1
|
Alkhatabi HA, Alatyb HN. Pharmacophore-Based Study: An In Silico Perspective for the Identification of Potential New Delhi Metallo-β-lactamase-1 (NDM-1) Inhibitors. Pharmaceuticals (Basel) 2024; 17:1183. [PMID: 39338345 PMCID: PMC11435111 DOI: 10.3390/ph17091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In the ongoing battle against antibiotic-resistant bacteria, New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a significant therapeutic challenge due to its ability to confer resistance to a broad range of β-lactam antibiotics. This study presents a pharmacophore-based virtual screening, docking, and molecular dynamics simulation approach for the identification of potential inhibitors targeting NDM-1, a critical enzyme associated with antibiotic resistance. Through the generation of a pharmacophore model and subsequent virtual screening of compound libraries, candidate molecules (ZINC29142850 (Z1), ZINC78607001 (Z2), and ZINC94303138 (Z3)) were prioritized based on their similarity to known NDM-1 binder (hydrolyzed oxacillin (0WO)). Molecular docking studies further elucidated the binding modes and affinities of the selected compounds towards the active site of NDM-1. These compounds demonstrated superior binding affinities to the enzyme compared to a control compound (-7.30 kcal/mol), with binding scores of -7.13, -7.92, and -8.10 kcal/mol, respectively. Binding interactions within NDM-1's active site showed significant interactions with critical residues such as His250, Asn220, and Trp93 for these compounds. Subsequent molecular dynamics simulations were conducted to assess the stability of the ligand-enzyme complexes, showing low root mean square deviation (RMSD) values between 0.5 and 0.7 nm for Z1, Z2, which indicate high stability. Z2's compactness in principal component analysis (PCA) suggests that it can stabilize particular protein conformations more efficiently. Z2 displays a very cohesive landscape with a notable deep basin, suggesting a very persistent conformational state induced by the ligand, indicating robust binding and perhaps efficient inhibition. Z2 demonstrates the highest binding affinity among the examined compounds with a binding free energy of -25.68 kcal/mol, suggesting that it could offer effective inhibition of NDM-1. This study highlights the efficacy of computational tools in identifying novel antimicrobial agents against resistant bacteria, accelerating drug discovery processes.
Collapse
Affiliation(s)
- Heba Ahmed Alkhatabi
- Faculty of Applied Medical Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Hematology Research Unit (HRU), King Fahd Medical Research Center (KFMRC), Jeddah 80200, Saudi Arabia
| | - Hisham N. Alatyb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Liu Q, Wu Q, Xu T, Malakar PK, Zhu Y, Liu J, Zhao Y, Zhang Z. Thanatin: A Promising Antimicrobial Peptide Targeting the Achilles' Heel of Multidrug-Resistant Bacteria. Int J Mol Sci 2024; 25:9496. [PMID: 39273441 PMCID: PMC11395501 DOI: 10.3390/ijms25179496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Antimicrobial resistance poses an escalating threat to human health, necessitating the development of novel antimicrobial agents capable of addressing challenges posed by antibiotic-resistant bacteria. Thanatin, a 21-amino acid β-hairpin insect antimicrobial peptide featuring a single disulfide bond, exhibits broad-spectrum antibacterial activity, particularly effective against multidrug-resistant strains. The outer membrane biosynthesis system is recognized as a critical vulnerability in antibiotic-resistant bacteria, which thanatin targets to exert its antimicrobial effects. This peptide holds significant promise for diverse applications. This review begins with an examination of the structure-activity relationship and synthesis methods of thanatin. Subsequently, it explores thanatin's antimicrobial activity, detailing its various mechanisms of action. Finally, it discusses prospective clinical, environmental, food, and agricultural applications of thanatin, offering valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Qianhui Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Tianming Xu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
3
|
Gurung A, Napit R, Shrestha B, Lekhak B. Carbapenem Resistance in Acinetobacter calcoaceticus-baumannii Complex Isolates From Kathmandu Model Hospital, Nepal, Is Attributed to the Presence of bla OXA-23-like and bla NDM-1 Genes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8842625. [PMID: 39161641 PMCID: PMC11333142 DOI: 10.1155/2024/8842625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
The Acinetobacter calcoaceticus-baumannii (ACB) complex, also known as ACB complex, consists of four bacterial species that can cause opportunistic infections in humans, especially in hospital settings. Conventional therapies for susceptible strains of the ACB complex include broad-spectrum cephalosporins, β-lactam/β-lactamase inhibitors, and carbapenems. Unfortunately, the effectiveness of these antibiotics has declined due to increasing rates of resistance. The predominant resistance mechanisms identified in the ACB complex involve carbapenem-resistant (CR) oxacillinases and metallo-β-lactamases (MBLs). This research, conducted at Kathmandu Model Hospital in Nepal, sought to identify genes associated with CR, specifically blaNDM-1, blaOXA-23-like, and blaOXA-24-like genes in carbapenem-resistant Acinetobacter calcoaceticus-baumannii (CR-ACB) complex. Additionally, the study is aimed at identifying the ACB complex through the sequencing of the 16s rRNA gene. Among the 992 samples collected from hospitalized patients, 43 (approximately 4.334%) tested positive for the ACB complex. These positive samples were mainly obtained from different hospital units, including intensive care units (ICUs); cabins; and neonatal, general, and maternity wards. The prevalence of infection was higher among males (58.14%) than females (41.86%), with the 40-50 age group showing the highest infection rate. In susceptibility testing, colistin and polymyxin B exhibited a susceptibility rate of 100%, whereas all samples showed resistance to third-generation cephalosporins. After polymyxins, gentamicin (30.23%) and amikacin (34.88%) demonstrated the highest susceptibility. A substantial majority (81.45%) of ACB complex isolates displayed resistance to carbapenems, with respiratory and pus specimens being the primary sources. Polymerase chain reaction (PCR) revealed that the primary CR gene within the ACB complex at this hospital was bla OXA-23-like, followed by bla NDM-1. To ensure the accuracy of the phenotypic assessment, 12 samples were chosen for 16s rRNA sequencing using Illumina MiSeq™ to confirm that they are Acinetobacter species. QIIME 2.0 analysis confirmed all 12 isolates to be Acinetobacter species. In the hospital setting, a substantial portion of the ACB complex carries CR genes, rendering carbapenem ineffective for treatment.
Collapse
Affiliation(s)
- Anupama Gurung
- Central Department of MicrobiologyTribhuvan University, Kirtipur, Nepal
| | - Rajindra Napit
- Central Department of BiotechnologyTribhuvan University, Kirtipur, Nepal
| | - Basudha Shrestha
- Department of MicrobiologyKathmandu Model Hospital, Putalisadak, Kathmandu, Nepal
| | - Binod Lekhak
- Central Department of MicrobiologyTribhuvan University, Kirtipur, Nepal
| |
Collapse
|
4
|
Shi X, Dai Y, Lan Z, Wang S, Cui L, Xiao C, Zhao K, Li X, Liu W, Zhang Q. Interplay between the β-lactam side chain and an active-site mobile loop of NDM-1 in penicillin hydrolysis as a potential target for mechanism-based inhibitor design. Int J Biol Macromol 2024; 262:130041. [PMID: 38336327 DOI: 10.1016/j.ijbiomac.2024.130041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Metallo-β-lactamases (MβLs) stand as significant resistant mechanism against β-lactam antibiotics in Gram-negative bacteria. The worldwide dissemination of New Delhi metallo-β-lactamases (NDMs) intensifies antimicrobial resistance, posing severe threats to human health due to the absence of inhibitors available in clinical therapy. L3, a flexible β-hairpin loop flanking the active site in MβLs, has been proven to wield influence over the reaction process by assuming a crucial role in substrate recognition and intermediate stabilization. In principle, it potentially retards product release from the enzyme, consequently reducing the overall turnover rate although the details regarding this aspect remain inadequately elucidated. In this study, we crystallized NDM-1 in complex with three penicillin substrates, conducted molecular dynamics simulations, and measured the steady-state kinetic parameters. These analyses consistently unveiled substantial disparities in their interactions with loop L3. We further synthesized a penicillin V derivative with increased hydrophobicity in the R1 side chain and co-crystallized it with NDM-1. Remarkably, this compound exhibited much stronger dynamic interplay with L3 during molecular dynamics simulation, showed much lower Km and kcat values, and demonstrated moderate inhibitory capacity to NDM-1 catalyzed meropenem hydrolysis. The data presented here may provide a strategic approach for designing mechanism-based MβL inhibitors focusing on structural elements external to the enzyme's active center.
