1
|
Zhao Y, Johansson E, Duan J, Han Z, Alenius M. Fat- and sugar-induced signals regulate sweet and fat taste perception in Drosophila. Cell Rep 2023; 42:113387. [PMID: 37934669 PMCID: PMC11212107 DOI: 10.1016/j.celrep.2023.113387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
In this study, we investigate the interplay between taste perception and macronutrients. While sugar's and protein's self-regulation of taste perception is known, the role of fat remains unclear. We reveal that in Drosophila, fat overconsumption reduces fatty acid taste in favor of sweet perception. Conversely, sugar intake increases fatty acid perception and suppresses sweet taste. Genetic investigations show that the sugar signal, gut-secreted Hedgehog, suppresses sugar taste and enhances fatty acid perception. Fat overconsumption induces unpaired 2 (Upd2) secretion from adipose tissue to the hemolymph. We reveal taste neurons take up Upd2, which triggers Domeless suppression of fatty acid perception. We further show that the downstream JAK/STAT signaling enhances sweet perception and, via Socs36E, fine-tunes Domeless activity and the fatty acid taste perception. Together, our results show that sugar regulates Hedgehog signaling and fat induces Upd2 signaling to balance nutrient intake and to regulate sweet and fat taste perception.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Jianli Duan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Liu Y, Li X, Lin L. Transcriptome of the pygmy grasshopper Formosatettix qinlingensis (Orthoptera: Tetrigidae). PeerJ 2023; 11:e15123. [PMID: 37016680 PMCID: PMC10066883 DOI: 10.7717/peerj.15123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Formosatettix qinlingensis (Zheng, 1982) is a tiny grasshopper endemic to Qinling in China. For further study of its transcriptomic features, we obtained RNA-Seq data by Illumina HiSeq X Ten sequencing platform. Firstly, transcriptomic analysis showed that transcriptome read numbers of two female and one male samples were 25,043,314, 24,429,905, and 25,034,457, respectively. We assembled 65,977 unigenes, their average length was 1,072.09 bp, and the length of N50 was 2,031 bp. The average lengths of F. qinlingensis female and male unigenes were 911.30 bp, and 941.82 bp, and the N50 lengths were 1,745 bp and 1,735 bp, respectively. Eight databases were used to annotate the functions of unigenes, and 23,268 functional unigenes were obtained. Besides, we also studied the body color, immunity and insecticide resistance of F. qinlingensis. Thirty-nine pigment-related genes were annotated. Some immunity genes and signaling pathways were found, such as JAK-STAT and Toll-LIKE receptor signaling pathways. There are also some insecticide resistance genes and signal pathways, like nAChR, GST and DDT. Further, some of these genes were differentially expressed in female and male samples, including pigment, immunity and insecticide resistance. The transcriptomic study of F. qinlingensis will provide data reference for gene prediction and molecular expression study of other Tetrigidae species in the future. Differential genetic screening of males and females provides a basis for studying sex and immune balance in insects.
Collapse
Affiliation(s)
- Yuxin Liu
- Shaanxi Normal University, Xi’an, China
| | | | | |
Collapse
|
3
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
4
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
5
|
An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila. Commun Biol 2021; 4:1324. [PMID: 34819611 PMCID: PMC8613235 DOI: 10.1038/s42003-021-02847-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
The gut microbiome produces vitamins, nutrients, and neurotransmitters, and helps to modulate the host immune system-and also plays a major role in the metabolism of many exogenous compounds, including drugs and chemical toxicants. However, the extent to which specific microbial species or communities modulate hazard upon exposure to chemicals remains largely opaque. Focusing on the effects of collateral dietary exposure to the widely used herbicide atrazine, we applied integrated omics and phenotypic screening to assess the role of the gut microbiome in modulating host resilience in Drosophila melanogaster. Transcriptional and metabolic responses to these compounds are sex-specific and depend strongly on the presence of the commensal microbiome. Sequencing the genomes of all abundant microbes in the fly gut revealed an enzymatic pathway responsible for atrazine detoxification unique to Acetobacter tropicalis. We find that Acetobacter tropicalis alone, in gnotobiotic animals, is sufficient to rescue increased atrazine toxicity to wild-type, conventionally reared levels. This work points toward the derivation of biotic strategies to improve host resilience to environmental chemical exposures, and illustrates the power of integrative omics to identify pathways responsible for adverse health outcomes.
