1
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 PMCID: PMC11801303 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Hebron KE, Perkins OL, Kim A, Jian X, Girald-Berlingeri SA, Lei H, Shern JF, Conner EA, Randazzo PA, Yohe ME. ASAP1 and ARF1 Regulate Myogenic Differentiation in Rhabdomyosarcoma by Modulating TAZ Activity. Mol Cancer Res 2025; 23:95-106. [PMID: 39495123 PMCID: PMC11799837 DOI: 10.1158/1541-7786.mcr-24-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Despite aggressive, multimodal therapies, the prognosis of patients with refractory or recurrent rhabdomyosarcoma (RMS) has not improved in four decades. Because RMS resembles skeletal muscle precursor cells, differentiation-inducing therapy has been proposed for patients with advanced disease. In RAS-mutant PAX fusion-negative RMS (FN-RMS) preclinical models, MEK1/2 inhibition (MEKi) induces differentiation, slows tumor growth, and extends survival. However, the response is short-lived. A better understanding of the molecular mechanisms regulating FN-RMS differentiation could improve differentiation therapy. In this study, we identified a role in FN-RMS differentiation for ASAP1, an ADP ribosylation factor (ARF) GTPase-activating protein (GAP) with both proinvasive and tumor-suppressor functions. We found that ASAP1 knockdown inhibited differentiation in FN-RMS cells. Interestingly, knockdown of the GTPases ARF1 or ARF5, targets of ASAP1 GAP activity, also blocked differentiation of FN-RMS. We discovered that loss of ARF pathway components blocked myogenic transcription factor expression. Therefore, we examined the effects on transcriptional regulators. MEKi led to the phosphorylation and inactivation of WW domain-containing transcriptional regulator 1 (WWTR1; TAZ), a homolog of the pro-proliferative transcriptional co-activator YAP1, regulated by the Hippo pathway. However, loss of ASAP1 or ARF1 blocked this inactivation, which inhibits MEKi-induced differentiation. Finally, MEKi-induced differentiation was rescued by dual knockdown of ASAP1 and WWTR1. This study shows that ASAP1 and ARF1 are necessary for myogenic differentiation, providing a deeper understanding of differentiation in FN-RMS and illuminating an opportunity to advance differentiation therapy. Implications: ASAP1 and ARF1 regulate MEKi-induced differentiation of FN-RMS cells by modulating WWTR1 (TAZ) activity, supporting YAP1/TAZ inhibition as a FN-RMS differentiation therapy strategy.
Collapse
Affiliation(s)
- Katie E. Hebron
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Olivia L. Perkins
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Angela Kim
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Xiaoying Jian
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sofia A. Girald-Berlingeri
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth A. Conner
- Center for Cancer Research Genomics Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Randazzo
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Wang Y, Liu D, Wang S, Li Y, Liu G. IBS008738, a TAZ activator, facilitates muscle repair and inhibits muscle injury in a mouse model of sport-induced injury. Cytotechnology 2025; 77:2. [PMID: 39575322 PMCID: PMC11576750 DOI: 10.1007/s10616-024-00667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/01/2024] [Indexed: 11/24/2024] Open
Abstract
High-intensity exercise can cause excessive generation of ROS and induce oxidative stress injury in the body, which is a major reason accounting for muscle damage following exercise. The previous study demonstrated that IBS008738, the activator of TZA, was able to enhance myogenesis in mouse myogenic C2C12 cells, prevent dexamethasone-induced muscle atrophy, and facilitate muscle repair in cardiotoxin-induced muscle injury. Accordingly, our study was designed to probe into the potential role of IBS008738 in muscle damage in mouse models induced by high-intensity exercise. Mice were first administrated with IBS008738, and then subjected to high-intensity eccentric exercise to induce muscle damage after 24 h. During the experiment, mouse weight change and food take were recorded. At the end of the experiment, blood samples were collected through cardiac puncture and centrifugated. Serum levels of blood urea nitrogen (BUN), creatinine, glucose, lactate dehydrogenase (LDH), creatinine kinase (CK), and C-related protein were evaluated using an autoanalyzer. After mice were sacrificed, the gastrocnemius muscles were dissected for DCFH-DA assay of ROS generation, thiobarbituric acid-reactive substances (TBARS) assay of MDA content, hematoxylin-eosin (H&E) staining of histological examination, and western blotting analysis of Akt/mTOR/S6K1 signaling expression. IBS008738 and/or exercise exert significant effects on mouse weight and food take. High-intensity exercise markedly increased ROS generation and lipid peroxidation, upregulated serum levels of CK, LDH, and C-related protein, ameliorated muscle histological damage, and reduced TAZ, phosphorylated (p)-Akt, p-mTOR, and p-S6K1 protein levels in mice. However, IBS008738 administration reversed the above changes induced by high-intensity exercise in mice. IBS008738 alleviates oxidative stress and muscle damage in mice after high-intensity exercise by activating TAZ and the Akt/mTOR/S6K1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00667-6.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| | - Datian Liu
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| | - Sining Wang
- General Department, Huanggu District People’s Government Office, Shenyang, 110033 China
| | - Yiliang Li
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| | - Guanming Liu
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| |
Collapse
|
4
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
5
|
Song J, Kim HK, Cho H, Yoon SJ, Lim J, Lee K, Hwang ES. TAZ deficiency exacerbates psoriatic pathogenesis by increasing the histamine-releasing factor. Cell Biosci 2024; 14:60. [PMID: 38734624 PMCID: PMC11088771 DOI: 10.1186/s13578-024-01246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Transcriptional coactivator with PDZ-biding motif (TAZ) is widely expressed in most tissues and interacts with several transcription factors to regulate cell proliferation, differentiation, and death, thereby influencing organ development and size control. However, very little is known about the function of TAZ in the immune system and its association with inflammatory skin diseases, so we investigated the role of TAZ in the pathogenesis of psoriasis. RESULTS Interestingly, TAZ was expressed in mast cells associated, particularly in lysosomes, and co-localized with histamine-releasing factor (HRF). TAZ deficiency promoted mast cell maturation and increased HRF expression and secretion by mast cells. The upregulation of HRF in TAZ deficiency was not due to increased transcription but to protein stabilization, and TAZ restoration into TAZ-deficient cells reduced HRF protein. Interestingly, imiquimod (IMQ)-induced psoriasis, in which HRF serves as a major pro-inflammatory factor, was more severe in TAZ KO mice than in WT control. HRF expression and secretion were increased by IMQ treatment and were more pronounced in TAZ KO mice treated with IMQ. CONCLUSIONS Thus, as HRF expression was stabilized in TAZ KO mice, psoriatic pathogenesis progressed more rapidly, indicating that TAZ plays an important role in preventing psoriasis by regulating HRF protein stability.
Collapse
Affiliation(s)
- Jiseo Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hyunsoo Cho
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Suh Jin Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Jihae Lim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
6
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024; 16:AD.2024.0306. [PMID: 38502585 PMCID: PMC11745433 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Vo L, Schmidtke MW, Da Rosa-Junior NT, Ren M, Schlame M, Greenberg ML. Cardiolipin metabolism regulates expression of muscle transcription factor MyoD1 and muscle development. J Biol Chem 2023; 299:102978. [PMID: 36739949 PMCID: PMC9999232 DOI: 10.1016/j.jbc.2023.102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.