Collapse
Affiliation(s)
- Xiangrui Shi
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yujie Dai
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhu Lan
- Institute of Immunology, Army Medical University, Chongqing 400038, China
| | - Sheng Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Avenue, Wuhan, Hubei 430074, China
| | - Liwei Cui
- Institute of Immunology, Army Medical University, Chongqing 400038, China
| | - Chengliang Xiao
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Avenue, Wuhan, Hubei 430074, China
| | - Kunhong Zhao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minister of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minister of Education, Guizhou University, Guiyang 550025, China.
| | - Wei Liu
- Institute of Immunology, Army Medical University, Chongqing 400038, China.
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
5
|
Chung SF, Tam SY, Wong WT, So PK, Cheong WL, Mak CW, Lee LMY, Chan PH, Wong KY, Leung YC. Fluorescently Modified NDM-1: A Versatile Drug Sensor for Rapid In Vitro β-Lactam Antibiotic and Inhibitor Screening. ACS OMEGA 2024; 9:9161-9169. [PMID: 38434906 PMCID: PMC10906033 DOI: 10.1021/acsomega.3c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
We successfully developed a fluorescent drug sensor from clinically relevant New Delhi metallo-β-lactamase-1 (NDM-1). The F70 residue was chosen to be replaced with a cysteine for conjugation with thiol-reactive fluorescein-5-maleimide to form fluorescent F70Cf, where "f" refers to fluorescein-5-maleimide. Our proteolytic studies of unlabeled F70C and labeled F70Cf monitored by electrospray ionization-mass spectrometry (ESI-MS) revealed that fluorescein-5-maleimide was specifically linked to C70 in 1:1 mole ratio (F70C:fluorophore). Our drug sensor (F70Cf) can detect the β-lactam antibiotics cefotaxime and cephalothin by giving stronger fluorescence in the initial binding phase and then declining fluorescence signals as a result of the hydrolysis of the antibiotics into acid products. F70Cf can also detect non-β-lactam inhibitors (e.g., l-captopril, d-captopril, dl-thiorphan, and thanatin). In all cases, F70Cf exhibits stronger fluorescence due to inhibitor binding and subsequently sustained fluorescence signals in a later stage. Native ESI-MS results show that F70Cf can bind to all four inhibitors. Moreover, our drug sensor is compatible with a high-throughput microplate reader and has the capability to perform in vitro drug screening.
Collapse
Affiliation(s)
- Sai-Fung Chung
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
- Lo
Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Suet-Ying Tam
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
- Lo
Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Wai-Ting Wong
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Pui-Kin So
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Wing-Lam Cheong
- Department
of Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, Hong Kong
| | - Chun-Wing Mak
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Leo Man-Yuen Lee
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Pak-Ho Chan
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- State
Key Laboratory of Chemical Biology and Drug Discovery, Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
- Lo
Ka Chung Research Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China
| |
Collapse
|
6
|
Ono D, Mojica MF, Bethel CR, Ishii Y, Drusin SI, Moreno DM, Vila AJ, Bonomo RA. Structural role of K224 in taniborbactam inhibition of NDM-1. Antimicrob Agents Chemother 2024; 68:e0133223. [PMID: 38174924 PMCID: PMC10848753 DOI: 10.1128/aac.01332-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid β-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-β-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Medicine, Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, Tokyo, Japan
| | - Salvador I. Drusin
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario (IQUIR), CONICET, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario (IQUIR), CONICET, Rosario, Argentina
| | - Alejandro J. Vila
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A. Bonomo
- Department of Medicine, Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM. Worldwide trend discovery of structural and functional relationship of metallo-β-lactamase for structure-based drug design: A bibliometric evaluation and patent analysis. Int J Biol Macromol 2024; 256:128230. [PMID: 38013072 DOI: 10.1016/j.ijbiomac.2023.128230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Metallo-β-lactamase (MBL) is an enzyme produced by clinically important bacteria that can inactivate many commonly used antibiotics, making them a significant concern in treating bacterial infections and the risk of having high antibiotic resistance issues among the community. This review presents a bibliometric and patent analysis of MBL worldwide research trend based on the Scopus and World Intellectual Property Organization databases in 2013-2022. Based on the keywords related to MBL in the article title, abstract, and keywords, 592 research articles were retrieved for further analysis using various tools such as Microsoft Excel to determine the frequency analysis, VOSviewer for bibliometric networks visualization, and Harzing's Publish or Perish for citation metrics analysis. Standard bibliometric parameters were analysed to evaluate the field's research trend, such as the growth of publications, topographical distribution, top subject area, most relevant journal, top cited documents, most relevant authors, and keyword trend analysis. Within 10 years, MBL discovery has shown a steady and continuous growth of interest among the community of researchers. United States of America, China, and the United Kingdom are the top 3 countries contribute high productivity to the field. The patent analysis also shows several impactful filed patents, indicating the significance of development research on the structural and functional relationship of MBL for an effective structure-based drug design (SBDD). Developing new MBL inhibitors using SBDD could help address the research gap and provide new successful therapeutic options for treating MBL-producing bacterial infections.
Collapse
Affiliation(s)
- Ameera Aisyah Azman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Siti Aminah Mohd Noor
- Center for Defence Foundation Studies, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
8
|
Wu S, Wei Y, Wang Y, Zhang Z, Liu D, Qin S, Shi J, Shen J. Liposomal Antibiotic Booster Potentiates Carbapenems for Combating NDMs-Producing Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304397. [PMID: 37933983 PMCID: PMC10787095 DOI: 10.1002/advs.202304397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Indexed: 11/08/2023]
Abstract
Infections caused by Enterobacterales producing New Delhi Metallo-β-lactamases (NDMs), Zn(II)-dependent enzymes hydrolyzing carbapenems, are difficult to treat. Depriving Zn(II) to inactivate NDMs is an effective solution to reverse carbapenems resistance in NDMs-producing bacteria. However, specific Zn(II) deprivation and better bacterial outer membrane penetrability in vivo are challenges. Herein, authors present a pathogen-primed liposomal antibiotic booster (M-MFL@MB), facilitating drugs transportation into bacteria and removing Zn(II) from NDMs. M-MFL@MB introduces bismuth nanoclusters (BiNCs) as a storage tank of Bi(III) for achieving ROS-initiated Zn(II) removal. Inspired by bacteria-specific maltodextrin transport pathway, meropenem-loaded BiNCs are camouflaged by maltodextrin-cloaked membrane fusion liposome to cross the bacterial envelope barrier via selectively targeting bacteria and directly outer membrane fusion. This fusion disturbs bacterial membrane homeostasis, then triggers intracellular ROS amplification, which activates Bi(III)-mediated Zn(II) replacement and meropenem release, realizing more precise and efficient NDMs producer treatment. Benefiting from specific bacteria-targeting, adequate drugs intracellular accumulation and self-activation Zn(II) replacement, M-MFL@MB rescues all mice infected by NDM producer without systemic side effects. Additionally, M-MFL@MB decreases the bacterial outer membrane vesicles secretion, slowing down NDMs producer's transmission by over 35 times. Taken together, liposomal antibiotic booster as an efficient and safe tool provides new strategy for tackling NDMs producer-induced infections.