Collapse
|
6
|
Rodrigues D, Renaud Y, VijayRaghavan K, Waltzer L, Inamdar MS. Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. eLife 2021; 10:61409. [PMID: 33594977 PMCID: PMC7920551 DOI: 10.7554/elife.61409] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Blood cells arise from diverse pools of stem and progenitor cells. Understanding progenitor heterogeneity is a major challenge. The Drosophila larval lymph gland is a well-studied model to understand blood progenitor maintenance and recapitulates several aspects of vertebrate hematopoiesis. However in-depth analysis has focused on the anterior lobe progenitors (AP), ignoring the posterior progenitors (PP) from the posterior lobes. Using in situ expression mapping and developmental and transcriptome analysis, we reveal PP heterogeneity and identify molecular-genetic tools to study this abundant progenitor population. Functional analysis shows that PP resist differentiation upon immune challenge, in a JAK-STAT-dependent manner. Upon wasp parasitism, AP downregulate JAK-STAT signaling and form lamellocytes. In contrast, we show that PP activate STAT92E and remain undifferentiated, promoting survival. Stat92E knockdown or genetically reducing JAK-STAT signaling permits PP lamellocyte differentiation. We discuss how heterogeneity and compartmentalization allow functional segregation in response to systemic cues and could be widely applicable.
Collapse
Affiliation(s)
- Diana Rodrigues
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Yoan Renaud
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Lucas Waltzer
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
7
|
Harsh S, Fu Y, Kenney E, Han Z, Eleftherianos I. Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Dis Model Mech 2020; 13:dmm040816. [PMID: 32152180 PMCID: PMC7197722 DOI: 10.1242/dmm.040816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
To gain a comprehensive view of the changes in host gene expression underlying Zika virus (ZIKV) pathogenesis, we performed whole-genome RNA sequencing (RNA-seq) of ZIKV-infected Drosophila adult flies. RNA-seq analysis revealed that ZIKV infection alters several and diverse biological processes, including stress, locomotion, lipid metabolism, imaginal disc morphogenesis and regulation of JAK/STAT signaling. To explore the interaction between ZIKV infection and JAK/STAT signaling regulation, we generated genetic constructs overexpressing ZIKV-specific non-structural proteins NS2A, NS2B, NS4A and NS4B. We found that ectopic expression of non-structural proteins in the developing Drosophila eye significantly restricts growth of the larval and adult eye and correlates with considerable repression of the in vivo JAK/STAT reporter, 10XStat92E-GFP At the cellular level, eye growth defects are associated with reduced rate of proliferation without affecting the overall rate of apoptosis. In addition, ZIKV NS4A genetically interacts with the JAK/STAT signaling components; co-expression of NS4A along with the dominant-negative form of domeless or StatRNAi results in aggravated reduction in eye size, while co-expression of NS4A in HopTuml (also known as hopTum ) mutant background partially rescues the hop-induced eye overgrowth phenotype. The function of ZIKV NS4A in regulating growth is maintained in the wing, where ZIKV NS4A overexpression in the pouch domain results in reduced growth linked with diminished expression of Notch targets, Wingless (Wg) and Cut, and the Notch reporter, NRE-GFP Thus, our study provides evidence that ZIKV infection in Drosophila results in restricted growth of the developing eye and wing, wherein eye phenotype is induced through regulation of JAK/STAT signaling, whereas restricted wing growth is induced through regulation of Notch signaling. The interaction of ZIKV non-structural proteins with the conserved host signaling pathways further advance our understanding of ZIKV-induced pathogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- NYU Langone Health, Alexandria Center for Life Science, New York, NY 10016, USA
| | - Yulong Fu
- Center for Genetic Medicine Research, Children's National Health System. Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Eric Kenney
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System. Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
8
|
Powers N, Srivastava A. JAK/STAT signaling is involved in air sac primordium development of Drosophila melanogaster. FEBS Lett 2019; 593:658-669. [PMID: 30854626 DOI: 10.1002/1873-3468.13355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
The dorsal thoracic air sacs in fruit flies (Drosophila melanogaster) are functionally and developmentally comparable to human lungs. The progenitors of these structures, air sac primordia (ASPs), invasively propagate into wing imaginal disks, employing mechanisms similar to those that promote metastasis in malignant tumors. We investigated whether Janus kinase/signal transducer and activator of transcription JAK/STAT signaling plays a role in the directed morphogenesis of ASPs. We find that JAK/STAT signaling occurs in ASP tip cells and misexpression of core components in the JAK/STAT signaling cascade significantly impedes ASP development. We further identify Upd2 as an activating ligand for JAK/STAT activity in the ASP. Together, these data constitute a considerable step forward in understanding the role of JAK/STAT signaling in ASPs and similar structures in mammalian models.