Collapse
Affiliation(s)
- Linh Vo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Mindong Ren
- Department of Anesthesiology, Perioperative Care, and Pain Medicine at New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology at New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, Perioperative Care, and Pain Medicine at New York University Grossman School of Medicine, New York, New York, USA; Department of Cell Biology at New York University Grossman School of Medicine, New York, New York, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
8
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
9
|
Jeong MG, Kim HK, Lee G, Won HY, Yoon DH, Hwang ES. TAZ promotes PDX1-mediated insulinogenesis. Cell Mol Life Sci 2022; 79:186. [PMID: 35279781 PMCID: PMC11071806 DOI: 10.1007/s00018-022-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and β-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic β-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-β-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Da Hye Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
10
|
Activation of the Hippo Pathway in Rana sylvatica: Yapping Stops in Response to Anoxia. Life (Basel) 2021; 11:life11121422. [PMID: 34947952 PMCID: PMC8708225 DOI: 10.3390/life11121422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
Wood frogs (Rana sylvatica) display well-developed anoxia tolerance as one component of their capacity to endure prolonged whole-body freezing during the winter months. Under anoxic conditions, multiple cellular responses are triggered to efficiently cope with stress by suppressing gene transcription and promoting activation of mechanisms that support cell survival. Activation of the Hippo signaling pathway initiates a cascade of protein kinase reactions that end with phosphorylation of YAP protein. Multiple pathway components of the Hippo pathway were analyzed via immunoblotting, qPCR or DNA-binding ELISAs to assess the effects of 24 h anoxia and 4 h aerobic recovery, compared with controls, on liver and heart metabolism of wood frogs. Immunoblot results showed significant increases in the relative levels of multiple proteins of the Hippo pathway representing an overall activation of the pathway in both organs under anoxia stress. Upregulation of transcript levels further confirmed this. A decrease in YAP and TEAD protein levels in the nuclear fraction also indicated reduced translocation of these proteins. Decreased DNA-binding activity of TEAD at the promoter region also suggested repression of gene transcription of its downstream targets such as SOX2 and OCT4. Furthermore, changes in the protein levels of two downstream targets of TEAD, OCT4 and SOX2, established regulated transcriptional activity and could possibly be associated with the activation of the Hippo pathway. Increased levels of TAZ in anoxic hearts also suggested its involvement in the repair mechanism for damage caused to cardiac muscles during anoxia. In summary, this study provides the first insights into the role of the Hippo pathway in maintaining cellular homeostasis in response to anoxia in amphibians.
Collapse
|
11
|
Jeong MG, Kim HK, Hwang ES. The essential role of TAZ in normal tissue homeostasis. Arch Pharm Res 2021; 44:253-262. [PMID: 33770379 PMCID: PMC8009801 DOI: 10.1007/s12272-021-01322-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) has been extensively characterized in organ development, tissue regeneration, and tumor progression. In particular, TAZ functions as a Hippo mediator that regulates organ size, tumor growth and migration. It is highly expressed in various types of human cancer, and has been reported to be associated with tumor metastasis and poor outcomes in cancer patients, suggesting that TAZ is an oncogenic regulator. Yes-associated protein (YAP) has 60% similarity in amino acid sequence to TAZ and plays redundant roles with TAZ in the regulation of cell proliferation and migration of cancer cells. Therefore, TAZ and YAP, which are encoded by paralogous genes, are referred to as TAZ/YAP and are suggested to be functionally equivalent. Despite its similarity to YAP, TAZ can be clearly distinguished from YAP based on its genetic, structural, and functional aspects. In addition, targeting superabundant TAZ can be a promising therapeutic strategy for cancer treatment; however, persistent TAZ inactivation may cause failure of tissue homeostatic control. This review focuses primarily on TAZ, not YAP, discusses its structural features and physiological functions in the regulation of tissue homeostasis, and provides new insights into the drug development targeting TAZ to control reproductive and musculoskeletal disorders.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea.
| |
Collapse
|
12
|
Wang S, Hashemi S, Stratton S, Arinzeh TL. The Effect of Physical Cues of Biomaterial Scaffolds on Stem Cell Behavior. Adv Healthc Mater 2021; 10:e2001244. [PMID: 33274860 DOI: 10.1002/adhm.202001244] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Stem cells have been sought as a promising cell source in the tissue engineering field due to their proliferative capacity as well as differentiation potential. Biomaterials have been utilized to facilitate the delivery of stem cells in order to improve their engraftment and long-term viability upon implantation. Biomaterials also have been developed as scaffolds to promote stem cell induced tissue regeneration. This review focuses on the latter where the biomaterial scaffold is designed to provide physical cues to stem cells in order to promote their behavior for tissue formation. Recent work that explores the effect of scaffold physical properties, topography, mechanical properties and electrical properties, is discussed. Although still being elucidated, the biological mechanisms, including cell shape, focal adhesion distribution, and nuclear shape, are presented. This review also discusses emerging areas and challenges in clinical translation.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Sharareh Hashemi
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Scott Stratton
- Department of Biomedical Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | | |
Collapse
|
13
|
Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. J Physiol Biochem 2021; 77:63-73. [PMID: 33495890 DOI: 10.1007/s13105-021-00787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in human oncogenesis and the pathway's influence on myogenesis and satellite cell functions, on supporting cells such as fibroblasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles. Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results. Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer potential new strategies for the prevention or treatment of ageing.
Collapse
|
14
|
Reggiani F, Gobbi G, Ciarrocchi A, Sancisi V. YAP and TAZ Are Not Identical Twins. Trends Biochem Sci 2020; 46:154-168. [PMID: 32981815 DOI: 10.1016/j.tibs.2020.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda USL- IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
15
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
16
|
Chromatin accessibility is associated with the changed expression of miRNAs that target members of the Hippo pathway during myoblast differentiation. Cell Death Dis 2020; 11:148. [PMID: 32094347 PMCID: PMC7039994 DOI: 10.1038/s41419-020-2341-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
miRNAs reportedly participate in various biological processes, such as skeletal muscle proliferation and differentiation. However, the regulation of differentially expressed (DE) miRNAs and their function in myogenesis remain unclear. Herein, miRNA expression profiles and regulation during C2C12 differentiation were analyzed in relation to chromatin states by RNA-seq, ATAC-seq, and ChIP-seq. We identified 19 known and nine novel differentially expressed miRNAs at days 0, 1, 2, and 4. The expression of the differentially expressed miRNAs was related to the chromatin states of the 113 surrounding open chromatin regions defined by ATAC-seq peaks. Of these open chromatin regions, 44.25% were colocalized with MyoD/MyoG binding sites. The remainder of the above open chromatin regions were enriched with motifs of the myoblast-expressed AP-1 family, Ctcf, and Bach2 transcription factors (TFs). Additionally, the target genes of the above differentially expressed miRNAs were enriched primarily in muscle growth and development pathways, especially the Hippo signaling pathway. Moreover, via combining a loss-of-function assay with Q-PCR, western blotting, and immunofluorescence, we confirmed that the Hippo signaling pathway was responsible for C2C12 myoblast differentiation. Thus, our results showed that these differentially expressed miRNAs were regulated by chromatin states and affected muscle differentiation through the Hippo signaling pathway. Our findings provide new insights into the function of these differentially expressed miRNAs and the regulation of their expression during myoblast differentiation.
