradigm, wherein the same drug (methotrexate) binds to multiple non-homologous RLM drug targets with different topologies. Finally, assigning proteins with RLM domain to the Enzyme Commission classification suggest that RLM enzymes function mainly in metabolism (and comprise 38% of reference metabolic pathways) and are overrepresented in extant pathways that represent ancient biosynthetic routes such as nucleotide metabolism, energy metabolism, and metabolism of amino acids. In fact, RLM enzymes take part in five out of eight enzymatic reactions of the Wood-Ljungdahl metabolic pathway thought to be used by the last universal common ancestor (LUCA). The prevalence of RLM domains in this ancient metabolism might explain their wide distribution among enzymes.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lisa N. Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - R. Dustin Schaeffer
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
12
|
Anantharajan J, Zhou H, Zhang L, Hotz T, Vincent MY, Blevins MA, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Baburajendran N, Lin G, Hung AW, Joy J, Patnaik S, Marugan J, Rudra P, Ghosh D, Hill J, Keller TH, Zhao R, Ford HL, Kang C. Structural and Functional Analyses of an Allosteric EYA2 Phosphatase Inhibitor That Has On-Target Effects in Human Lung Cancer Cells. Mol Cancer Ther 2019; 18:1484-1496. [PMID: 31285279 DOI: 10.1158/1535-7163.mct-18-1239] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/05/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
EYA proteins (EYA1-4) are critical developmental transcriptional cofactors that contain an EYA domain (ED) harboring Tyr phosphatase activity. EYA proteins are largely downregulated after embryogenesis but are reexpressed in cancers, and their Tyr phosphatase activity plays an important role in the DNA damage response and tumor progression. We previously identified a class of small-molecule allosteric inhibitors that specifically inhibit the Tyr phosphatase activity of EYA2. Herein, we determined the crystal structure of the EYA2 ED in complex with NCGC00249987 (a representative compound in this class), revealing that it binds to an induced pocket distant from the active site. NCGC00249987 binding leads to a conformational change of the active site that is unfavorable for Mg2+ binding, thereby inhibiting EYA2's Tyr phosphatase activity. We demonstrate, using genetic mutations, that migration, invadopodia formation, and invasion of lung adenocarcinoma cells are dependent on EYA2 Tyr phosphatase activity, whereas growth and survival are not. Further, we demonstrate that NCGC00249987 specifically targets migration, invadopodia formation, and invasion of lung cancer cells, but that it does not inhibit cell growth or survival. The compound has no effect on lung cancer cells carrying an EYA2 F290Y mutant that abolishes compound binding, indicating that NCGC00249987 is on target in lung cancer cells. These data suggest that the NCGC00249987 allosteric inhibitor can be used as a chemical probe to study the function of the EYA2 Tyr phosphatase activity in cells and may have the potential to be developed into an antimetastatic agent for cancers reliant on EYA2's Tyr phosphatase activity.
Collapse
Affiliation(s)
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Taylor Hotz
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Anna E Jansson
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | | | | | - Yee Khoon Yeo
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | | | - Grace Lin
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Alvin W Hung
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Joma Joy
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey Hill
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| | - Thomas H Keller
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado. .,Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - CongBao Kang
- Experimental Drug Discovery Centre, A*STAR, Singapore, Singapore.