Collapse
Affiliation(s)
- Nathan Powers
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, KY, USA
| | - Ajay Srivastava
- Department of Biology and Biotechnology Center, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
9
|
Wang W, Pan C, Huang Z, Yuan H, Chen J. WSV181 inhibits JAK/STAT signaling and promotes viral replication in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:20-28. [PMID: 30414403 DOI: 10.1016/j.dci.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway plays a critical role in host defense against viral infections. Here, we report the use of the Drosophila model system to investigate the modulation of the JAK/STAT pathway by the white spot syndrome virus (WSSV) protein WSV181. WSV181 overexpression in transgenic flies resulted in the downregulation of STAT92E and STAT92E-targeted genes. This result indicates that WSV181 can suppress JAK/STAT signaling by controlling STAT92E expression. An infection experiment was carried out on transgenic Drosophila infected with Drosophila C virus and on Litopenaeus vannamei injected with recombinant WSV181 and WSSV. The increased viral load and suppressed transcript levels of JAK/STAT pathway components indicate that WSV181 can promote viral proliferation by inhibiting the JAK/STAT pathway. This study provided evidence for the role of WSV181 in viral replication and revealed a new mechanism through which WSSV evades host immunity to maintain persistent infection.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Changkun Pan
- Technology and Data Department of Technology Center, PoolingMed Co., Ltd., Hangzhou, Zhejiang, 310053, China
| | - Zongliang Huang
- Sino-French Hoffmann Institute, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huifang Yuan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
10
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
11
|
Trivedi S, Starz-Gaiano M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int J Mol Sci 2018; 19:ijms19124056. [PMID: 30558204 PMCID: PMC6320922 DOI: 10.3390/ijms19124056] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Over the past three-decades, Janus kinase (Jak) and signal transducer and activator of transcription (STAT) signaling has emerged as a paradigm to understand the involvement of signal transduction in development and disease pathology. At the molecular level, cytokines and interleukins steer Jak/STAT signaling to transcriptional regulation of target genes, which are involved in cell differentiation, migration, and proliferation. Jak/STAT signaling is involved in various types of blood cell disorders and cancers in humans, and its activation is associated with carcinomas that are more invasive or likely to become metastatic. Despite immense information regarding Jak/STAT regulation, the signaling network has numerous missing links, which is slowing the progress towards developing drug therapies. In mammals, many components act in this cascade, with substantial cross-talk with other signaling pathways. In Drosophila, there are fewer pathway components, which has enabled significant discoveries regarding well-conserved regulatory mechanisms. Work across species illustrates the relevance of these regulators in humans. In this review, we showcase fundamental Jak/STAT regulation mechanisms in blood cells, stem cells, and cell motility. We examine the functional relevance of key conserved regulators from Drosophila to human cancer stem cells and metastasis. Finally, we spotlight less characterized regulators of Drosophila Jak/STAT signaling, which stand as promising candidates to be investigated in cancer biology. These comparisons illustrate the value of using Drosophila as a model for uncovering the roles of Jak/STAT signaling and the molecular means by which the pathway is controlled.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
12
|
Fisher KH, Fragiadaki M, Pugazhendhi D, Bausek N, Arredondo MA, Thomas SJ, Brown S, Zeidler MP. A genome-wide RNAi screen identifies MASK as a positive regulator of cytokine receptor stability. J Cell Sci 2018; 131:jcs.209551. [PMID: 29848658 DOI: 10.1242/jcs.209551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/16/2018] [Indexed: 01/01/2023] Open
Abstract
Cytokine receptors often act via the Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway to form a signalling cascade that is essential for processes such as haematopoiesis, immune responses and tissue homeostasis. In order to transduce ligand activation, cytokine receptors must dimerise. However, mechanisms regulating their dimerisation are poorly understood. In order to better understand the processes regulating cytokine receptor levels, and their activity and dimerisation, we analysed the highly conserved JAK/STAT pathway in Drosophila, which acts via a single receptor, known as Domeless. We performed a genome-wide RNAi screen in Drosophila cells, identifying MASK as a positive regulator of Domeless dimerisation and protein levels. We show that MASK is able to regulate receptor levels and JAK/STAT signalling both in vitro and in vivo We also show that its human homologue, ANKHD1, is also able to regulate JAK/STAT signalling and the levels of a subset of pathway receptors in human cells. Taken together, our results identify MASK as a novel regulator of cytokine receptor levels, and suggest functional conservation, which may have implications for human health.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Katherine H Fisher
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Maria Fragiadaki
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Dhamayanthi Pugazhendhi
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Nina Bausek
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| | - Maria A Arredondo
- Department of Oncology & Human Metabolism, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Sally J Thomas
- Department of Oncology & Human Metabolism, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, The University of Sheffield, S10 2TN, UK
| | - Martin P Zeidler
- The Bateson Centre, Department of Biomedical Science, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
13
|
Sherri N, Salloum N, Mouawad C, Haidar-Ahmad N, Shirinian M, Rahal EA. Epstein-Barr Virus DNA Enhances Diptericin Expression and Increases Hemocyte Numbers in Drosophila melanogaster via the Immune Deficiency Pathway. Front Microbiol 2018; 9:1268. [PMID: 29942298 PMCID: PMC6004391 DOI: 10.3389/fmicb.2018.01268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.
Collapse
Affiliation(s)
- Nour Sherri
- Department of Experimental Pathology, Microbiology, and Immunology, American University of Beirut, Beirut, Lebanon
| | - Noor Salloum
- Department of Experimental Pathology, Microbiology, and Immunology, American University of Beirut, Beirut, Lebanon
| | - Carine Mouawad
- Department of Experimental Pathology, Microbiology, and Immunology, American University of Beirut, Beirut, Lebanon
| | - Nathaline Haidar-Ahmad
- Department of Experimental Pathology, Microbiology, and Immunology, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology, Microbiology, and Immunology, American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Microbiology, and Immunology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, Vanzo N. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 2017; 6:25496. [PMID: 29091025 PMCID: PMC5681226 DOI: 10.7554/elife.25496] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-κB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-κB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question.