Collapse
Affiliation(s)
- Sixuan Wu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- School of Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yongbin Wei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
| | - Yang Wang
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Dejun Liu
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Shangshang Qin
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jianzhong Shen
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| |
Collapse
|
9
|
Oelschlaeger P, Kaadan H, Dhungana R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics (Basel) 2023; 12:1746. [PMID: 38136780 PMCID: PMC10740994 DOI: 10.3390/antibiotics12121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Metallo-β-lactamases (MBLs), also known as class B β-lactamases (BBLs), are Zn(II)-containing enzymes able to inactivate a broad range of β-lactams, the most commonly used antibiotics, including life-saving carbapenems. They have been known for about six decades, yet they have only gained much attention as a clinical problem for about three decades. The naming conventions of these enzymes have changed over time and followed various strategies, sometimes leading to confusion. We are summarizing the naming strategies of the currently known MBLs. These enzymes are quite diverse on the amino acid sequence level but structurally similar. Problems trying to describe conserved residues, such as Zn(II) ligands and other catalytically important residues, which have different numbers in different sequences, have led to the establishment of a standard numbering scheme for BBLs. While well intended, the standard numbering scheme is not trivial and has not been applied consistently. We revisit this standard numbering scheme and suggest some strategies for how its implementation could be made more accessible to researchers. Standard numbering facilitates the comparison of different enzymes as well as their interaction with novel antibiotics and BBL inhibitors.
Collapse
Affiliation(s)
- Peter Oelschlaeger
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Heba Kaadan
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
| | - Rinku Dhungana
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; (H.K.)
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Bibi Z, Asghar I, Ashraf NM, Zeb I, Rashid U, Hamid A, Ali MK, Hatamleh AA, Al-Dosary MA, Ahmad R, Ali M. Prediction of Phytochemicals for Their Potential to Inhibit New Delhi Metallo β-Lactamase (NDM-1). Pharmaceuticals (Basel) 2023; 16:1404. [PMID: 37895875 PMCID: PMC10610165 DOI: 10.3390/ph16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The effectiveness of all antibiotics in the β-lactam group to cure bacterial infections has been impaired by the introduction of the New Delhi Metallo-β-lactamase (NDM-1) enzyme. Attempts have been made to discover a potent chemical as an inhibitor to this enzyme in order to restore the efficacy of antibiotics. However, it has been a challenging task to develop broad-spectrum inhibitors of metallo-β-lactamases. Lack of sequence homology across metallo-β-lactamases (MBLs), the rapidly evolving active site of the enzyme, and structural similarities between human enzymes and metallo-β-lactamases, are the primary causes for the difficulty in the development of these inhibitors. Therefore, it is imperative to concentrate on the discovery of an effective NDM-1 inhibitor. This study used various in silico approaches, including molecular docking and molecular dynamics simulations, to investigate the potential of phytochemicals to inhibit the NDM-1 enzyme. For this purpose, a library of about 59,000 phytochemicals was created from the literature and other databases, including FoodB, IMPPAT, and Phenol-Explorer. A physiochemical and pharmacokinetics analysis was performed to determine possible toxicity and mutagenicity of the ligands. Following the virtual screening, phytochemicals were assessed for their binding with NDM-1using docking scores, RMSD values, and other critical parameters. The docking score was determined by selecting the best conformation of the protein-ligand complex. Three phytochemicals, i.e., butein (polyphenol), monodemethylcurcumin (polyphenol), and rosmarinic acid (polyphenol) were identified as result of pharmacokinetics and molecular docking studies. Furthermore, molecular dynamics simulations were performed to determine structural stabilities of the protein-ligand complexes. Monodemethylcurcumin, butein, and rosmarinic acid were identified as potential inhibitors of NDM-1 based on their low RMSD, RMSF, hydrogen bond count, average Coulomb-Schrödinger interaction energy, and Lennard-Jones-Schrödinger interaction energy. The present investigation suggested that these phytochemicals might be promising candidates for future NDM-1 medication development to respond to antibiotic resistance.
Collapse
Affiliation(s)
- Zainab Bibi
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Irfa Asghar
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of Punjab, Lahore P.O. Box 54590, Pakistan;
| | - Iftikhar Zeb
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Umer Rashid
- Department of Chemistry, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan;
| | - Arslan Hamid
- LIMES Institute, University of Bonn, D-53113 Bonn, Germany;
| | - Maria Kanwal Ali
- Institute of Nuclear Medicine, Oncology and Radiotherapy (INOR), Abbottabad 22060, Pakistan;
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.H.); (M.A.A.-D.)
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.H.); (M.A.A.-D.)
| | - Raza Ahmad
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| | - Muhammad Ali
- Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan (R.A.)
| |
Collapse
|
11
|
Al Fadhli AH, Mouftah SF, Jamal WY, Rotimi VO, Ghazawi A. Cracking the Code: Unveiling the Diversity of Carbapenem-Resistant Klebsiella pneumoniae Clones in the Arabian Peninsula through Genomic Surveillance. Antibiotics (Basel) 2023; 12:1081. [PMID: 37508177 PMCID: PMC10376398 DOI: 10.3390/antibiotics12071081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
The rise of antimicrobial resistance is a global challenge that requires a coordinated effort to address. In this study, we examined the genetic similarity of carbapenem-resistant Klebsiella pneumoniae (CRKP) in countries belonging to the Gulf Cooperation Council (GCC) to gain a better understanding of how these bacteria are spreading and evolving in the region. We used in silico genomic tools to investigate the occurrence and prevalence of different types of carbapenemases and their relationship to specific sequence types (STs) of CRKP commonly found in the region. We analyzed 720 publicly available genomes of multi-drug resistant K. pneumoniae isolates collected from six GCC countries between 2011 and 2020. Our findings showed that ST-14 and ST-231 were the most common STs, and 51.7% of the isolates carried blaOXA-48-like genes. Additionally, we identified rare carbapenemase genes in a small number of isolates. We observed a clonal outbreak of ST-231 in Oman, and four Saudi isolates were found to have colistin resistance genes. Our study offers a comprehensive overview of the genetic diversity and resistance mechanisms of CRKP isolates in the GCC region that could aid in developing targeted interventions to combat this pressing global issue.
Collapse
Affiliation(s)
- Amani H Al Fadhli
- Laboratory Sciences, Department of Medical, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya 24923, Kuwait
| | - Shaimaa F Mouftah
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Wafaa Y Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya 24923, Kuwait
| | - Vincent O Rotimi
- Center for Infection Control and Patient Safety, College of Medicine University of Lagos, Idi-Araba 102215, Nigeria
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
12
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
13
|
Cheng K, Wu Q, Yao C, Chai Z, Jiang L, Liu M, Li C. Distinct Inhibition Modes of New Delhi Metallo-β-lactamase-1 Revealed by NMR Spectroscopy. JACS AU 2023; 3:849-859. [PMID: 37006760 PMCID: PMC10052233 DOI: 10.1021/jacsau.2c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The wide spread of antibiotic-resistant "superbugs" containing New Delhi metallo-β-lactamase-1 (NDM-1) has become a threat to human health. However, clinically valid antibiotics to treat the superbugs' infection are not available now. Quick, simple, and reliable methods to assess the ligand-binding mode are key to developing and improving inhibitors against NDM-1. Herein, we report a straightforward NMR method to distinguish the NDM-1 ligand-binding mode using distinct NMR spectroscopy patterns of apo- and di-Zn-NDM-1 titrations with various inhibitors. Elucidating the inhibition mechanism will aid the development of efficient inhibitors for NDM-1.