| |
Collapse
|
13
|
Gohla A. Do metabolic HAD phosphatases moonlight as protein phosphatases? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:153-166. [DOI: 10.1016/j.bbamcr.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|
14
|
Swingle MR, Honkanen RE. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development. Curr Med Chem 2019; 26:2634-2660. [PMID: 29737249 PMCID: PMC10013172 DOI: 10.2174/0929867325666180508095242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase, the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. METHODS This review is based on the literature searched in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. RESULTS PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate that the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20- 26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for an inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. CONCLUSION Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| |
Collapse
|
15
|
Luo M, Li Y, Shi X, Yang W, Zhou F, Sun N, He J. Aberrant methylation of EYA4 promotes epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Cancer Sci 2018; 109:1811-1824. [PMID: 29660222 PMCID: PMC5989845 DOI: 10.1111/cas.13615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
EYA4, one of the four members of the EYA gene family, is associated with several human cancers. However, its biological functions and molecular mechanisms in the progression of cancer, particularly in esophageal squamous cell carcinoma (ESCC), remain unknown. In the present study, we found that EYA4 was underexpressed and hypermethylated in most of the ESCC cell lines tested (85.7%, 6/7). Treatment with 5‐aza‐dC and/or trichostatin A (TSA) restored EYA4 expression in ESCC cell lines, which indicates that EYA4 expression was epigenetically regulated. Similarly, EYA4 was aberrantly hypermethylated in ESCC tissues (78%, 39/50) and downregulation of EYA4 occurred in approximately 65% of primary ESCC at protein level where it was associated significantly with TNM stage and lymph node metastases. Knockdown of EYA4 in KYSE30 and KYSE70 ESCC cells using small hairpin RNA increased migration and invasive motility in vitro. Conversely, the overexpression of EYA4 in KYSE180 and KYSE450 promoted an epithelial phenotype, which consisted of decreased migration and invasion abilities and a decrease in TGF‐β1‐induced epithelial‐mesenchymal transition. Mechanistically, EYA4 overexpression reduced the phosphorylation of Akt and glycogen synthase kinase (GSK) 3β, which led to the inactivation of slug. In addition, we found that TGF‐β1 decreased EYA4 expression in both a dose‐dependent and a time‐dependent manner in KYSE30 cells, accompanied by an increase in the expression of DNA methyltransferases, especially DNMT3A. In summary, EYA4 is frequently hypermethylated in ESCC and may function as a tumor suppressor gene in the development of ESCC.
Collapse
Affiliation(s)
- Mei Luo
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejiao Shi
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhui Yang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhou
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Mentel M, Ionescu AE, Puscalau-Girtu I, Helm MS, Badea RA, Rizzoli SO, Szedlacsek SE. WDR1 is a novel EYA3 substrate and its dephosphorylation induces modifications of the cellular actin cytoskeleton. Sci Rep 2018; 8:2910. [PMID: 29440662 PMCID: PMC5811557 DOI: 10.1038/s41598-018-21155-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Eyes absent (EYA) proteins are unusual proteins combining in a single polypeptide chain transactivation, threonine phosphatase, and tyrosine phosphatase activities. They play pivotal roles in organogenesis and are involved in a variety of physiological and pathological processes including innate immunity, DNA damage repair or cancer metastasis. The molecular targets of EYA tyrosine phosphatase activity are still elusive. Therefore, we sought to identify novel EYA substrates and also to obtain further insight into the tyrosine-dephosphorylating role of EYA proteins in various cellular processes. We show here that Src kinase phosphorylates tyrosine residues in two human EYA family members, EYA1 and EYA3. Both can autodephosphorylate these residues and their nuclear and cytoskeletal localization seems to be controlled by Src phosphorylation. Next, using a microarray of phosphotyrosine-containing peptides, we identified a phosphopeptide derived from WD-repeat-containing protein 1 (WDR1) that is dephosphorylated by EYA3. We further demonstrated that several tyrosine residues on WDR1 are phosphorylated by Src kinase, and are efficiently dephosphorylated by EYA3, but not by EYA1. The lack of phosphorylation generates major changes to the cellular actin cytoskeleton. We, therefore, conclude that WDR1 is an EYA3-specific substrate, which implies that EYA3 is a key modulator of the cytoskeletal reorganization.
Collapse
Affiliation(s)
- Mihaela Mentel
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Aura E Ionescu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Ioana Puscalau-Girtu
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Martin S Helm
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany.,Max-Planck Research School Molecular Biology, Göttingen, 37077, Germany
| | - Rodica A Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, and Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, Humboldtalle 23, Göttingen, 37073, Germany
| | - Stefan E Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Spl. Independentei 296, Bucharest, 060031, Romania.
| |
Collapse
|
17
|
The retinal determination gene network: from developmental regulator to cancer therapeutic target. Oncotarget 2018; 7:50755-50765. [PMID: 27203207 PMCID: PMC5226618 DOI: 10.18632/oncotarget.9394] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022] Open
Abstract
Although originally identified for its function in Drosophila melanogaster eye specification, the Retinal Determination Gene Network (RDGN) is essential for the development of multiple organs in mammals. The RDGN regulates proliferation, differentiation and autocrine signaling, and interacts with other key signaling pathways. Aberrant expression of RDGN members such as DACH, EYA and SIX contributes to tumor initiation and progression; indeed, the levels of RDGN members are clinically prognostic factors in various cancer types. Stimulation or suppression of the activities of these crucial components can block cancer cell proliferation, prevent cancer stem cell expansion and even reverse the EMT process, thereby attenuating malignant phenotypes. Thus, cancer therapeutic interventions targeting RDGN members should be pursued in future studies.