Collapse
|
17
|
Shin JH, Lee G, Jeong MG, Kim HK, Won HY, Choi Y, Lee JH, Nam M, Choi CS, Hwang GS, Hwang ES. Transcriptional coactivator with PDZ-binding motif suppresses the expression of steroidogenic enzymes by nuclear receptor 4 A1 in Leydig cells. FASEB J 2020; 34:5332-5347. [PMID: 32067268 DOI: 10.1096/fj.201900695rrrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/20/2023]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) plays crucial role in maintaining testicular structure and function via regulation of senescence of spermatogenic cells. However, it remains unclear whether TAZ is involved in testosterone biosynthesis in testicular Leydig cells. We found that TAZ deficiency caused aberrant Leydig cell expansion and increased lipid droplet formation, which was significantly associated with increased lipogenic enzyme expression. Additionally, the expression of key steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 (CYP) 11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase, was greatly increased in TAZ-deficient testes and primary Leydig cells. Interestingly, the transcriptional activity of nuclear receptor 4 A1 (NR4A1) was dramatically suppressed by TAZ; however, the protein expression and the subcellular localization of NR4A1 were not affected by TAZ. TAZ directly associated with the N-terminal region of NR4A1 and substantially suppressed its DNA-binding and transcriptional activities. Stable expression of TAZ in the mouse Leydig TM3 cell line decreased the expression of key steroidogenic enzymes, whereas knockdown of endogenous TAZ in TM3 cells increased transcripts of steroidogenic genes induced by NR4A1. Consistently, testosterone production was enhanced within TAZ-deficient Leydig cells. However, TAZ deficiency resulted in decreased testosterone secretion caused by dysfunctional mitochondria and lysosomes. Therefore, TAZ plays essential role in NR4A1-induced steroidogenic enzyme expression and testosterone production in Leydig cells.
Collapse
Affiliation(s)
- Ji Hyun Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gibbeum Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Mi Gyeong Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyo Kyeong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hee Yeon Won
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Yujeong Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ji-Hyeok Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Incheon, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Eun Sook Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
18
|
Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. Aging (Albany NY) 2019; 11:8792-8809. [PMID: 31619581 PMCID: PMC6834407 DOI: 10.18632/aging.102265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Hypertension is the leading preventable cause of premature deaths worldwide. Although long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has been identified to play important roles in the development of cardiovascular diseases, the regulatory function of lncRNA MALAT1 in hypertension remains poorly understood. This study aimed to explore the role of lncRNA MALAT1 in spontaneously hypertensive rats (SHRs). LncRNA MALAT1 was determined to be elevated and MyoD to be reduced in myocardial tissues and thoracic aortic vascular tissues of SHRs. Over-expression of lncRNA MALAT1 caused severe myocardial fibrosis in SHRs. In addition, lncRNA MALAT1 over-expression in vitro enhanced arterial smooth muscle cells (ASMCs) activity and fibrosis of SHRs, which, was rescued by over-expressed MyoD. Furthermore, lncRNA MALAT1 transcripts were found to be highly enriched in the nucleus, and lncRNA MALAT1 suppressed the transactivation of MyoD. Moreover, lncRNA MALAT1 was found to recruit Suv39h1 to MyoD-binding loci, leading to H3K9me3 trimethylation and down-regulation of the target gene. Taken conjointly, this study revealed an important role of lncRNA MALAT1 in promoting cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. These results highlight the value of lncRNA MALAT1 as a therapeutic target for the management of hypertension.
Collapse
|
19
|
Abstract
The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.
Collapse
|
20
|
Sun JX, Yang ZY, Xie LM, Wang B, Bai N, Cai AL. TAZ and myostatin involved in muscle atrophy of congenital neurogenic clubfoot. World J Clin Cases 2019; 7:2238-2246. [PMID: 31531318 PMCID: PMC6718803 DOI: 10.12998/wjcc.v7.i16.2238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/23/2019] [Accepted: 07/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Muscular atrophy is the basic defect of neurogenic clubfoot. Muscle atrophy of clubfoot needs more scientific and reasonable imaging measurement parameters to evaluate. The Hippo pathway and myostatin pathway may be directly correlated in myogenesis. In this study, we will use congenital neurogenic clubfoot muscle atrophy model to verify in vivo. Further, the antagonistic mechanism of TAZ on myostatin was studied in the C2C12 cell differentiation model.
AIM To identify muscle atrophy in fetal neurogenic clubfoot by ultrasound imaging and detect the expression of TAZ and myostatin in gastrocnemius muscle. To elucidate the possible mechanisms by which TAZ antagonizes myostatin-induced atrophy in an in vitro cell model.
METHODS Muscle atrophy in eight cases of fetal unilateral clubfoot with nervous system abnormalities was identified by 2D and 3D ultrasound. Western blotting and immunostaining were performed to detect expression of myostatin and TAZ. TAZ overexpression in C2C12 myotubes and the expression of associated proteins were analyzed by western blotting.
RESULTS The maximum cross-sectional area of the fetal clubfoot on the varus side was reduced compared to the contralateral side. Myostatin was elevated in the atrophied gastrocnemius muscle, while TAZ expression was decreased. They were negatively correlated. TAZ overexpression reversed the diameter reduction of the myotube, downregulated phosphorylated Akt, and increased the expression of forkhead box O4 induced by myostatin.
CONCLUSION Ultrasound can detect muscle atrophy of fetal clubfoot. TAZ and myostatin are involved in the pathological process of neurogenic clubfoot muscle atrophy. TAZ antagonizes myostatin-induced myotube atrophy, potentially through regulation of the Akt/forkhead box O4 signaling pathway.
Collapse
Affiliation(s)
- Jia-Xing Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ze-Yu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Li-Mei Xie
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Bing Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ning Bai
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang 110004, Liaoning Province, China
| | - Ai-Lu Cai
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
21
|
Helical nanofiber yarn enabling highly stretchable engineered microtissue. Proc Natl Acad Sci U S A 2019; 116:9245-9250. [PMID: 31019088 DOI: 10.1073/pnas.1821617116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of microtissues that possess mechanical properties mimicking those of native stretchable tissues, such as muscle and tendon, is in high demand for tissue engineering and regenerative medicine. However, regardless of the significant advances in synthetic biomaterials, it remains challenging to fabricate living microtissue with high stretchability because application of large strains to microtissues can damage the cells by rupturing their structures. Inspired by the hierarchical helical structure of native fibrous tissues and its behavior of nonaffine deformation, we develop a highly stretchable and tough microtissue fiber made up of a hierarchical helix yarn scaffold, scaling from nanometers to millimeters, that can overcome this limitation. This microtissue can be stretched up to 15 times its initial length and has a toughness of 57 GJ m-3 More importantly, cells grown on this scaffold maintain high viability, even under severe cyclic strains (up to 600%) that can be attributed to the nonaffine deformation under large strains, mimicking native biopolymer scaffolds. Furthermore, as proof of principle, we demonstrate that the nanotopography of the helical nanofiber yarn is able to induce cytoskeletal alignment and nuclear elongation, which promote myogenic differentiation of mesenchymal stem cells by triggering nuclear translocation of transcriptional coactivator with PDZ-binding motif (TAZ). The highly stretchable microtissues we develop here will facilitate a variety of tissue engineering applications and the development of engineered living systems.