Collapse
Affiliation(s)
- Isabelle Louradour
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anurag Sharma
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismael Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Letourneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
15
|
Sun JJ, Lan JF, Zhao XF, Vasta GR, Wang JX. Binding of a C-type lectin's coiled-coil domain to the Domeless receptor directly activates the JAK/STAT pathway in the shrimp immune response to bacterial infection. PLoS Pathog 2017; 13:e1006626. [PMID: 28931061 PMCID: PMC5645147 DOI: 10.1371/journal.ppat.1006626] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/17/2017] [Accepted: 09/03/2017] [Indexed: 11/28/2022] Open
Abstract
C-type lectins (CTLs) are characterized by the presence of a C-type carbohydrate recognition domain (CTLD) that by recognizing microbial glycans, is responsible for their roles as pattern recognition receptors in the immune response to bacterial infection. In addition to the CTLD, however, some CTLs display additional domains that can carry out effector functions, such as the collagenous domain of the mannose-binding lectin. While in vertebrates, the mechanisms involved in these effector functions have been characterized in considerable detail, in invertebrates they remain poorly understood. In this study, we identified in the kuruma shrimp (Marsupenaeus japonicus) a structurally novel CTL (MjCC-CL) that in addition to the canonical CTLD, contains a coiled-coil domain (CCD) responsible for the effector functions that are key to the shrimp's antibacterial response mediated by antimicrobial peptides (AMPs). By the use of in vitro and in vivo experimental approaches we elucidated the mechanism by which the recognition of bacterial glycans by the CTLD of MjCC-CL leads to activation of the JAK/STAT pathway via interaction of the CCD with the surface receptor Domeless, and upregulation of AMP expression. Thus, our study of the shrimp MjCC-CL revealed a striking functional difference with vertebrates, in which the JAK/STAT pathway is indirectly activated by cell death and stress signals through cytokines or growth factors. Instead, by cross-linking microbial pathogens with the cell surface receptor Domeless, a lectin directly activates the JAK/STAT pathway, which plays a central role in the shrimp antibacterial immune responses by upregulating expression of selected AMPs.
Collapse
Affiliation(s)
- Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Gerardo R. Vasta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore and Institute of Marine and Environmental Technology, Baltimore, Maryland, United States of America
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Aittomäki S, Valanne S, Lehtinen T, Matikainen S, Nyman TA, Rämet M, Pesu M. Proprotein convertase Furin1 expression in the Drosophila fat body is essential for a normal antimicrobial peptide response and bacterial host defense. FASEB J 2017; 31:4770-4782. [PMID: 28705811 DOI: 10.1096/fj.201700296r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/27/2017] [Indexed: 01/17/2023]
Abstract
Invading pathogens provoke robust innate immune responses in Dipteran insects, such as Drosophila melanogaster In a systemic bacterial infection, a humoral response is induced in the fat body. Gram-positive bacteria trigger the Toll signaling pathway, whereas gram-negative bacterial infections are signaled via the immune deficiency (IMD) pathway. We show here that the RNA interference-mediated silencing of Furin1-a member of the proprotein convertase enzyme family-specifically in the fat body, results in a reduction in the expression of antimicrobial peptides. This, in turn, compromises the survival of adult fruit flies in systemic infections that are caused by both gram-positive and -negative bacteria. Furin1 plays a nonredundant role in the regulation of immune responses, as silencing of Furin2, the other member of the enzyme family, had no effect on survival or the expression of antimicrobial peptides upon a systemic infection. Furin1 does not directly affect the Toll or IMD signaling pathways, but the reduced expression of Furin1 up-regulates stress response factors in the fat body. We also demonstrate that Furin1 is a negative regulator of the Janus kinase/signal transducer and activator of transcription signaling pathway, which is implicated in stress responses in the fly. In summary, our data identify Furin1 as a novel regulator of humoral immunity and cellular stress responses in Drosophila-Aittomäki, S., Valanne, S., Lehtinen, T., Matikainen, S., Nyman, T. A., Rämet, M., Pesu, M. Proprotein convertase Furin1 expression in the Drosophila fat body is essential for a normal antimicrobial peptide response and bacterial host defense.