Collapse
|
18
|
Quaile AT, Stogios PJ, Egorova O, Evdokimova E, Valleau D, Nocek B, Kompella PS, Peisajovich S, Yakunin AF, Ensminger AW, Savchenko A. The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. J Biol Chem 2018; 293:3307-3320. [PMID: 29301934 DOI: 10.1074/jbc.m117.812727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.
Collapse
Affiliation(s)
- Andrew T Quaile
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter J Stogios
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Olga Egorova
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Dylan Valleau
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Structural Biology Center, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | - Purnima S Kompella
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Sergio Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Alexander F Yakunin
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada, and
| | - Alexei Savchenko
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada, .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
19
|
The Eya phosphatase: Its unique role in cancer. Int J Biochem Cell Biol 2017; 96:165-170. [PMID: 28887153 DOI: 10.1016/j.biocel.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022]
Abstract
The Eya proteins were originally identified as essential transcriptional co-activators of the Six family of homeoproteins. Subsequently, the highly conserved C-terminal domains of the Eya proteins were discovered to act as a Mg2+-dependent Tyr phosphatases, making Eyas the first transcriptional activators to harbor intrinsic phosphatase activity. Only two direct targets of the Eya Tyr phosphatase have been identified: H2AX, whose dephosphorylation directs cells to the DNA repair instead of the apoptotic pathway upon DNA damage, and ERβ, whose dephosphorylation inhibits its anti-tumor transcriptional activity. The Eya Tyr phosphatase mediates breast cancer cell transformation, migration, invasion, as well as metastasis, through targets not yet identified. Intriguingly, the N-terminal domain of Eya contains a separate Ser/Thr phosphatase activity implicated in innate immunity and in regulating c-Myc stability. Thus, Eya proteins are highly complex, containing two separable phosphatase domains and a transcriptional activation domain, thereby influencing tumor progression through multiple mechanisms.
Collapse
|
20
|
Li X, Eberhardt A, Hansen JN, Bohmann D, Li H, Schor NF. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31:2327-2339. [PMID: 28213359 DOI: 10.1096/fj.201601050rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
The eyes absent (EYA) family proteins are conserved transcriptional coactivators with intrinsic protein phosphatase activity. They play an essential role in the development of various organs in metazoans. These functions are associated with a unique combination of phosphatase and transactivation activities. However, it remains poorly understood how these activities and the consequent biologic functions of EYA are regulated. Here, we demonstrate that 2 conserved arginine residues, R304 and R306, of EYA1 are essential for its in vitro phosphatase activity and in vivo function during Drosophila eye development. EYA1 physically interacts with protein arginine methyltransferase 1, which methylates EYA1 at these residues both in vitro and in cultured mammalian and insect cells. Moreover, we show that wild-type, but not methylation-defective, EYA1 associates with γ-H2A.X in response to ionizing radiation. Taken together, our results identify the conserved arginine residues of EYA1 that play an important role for its activity, thus implicating arginine methylation as a novel regulatory mechanism of EYA function.-Li, X., Eberhardt, A., Hansen, J. N., Bohmann, D., Li, H., Schor, N. F. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies.