Collapse
Affiliation(s)
- Kai Cheng
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiong Wu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chendie Yao
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaofei Chai
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
The activity and mechanism of vidofludimus as a potent enzyme inhibitor against NDM-1-positive E. coli. Eur J Med Chem 2023; 250:115225. [PMID: 36870273 DOI: 10.1016/j.ejmech.2023.115225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is the most important and prevalent enzyme among all metallo-β-lactamases. NDM-1 can hydrolyze almost all-available β-lactam antibiotics including carbapenems, resulting in multidrug resistance, which poses an increasing clinical threat. However, there is no NDM-1 inhibitor approved for clinical treatment. Therefore, identifying a novel and potential enzyme inhibitor against NDM-1-mediated infections is an urgent need. In this study, vidofludimus was identified as a potential NDM-1 inhibitor by structure-based virtual screening and an enzyme activity inhibition assay. Vidofludimus significantly inhibited NDM-1 hydrolysis activity with a significant dose-dependent effect. When the vidofludimus concentration was 10 μg/ml, the inhibition rate and 50% inhibitory concentration were 93.3% and 13.8 ± 0.5 μM, respectively. In vitro, vidofludimus effectively restored the antibacterial activity of meropenem against NDM-1-positive Escherichia coli (E. coli), and the minimum inhibitory concentration of meropenem was decreased from 64 μg/ml to 4 μg/ml, a 16-fold reduction. The combination of vidofludimus and meropenem showed a significant synergistic effect with a fractional inhibitory concentration index of 0.125 and almost all the NDM-1-positive E. coli were killed within 12 h. Furthermore, the synergistic therapeutic effect of vidofludimus and meropenem in vivo was evaluated in mice infected with NDM-1 positive E. coli. Compared with the control treatment, vidofludimus combined with meropenem significantly improved the survival rate of mice infected with NDM-1-positive E. coli (P < 0.05), decreased the white blood cell count, the bacterial burden and inflammatory response induced by NDM-1-positive E. coli (P < 0.05), and alleviated histopathological damage in infected mice. It was demonstrated by molecular dynamic simulation, site-directed mutagenesis and biomolecular interaction that vidofludimus could interact directly with the key amino acids (Met67, His120, His122 and His250) and Zn2+ in the active site of NDM-1, thereby competitively inhibiting the hydrolysis activity of NDM-1 on meropenem. In summary, vidofludimus holds promise as anNDM-1 inhibitor, and the combination of vidofludimus and meropenem has potential as a therapeutic strategy for NDM-1-mediated infections.
Collapse
|
15
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
16
|
Yamaguchi Y, Kato K, Ichimaru Y, Uenosono Y, Tawara S, Ito R, Matsuse N, Wachino JI, Toma-Fukai S, Jin W, Arakawa Y, Otsuka M, Fujita M, Fukuishi N, Sugiura K, Imai M, Kurosaki H. Difference in the Inhibitory Effect of Thiol Compounds and Demetallation Rates from the Zn(II) Active Site of Metallo-β-lactamases (IMP-1 and IMP-6) Associated with a Single Amino Acid Substitution. ACS Infect Dis 2023; 9:65-78. [PMID: 36519431 DOI: 10.1021/acsinfecdis.2c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria producing metallo-β-lactamases (MBLs) have become a considerable threat to public health. MBLs including the IMP, VIM, and NDM types are Zn(II) enzymes that hydrolyze the β-lactam ring present in a broad range of antibiotics, such as N-benzylpenicillin, meropenem, and imipenem. Among IMPs, IMP-1 and IMP-6 differ in a single amino acid substitution at position 262, where serine in IMP-1 is replaced by glycine in IMP-6, conferring a change in substrate specificity. To investigate how this mutation influences enzyme function, we examined lactamase inhibition by thiol compounds. Ethyl 3-mercaptopropionate acted as a competitive inhibitor of IMP-1, but a noncompetitive inhibitor of IMP-6. A comparison of the crystal structures previously reported for IMP-1 (PDB code: 5EV6) and IMP-6 (PDB code: 6LVJ) revealed a hydrogen bond between the side chain of Ser262 and Cys221 in IMP-1 but the absence of hydrogen bond in IMP-6, which affects the Zn2 coordination sphere in its active site. We investigated the demetallation rates of IMP-1 and IMP-6 in the presence of chelating agent ethylenediaminetetraacetic acid (EDTA) and found that the demetallation reactions had fast and slow phases with a first-order rate constant (kfast = 1.76 h-1, kslow = 0.108 h-1 for IMP-1, and kfast = 14.0 h-1 and kslow = 1.66 h-1 for IMP-6). The difference in the flexibility of the Zn2 coordination sphere between IMP-1 and IMP-6 may influence the demetallation rate, the catalytic efficiency against β-lactam antibiotics, and the inhibitory effect of thiol compounds.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan.,Graduate School of Science and Technology, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan.,Faculty of Engineering, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan
| | - Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan.,Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi468-8503, Japan.,Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa244-0806, Japan
| | - Yoshimi Ichimaru
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan.,Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa244-0806, Japan
| | - Yuya Uenosono
- Graduate School of Science and Technology, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan
| | - Sakiko Tawara
- Graduate School of Science and Technology, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan
| | - Rio Ito
- Graduate School of Science and Technology, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan
| | - Natsuki Matsuse
- Faculty of Engineering, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto860-8555, Japan
| | - Jun-Ichi Wachino
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi491-0938, Japan
| | - Sachiko Toma-Fukai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi466-8550, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto862-0973, Japan.,Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto862-0973, Japan
| | - Nobuyuki Fukuishi
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan
| | - Kirara Sugiura
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan
| | - Masanori Imai
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan
| | - Hiromasa Kurosaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi463-8521, Japan
| |
Collapse
|
17
|
Cheepurupalli L, Diaz A, Gopal AC, Rathore SS, Ramakrishnan V, Ramakrishnan J. In vitro and in silico screening of Klebsiella pneumoniae new Delhi metallo-β-lactamase-1 inhibitors from endophytic Streptomyces spp. J Biomol Struct Dyn 2022; 40:13593-13605. [PMID: 34657563 DOI: 10.1080/07391102.2021.1990132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The increase in drug resistance over the last two decades is a big threat in health care settings. More importantly, the dissemination of carbapenem-resistant Enterobacteriaceae is the major threat to public health with an increase in morbidity and mortality. β-lactamase is known to confer enteric bacteria with nearly complete resistance to all β-lactam antibiotics including the late-generation carbapenems. The commercially available β-lactamase inhibitors, clavulanic acid, sulbactam, and tazobactam are being met with an increasing number of resistant phenotypes and are ineffective against pathogens harbouring New Delhi metallo-β-lactamase (NDM-1). Inhibition of New Delhi metallo-β-lactamase-1 activity is one potential way to treat metallo β-lactamase (MBL) producing multi drug resistant (MDR) pathogen. The present study focused on screening of Klebsiella pneumoniae New Delhi metallo-β-lactamase-1 (BLIs) from endophytic Streptomyces spp. using in vitro and in silico methods. The study identified three potential inhibitors of New Delhi metallo-β-lactamase-1, namely dodecanoic acid, dl-alanyl-l-leucine and phenyl propanedioic acid. These molecules were found to bind to other MBLs namely, IMP-1 and VIM-2. To the best of our knowledge, this is the first kind of study reporting the binding mode of these molecules with New Delhi metallo-β-lactamase-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lalitha Cheepurupalli