Collapse
Affiliation(s)
- Saara Aittomäki
- Immunoregulation Group, University of Tampere, Tampere, Finland.,BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Susanna Valanne
- BioMediTech Institute, University of Tampere, Tampere, Finland.,Experimental Immunology Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Tapio Lehtinen
- Immunoregulation Group, University of Tampere, Tampere, Finland.,BioMediTech Institute, University of Tampere, Tampere, Finland
| | | | - Tuula A Nyman
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mika Rämet
- BioMediTech Institute, University of Tampere, Tampere, Finland.,Experimental Immunology Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, and.,Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Marko Pesu
- Immunoregulation Group, University of Tampere, Tampere, Finland .,BioMediTech Institute, University of Tampere, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
17
|
Identification of Novel Regulators of the JAK/STAT Signaling Pathway that Control Border Cell Migration in the Drosophila Ovary. G3-GENES GENOMES GENETICS 2016; 6:1991-2002. [PMID: 27175018 PMCID: PMC4938652 DOI: 10.1534/g3.116.028100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathway is an essential regulator of cell migration both in mammals and fruit flies. Cell migration is required for normal embryonic development and immune response but can also lead to detrimental outcomes, such as tumor metastasis. A cluster of cells termed “border cells” in the Drosophila ovary provides an excellent example of a collective cell migration, in which two different cell types coordinate their movements. Border cells arise within the follicular epithelium and are required to invade the neighboring cells and migrate to the oocyte to contribute to a fertilizable egg. Multiple components of the STAT signaling pathway are required during border cell specification and migration; however, the functions and identities of other potential regulators of the pathway during these processes are not yet known. To find new components of the pathway that govern cell invasiveness, we knocked down 48 predicted STAT modulators using RNAi expression in follicle cells, and assayed defective cell movement. We have shown that seven of these regulators are involved in either border cell specification or migration. Examination of the epistatic relationship between candidate genes and Stat92E reveals that the products of two genes, Protein tyrosine phosphatase 61F (Ptp61F) and brahma (brm), interact with Stat92E during both border cell specification and migration.
Collapse
|
18
|
Liongue C, Sertori R, Ward AC. Evolution of Cytokine Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:11-18. [DOI: 10.4049/jimmunol.1600372] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Cytokines represent essential mediators of cell–cell communication with particularly important roles within the immune system. These secreted factors are produced in response to developmental and/or environmental cues and act via cognate cytokine receptors on target cells, stimulating specific intracellular signaling pathways to facilitate appropriate cellular responses. This review describes the evolution of cytokine receptor signaling, focusing on the class I and class II receptor families and the downstream JAK–STAT pathway along with its key negative regulators. Individual components generated over a long evolutionary time frame coalesced to form an archetypal signaling pathway in bilateria that was expanded extensively during early vertebrate evolution to establish a substantial “core” signaling network, which has subsequently undergone limited diversification within discrete lineages. The evolution of cytokine receptor signaling parallels that of the immune system, particularly the emergence of adaptive immunity, which has likely been a major evolutionary driver.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia; and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
19
|
Vanha-Aho LM, Valanne S, Rämet M. Cytokines in Drosophila immunity. Immunol Lett 2015; 170:42-51. [PMID: 26730849 DOI: 10.1016/j.imlet.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.
Collapse
Affiliation(s)
- Leena-Maija Vanha-Aho
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland.
| | - Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
20
|
Fisher KH, Stec W, Brown S, Zeidler MP. Mechanisms of JAK/STAT pathway negative regulation by the short coreceptor Eye Transformer/Latran. Mol Biol Cell 2015; 27:434-41. [PMID: 26658615 PMCID: PMC4751595 DOI: 10.1091/mbc.e15-07-0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
The short receptor Et/Lat negatively regulates Drosophila JAK/STAT signaling. It binds to intracellular components and the Domeless receptor but cannot bind ligands, thus generating a signaling-incompetent complex. Et/Lat is also more stable than Dome. The study provides insights into how short receptors negatively regulate signaling. Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.
Collapse
Affiliation(s)
- Katherine H Fisher
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Wojciech Stec
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin P Zeidler
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
21
|
Amoyel M, Bach EA. Functions of the Drosophila JAK-STAT pathway: Lessons from stem cells. JAKSTAT 2014; 1:176-83. [PMID: 24058767 PMCID: PMC3670241 DOI: 10.4161/jkst.21621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/13/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023] Open
Abstract
JAK-STAT signaling has been proposed to act in numerous stem cells in a variety of organisms. Here we provide an overview of its roles in three well characterized stem cell populations in Drosophila, in the intestine, lymph gland and testis. In flies, there is a single JAK and a single STAT, which has made the genetic dissection of pathway function considerably easier and facilitated the analysis of communication between stem cells, their niches and offspring. Studies in flies have revealed roles for this pathway as diverse as regulating bona fide intrinsic self-renewal, integrating response to environmental cues that control quiescence and promoting mitogenic responses to stress.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York, NY USA