Collapse
Affiliation(s)
- Xingguo Li
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| | - Allison Eberhardt
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeanne N Hansen
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Haitao Li
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, and.,School of Medicine, Tsinghua University, Beijing, China
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| |
Collapse
|
21
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
22
|
Nishan U, Damas-Souza DM, Barbosa GO, Muhammad N, Rahim A, Carvalho HF. New transcription factors involved with postnatal ventral prostate gland development in male Wistar rats during the first week. Life Sci 2015; 143:168-73. [PMID: 26549646 DOI: 10.1016/j.lfs.2015.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/15/2015] [Accepted: 10/31/2015] [Indexed: 11/28/2022]
Abstract
AIMS The high incidence in men of prostatic diseases, including benign and malignant tumors, makes the understanding of prostate development and biology very important. Understanding the organogenesis of the prostate gland has been a substantial challenge as "prostatic code" is not well defined at the present time. The novelty of this work lies in unveiling new transcription factors (TFs) during neonatal ventral prostate (VP) gland development in male Wistar rats. MAIN METHODS The techniques of qRT-PCR and immunohistochemistry have been employed to perform this work while the VP gland was obtained from neonatal rats at day zero (the day of birth) day 3 and 6. KEY FINDINGS 16 TFs were studied and we found an increased expression of Eya2, Lhrh and Znf142, invariable levels of Znf703 and Dbp, and decreased expression of 11 others at postnatal development day 3 and 6 as compared to day zero. ZNF703 was found by immunohistochemistry in epithelial cells at days 0, 3 and 6. qRT-PCR for Eya2 and Dmrt2 showed the highest and lowest fold change for them respectively, and immunohistochemistry showed that the former is being expressed at the three selected time points while the latter appears to be diminishing with very few cells expressing it until day 6. SIGNIFICANCE Results from this work is reporting the role of these TFs for the first time and will significantly contribute to the current understanding of the development and branching morphogenesis of the neonatal VP gland during the first week of postnatal development.
Collapse
Affiliation(s)
- Umar Nishan
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan.
| | - Danilo M Damas-Souza
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme Oliveira Barbosa
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
23
|
Abstract
Eyes absent (Eya), a protein conserved from plants to humans and best characterized as a transcriptional coactivator, is also the prototype for a novel class of eukaryotic aspartyl protein tyrosine phosphatases. This minireview discusses recent breakthroughs in elucidating the substrates and cellular events regulated by Eya's tyrosine phosphatase function and highlights some of the complexities, new questions, and surprises that have emerged from efforts to understand how Eya's unusual multifunctionality influences developmental regulation and signaling.
Collapse
|
24
|
Blevins MA, Towers CG, Patrick AN, Zhao R, Ford HL. The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin Ther Targets 2015; 19:213-25. [PMID: 25555392 PMCID: PMC4336540 DOI: 10.1517/14728222.2014.978860] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The SIX homeodomain proteins and the eyes absent (EYA) family of co-activators form a bipartite transcription factor complex that promotes the proliferation and survival of progenitor cells during organogenesis and is down-regulated in most adult tissues. Abnormal over-expression of SIX1 and EYA in adult tissue is associated with the initiation and progression of diverse tumor types. Importantly, SIX1 and EYA are often co-overexpressed in tumors, and the SIX1-EYA2 interaction has been shown to be critical for metastasis in a breast cancer model. The EYA proteins also contain protein tyrosine phosphatase activity, which plays an important role in breast cancer growth and metastasis as well as directing cells to the repair pathway upon DNA damage. AREAS COVERED This review provides a summary of the SIX1/EYA complex as it relates to development and disease and the current efforts to therapeutically target this complex. EXPERT OPINION Recently, there have been an increasing number of studies suggesting that targeting the SIX1/EYA transcriptional complex will potently inhibit tumor progression. Although current attempts to develop inhibitors targeting this complex are still in the early stages, continued efforts toward developing better compounds may ultimately result in effective anti-cancer therapies.