Collapse
|
22
|
Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, Yan G, Chen S, Peng C. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol 2019; 54:1995-2004. [PMID: 31081045 PMCID: PMC6521938 DOI: 10.3892/ijo.2019.4777] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Harmine (HM) is a β-carboline alkaloid found in multiple medicinal plants. It has been used in folk medicine for anticancer therapy; however, the molecular mechanism of HM on human breast cancer remains unclear. Transcriptional co-activator with PDZ-binding motif (TAZ), also known as WW domain-containing transcription regulator 1, serves an important role in the carcinogenesis and progression of breast cancer. The aim of the present study was to elucidate the potential anticancer activity and mechanism of HM in breast cancer, in vitro and in vivo. Cell proliferation was measured using a CCK-8 assay, apoptotic activity was detected by flow cytometry and DAPI staining, and cell migration was examined using a wound healing assay. The expression of proteins, including extracellular signal-regulate kinase (Erk), phosphorylated (p-) Erk, protein kinase B (Akt), p-Akt, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), were determined by western blotting. The mRNA expression of TAZ was detected using reverse transcription-quantitative polymerase chain reaction analysis. The expression of proteins in mouse tumor tissues were examined by immunohistochemistry. HM significantly suppressed cellular proliferation and migration, promoted apoptosis in vitro and inhibited tumor growth in vivo. In addition, HM significantly decreased the expression of TAZ, p-Erk, p-Akt and Bcl-2, but increased that of Bax. The overexpression of TAZ in breast cancer cells inhibited the antitumor effect of HM. In conclusion, HM was found to induce apoptosis and prevent the proliferation and migration of human breast cancer cell lines, possibly via the downregulation of TAZ.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Juan Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tong Yu
- Department of Traditional Chinese Medicine, Humanwell Healthcare (Group) Co., Ltd., Wuhan, Hubei 430075, P.R. China
| | - Xiaoyan Shi
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tianzhu Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ge Yan
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
23
|
Lee PC, Machner MP. The Legionella Effector Kinase LegK7 Hijacks the Host Hippo Pathway to Promote Infection. Cell Host Microbe 2019; 24:429-438.e6. [PMID: 30212651 DOI: 10.1016/j.chom.2018.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
The intracellular pathogen Legionella pneumophila encodes translocated effector proteins that modify host cell processes to support bacterial survival and growth. Here, we show that the L. pneumophila effector protein LegK7 hijacks the conserved Hippo signaling pathway by molecularly mimicking host Hippo kinase (MST1 in mammals), which is the key regulator of pathway activation. LegK7, like Hippo/MST1, phosphorylates the scaffolding protein MOB1, which triggers a signaling cascade resulting in the degradation of the transcriptional regulators TAZ and YAP1. Transcriptome analysis revealed that LegK7-mediated targeting of TAZ and YAP1 alters the transcriptional profile of mammalian macrophages, a key cellular target of L. pneumophila infection. Specifically, genes targeted by the transcription factor PPARγ, which is regulated by TAZ, displayed altered expression, and continuous interference with PPARγ activity rendered macrophages less permissive to L. pneumophila intracellular growth. Thus, a conserved L. pneumophila effector kinase exploits the Hippo pathway to promote bacterial growth and infection.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun 2019; 10:421. [PMID: 30679431 PMCID: PMC6345998 DOI: 10.1038/s41467-019-08287-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
Insulin regulates blood glucose levels by binding its receptor and stimulating downstream proteins through the insulin receptor substrate (IRS). Impaired insulin signalling leads to metabolic syndrome, but the regulation of this process is not well understood. Here, we describe a novel insulin signalling regulatory pathway involving TAZ. TAZ upregulates IRS1 and stimulates Akt- and Glut4-mediated glucose uptake in muscle cells. Muscle-specific TAZ-knockout mice shows significantly decreased Irs1 expression and insulin sensitivity. Furthermore, TAZ is required for Wnt signalling-induced Irs1 expression, as observed by decreased Irs1 expression and insulin sensitivity in muscle-specific APC- and TAZ-double-knockout mice. TAZ physically interacts with c-Jun and Tead4 to induce Irs1 transcription. Finally, statin administration decreases TAZ, IRS1 level and insulin sensitivity. However, in myoblasts, the statin-mediated decrease in insulin sensitivity is counteracted by the expression of a constitutively active TAZ mutant. These results suggest that TAZ is a novel insulin signalling activator that increases insulin sensitivity and couples Hippo/Wnt signalling and insulin sensitivity. Insulin resistance is associated with development of type 2 diabetes. Here the authors show that TAZ interacts with c-Jun and Tead4, inducing expression of the insulin receptor substrate 1 (IRS1) leading to increased glucose uptake in muscle, and that its activity is counteracted by statin administration.
Collapse
|
25
|
Benayahu D, Wiesenfeld Y, Sapir-Koren R. How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol 2019; 234:12133-12141. [PMID: 30633367 DOI: 10.1002/jcp.28099] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Mechanobiology plays a major role in transducing physical cues from the dynamic cellular environment into biochemical modifications that promote cell-specific differentiation paths. Mesenchymal stem cells in the bone marrow or in other mesenchymal tissues will differentiate according to the expression of transcription factors (TFs) that govern their lineage commitment. The favoring of either osteogenic or adipogenic differentiation relies on TF expression as well as mechanical properties of the cells' niche that are translated into the activation of certain signaling pathways. Physical factors can induce significant shifts in bipotential lineage commitment between osteogenesis and adipogenesis. The stiffness of the extracellular matrix (ECM) surrounding a cell, varying greatly from rigid environments close to the bone surface to softer regions in the bone marrow, can influence the path of differentiation. Additionally, mechanical loading through exercise appears to favor osteogenesis whereas disuse conditions seem to promote adipogenesis.
Collapse
Affiliation(s)
- Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yarden Wiesenfeld
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rony Sapir-Koren
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Xing Y, Zhang Y, Jia L, Xu X. Lipopolysaccharide from Escherichia coli stimulates osteogenic differentiation of human periodontal ligament stem cells through Wnt/β-catenin-induced TAZ elevation. Mol Oral Microbiol 2018; 34. [PMID: 30387555 DOI: 10.1111/omi.12249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of dental tissue-derived mesenchymal stem cells (MSCs), can be clinically applied in periodontal tissue regeneration to treat periodontitis, which is initiated and sustained by bacteria. Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, is a pertinent deleterious factor in the oral microenvironment. The aim of this study was to investigate the effect of LPS on the proliferation and osteogenic differentiation of PDLSCs, as well as the mechanisms involved. Proliferation and osteogenic differentiation of PDLSCs were detected under the stimulation of Escherichia coli-derived LPS. The data showed that E. coli-derived LPS did not affect the proliferation, viability, and cell cycle of PDLSCs. Furthermore, it promoted osteogenic differentiation with the activation of TAZ. Lentivirus-mediated depletion of TAZ (transcriptional activator with a PDZ motif) was used to determine the role of TAZ on LPS-induced enhancement of osteogenesis. PDLSCs cultured in osteogenic media with or without LPS and DKK1 (Wnt/β-catenin pathway inhibitor) were used to determine the regulatory effect of Wnt signaling. We found that TAZ depletion offset LPS-induced enhancement of osteogenesis. Moreover, treatment with DKK1 offset LPS-induced TAZ elevation and osteogenic promotion. In conclusion, E. coli-derived LPS promoted osteogenic differentiation of PDLSCs by fortifying TAZ activity. The elevation and activation of TAZ were mostly mediated by the Wnt/β-catenin pathway. PDLSC-governed alveolar bone tissue regeneration was not necessarily reduced under bacterial conditions and could be modulated by Wnt and TAZ.