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Aathithya Diaz
- Computational Molecular Biophysics Laboratory (CMBL), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Adithya Conjeevaram Gopal
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Vigneshwar Ramakrishnan
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| |
Collapse
|
18
|
Moreira JS, Galvão DS, Xavier CFC, Cunha S, Pita SSDR, Reis JN, Freitas HFD. Phenotypic and in silico studies for a series of synthetic thiosemicarbazones as New Delhi metallo-beta-lactamase carbapenemase inhibitors. J Biomol Struct Dyn 2022; 40:14223-14235. [PMID: 34766882 DOI: 10.1080/07391102.2021.2001379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past two decades have been marked by a global spread of bacterial resistance to β-lactam drugs and carbapenems derivatives are the ultimate treatment against multidrug-resistant bacteria. β-lactamase expression is related to resistance which demands the development of bacterial resistance blockers. Drug inhibitor combinations of serine-β-lactamase and β-lactam were successful employed in therapy despite their inactivity against New Delhi metallo-beta-lactamase (NDM). Until now, few compounds are active against NDM-producing bacteria and no specific inhibitors are available yet. The rational strategy for NDM inhibitors development starts with in vitro assays aiming to seek compounds that could act synergistically with β-lactam antibiotics. Thus, eight thiosemicarbazone derivatives were synthesized and investigated for their ability to reverse the resistant phenotype in NDM in Enterobacter cloacae. Phenotypic screening indicated that four isatin-beta-thiosemicarbazones showed Fractional Inhibitory Concentration (FIC) ≤ 250 µM in the presence of meropenem (4 µg/mL). The most promising compound (FIC= 31.25 µM) also presented synergistic effect (FICI = 0.34). Docking and molecular dynamics studies on NDM-thiosemicarbazone complex suggested that 2,3-dihydro-1H-indol-2-one subunit interacts with catalytic zinc and interacted through hydrogen bonds with Asp124 acting like a carboxylic acid bioisostere. Additionally, thiosemicarbazone tautomer with oxidized sulfur (thione) seems to act as a spacer rather than zinc chelator, and the aromatic moieties are stabilized by pi-pi and cation-pi interactions with His189 and Lys221 residues. Our results addressed some thiosemicarbazone structural changes to increase its biological activity against NDM and highlight its scaffold as promising alternatives to treat bacterial resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jonatham Souza Moreira
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Silvio Cunha
- Chemistry Institute, Federal University of Bahia, Ondina, Salvador, Bahia, Brazil
| | - Samuel Silva da Rocha Pita
- Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Federal University of Bahia, Salvador, Bahia, Brazil
| | - Joice Neves Reis
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Pharmacy College, Federal University of Bahia, Salvador, Bahia, Brazil.,Bioinformatics and Molecular Modeling Laboratory (LaBiMM), Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
19
|
Kong WP, Chen YW, Wong KY. The crystal structure of the H116Q mutant of NDM-1: An enzyme devoid of zinc ions. J Struct Biol 2022; 214:107922. [PMID: 36375744 DOI: 10.1016/j.jsb.2022.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
New Delhi metallo-β-lactamase 1 (NDM-1) is an important causative factor of antimicrobial resistance due to its efficient hydrolysis of a broad range of β-lactam compounds. The two zinc ions at the active site play essential roles in the NDM-1 catalytic activities. In a previous work, H116, one of the three ligands at the Zn1 site, was mutated in order to investigate the nature of zinc ion chelation. We report here the crystal structure of the NDM-1 H116Q mutant, that was designed to convert a B1 di-zinc enzyme into a B3 type, which either still binds two zinc ions or binds only one at the Zn2 site. The effect of mutation on the overall structure is minimal. Unexpectedly, no zinc ion was observed in the crystal structure. The Zn2-site ligating residue C221 forms a covalent bond with the nearby K121, a residue important in maintaining the active-site structure. The largest conformational changes were found at main-chain and side-chain atoms at residues 232-236 (loop 10), the proper configuration of which is known to be essential for substrate binding. The catalytic-site mutation caused little local changes, yet the effects were amplified and propagated to the substrate binding residues. There were big changes in the ψ angles of residues G232 and L234, which resulted in the side chain of N233 being displaced away from the substrate-binding site. In summary, we failed in turning a B1 enzyme into a B3 enzyme, yet we produced a zinc-less NDM-1 with residual activities.
Collapse
Affiliation(s)
- Wai-Po Kong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
20
|
Fung YH, Kong WP, Leung ASL, Du R, So PK, Wong WL, Leung YC, Chen YW, Wong KY. NDM-1 Zn1-binding residue His116 plays critical roles in antibiotic hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140833. [PMID: 35944887 DOI: 10.1016/j.bbapap.2022.140833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Bacteria expressing NDM-1 have been labeled as superbugs because it confers upon them resistance to a broad range of β-lactam antibiotics. The enzyme has a di‑zinc active centre, with the Zn2 site extensively studied. The roles of active-site Zn1 ligand residues are, however, still not fully understood. We carried out structure-function studies using the mutants, H116A, H116N, and H116Q. Zinc content analysis showed that Zn1 binding was weakened by 40 to 60% in the H116 mutants. The enzymatic-activity studies showed that the lower hydrolysis rates were mainly caused by their weaker substrate binding. The catalytic efficiency (kcat/Km) of the mutants followed the order: WT > > H116Q (decreased by 4-20 fold) > H116A (decreased by 20-700 fold) ≥ H116N (decreased by 6-800 fold). The maximum effect was observed on H116N against penicillin G, whereas ampicillin was not hydrolyzed at all. The fold-increase of Km values, which informs the weakening of substrate binding, were: H116A by 5-45 fold; H116N by 6-100 fold; H116Q by 2-10 fold. Molecular dynamics simulations suggested that the Zn1 site mutations affected the positions of Zn2 and the bridging hydroxide, by 0.8 to 1.2 Å, with the largest changes of ~1.5 Å observed on Zn2 ligand C221. A native hydrogen bond between H118 and D236 was disrupted in the H116N and H116Q mutants, which led to increased flexibility of loop 10. Consequently, residue N233 was no longer maintained at an optimal position for substrate binding. H116 connected loop 7 across Zn1 to loop 10, thereby contributed to the overall integrity. This work revealed that the H116-Zn1 interaction plays a critical role in defining the substrate-binding site. From these results, it can be inferred that inhibition strategies targeting the zinc ions may be a new direction for drug development.