Collapse
Affiliation(s)
- Melanie A Blevins
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics , Aurora, CO 80045 , USA ,
| | | | | | | | | |
Collapse
|
25
|
Krueger AB, Drasin DJ, Lea WA, Patrick AN, Patnaik S, Backos DS, Matheson CJ, Hu X, Barnaeva E, Holliday MJ, Blevins MA, Robin TP, Eisenmesser EZ, Ferrer M, Simeonov A, Southall N, Reigan P, Marugan J, Ford HL, Zhao R. Allosteric inhibitors of the Eya2 phosphatase are selective and inhibit Eya2-mediated cell migration. J Biol Chem 2014; 289:16349-61. [PMID: 24755226 DOI: 10.1074/jbc.m114.566729] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eya proteins are essential co-activators of the Six family of transcription factors and contain a unique tyrosine phosphatase domain belonging to the haloacid dehalogenase family of phosphatases. The phosphatase activity of Eya is important for the transcription of a subset of Six1-target genes, and also directs cells to the repair rather than apoptosis pathway upon DNA damage. Furthermore, Eya phosphatase activity has been shown to mediate transformation, invasion, migration, and metastasis of breast cancer cells, making it a potential new drug target for breast cancer. We have previously identified a class of N-arylidenebenzohydrazide compounds that specifically inhibit the Eya2 phosphatase. Herein, we demonstrate that these compounds are reversible inhibitors that selectively inhibit the phosphatase activity of Eya2, but not Eya3. Our mutagenesis results suggest that this class of compounds does not bind to the active site and the binding does not require the coordination with Mg(2+). Moreover, these compounds likely bind within a site on the opposite face of the active site, and function as allosteric inhibitors. We also demonstrate that this class of compounds inhibits Eya2 phosphatase-mediated cell migration, setting the foundation for these molecules to be developed into chemical probes for understanding the specific function of the Eya2 phosphatase and to serve as a prototype for the development of Eya2 phosphatase specific anti-cancer drugs.
Collapse
Affiliation(s)
- Aaron B Krueger
- From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - David J Drasin
- the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Wendy A Lea
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Aaron N Patrick
- the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Samarjit Patnaik
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Donald S Backos
- the Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, Colorado 80045
| | - Christopher J Matheson
- the Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, Colorado 80045
| | - Xin Hu
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Elena Barnaeva
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Michael J Holliday
- From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Melanie A Blevins
- From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Tyler P Robin
- the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Elan Z Eisenmesser
- From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Marc Ferrer
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Anton Simeonov
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Noel Southall
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Philip Reigan
- the Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado School of Pharmacy, Aurora, Colorado 80045
| | - Juan Marugan
- the National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Heide L Ford
- the Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045,
| | - Rui Zhao
- From the Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045,
| |
Collapse
|
26
|
Nikpour P, Emadi-Baygi M, Emadi-Andani E, Rahmati S. EYA1 expression in gastric carcinoma and its association with clinicopathological characteristics: a pilot study. Med Oncol 2014; 31:955. [PMID: 24729159 DOI: 10.1007/s12032-014-0955-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
As the second most frequent cause of cancer death, gastric cancer is a common disease worldwide. Most of the patients are being diagnosed in the stage that conventional treatments are not effective, and invasion and metastases lead to death. So, identification of novel molecular markers to improve early diagnosis, prognosis and treatment of the gastric cancer is a necessity. EYA1 is a member of EYA family which their deregulation has been demonstrated in several types of cancer. The aim of this study was to assess EYA1 gene expression in tissues of the gastric cancer patients and to investigate its correlation with clinicopathological parameters. A total of 60 tumor and non-tumor gastric specimens were evaluated for EYA1 gene expression using quantitative real-time PCR. The EYA1 expression decreased significantly in gastric tumor tissues compared with adjacent normal tissues. We further showed that there was a negative correlation between the EYA1 gene expression levels, tumor size, lymphatic invasion and distant metastasis. In conclusion, EYA1 might be used as a potential biomarker for monitoring gastric carcinoma progression rate. Further studies to determine the mechanism of action of EYA1 is needed to unravel the role of this gene in gastric cancer pathogenesis.