| | | |
Collapse
|
22
|
Chen Q, Giedt M, Tang L, Harrison DA. Tools and methods for studying the Drosophila JAK/STAT pathway. Methods 2014; 68:160-72. [DOI: 10.1016/j.ymeth.2014.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/29/2022] Open
|
23
|
Myllymäki H, Rämet M. JAK/STAT Pathway inDrosophilaImmunity. Scand J Immunol 2014; 79:377-85. [DOI: 10.1111/sji.12170] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022]
Affiliation(s)
- H. Myllymäki
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
| | - M. Rämet
- Laboratory of Experimental Immunology; BioMediTech; University of Tampere; Tampere Finland
- Department of Pediatrics; Tampere University Hospital; Tampere Finland
- Department of Pediatrics; Medical Research Center Oulu; University of Oulu; Oulu Finland
- Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| |
Collapse
|
24
|
Amoyel M, Anderson AM, Bach EA. JAK/STAT pathway dysregulation in tumors: a Drosophila perspective. Semin Cell Dev Biol 2014; 28:96-103. [PMID: 24685611 PMCID: PMC4037387 DOI: 10.1016/j.semcdb.2014.03.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Sustained activation of the JAK/STAT pathway is causal to human cancers. This pathway is less complex in Drosophila, and its dysregulation has been linked to several tumor models in this organism. Here, we discuss models of metastatic epithelial and hematopoietic tumors that are causally linked to dysregulation of JAK/STAT signaling in Drosophila. First, we focus on cancer models in imaginal discs where ectopic expression of the JAK/STAT pathway ligand Unpaired downstream of distinct tumor suppressors has emerged as an unexpected mediator of neoplastic transformation. We also discuss the collaboration between STAT and oncogenic Ras in epithelial transformation. Second, we examine hematopoietic tumors, where mutations that cause hyperactive JAK/STAT signaling are necessary and sufficient for "fly leukemia". We highlight the important contributions that genetic screens in Drosophila have made to understanding the JAK/STAT pathway, its developmental roles, and how its function is co-opted during tumorigenesis.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 497B, New York, NY 10016, USA
| | - Abigail M Anderson
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, MSB 497B, New York, NY 10016, USA
| | - Erika A Bach
- The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University School of Medicine.
| |
Collapse
|
25
|
Valanne S. Functional genomic analysis of the Drosophila immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:93-101. [PMID: 23707784 DOI: 10.1016/j.dci.2013.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species.
Collapse
Affiliation(s)
- Susanna Valanne
- Institute of Biomedical Technology and BioMediTech, Tampere University, 33520 Tampere, Finland.
| |
Collapse
|
26
|
Zeidler MP, Bausek N. The Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25353. [PMID: 24069564 PMCID: PMC3772116 DOI: 10.4161/jkst.25353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 02/03/2023] Open
Abstract
The conservation of signaling cascades between humans and Drosophila, over more than 500 million years of evolutionary time, means that the genetic tractability of the fly can be used to its full advantage to understand the functional requirements for JAK-STAT pathway signaling across species. Here we review the background to how the pathway was first identified and the first characterization of JAK-STAT pathway phenotypes in the Drosophila system, highlighting the molecular, functional, and disease-related conservation of the pathway.
Collapse
Affiliation(s)
- Martin P Zeidler
- MRC Centre for Development and Biomedical Genetics and the Department of Biomedical Science; The University of Sheffield; Sheffield, UK
| | | |
Collapse
|
27
|
Morin-Poulard I, Vincent A, Crozatier M. The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT 2013; 2:e25700. [PMID: 24069567 PMCID: PMC3772119 DOI: 10.4161/jkst.25700] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations affecting the JAK-STAT signaling pathway are linked to several malignancies and hematological disorders in humans. Despite being one of the most extensively studied pathways, there remain many gaps to fill. JAK-STAT components are widely conserved during evolution. Here, we review the known roles of the JAK-STAT pathway in Drosophila immunity: controlling the different steps of hematopoiesis, both under physiological conditions and in response to immune challenge, and contributing to antiviral responses. We then summarize what is currently known about JAK-STAT signaling in renewal of the adult intestine, under physiological conditions or in response to ingestion of pathogenic bacteria.
Collapse
Affiliation(s)
- Ismaël Morin-Poulard
- Centre de Biologie du Développement; UMR 5547 CNRS/Université Toulouse III and Fédération de Recherche de Biologie de Toulouse; Toulouse, France
| | | | | |
Collapse
|
28
|
Zoranovic T, Grmai L, Bach EA. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25408. [PMID: 24069565 PMCID: PMC3772117 DOI: 10.4161/jkst.25408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
The JAK-STAT pathway is a key regulator of tissue size in Drosophila melanogaster. Here we provide an overview of its roles in processes that regulate the size of Drosophila imaginal discs, epithelia of diploid cells that proliferate and acquire specific fates in the larvae and that become functional in the adult. Drosophila has a single JAK and a single STAT gene, which has facilitated genetic dissection of this pathway. Moreover, the sophisticated genetic tools available in flies for clonal growth assays have made Drosophila an ideal organism in which to dissect the multiple roles of the JAK-STAT pathway in growth control. Studies in flies have revealed JAK-STAT pathway activity as a central node for diverse signals that control proliferation and mass accumulation. In addition, recent work has establish a new role for the pathway in cell competition, a process thought to be akin to the early stages of transformation in which more robust cells kill and take the place of less robust ones.