Collapse
Affiliation(s)
- Yik-Hong Fung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wai-Po Kong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Alan Siu Lun Leung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ruolan Du
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pu-Kin So
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu Wai Chen
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
21
|
Broad-Spectrum Inhibitors against Class A, B, and C Type β-Lactamases to Block the Hydrolysis against Antibiotics: Kinetics and Structural Characterization. Microbiol Spectr 2022; 10:e0045022. [PMID: 36069578 PMCID: PMC9603770 DOI: 10.1128/spectrum.00450-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The emergence of antibiotic resistance has led to a global crisis for the physician to handle infection control issues. All antibiotics, including colistin, have lost efficiency against emerging drug-resistant bacterial strains due to the production of metallo-β-lactamases (MBLs) and serine-β-lactamases (SBLs). Therefore, it is of the utmost importance to design inhibitors against these enzymes to block the hydrolytic action against antibiotics being used. Although various novel β-lactamase inhibitors are being authorized or are under clinical studies, the coverage of their activity spectrum does not include MDR organisms expressing multiple classes of β-lactamases at a single time. This study reports three novel broad-spectrum inhibitors effective against both SBLs and MBLs. Virtual screening, molecular docking, molecular dynamics simulations, and an in silico pharmacokinetic study were performed to identify the lead molecules with broad-spectrum ability to inhibit the hydrolysis of β-lactam. The selected compounds were further assessed by in vitro cell assays (MIC, 50% inhibitory concentration [IC50], kinetics, and fluorescence against class A, B, and C type β-lactamases) to confirm their efficacies. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to check the toxicity of screened lead molecules. All three selected inhibitors were found to reduce MIC and showed good affinity against all the SBLs and MBLs produced by class A, B, and C type β-lactamases. These nontoxic novel non-β-lactam broad-spectrum inhibitors bind to the active site residues of selected β-lactamases, which are crucial for β-lactam antibiotic hydrolysis. These inhibitors may be proposed as a future drug candidate in combination with antibiotics as a single formulation to control infection caused by resistant strains. Hence, this study plays a significant role in the cure of infections caused by antibiotic-resistant bacteria. IMPORTANCE Several inhibitors for usage in conjunction with antibiotics have been developed. However, to date, there is no commercially available broad-spectrum β-lactamase inhibitor that targets both MBLs and SBLs. Here, we showed three novel broad-spectrum inhibitors with promising results through computational techniques and in vitro studies. These inhibitors are effective against both SBLs and MBLs and hence could be used as future drug candidates to treat infections caused by multidrug-resistant bacteria producing both types of enzymes (SBLs and MBLs).
Collapse
|
22
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
23
|
Farhat N, Ali A, Waheed M, Gupta D, Khan AU. Chemically synthesised flavone and coumarin based isoxazole derivatives as broad spectrum inhibitors of serine β-lactamases and metallo-β-lactamases: a computational, biophysical and biochemical study. J Biomol Struct Dyn 2022:1-11. [PMID: 35848348 DOI: 10.1080/07391102.2022.2099977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The β-lactam antibiotics are the most effective medicines for treating bacterial infections. Resistance to them, particularly through the production of β-lactamases, which can hydrolyse all kinds of β-lactams, poses a threat to their continued use. The synthesised flavone and coumarin based isoxazole derivatives have the potential to be used as broad-spectrum inhibitors of the mechanistically different serine-(SBL) and metallo-β-lactamases (MBL). The synthesised compounds were discovered as potent β-lactamase inhibitors using molecular docking and in silico pharmacokinetic analysis. We studied the binding of chemically synthesised inhibitors to clinically significant β-lactamases of class A, B, and C using biophysical and biochemical approaches, and computational analyses. These molecules follow Lipinski's rule of five and have acceptable solubility, permeability, and oral bioavailability. These molecules were found to be non-toxic and non-carcinogenic. MIC results suggest that these molecules restore the antibiotic efficacy against class A, B, and C β-lactamases. Kinetics data showed that these molecules reduce the catalytic efficiency of clinically relevant class A, B, and C β-lactamases. Fluorescence study showed significant interaction between these flavone-/coumarin-based isoxazole derivatives and class A/B/ C β-lactamases. This study showed promising effect of these new generation compounds as broad spectrum β-lactamase inhibitors of both SBLs and MBLs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Abid Ali
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Waheed
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, India
| | - Divya Gupta
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
24
|
Álvarez-Marín MT, Zarzuela L, Camacho EM, Santero E, Flores A. Detection by metagenomic functional analysis and improvement by experimental evolution of β-lactams resistance genes present in oil contaminated soils. Sci Rep 2022; 12:10059. [PMID: 35768448 PMCID: PMC9243250 DOI: 10.1038/s41598-022-13883-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The spread of antibiotic resistance genes has become a global health concern identified by the World Health Organization as one of the greatest threats to health. Many of antimicrobial resistance determinants found in bacterial pathogens originate from environmental bacteria, so identifying the genes that confer resistance to antibiotics in different habitats is mandatory to better understand resistance mechanisms. Soil is one of the most diverse environments considered reservoir of antimicrobial resistance genes. The aim of this work is to study the presence of genes that provide resistance to antibiotics used in clinical settings in two oil contaminated soils by metagenomic functional analysis. Using fosmid vectors that efficiently transcribe metagenomic DNA, we have selected 12 fosmids coding for two class A β-lactamases, two subclass B1 and two subclass B3 metallo-β-lactamases, one class D β-lactamase and three efflux pumps that confer resistance to cefexime, ceftriaxone, meropenem and/or imipenem. In some of them, detection of the resistance required heterologous expression from the fosmid promoter. Although initially, these environmental genes only provide resistance to low concentrations of antibiotics, we have obtained, by experimental evolution, fosmid derivatives containing β-lactamase ORFs with a single base substitution, which substantially increase their β-lactamase activity and resistance level. None of the mutations affect β-lactamase coding sequences and are all located upstream of them. These results demonstrate the presence of enzymes that confer resistance to relevant β-lactams in these soils and their capacity to rapidly adapt to provide higher resistance levels.
Collapse
Affiliation(s)
- M Teresa Álvarez-Marín
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Laura Zarzuela
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eva M Camacho
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain
| | - Amando Flores
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
25
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
26
|
Wu Z, Han Z, Zhou W, Sun X, Chen L, Yang S, Hu J, Li C. Insight into the Nucleoside Transport and Inhibition of Human ENT1. Curr Res Struct Biol 2022; 4:192-205. [PMID: 35677775 PMCID: PMC9168172 DOI: 10.1016/j.crstbi.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
The human equilibrative nucleoside transporter 1 (hENT1) is an effective controller of adenosine signaling by regulating its extracellular and intracellular concentration, and has become a solid drug target of clinical used adenosine reuptake inhibitors (AdoRIs). Currently, the mechanisms of adenosine transport and inhibition for hENT1 remain unclear, which greatly limits the in-depth understanding of its inner workings as well as the development of novel inhibitors. In this work, the dynamic details of hENT1 underlie adenosine transport and the inhibition mechanism of the non-nucleoside AdoRIs dilazep both were investigated by comparative long-time unbiased molecular dynamics simulations. The calculation results show that the conformational transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. One of the trimethoxyphenyl rings in dilazep serves as the adenosyl moiety of the endogenous adenosine substrate to competitively occupy the orthosteric site of hENT1. Due to extensive and various VDW interactions with N30, M33, M84, P308 and F334, the other trimethoxyphenyl ring is stuck in the opportunistic site near the extracellular side preventing the complete occlusion of thin gate simultaneously. Obviously, dilazep shows significant inhibitory activity by disrupting the local induce-fit action in substrate binding cavity and blocking the transport cycle of whole protein. This study not only reveals the nucleoside transport mechanism by hENT1 at atomic level, but also provides structural guidance for the subsequent design of novel non-nucleoside AdoRIs with enhanced pharmacologic properties. The transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. The induce-fit action by adenosine recognition precedes. inward contraction of the extracellular side. Dilazep exerts its special hENT1 inhibitory function through competitive binding and allosteric regulation. A gating strategy of extracellular loop is revealed to ensure adenosine is firmly located in the transport cavity.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Wenxue Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Lei Chen
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Shuang Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- Corresponding author. Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Corresponding author. Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
27
|
Palica K, Vorácová M, Skagseth S, Andersson Rasmussen A, Allander L, Hubert M, Sandegren L, Schrøder Leiros HK, Andersson H, Erdélyi M. Metallo-β-Lactamase Inhibitor Phosphonamidate Monoesters. ACS OMEGA 2022; 7:4550-4562. [PMID: 35155946 PMCID: PMC8830069 DOI: 10.1021/acsomega.1c06527] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Being the second leading cause of death and the leading cause of disability-adjusted life years worldwide, infectious diseases remain-contrary to earlier predictions-a major consideration for the public health of the 21st century. Resistance development of microbes to antimicrobial drugs constitutes a large part of this devastating problem. The most widely spread mechanism of bacterial resistance operates through the degradation of existing β-lactam antibiotics. Inhibition of metallo-β-lactamases is expected to allow the continued use of existing antibiotics, whose applicability is becoming ever more limited. Herein, we describe the synthesis, the metallo-β-lactamase inhibition activity, the cytotoxicity studies, and the NMR spectroscopic determination of the protein binding site of phosphonamidate monoesters. The expression of single- and double-labeled NDM-1 and its backbone NMR assignment are also disclosed, providing helpful information for future development of NDM-1 inhibitors. We show phosphonamidates to have the potential to become a new generation of antibiotic therapeutics to combat metallo-β-lactamase-resistant bacteria.