Collapse
Affiliation(s)
- Parvaneh Nikpour
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,
| | | | | | | |
Collapse
|
27
|
Kestler C, Knobloch G, Tessmer I, Jeanclos E, Schindelin H, Gohla A. Chronophin dimerization is required for proper positioning of its substrate specificity loop. J Biol Chem 2013; 289:3094-103. [PMID: 24338687 DOI: 10.1074/jbc.m113.536482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian phosphatases of the haloacid dehalogenase (HAD) superfamily have emerged as important regulators of physiology and disease. Many of these enzymes are stable homodimers; however, the role of their dimerization is largely unknown. Here, we explore the function of the obligatory homodimerization of chronophin, a mammalian HAD phosphatase known to dephosphorylate pyridoxal 5'-phosphate (PLP) and serine/threonine-phosphorylated proteins. The exchange of two residues in the murine chronophin homodimerization interface (chronophin(A194K,A195K)) yields a constitutive monomer both in vitro and in cells. The catalytic activity of monomeric chronophin toward PLP is strongly impaired. X-ray crystallographic studies of chronophin(A194K,A195K) revealed that dimer formation is essential for an intermolecular arginine-arginine-tryptophan stacking interaction that positions a critical histidine residue in the substrate specificity loop of chronophin for PLP coordination. Analysis of all available crystal structures of HAD hydrolases that are grouped together with chronophin in the C2a-type structural subfamily uncovered a highly conserved mode of dimerization that results in intermolecular contacts involving the substrate specificity loop. Our results explain how the dimerization of HAD hydrolases contributes to their catalytic efficiency and substrate specificity.
Collapse
Affiliation(s)
- Christian Kestler
- From the Institute for Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany and
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Together with protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs) serve as hallmarks in cellular signal transduction by controlling the reversible phosphorylation of their substrates. The human genome is estimated to encode more than 100 PTPs, which can be divided into eleven sub-groups according to their structural and functional characteristics. All the crystal structures of catalytic domains of sub-groups have been elucidated, enabling us to understand their precise catalytic mechanism and to compare their structures across all sub-groups. In this review, I describe the structure and mechanism of catalytic domains of PTPs in the structural context. [BMB Reports 2012; 45(12): 693-699]
Collapse
Affiliation(s)
- Seung Jun Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea.
| | | |
Collapse
|
29
|
Structure-function analyses of the human SIX1-EYA2 complex reveal insights into metastasis and BOR syndrome. Nat Struct Mol Biol 2013; 20:447-53. [PMID: 23435380 PMCID: PMC3618615 DOI: 10.1038/nsmb.2505] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023]
Abstract
SIX1 interacts with EYA to form a bipartite transcription factor essential for development. Loss of function of this complex causes branchio-oto-renal syndrome (BOR), while re-expression of SIX1 or EYA promotes metastasis. Here we describe the 2.0 Å structure of SIX1 bound to EYA2, which suggests a novel DNA binding mechanism for SIX1 and provides a rationale for the effect of BOR syndrome mutations. The structure also reveals that SIX1 uses predominantly a single helix to interact with EYA. Substitution of a single amino acid in this helix is sufficient to disrupt the SIX1–EYA interaction, SIX1-mediated epithelial-mesenchymal transition and metastasis in mouse models. Given that SIX1 and EYA are co-overexpressed in many tumor types, our data indicate that targeting the SIX1–EYA complex may be a potent approach to inhibit tumor progression in multiple cancer types.
Collapse
|
30
|
Tadjuidje E, Hegde RS. The Eyes Absent proteins in development and disease. Cell Mol Life Sci 2012; 70:1897-913. [PMID: 22971774 DOI: 10.1007/s00018-012-1144-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
The Eyes Absent (EYA) proteins, first described in the context of fly eye development, are now implicated in processes as disparate as organ development, innate immunity, DNA damage repair, photoperiodism, angiogenesis, and cancer metastasis. These functions are associated with an unusual combination of biochemical activities: tyrosine phosphatase and threonine phosphatase activities in separate domains, and transactivation potential when associated with a DNA-binding partner. EYA mutations are linked to multiorgan developmental disorders, as well as to adult diseases ranging from dilated cardiomyopathy to late-onset sensorineural hearing loss. With the growing understanding of EYA biochemical and cellular activity, biological function, and association with disease, comes the possibility that the EYA proteins are amenable to the design of targeted therapeutics. The availability of structural information, direct links to disease states, available animal models, and the fact that they utilize unconventional reaction mechanisms that could allow specificity, suggest that EYAs are well-positioned for drug discovery efforts. This review provides a summary of EYA structure, activity, and function, as they relate to development and disease, with particular emphasis on recent findings.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