Collapse
Affiliation(s)
- Yixiao Xing
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Linglu Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Watt KI, Goodman CA, Hornberger TA, Gregorevic P. The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exerc Sport Sci Rev 2018; 46:92-96. [PMID: 29346163 PMCID: PMC6319272 DOI: 10.1249/jes.0000000000000142] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hippo signaling pathway regulates the activity of the proteins Yes-associated protein (Yap) and transcriptional co-activator with PDZ-binding motif (Taz) to control tissue growth in many different cell types. Previously, we demonstrated that Yap is a critical regulator of skeletal muscle mass. We hypothesize that alterations in Yap and Taz activity modulate the anabolic adaptations of skeletal muscle to resistance exercise.
Collapse
Affiliation(s)
- Kevin I. Watt
- Baker Heart and Diabetes Institute, Victoria, 3004, Australia
- Department of Diabetes, Monash University, Victoria, 3004, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Washington, USA
| | - Craig A. Goodman
- College of Health & Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia
- Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
- Australian Institute of Musculoskeletal Science (AIMSS),Victoria University, St Albans, Victoria 3021, Australia
| | - Troy A. Hornberger
- Dept of Comparative Bioscience, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Paul Gregorevic
- Dept of Physiology, The University of Melbourne, Victoria, Australia, 3010
- Dept of Biochemistry and Molecular Biology, Monash University, Victoria, Australia, 3800
- Dept of Neurology, The University of Washington School of Medicine, Seattle, Washington, USA 98195
| |
Collapse
|
28
|
Deel MD, Slemmons KK, Hinson AR, Genadry KC, Burgess BA, Crose LES, Kuprasertkul N, Oristian KM, Bentley RC, Linardic CM. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res 2018. [PMID: 29514840 DOI: 10.1158/1078-0432.ccr-17-1207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis.Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity.Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2-M phase of the cell cycle. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine.Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 24(11); 2616-30. ©2018 AACR.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Ashley R Hinson
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Breanne A Burgess
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | | | - Kristianne M Oristian
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Rex C Bentley
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina. .,Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
29
|
Moya CM, Zaballos MA, Garzón L, Luna C, Simón R, Yaffe MB, Gallego E, Santisteban P, Moreno JC. TAZ/WWTR1 Mediates the Pulmonary Effects of NKX2-1 Mutations in Brain-Lung-Thyroid Syndrome. J Clin Endocrinol Metab 2018; 103:839-852. [PMID: 29294041 DOI: 10.1210/jc.2017-01241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022]
Abstract
CONTEXT Identification of a frameshift heterozygous mutation in the transcription factor NKX2-1 in a patient with brain-lung-thyroid syndrome (BLTS) and life-threatening lung emphysema. OBJECTIVE To study the genetic defect that causes this complex phenotype and dissect the molecular mechanism underlying this syndrome through functional analysis. METHODS Mutational study by DNA sequencing, generation of expression vectors, site-directed mutagenesis, protein-DNA-binding assays, luciferase reporter gene assays, confocal microscopy, coimmunoprecipitation, and bioinformatics analysis. RESULTS We identified a mutation [p.(Val75Glyfs*334)] in the amino-terminal domain of the NKX2-1 gene, which was functionally compared with a previously identified mutation [p.(Ala276Argfs*75)] in the carboxy-terminal domain in other patients with BLTS but without signs of respiratory distress. Both mutations showed similar protein expression profiles, subcellular localization, and deleterious effects on thyroid-, brain-, and lung-specific promoter activity. Coexpression of the coactivator TAZ/WWTR1 (transcriptional coactivator with PDZ-binding motif/WW domain-containing transcription regulator protein 1) restored the transactivation properties of p.(Ala276Argfs*75) but not p.(Val75Glyfs*334) NKX2-1 on a lung-specific promoter, although both NKX2-1 mutants could interact equally with TAZ/WWTR1. The retention of residual transcriptional activity in the carboxy-terminal mutant, which was absent in the amino-terminal mutant, allowed the functional rescue by TAZ/WWTR1. CONCLUSIONS Our results support a mechanistic model involving TAZ/WWTR1 in the development of human congenital emphysema, suggesting that this protein could be a transcriptional modifier of the lung phenotype in BLTS.
Collapse
Affiliation(s)
- Christian M Moya
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Madrid, Spain
| | - Miguel A Zaballos
- Biomedical Research Institute "Alberto Sols," Spanish National Council for Scientific Research-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer from Health Institute Carlos III (CIBERONC), Madrid, Spain
| | - Lucía Garzón
- Department of Paediatric Endocrinology, 12 de Octubre University Hospital, Madrid, Spain
| | - Carmen Luna
- Department of Paediatric Pneumology and Allergy, 12 de Octubre University Hospital, Madrid, Spain
| | - Rogelio Simón
- Department of Neuropaediatry, 12 de Octubre University Hospital, Madrid, Spain
| | - Michael B Yaffe
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elena Gallego
- Department of Paediatric Endocrinology, 12 de Octubre University Hospital, Madrid, Spain
| | - Pilar Santisteban
- Biomedical Research Institute "Alberto Sols," Spanish National Council for Scientific Research-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer from Health Institute Carlos III (CIBERONC), Madrid, Spain
| | - José C Moreno
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
30
|
Byun MR, Hwang JH, Kim AR, Kim KM, Park JI, Oh HT, Hwang ES, Hong JH. SRC activates TAZ for intestinal tumorigenesis and regeneration. Cancer Lett 2017; 410:32-40. [DOI: 10.1016/j.canlet.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 01/08/2023]
|
31
|
Development and validation of a liquid chromatography-tandem mass spectrometry method for pharmacokinetic study of TM-53, a novel transcriptional coactivator with PDZ-binding motif (TAZ) modulator. J Pharm Biomed Anal 2017; 146:195-200. [PMID: 28886519 DOI: 10.1016/j.jpba.2017.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) is considered an attractive target for osteoporosis, obesity, and muscle regeneration. TM-53, a promising TAZ modulator, was recently introduced, and here, we developed a rapid, precise, and reliable analytical method for TM-53 and characterized its pharmacokinetic properties in rat plasma. The hybrid triple quadrupole/linear ion trap coupled to liquid chromatography method was developed and validated to quantify TM-53. Additionally, TM-53 concentrations in plasma were analyzed, and its pharmacokinetic parameters were calculated by non-compartmental analysis. Multiple reaction monitoring at m/z 569.4→207.1 showed the most sensitive signals for TM-53, and the linear scope of the standard curve was between 1.5ng/mL and 500ng/mL. The intra- and inter-day precisions of the quality control samples were <15%, and their accuracies were ranged from 86.2% to 111.0%. Furthermore, the matrix effects, extraction recoveries, and process efficiencies of this analytical method for evaluating TM-53 in rat plasma were 99.1%, 99.9%, and 99.1% respectively. In short- and long-term stability studies, TM-53 showed good stability under frozen conditions, but TM-53 hydrolysis in the plasma matrix was observed following storage at room temperature. This analytical method was successfully applied for pharmacokinetic analysis of TM-53 in rat plasma and demonstrated excellent sensitivity, selectivity, precision, and accuracy. These data indicated that this method can be applied for further preclinical studies of TM-53.
Collapse
|
32
|
Watt KI, Harvey KF, Gregorevic P. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Front Physiol 2017; 8:942. [PMID: 29225579 PMCID: PMC5705614 DOI: 10.3389/fphys.2017.00942] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field.