Collapse
Affiliation(s)
- Tamara Zoranovic
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York, NY USA
| | | | | |
Collapse
|
29
|
Panayidou S, Apidianakis Y. Regenerative inflammation: lessons from Drosophila intestinal epithelium in health and disease. Pathogens 2013; 2:209-31. [PMID: 25437036 PMCID: PMC4235722 DOI: 10.3390/pathogens2020209] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/18/2013] [Accepted: 03/22/2013] [Indexed: 01/04/2023] Open
Abstract
Intestinal inflammation is widely recognized as a pivotal player in health and disease. Defined cytologically as the infiltration of leukocytes in the lamina propria layer of the intestine, it can damage the epithelium and, on a chronic basis, induce inflammatory bowel disease and potentially cancer. The current view thus dictates that blood cell infiltration is the instigator of intestinal inflammation and tumor-promoting inflammation. This is based partially on work in humans and mice showing that intestinal damage during microbially mediated inflammation activates phagocytic cells and lymphocytes that secrete inflammatory signals promoting tissue damage and tumorigenesis. Nevertheless, extensive parallel work in the Drosophila midgut shows that intestinal epithelium damage induces inflammatory signals and growth factors acting mainly in a paracrine manner to induce intestinal stem cell proliferation and tumor formation when genetically predisposed. This is accomplished without any apparent need to involve Drosophila hemocytes. Therefore, recent work on Drosophila host defense to infection by expanding its main focus on systemic immunity signaling pathways to include the study of organ homeostasis in health and disease shapes a new notion that epithelially emanating cytokines and growth factors can directly act on the intestinal stem cell niche to promote “regenerative inflammation” and potentially cancer.
Collapse
Affiliation(s)
- Stavria Panayidou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus.
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus.
| |
Collapse
|
30
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
31
|
Fisher KH, Brown S, Zeidler MP. Designing RNAi screens to identify JAK/STAT pathway components. Methods Mol Biol 2013; 967:81-97. [PMID: 23296723 DOI: 10.1007/978-1-62703-242-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The JAK/STAT signaling pathway has essential roles in multiple developmental processes, including stem cell maintenance, immune responses, and cellular proliferation. As a result, it has been extensively studied in both vertebrate systems and lower complexity models, such as Drosophila. Given its connection with such a wide range of biological functions, it is no surprise that pathway misregulation is frequently associated with multiple human diseases including cancer. While the core components of the pathway, and a number of negative regulators, are well known and conserved in many organisms, more subtle levels of regulation and inter-pathway crosstalk are less well understood. With the emergence of RNA interference (RNAi) as a tool to knock down gene expression and so evaluate protein function, high-throughput screens have been developed to identify pathway regulators on a genome-wide scale. Here we discuss the approaches and methods employed thus far for identification of pathway regulators using RNAi in Drosophila. Furthermore, we discuss possible approaches for future screens and the significant potential for applying RNAi technology in vertebrate models.
Collapse
Affiliation(s)
- Katherine H Fisher
- MRC Centre of Developmental Biology and Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK
| | | | | |
Collapse
|
32
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
33
|
Fisher KH, Wright VM, Taylor A, Zeidler MP, Brown S. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway. BMC Genomics 2012; 13:506. [PMID: 23006893 PMCID: PMC3526451 DOI: 10.1186/1471-2164-13-506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/12/2012] [Indexed: 12/01/2022] Open
Abstract
Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens.
Collapse
Affiliation(s)
- Katherine H Fisher
- The MRC Centre for Developmental and Biomedical Genetics and The Department of Biomedical Science, University of Sheffield, Firth Court,Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
34
|
Abstract
UNLABELLED In 2011, the Nobel Prize in Physiology and Medicine was rewarded, in part, for research on the Drosophila immune response. The research described the role of the Drosophila Toll receptor in antifungal resistance, and the subsequent characterization of Toll-like receptors in mammals reshaped our understanding of the immune system. This review summarizes the potential of the Drosophila model and describes the path that has lead Drosophila to become an important model to study immunity. CONCLUSION Drosophila melanogaster has been one of the most fruitful models to study innate immunity.
Collapse
Affiliation(s)
- Mika Rämet
- Department of Pediatrics, Tampere University Hospital, Institute of Biomedical Technology and BioMediTech, University of Tampere, Finland.
| |
Collapse
|
35
|
Functional characterization of the infection-inducible peptide Edin in Drosophila melanogaster. PLoS One 2012; 7:e37153. [PMID: 22606343 PMCID: PMC3351453 DOI: 10.1371/journal.pone.0037153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/15/2012] [Indexed: 01/16/2023] Open
Abstract
Drosophila is a well-established model organism for studying innate immunity because of its high resistance against microbial infections and lack of adaptive immunity. In addition, the immune signaling cascades found in Drosophila are evolutionarily conserved. Upon infection, activation of the immune signaling pathways, Toll and Imd, leads to the expression of multiple immune response genes, such as the antimicrobial peptides (AMPs). Previously, we identified an uncharacterized gene edin among the genes, which were strongly induced upon stimulation with Escherichia coli in Drosophila S2 cells. Edin has been associated with resistance against Listeria monocytogenes, but its role in Drosophila immunity remains elusive. In this study, we examined the role of Edin in the immune response of Drosophila both in vitro and in vivo. We report that edin expression is dependent on the Imd-pathway NF-κB transcription factor Relish and that it is expressed upon infection both in vitro and in vivo. Edin encodes a pro-protein, which is further processed in S2 cells. In our experiments, Edin did not bind microbes, nor did it possess antimicrobial activity to tested microbial strains in vitro or in vivo. Furthermore, edin RNAi did not significantly affect the expression of AMPs in vitro or in vivo. However, edin RNAi flies showed modestly impaired resistance to E. faecalis infection. We conclude that Edin has no potent antimicrobial properties but it appears to be important for E. faecalis infection via an uncharacterized mechanism. Further studies are still required to elucidate the exact role of Edin in the Drosophila immune response.