Collapse
Affiliation(s)
- Katarzyna Palica
- Department
of Chemistry—BMC, Organic Chemistry, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Manuela Vorácová
- Department
of Chemistry—BMC, Organic Chemistry, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Susann Skagseth
- The
Norwegian Structural Biology Centre (NorStruct), Department of Chemistry,
Faculty of Science and Technology, UiT The
Arctic University of Norway, N-9037 Tromsø, Norway
| | - Anna Andersson Rasmussen
- Department
of Chemistry—BMC, Organic Chemistry, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Lisa Allander
- Department
of Medical Biochemistry and Microbiology—BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Madlen Hubert
- Department
of Pharmacy—BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Linus Sandegren
- Department
of Medical Biochemistry and Microbiology—BMC, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Hanna-Kirstirep Schrøder Leiros
- The
Norwegian Structural Biology Centre (NorStruct), Department of Chemistry,
Faculty of Science and Technology, UiT The
Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanna Andersson
- Department
of Chemistry—BMC, Organic Chemistry, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| | - Máté Erdélyi
- Department
of Chemistry—BMC, Organic Chemistry, Uppsala University, Husargatan 3, 752 37 Uppsala, Sweden
| |
Collapse
|
28
|
Twidale RM, Hinchliffe P, Spencer J, Mulholland AJ. Crystallography and QM/MM Simulations Identify Preferential Binding of Hydrolyzed Carbapenem and Penem Antibiotics to the L1 Metallo-β-Lactamase in the Imine Form. J Chem Inf Model 2021; 61:5988-5999. [PMID: 34637298 DOI: 10.1021/acs.jcim.1c00663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread bacterial resistance to carbapenem antibiotics is an increasing global health concern. Resistance has emerged due to carbapenem-hydrolyzing enzymes, including metallo-β-lactamases (MβLs), but despite their prevalence and clinical importance, MβL mechanisms are still not fully understood. Carbapenem hydrolysis by MβLs can yield alternative product tautomers with the potential to access different binding modes. Here, we show that a combined approach employing crystallography and quantum mechanics/molecular mechanics (QM/MM) simulations allow tautomer assignment in MβL:hydrolyzed antibiotic complexes. Molecular simulations also examine (meta)stable species of alternative protonation and tautomeric states, providing mechanistic insights into β-lactam hydrolysis. We report the crystal structure of the hydrolyzed carbapenem ertapenem bound to the L1 MβL from Stenotrophomonas maltophilia and model alternative tautomeric and protonation states of both hydrolyzed ertapenem and faropenem (a related penem antibiotic), which display different binding modes with L1. We show how the structures of both complexed β-lactams are best described as the (2S)-imine tautomer with the carboxylate formed after β-lactam ring cleavage deprotonated. Simulations show that enamine tautomer complexes are significantly less stable (e.g., showing partial loss of interactions with the L1 binuclear zinc center) and not consistent with experimental data. Strong interactions of Tyr32 and one zinc ion (Zn1) with ertapenem prevent a C6 group rotation, explaining the different binding modes of the two β-lactams. Our findings establish the relative stability of different hydrolyzed (carba)penem forms in the L1 active site and identify interactions important to stable complex formation, information that should assist inhibitor design for this important antibiotic resistance determinant.
Collapse
Affiliation(s)
- Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
29
|
Li X, Zhao D, Li W, Sun J, Zhang X. Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants. Int J Mol Sci 2021; 23:197. [PMID: 35008622 PMCID: PMC8745225 DOI: 10.3390/ijms23010197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Multidrug bacterial resistance endangers clinically effective antimicrobial therapy and continues to cause major public health problems, which have been upgraded to unprecedented levels in recent years, worldwide. β-Lactam antibiotics have become an important weapon to fight against pathogen infections due to their broad spectrum. Unfortunately, the emergence of antibiotic resistance genes (ARGs) has severely astricted the application of β-lactam antibiotics. Of these, New Delhi metallo-β-lactamase-1 (NDM-1) represents the most disturbing development due to its substrate promiscuity, the appearance of variants, and transferability. Given the clinical correlation of β-lactam antibiotics and NDM-1-mediated resistance, the discovery, and development of combination drugs, including NDM-1 inhibitors, for NDM-1 bacterial infections, seems particularly attractive and urgent. This review summarizes the research related to the development and optimization of effective NDM-1 inhibitors. The detailed generalization of crystal structure, enzyme activity center and catalytic mechanism, variants and global distribution, mechanism of action of existing inhibitors, and the development of scaffolds provides a reference for finding potential clinically effective NDM-1 inhibitors against drug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Dongmei Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Weina Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Jichao Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150036, China; (X.L.); (D.Z.); (W.L.); (J.S.)
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
30
|
Li Y, Zhu Y, Zhou W, Chen Z, Moran RA, Ke H, Feng Y, van Schaik W, Shen H, Ji J, Ruan Z, Hua X, Yu Y. Alcaligenes faecalis metallo-β-lactamase in extensively drug-resistant Pseudomonas aeruginosa isolates. Clin Microbiol Infect 2021; 28:880.e1-880.e8. [PMID: 34826621 DOI: 10.1016/j.cmi.2021.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 11/06/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study aimed to characterize Alcaligenes faecalis metallo-β-lactamases AFM-2 and AFM-3 from clinical P. aeruginosa isolates NDTH10366, NDTH9845 and WTJH17. METHODS Clinical isolates were whole-genome sequenced using the Illumina and Oxford Nanopore platforms. Minimum inhibitory concentrations (MICs) of clinical isolates and transformants containing MBL genes were determined using broth microdilution methods. Kinetic parameters of purified AFM and NDM-1 were measured using a spectrophotometer. The AFM structure was modelled with SWISS-MODEL. RESULTS NDTH10366 and NDTH9845 were extensively drug-resistant (XDR) isolates carrying blaAFM-2 and multiple copies of blaKPC-2, while WTJH17 was an XDR isolate carrying blaAFM-3. The plasmid-borne blaAFM-2 and blaAFM-3 genes are associated with a novel ISCR element, ISCR29. AFM-2 and AFM-3, differing from AFM-1 by one amino acid substitution each, shared 86.2% and 86.6% amino acid sequence identity with NDM-1, respectively. Phylogenetic analysis confirmed the close relationship between AFM and NDM. Expression of AFM and NDM-1 under their native promoters in DH5α and PAO1 led to elevated MICs for all tested β-lactams except aztreonam. Comparable catalytic abilities were observed for AFM and NDM-1 when hydrolyzing nitrocefin, cefepime, imipenem and biapenem, while for other tested β-lactams AFM displayed weaker enzymatic activities. Modelling AFM structure revealed a characteristic αβ/βα fold with two zinc-binding active sites. CONCLUSIONS AFM from clinical P. aeruginosa isolates demonstrated β-lactamase activity comparable to NDM-1. Co-carriage of blaAFM and blaKPC renders clinical P. aeruginosa isolates non-susceptible to all antipseudomonal β-lactams. The association of blaAFM genes with translocatable genetic elements and plasmids highlights their concerning potential for dissemination.