Collapse
Affiliation(s)
- Kevin I Watt
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Kieran F Harvey
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.,Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
33
|
Jeong MG, Song H, Shin JH, Jeong H, Kim HK, Hwang ES. Transcriptional coactivator with PDZ-binding motif is required to sustain testicular function on aging. Aging Cell 2017; 16:1035-1042. [PMID: 28613007 PMCID: PMC5595677 DOI: 10.1111/acel.12631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Transcriptional coactivator with PDZ‐binding motif (TAZ) directly interacts with transcription factors and regulates their transcriptional activity. Extensive functional studies have shown that TAZ plays critical regulatory roles in stem cell proliferation, differentiation, and survival and also modulates the development of organs such as the lung, kidney, heart, and bone. Despite the importance of TAZ in stem cell maintenance, TAZ function has not yet been evaluated in spermatogenic stem cells of the male reproductive system. Here, we investigated the expression and functions of TAZ in mouse testis. TAZ was expressed in spermatogenic stem cells; however, its deficiency caused significant structural abnormalities, including atrophied tubules, widened interstitial space, and abnormal Leydig cell expansion, thereby resulting in lowered sperm counts and impaired fertility. Furthermore, TAZ deficiency increased the level of apoptosis and senescence in spermatogenic cells and Leydig cells upon aging. The expression of senescence‐associated β‐galactosidase (SA‐βgal), secretory phenotypes, and cyclin‐dependent kinase inhibitors (p16, p19, and p21) significantly increased in the absence of TAZ. TAZ downregulation in testicular cells further increased SA‐βgal and p21 expression induced by oxidative stress, whereas TAZ overexpression decreased p21 induction and prevented senescence. Mechanistic studies showed that TAZ suppressed DNA‐binding activity of p53 through a direct interaction and thus attenuated p53‐induced p21 gene transcription. Our results suggested that TAZ may suppress apoptosis and premature senescence in spermatogenic cells by inhibiting the p53‐p21 signaling pathway, thus playing important roles in the maintenance and control of reproductive function.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hyuna Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Ji Hyun Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences; Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
34
|
Sun C, De Mello V, Mohamed A, Ortuste Quiroga HP, Garcia-Munoz A, Al Bloshi A, Tremblay AM, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage H, Zammit PS. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. Stem Cells 2017; 35:1958-1972. [PMID: 28589555 PMCID: PMC5575518 DOI: 10.1002/stem.2652] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral‐mediated expression of wild‐type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre‐ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E‐MTAB‐5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt‐cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells2017;35:1958–1972
Collapse
Affiliation(s)
- Congshan Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Abdalla Mohamed
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | | - Abdullah Al Bloshi
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Annie M Tremblay
- Stem Cell Program, Children's Hospital, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | | | - Elaina Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | - Henning Wackerhage
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.,Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
35
|
Peng T, Liu L, MacLean AL, Wong CW, Zhao W, Nie Q. A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions. BMC SYSTEMS BIOLOGY 2017; 11:55. [PMID: 28511648 PMCID: PMC5434622 DOI: 10.1186/s12918-017-0429-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/26/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mechanical and biophysical properties of the cellular microenvironment regulate cell fate decisions. Mesenchymal stem cell (MSC) fate is influenced by past mechanical dosing (memory), but the mechanisms underlying this process have not yet been well defined. We have yet to understand how memory affects specific cell fate decisions, such as the differentiation of MSCs into neurons, adipocytes, myocytes, and osteoblasts. RESULTS We study a minimal gene regulatory network permissive of multi-lineage MSC differentiation into four cell fates. We present a continuous model that is able to describe the cell fate transitions that occur during differentiation, and analyze its dynamics with tools from multistability, bifurcation, and cell fate landscape analysis, and via stochastic simulation. Whereas experimentally, memory has only been observed during osteogenic differentiation, this model predicts that memory regions can exist for each of the four MSC-derived cell lineages. We can predict the substrate stiffness ranges over which memory drives differentiation; these are directly testable in an experimental setting. Furthermore, we quantitatively predict how substrate stiffness and culture duration co-regulate the fate of a stem cell, and we find that the feedbacks from the differentiating MSC onto its substrate are critical to preserve mechanical memory. Strikingly, we show that re-seeding MSCs onto a sufficiently soft substrate increases the number of cell fates accessible. CONCLUSIONS Control of MSC differentiation is crucial for the success of much-lauded regenerative therapies based on MSCs. We have predicted new memory regions that will directly impact this control, and have quantified the size of the memory region for osteoblasts, as well as the co-regulatory effects on cell fates of substrate stiffness and culture duration. Taken together, these results can be used to develop novel strategies to better control the fates of MSCs in vitro and following transplantation.
Collapse
Affiliation(s)
- Tao Peng
- Department of Mathematics, Center for Complex Biological Systems, and Center for Mathematical and Computational Biology, University of California, Irvine, CA, 92697, USA
| | - Linan Liu
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center & Edwards Life sciences Center for Advanced Cardiovascular Technology, University of California, 845 Health Sciences Road, Irvine, CA, 92697, USA
| | - Adam L MacLean
- Department of Mathematics, Center for Complex Biological Systems, and Center for Mathematical and Computational Biology, University of California, Irvine, CA, 92697, USA
| | - Chi Wut Wong
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center & Edwards Life sciences Center for Advanced Cardiovascular Technology, University of California, 845 Health Sciences Road, Irvine, CA, 92697, USA
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Department of Biomedical Engineering, Department of Biological Chemistry, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center & Edwards Life sciences Center for Advanced Cardiovascular Technology, University of California, 845 Health Sciences Road, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, Center for Complex Biological Systems, and Center for Mathematical and Computational Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
36
|
Mohamed A, Sun C, De Mello V, Selfe J, Missiaglia E, Shipley J, Murray GI, Zammit PS, Wackerhage H. The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. J Pathol 2017; 240:3-14. [PMID: 27184927 PMCID: PMC4995731 DOI: 10.1002/path.4745] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/04/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Abstract
The Hippo effector YAP has recently been identified as a potent driver of embryonal rhabdomyosarcoma (ERMS). Most reports suggest that the YAP paralogue TAZ (gene symbol WWTR1) functions as YAP but, in skeletal muscle, TAZ has been reported to promote myogenic differentiation, whereas YAP inhibits it. Here, we investigated whether TAZ is also a rhabdomyosarcoma oncogene or whether TAZ acts as a YAP antagonist. Immunostaining of rhabdomyosarcoma tissue microarrays revealed that TAZ is significantly associated with poor survival in ERMS. In 12% of fusion gene‐negative rhabdomyosarcomas, the TAZ locus is gained, which is correlated with increased expression. Constitutively active TAZ S89A significantly increased proliferation of C2C12 myoblasts and, importantly, colony formation on soft agar, suggesting transformation. However, TAZ then switches to enhance myogenic differentiation in C2C12 myoblasts, unlike YAP. Conversely, lentiviral shRNA‐mediated TAZ knockdown in human ERMS cells reduced proliferation and anchorage‐independent growth. While TAZ S89A or YAP1 S127A similarly activated the 8XGTIIC–Luc Hippo reporter, only YAP1 S127A activated the Brachyury (T‐box) reporter. Consistent with its oncogene function, TAZ S89A induced expression of the ERMS cancer stem cell gene Myf5 and the serine biosynthesis pathway (Phgdh, Psat1, Psph) in C2C12 myoblasts. Thus, TAZ is associated with poor survival in ERMS and could act as an oncogene in rhabdomyosarcoma. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Abdalla Mohamed
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, UK
| | - Congshan Sun
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | - Vanessa De Mello
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, UK
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Graeme I Murray
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, UK
| | - Pete S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, UK
| | | |
Collapse
|
37
|
Tian S, Tian X, Liu Y, Dong F, Wang J, Liu X, Zhang Z, Chen H. Effects of TAZ on human dental pulp stem cell proliferation and migration. Mol Med Rep 2017; 15:4326-4332. [PMID: 28487958 DOI: 10.3892/mmr.2017.6550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/01/2017] [Indexed: 11/06/2022] Open
Abstract
Transcriptional coactivator with PDZ‑binding motif (TAZ) acts as the key downstream regulatory target in the Hippo signaling pathway. TAZ overexpression has been reported to promote cellular proliferation and induce epithelial‑mesenchymal transition in human mammary epithelial cells. However, the effects of TAZ in the regulation of human dental pulp stem cell (hDPSC) proliferation and migration, as well as the molecular mechanisms underlying its actions, remain to be elucidated. The present study demonstrated that TAZ was expressed in hDPSCs. TAZ silencing, following hDPSC transfection with TAZ‑specific small interfering (si)RNA (siTAZ), inhibited cellular proliferation and migration in vitro. These effects appeared to be associated with the downregulation of connecting tissue growth factor (CTGF) and cysteine‑rich angiogenic inducer (Cyr) 61 expression. Further investigation of the mechanisms underlying the actions of TAZ in hDPSCs revealed that TAZ silencing suppressed CTGF and Cyr61 expression by interfering with transforming growth factor (TGF)‑β signaling pathways. The present results suggested that TAZ may be implicated in the proliferation and migration of hDPSCs, through the modulation of CTGF and Cyr61 expression via a TGF‑β‑dependent signaling pathway.