31
|
Krueger AB, Dehdashti SJ, Southall N, Marugan JJ, Ferrer M, Li X, Ford HL, Zheng W, Zhao R. Identification of a selective small-molecule inhibitor series targeting the eyes absent 2 (Eya2) phosphatase activity. ACTA ACUST UNITED AC 2012; 18:85-96. [PMID: 22820394 DOI: 10.1177/1087057112453936] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eya proteins are essential coactivators of the Six family of homeobox transcription factors and also contain a unique protein tyrosine phosphatase activity, belonging to the haloacid dehalogenase family of phosphatases. The phosphatase activity of Eya is important for a subset of Six1-mediated transcription, making this a unique type of transcriptional control. It is also responsible for directing cells to the repair instead of apoptosis pathway upon DNA damage. Furthermore, the phosphatase activity of Eya is critical for transformation, migration, invasion, and metastasis of breast cancer cells. Thus, inhibitors of the Eya phosphatase activity may be antitumorigenic and antimetastatic, as well as sensitize cancer cells to DNA damage-inducing therapies. In this article, we identified a previously unknown chemical series using high-throughput screening that inhibits the Eya2 phosphatase activity with IC(50)s ranging from 1.8 to 79 µM. Compound activity was confirmed using an alternative malachite green assay and H2AX, a known Eya substrate. Importantly, these Eya2 phosphatase inhibitors show specificity and do not significantly inhibit several other cellular phosphatases. Our studies identify the first selective Eya2 phosphatase inhibitors that can potentially be developed into chemical probes for functional studies of Eya phosphatase or into anticancer drugs in the future.
Collapse
Affiliation(s)
- Aaron B Krueger
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Seameen J Dehdashti
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892
| | - Noel Southall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892
| | - Marc Ferrer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Heide L Ford
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Ob/Gyn, University of Colorado School of Medicine, Aurora, CO 80045
| | - Wei Zheng
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
32
|
Seifried A, Schultz J, Gohla A. Human HAD phosphatases: structure, mechanism, and roles in health and disease. FEBS J 2012; 280:549-71. [PMID: 22607316 DOI: 10.1111/j.1742-4658.2012.08633.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatases of the haloacid dehalogenase (HAD) superfamily of hydrolases are an ancient and very large class of enzymes that have evolved to dephosphorylate a wide range of low- and high molecular weight substrates with often exquisite specificities. HAD phosphatases constitute approximately one-fifth of all human phosphatase catalytic subunits. While the overall sequence similarity between HAD phosphatases is generally very low, family members can be identified based on the presence of a characteristic Rossmann-like fold and the active site sequence DxDx(V/T). HAD phosphatases employ an aspartate residue as a nucleophile in a magnesium-dependent phosphoaspartyl transferase reaction. Although there is genetic evidence demonstrating a causal involvement of some HAD phosphatases in diseases such as cancer, cardiovascular, metabolic and neurological disorders, the physiological roles of many of these enzymes are still poorly understood. In this review, we discuss the structure and evolution of human HAD phosphatases, and summarize their known functions in health and disease.
Collapse
Affiliation(s)
- Annegrit Seifried
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
33
|
Structure-based de novo design of Eya2 phosphatase inhibitors. J Mol Graph Model 2012; 38:382-8. [PMID: 23085179 DOI: 10.1016/j.jmgm.2012.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 11/22/2022]
Abstract
Although Eyes absent protein tyrosine phosphatases proved to be involved in various human cancers by a series of persuasive experimental evidence, only a very few number of small-molecule inhibitors have been reported so far. We have been able to identify 29 novel inhibitors of Eyes absent homologue 2 (Eya2) by means of a structure-based de novo design with the two known inhibitor scaffolds that contain a proper chelating group for the active-site Mg²⁺ ion. Because these newly found inhibitors were screened for having desirable physicochemical properties as a drug candidate and exhibited a moderate inhibitory activity with IC₅₀ values ranging from 6 to 50 μM, they deserve consideration for further investigation to develop new anticancer medicines. Structural features relevant to the stabilization of the identified inhibitors in the active site of Eya2 phosphatase are discussed in detail.