Collapse
|
36
|
Valanne S, Kallio J, Kleino A, Rämet M. Large-scale RNAi screens add both clarity and complexity to Drosophila NF-κB signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:9-18. [PMID: 21930155 DOI: 10.1016/j.dci.2011.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 05/31/2023]
Abstract
NF-κB signaling is an immune response mechanism remarkably conserved through phylogeny. The genetically tractable model animal Drosophila melanogaster is an important model organism for studying NF-κB signaling in the immune response. Fruit flies have two NF-κB signaling pathways: the Toll and the Imd pathway. Traditional genetic screens have revealed many important aspects about the regulation of Drosophila NF-κB signaling and have helped us to also understand the immune response in humans. For example, the discovery that Toll like receptors are the main immune signaling molecules in mammals was based on work in flies. During the past decade high throughput RNA interference (RNAi)-based screening in cultured Drosophila cells has become a common method for identifying novel genes required for numerous cellular processes including NF-κB signaling. These screens have identified many novel positive and negative regulators of Drosophila NF-κB signaling thus enhancing our understanding of these signaling cascades.
Collapse
Affiliation(s)
- Susanna Valanne
- Laboratory of Experimental Immunology, Institute of Biomedical Technology, University of Tampere, 33520 Tampere, Finland
| | | | | | | |
Collapse
|
37
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
38
|
Grönholm J, Kaustio M, Myllymäki H, Kallio J, Saarikettu J, Kronhamn J, Valanne S, Silvennoinen O, Rämet M. Not4 enhances JAK/STAT pathway‐dependent gene expression in
Drosophila
and in human cells. FASEB J 2011; 26:1239-50. [DOI: 10.1096/fj.11-195875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Juha Grönholm
- Laboratory of Molecular Immunology and Cytokine Receptor SignalingInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
| | - Meri Kaustio
- Laboratory of Experimental ImmunologyInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
| | - Henna Myllymäki
- Laboratory of Experimental ImmunologyInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
| | - Jenni Kallio
- Laboratory of Experimental ImmunologyInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
| | - Juha Saarikettu
- Laboratory of Molecular Immunology and Cytokine Receptor SignalingInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
| | | | - Susanna Valanne
- Laboratory of Molecular Immunology and Cytokine Receptor SignalingInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
| | - Olli Silvennoinen
- Laboratory of Molecular Immunology and Cytokine Receptor SignalingInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
- Science Center, Centre for Laboratory MedicineTampere University HospitalTampereFinland
| | - Mika Rämet
- Laboratory of Experimental ImmunologyInstitute of Biomedical TechnologyUniversity of TampereTampereFinland
- Department of PediatricsTampere University HospitalTampereFinland
| |
Collapse
|
39
|
Tsachaki M, Sprecher SG. Genetic and developmental mechanisms underlying the formation of theDrosophilacompound eye. Dev Dyn 2011; 241:40-56. [DOI: 10.1002/dvdy.22738] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2011] [Indexed: 01/15/2023] Open
|
40
|
Jiang M, Instrell R, Saunders B, Berven H, Howell M. Tales from an academic RNAi screening facility; FAQs. Brief Funct Genomics 2011; 10:227-37. [PMID: 21527443 DOI: 10.1093/bfgp/elr016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNAi technology is now a well-established and widely employed research technique that has been adopted by many researchers for use in large-scale screening campaigns. Here, we offer our experience of genome-wide siRNA screening from the perspective of a facility providing screening as a service to a wide range of researchers with diverse interests and approaches. We have experienced the emotional rollercoaster of screening from the exuberant early promise of a screen, the messy reality of the data through to the recognition of screen data as a potential information goldmine. Here, we use some of the questions we most frequently encounter to highlight the initial concerns of many researchers embarking on a siRNA screen and conclude that an informed view of what can be reasonably expected from a screen is essential to the most effective implementation of the technology. Along the way, we suggest that for this area of research at least, either centralization of the resources or close and open collaboration between interested parties offers distinct advantages.
Collapse
Affiliation(s)
- Ming Jiang
- High-Throughput Screening facility, Cancer Research UK, London Research Institute
| | | | | | | | | |
Collapse
|