Collapse
Affiliation(s)
- Songbo Tian
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanping Liu
- Physical Examination Center, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jie Wang
- Department of Oral Pathology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xuqian Liu
- Department of Oral Pathology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhiyong Zhang
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huizhen Chen
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
38
|
Zou R, Li D, Wang G, Zhang M, Zhao Y, Yang Z. TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury. Inflammation 2017; 40:100-105. [PMID: 27718096 DOI: 10.1007/s10753-016-0457-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcriptional coactivator with PDZ-binding motif (TAZ) functions as a downstream regulatory target in the Hippo signaling pathway that plays various roles. We previously developed a cell-based assay and identified the TAZ activator IBS008738 as a potential therapeutic target for glucocorticoid-induced atrophy. To further explore the application of IBS008738 in various muscle-related diseases, we examined the function of IBS008738 in inflammatory cytokine-mediated mouse muscle responses after traumatic brain injury (TBI). Preliminary screening suggested that IBS008738 treatments increased the levels of IL-10 in C2C12 cells. In TBI and sham control mice, we compared the effect of IBS008738 treatments on TNF α, IL-6, and IL-10 mRNA levels, muscle morphologic changes, and macrophage phenotype changes. Our findings support that the TAZ activator IBS008738 decreases muscle wasting by upregulating IL-10 and inhibiting TNF α and IL-6, and this process is implemented by changing the macrophage phenotypes. These results indicate a new mechanism of the TAZ activator as a potential therapy for atrophy.
Collapse
Affiliation(s)
- Ruyi Zou
- Department of Neurosurgery, General Hospital of Benxi Iron and Steel CO. LTD, Benxi, 117000, China
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Gang Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yili Zhao
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, 23507, VA, USA
| | - Zeyu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
39
|
Pagiatakis C, Sun D, Tobin SW, Miyake T, McDermott JC. TGFβ-TAZ/SRF signalling regulates vascular smooth muscle cell differentiation. FEBS J 2017; 284:1644-1656. [PMID: 28342289 DOI: 10.1111/febs.14070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Vascular smooth muscle cells (VSMCs) do not terminally differentiate; they modulate their phenotype between proliferative and differentiated states, which is a major factor contributing to vascular diseases. TGFβ signalling has been implicated in inducing VSMC differentiation, although the exact mechanism remains largely unknown. Our goal was to assess the network of transcription factors involved in the induction of VSMC differentiation, and to determine the role of TAZ in promoting the quiescent VSMC phenotype. TGFβ robustly induces VSMC marker genes in 10T1/2 mouse embryonic fibroblast cells and the potent transcriptional regulator TAZ has been shown to retain Smad complexes on DNA. Thus, the role of TAZ in regulation of VSMC differentiation was studied. Using primary aortic VSMCs coupled with siRNA-mediated gene silencing, our studies reveal that TAZ is required for TGFβ induction of smooth muscle genes and is also required for the differentiated VSMC phenotype; synergy between TAZ and SRF, and TAZ and Myocardin (MyoC856), in regulating smooth muscle gene activation was observed. These data provide evidence of components of a novel signalling pathway that links TGFβ signalling to induction of smooth muscle genes through a mechanism involving regulation of TAZ and SRF proteins. In addition, we report a physical interaction of TAZ and MyoC856. These observations elucidate a novel level of control of VSMC induction which may have implications for vascular diseases and congenital vascular malformations.
Collapse
Affiliation(s)
- Christina Pagiatakis
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Dandan Sun
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Stephanie W Tobin
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | | | - John C McDermott
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| |
Collapse
|
40
|
Chen TH, Chen CY, Wen HC, Chang CC, Wang HD, Chuu CP, Chang CH. YAP promotes myogenic differentiation via the MEK5-ERK5 pathway. FASEB J 2017; 31:2963-2972. [PMID: 28356344 DOI: 10.1096/fj.201601090r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/13/2017] [Indexed: 01/26/2023]
Abstract
Yes-associated protein (YAP) is a transcriptional coactivator in the Hippo pathway that regulates cell proliferation, differentiation, and apoptosis. The MEK5/ERK5 MAPK cascade is essential for the early step of myogenesis. In this study, we generated C2C12 stable cell lines that expressed YAP (C2C12-YAP cells) and found that ERK5 and MEK5 were activated in C2C12-YAP cells compared with control C2C12 (C2C12-vector) cells. C2C12-YAP stable cells also differentiated into myotubes better than C2C12-vector cells, and expressed elevated levels of myogenin, a transcription factor that regulates myogenesis, as well as elevated levels of myosin heavy chain, a skeletal muscle marker. Western blot analysis revealed that Src and c-Abl (Abelson murine leukemia viral oncogene homolog 1) activation were enhanced in C2C12-YAP cells. Conversely, treatment of inhibitors of c-Abl, Src, or MEK5 inhibited activation of MEK5 and ERK5 and myogenesis of C2C12 myoblasts. Specific interactions between YAP and proteins in the ERK5 pathway, such as MEK kinase 3 (MEKK3) and ERK5, were illustrated by coimmunoprecipitation experiments. MEKK3 contains the PPGY motif (aa 178-181), which may interact with YAP. Site-directed mutagenesis experiments revealed that expression of MEKK3 Y181F mutant inhibited MEK5/ERK5 activation and myogenic differentiation. These results suggest that YAP promotes muscle differentiation by activating the Abl/Src/MEKK3/MEK5/ERK5 kinase cascade.-Chen, T.-H., Chen, C.-Y., Wen, H.-C., Chang, C.-C., Wang, H.-D., Chuu, C.-P., Chang, C.-H. YAP promotes myogenic differentiation via the MEK5-ERK5 pathway.