Collapse
|
34
|
Tadjuidje E, Wang TS, Pandey RN, Sumanas S, Lang RA, Hegde RS. The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone. PLoS One 2012; 7:e34806. [PMID: 22545090 PMCID: PMC3335822 DOI: 10.1371/journal.pone.0034806] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/08/2012] [Indexed: 11/30/2022] Open
Abstract
Eyes Absents (EYA) are multifunctional proteins best known for their role in organogenesis. There is accumulating evidence that overexpression of EYAs in breast and ovarian cancers, and in malignant peripheral nerve sheath tumors, correlates with tumor growth and increased metastasis. The EYA protein is both a transcriptional activator and a tyrosine phosphatase, and the tyrosine phosphatase activity promotes single cell motility of mammary epithelial cells. Since EYAs are expressed in vascular endothelial cells and cell motility is a critical feature of angiogenesis we investigated the role of EYAs in this process. Using RNA interference techniques we show that EYA3 depletion in human umbilical vein endothelial cells inhibits transwell migration as well as Matrigel-induced tube formation. To specifically query the role of the EYA tyrosine phosphatase activity we employed a chemical biology approach. Through an experimental screen the uricosuric agents Benzbromarone and Benzarone were found to be potent EYA inhibitors, and Benzarone in particular exhibited selectivity towards EYA versus a representative classical protein tyrosine phosphatase, PTP1B. These compounds inhibit the motility of mammary epithelial cells over-expressing EYA2 as well as the motility of endothelial cells. Furthermore, they attenuate tubulogenesis in matrigel and sprouting angiogenesis in the ex vivo aortic ring assay in a dose-dependent fashion. The anti-angiogenic effect of the inhibitors was also demonstrated in vivo, as treatment of zebrafish embryos led to significant and dose-dependent defects in the developing vasculature. Taken together our results demonstrate that the EYA tyrosine phosphatase activity is pro-angiogenic and that Benzbromarone and Benzarone are attractive candidates for repurposing as drugs for the treatment of cancer metastasis, tumor angiogenesis, and vasculopathies.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Tim Sen Wang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ram Naresh Pandey
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Richard A. Lang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Rashmi S. Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Park HS, Yu KR, Kim SJ. Identification of Two Eya2 Phosphatase Inhibitors from Virtual Screening with Docking Simulations. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Park H, Jung SK, Yu KR, Kim JH, Kim YS, Ko JH, Park BC, Kim SJ. Structure-Based Virtual Screening Approach to the Discovery of Novel Inhibitors of Eyes Absent 2 Phosphatase with Various Metal Chelating Moieties. Chem Biol Drug Des 2011; 78:642-50. [DOI: 10.1111/j.1747-0285.2011.01192.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Zhang M, Liu J, Kim Y, Dixon JE, Pfaff SL, Gill GN, Noel JP, Zhang Y. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci 2010; 19:974-86. [PMID: 20222012 DOI: 10.1002/pro.375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human small C-terminal domain phosphatase 1 (Scp1) modulates the phosphorylation state of the C-terminal domain (CTD) of eukaryotic RNA polymerase II (RNAP II), with preference for phosphorylated Ser5 in the tandem heptad repeats of the CTD. Additionally, Scp1 was identified as a conserved regulator of neuronal stem cell development. Scp1 is a member of haloacid dehalogenase (HAD) superfamily, whose catalysis depends on a Mg(2+) ion and a DXDX(T/V) motif. The first Asp of the motif is identified as the nucleophile that is subject to phosphorylation leading to a phosphoryl-aspartate intermediate. This high-energy mixed anhydride intermediate is subsequently hydrolyzed to regenerate the enzyme. In the present study, we successfully captured the phosphoryl-aspartate intermediate in the crystal structure of a Scp1D206A mutant soaked with para-nitrophenyl phosphate (pNPP), providing strong evidence for the proposed mechanism. Furthermore, steady-state kinetic analysis of a variety of Scp1 mutants revealed the importance of Asp206 in Mg(2+) coordination mediated by a water molecule. Overall, we captured the snapshots of the phosphoryl transfer reaction at each stage of Scp1-mediated catalysis. Through structural-based sequence alignment, we show that the spatial position of the D206 side chain is strictly conserved throughout HAD family. Our results strongly suggest that Asp206 and its equivalent residues in other HAD family members play important structural and possible mechanistic roles.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|