Collapse
Affiliation(s)
- Ting-Huan Chen
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan, China.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
| | - Chen-Yu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
| | - Hui-Chin Wen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
| | - Chia-Chu Chang
- Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, China
| | - Horng-Dar Wang
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan, China
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China;
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China; .,Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan, China
| |
Collapse
|
41
|
Kim AR, Kim KM, Byun MR, Hwang JH, Park JI, Oh HT, Jeong MG, Hwang ES, Hong JH. (-)-Epigallocatechin-3-gallate stimulates myogenic differentiation through TAZ activation. Biochem Biophys Res Commun 2017; 486:378-384. [PMID: 28315325 DOI: 10.1016/j.bbrc.2017.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
Muscle loss is a typical process of aging. Green tea consumption is known to slow down the progress of aging. Their underlying mechanisms, however, remain largely unknown. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), a polyphenolic compound of green tea, on myogenic differentiation and found that EGCG significantly increases myogenic differentiation. After EGCG treatment, the expression of myogenic marker genes, such as myosin heavy chain, are increased through activation of TAZ, a transcriptional coactivator with a PDZ-binding motif. TAZ-knockdown does not stimulate EGCG-induced myogenic differentiation. EGCG facilitates the interaction between TAZ and MyoD, which stimulates MyoD-mediated gene transcription. EGCG induces nuclear localization of TAZ through the dephosphorylation of TAZ at its Ser89 residue, which relieves 14-3-3 binding in the cytosol. Interestingly, inactivation of Lats kinase is observed after EGCG treatment, which is responsible for the production of dephosphorylated TAZ. Together, these results suggest that EGCG induces myogenic differentiation through TAZ, suggesting that TAZ plays an important role in EGCG induced muscle regeneration.
Collapse
Affiliation(s)
- A Rum Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyung Min Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Mi Ran Byun
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jun-Ha Hwang
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jung Il Park
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Ho Taek Oh
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy, Ewha Woman's University, Seoul 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy, Ewha Woman's University, Seoul 03760, South Korea.
| | - Jeong-Ho Hong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
42
|
Nishio M, Maehama T, Goto H, Nakatani K, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A. Hippo vs. Crab: tissue-specific functions of the mammalian Hippo pathway. Genes Cells 2017; 22:6-31. [PMID: 28078823 DOI: 10.1111/gtc.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.
Collapse
Affiliation(s)
- Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Nakatani
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wakako Kato
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hirofumi Omori
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
43
|
He K, Hu J, Yu H, Wang L, Tang F, Gu J, Ge L, Wang H, Li S, Hu P, Jin Y. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. J Biol Chem 2016; 292:351-360. [PMID: 27899448 DOI: 10.1074/jbc.m116.719849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation is a precisely coordinated process, and the molecular mechanism regulating the process remains incompletely understood. Here we report the identification of serine/threonine kinase 40 (Stk40) as a novel positive regulator of skeletal myoblast differentiation in culture and fetal skeletal muscle formation in vivo We show that the expression level of Stk40 increases during skeletal muscle differentiation. Down-regulation and overexpression of Stk40 significantly decreases and increases myogenic differentiation of C2C12 myoblasts, respectively. In vivo, the number of myofibers and expression levels of myogenic markers are reduced in the fetal muscle of Stk40 knockout mice, indicating impaired fetal skeletal muscle formation. Mechanistically, Stk40 controls the protein level of histone deacetylase 5 (HDAC5) to maintain transcriptional activities of myocyte enhancer factor 2 (MEF2), a family of transcription factor important for skeletal myogenesis. Silencing of HDAC5 expression rescues the reduced myogenic gene expression caused by Stk40 deficiency. Together, our study reveals that Stk40 is required for fetal skeletal muscle development and provides molecular insights into the control of the HDAC5-MEF2 axis in skeletal myogenesis.
Collapse
Affiliation(s)
- Ke He
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Hu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongyao Yu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lina Wang
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Fan Tang
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Laixiang Ge
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongye Wang
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Sheng Li
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Ping Hu
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Ying Jin
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China, .,the Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, and
| |
Collapse
|
44
|
Abstract
TAZ, a transcriptional coactivator with PDZ-binding motif, is encoded by WWTR1 gene (WW domain containing transcription regulator 1). TAZ is tightly regulated in the hippo pathway-dependent and -independent manner in response to a wide range of extracellular and intrinsic signals, including cell density, cell polarity, F-actin related mechanical stress, ligands of G protein-coupled receptors (GPCRs), cellular energy status, hypoxia and osmotic stress. Besides its role in normal tissue development, TAZ plays critical roles in cell proliferation, differentiation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT), and stemness in multiple human cancers. We discuss here the regulators and regulation of TAZ. We also highlight the tumorigenic roles of TAZ and its potential therapeutic impact in human cancers.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology and Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Qun-Ying Lei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology and Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
45
|
Nagashima S, Maruyama J, Kawano S, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Nishina H, Hata Y. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif. Cancer Sci 2016; 107:791-802. [PMID: 27009852 PMCID: PMC4968592 DOI: 10.1111/cas.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.
Collapse
Affiliation(s)
- Shunta Nagashima
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shodai Kawano
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
46
|
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92:41-51. [PMID: 27012163 DOI: 10.1016/j.diff.2016.02.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/15/2016] [Accepted: 02/25/2016] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that represent a promising source for regenerative medicine. MSCs are capable of osteogenic, chondrogenic, adipogenic and myogenic differentiation. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells.
Collapse
Affiliation(s)
- Sami G Almalki
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
48
|
Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:10-8. [DOI: 10.1016/j.bbamcr.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/18/2015] [Accepted: 10/10/2015] [Indexed: 11/20/2022]
|
49
|
Zhang K, Qi HX, Hu ZM, Chang YN, Shi ZM, Han XH, Han YW, Zhang RX, Zhang Z, Chen T, Hong W. YAP and TAZ Take Center Stage in Cancer. Biochemistry 2015; 54:6555-66. [PMID: 26465056 DOI: 10.1021/acs.biochem.5b01014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified and named through screening for mutations in Drosophila, and the core components of the Hippo pathway are highly conserved in mammals. In the Hippo pathway, MST1/2 and LATS1/2 regulate downstream transcription coactivators YAP and TAZ, which mainly interact with TEAD family transcription factors to promote tissue proliferation, self-renewal of normal and cancer stem cells, migration, and carcinogenesis. The Hippo pathway was initially thought to be quite straightforward; however, recent studies have revealed that YAP/TAZ is an integral part and a nexus of a network composed of multiple signaling pathways. Therefore, in this review, we will summarize the latest findings on events upstream and downstream of YAP/TAZ and the ways of regulation of YAP/TAZ. In addition, we also focus on the crosstalk between the Hippo pathway and other tumor-related pathways and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Hai-Xia Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital , 300052 Tianjin, China
| | - Zhi-Mei Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Nan Chang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Zhe-Min Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Xiao-Hui Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ya-Wei Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Rui-Xue Zhang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , 300020 Tianjin, China
| | - Zhen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Ting Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| | - Wei Hong
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University , 300070 Tianjin, China
| |
Collapse
|
50
|
Park D, Lim J, Park JY, Lee SH. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology. Stem Cells Transl Med 2015; 4:1352-68. [PMID: 26450425 DOI: 10.5966/sctm.2015-0095] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. SIGNIFICANCE Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently attracted much attention in biology including stem cell research. These microplatforms and the future directions of stem cell microenvironment are described.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jaeho Lim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-ang University, Seoul, Republic of Korea
| | - Sang-Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea School of Biomedical Engineering, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|