Collapse
Affiliation(s)
- Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwei Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert A Moran
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Huanhuan Ke
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Jingshu Ji
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Baquero F, Martínez JL, Novais Â, Rodríguez-Beltrán J, Martínez-García L, Coque TM, Galán JC. Allogenous Selection of Mutational Collateral Resistance: Old Drugs Select for New Resistance Within Antibiotic Families. Front Microbiol 2021; 12:757833. [PMID: 34745065 PMCID: PMC8569428 DOI: 10.3389/fmicb.2021.757833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Allogeneous selection occurs when an antibiotic selects for resistance to more advanced members of the same family. The mechanisms of allogenous selection are (a) collateral expansion, when the antibiotic expands the gene and gene-containing bacterial populations favoring the emergence of other mutations, inactivating the more advanced antibiotics; (b) collateral selection, when the old antibiotic selects its own resistance but also resistance to more modern drugs; (c) collateral hyper-resistance, when resistance to the old antibiotic selects in higher degree for populations resistant to other antibiotics of the family than to itself; and (d) collateral evolution, when the simultaneous or sequential use of antibiotics of the same family selects for new mutational combinations with novel phenotypes in this family, generally with higher activity (higher inactivation of the antibiotic substrates) or broader spectrum (more antibiotics of the family are inactivated). Note that in some cases, collateral selection derives from collateral evolution. In this article, examples of allogenous selection are provided for the major families of antibiotics. Improvements in minimal inhibitory concentrations with the newest drugs do not necessarily exclude “old” antibiotics of the same family of retaining some selective power for resistance to the newest agents. If this were true, the use of older members of the same drug family would facilitate the emergence of mutational resistance to the younger drugs of the family, which is frequently based on previously established resistance traits. The extensive use of old drugs (particularly in low-income countries and in farming) might be significant for the emergence and selection of resistance to the novel members of the family, becoming a growing source of variation and selection of resistance to the whole family. In terms of future research, it could be advisable to focus antimicrobial drug discovery more on the identification of new targets and new (unique) classes of antimicrobial agents, than on the perpetual chemical exploitation of classic existing ones.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - José L Martínez
- Department of Microbial Biotechnology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Ângela Novais
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Laura Martínez-García
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Juan Carlos Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
32
|
Exploring the Role of L10 Loop in New Delhi Metallo-β-lactamase (NDM-1): Kinetic and Dynamic Studies. Molecules 2021; 26:molecules26185489. [PMID: 34576958 PMCID: PMC8467308 DOI: 10.3390/molecules26185489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Four NDM-1 mutants (L218T, L221T, L269H and L221T/Y229W) were generated in order to investigate the role of leucines positioned in L10 loop. A detailed kinetic analysis stated that these amino acid substitutions modified the hydrolytic profile of NDM-1 against some β-lactams. Significant reduction of kcat values of L218T and L221T for carbapenems, cefazolin, cefoxitin and cefepime was observed. The stability of the NDM-1 and its mutants was explored by thermofluor assay in real-time PCR. The determination of TmB and TmD demonstrated that NDM-1 and L218T were the most stable enzymes. Molecular dynamic studies were performed to justify the differences observed in the kinetic behavior of the mutants. In particular, L218T fluctuated more than NDM-1 in L10, whereas L221T would seem to cause a drift between residues 75 and 125. L221T/Y229W double mutant exhibited a decrease in the flexibility with respect to L221T, explaining enzyme activity improvement towards some β-lactams. Distances between Zn1-Zn2 and Zn1-OH- or Zn2-OH- remained unaffected in all systems analysed. Significant changes were found between Zn1/Zn2 and first sphere coordination residues.
Collapse
|
33
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
34
|
Fröhlich C, Sørum V, Huber S, Samuelsen Ø, Berglund F, Kristiansson E, Kotsakis SD, Marathe NP, Larsson DGJ, Leiros HKS. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. J Antimicrob Chemother 2021; 75:2554-2563. [PMID: 32464640 PMCID: PMC7443720 DOI: 10.1093/jac/dkaa175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure-activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. OBJECTIVES To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. METHODS The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). RESULTS Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. CONCLUSIONS These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.
Collapse
Affiliation(s)
- Christopher Fröhlich
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Stathis D Kotsakis
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Institute of Marine Research, Bergen, Norway
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
35
|
Wang T, Xu K, Zhao L, Tong R, Xiong L, Shi J. Recent research and development of NDM-1 inhibitors. Eur J Med Chem 2021; 223:113667. [PMID: 34225181 DOI: 10.1016/j.ejmech.2021.113667] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Bacteria carrying New Delhi metallo-β-lactamase-1 (New Delhi metallo-β-lactamase, NDM-1) resistance gene is a new type of "superbug", which can hydrolyze almost all β-lactam antibiotics, rapidly spread among the same species and even spread among different species. NDM-1 belongs to the class B1 broad-spectrum enzyme of β-lactamase. The two positively charged zinc ions in the active center have electrostatic interaction with the hydroxyl ions in them to seize the hydrogen atom near the water molecule to form a bridging ring water molecule, which strengthens its nucleophilicity and attacks the carbonyl group on the lactam ring; thus, catalyzing the hydrolysis of β-lactam antibiotics. Since NDM-1 has an open active site and unique electrostatic structure, it essentially provides a wider range of substrate specificity. Due to its flexible hydrolysis mechanism and more and more variants also aggravate the threat of drug-resistant bacteria infection, there is still no effective inhibitor in clinic, which is a serious threat to human health and public health safety. The electron-rich substituents of NDM-1 inhibitors coordinate with two positively charged zinc ions in the active center of the enzyme through ion-dipole interaction to produce NDM-1 inhibitory activity. In this review, the research progress of NDM-1 enzyme and its inhibitors in the past 5 years was reviewed. The crystal structure, active center structure, surrounding important amino acid residues, newly discovered inhibitors and their action mechanism are classified and summarized in detail, which can be used as a reference for the development of effective drugs against drug-resistant bacteria targeting NDM-1.
Collapse
Affiliation(s)
- Ting Wang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Kaiju Xu
- Department of Infectious Diseases, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Liyun Zhao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
36
|
Zhang H, Yang K, Cheng Z, Thomas C, Steinbrunner A, Pryor C, Vulcan M, Kemp C, Orea D, Paththamperuma C, Chen AY, Cohen SM, Page RC, Tierney DL, Crowder MW. Spectroscopic and biochemical characterization of metallo-β-lactamase IMP-1 with dicarboxylic, sulfonyl, and thiol inhibitors. Bioorg Med Chem 2021; 40:116183. [PMID: 33965839 PMCID: PMC8170513 DOI: 10.1016/j.bmc.2021.116183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023]
Abstract
In an effort to probe the biophysical mechanisms of inhibition for ten previously-reported inhibitors of metallo-β-lactamases (MBL) with MBL IMP-1, equilibrium dialysis, metal analyses coupled with atomic absorption spectroscopy (AAS), native state mass spectrometry (native MS), and ultraviolet-visible spectrophotometry (UV-VIS) were used. 6-(1H-tetrazol-5-yl) picolinic acid (1T5PA), ANT431, D/l-captopril, thiorphan, and tiopronin were shown to form IMP-1/Zn(II)/inhibitor ternary complexes, while dipicolinic acid (DPA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA) stripped some metal from the active site of IMP but also formed ternary complexes. DPA and 3AP-DPA stripped less metal from IMP-1 than from VIM-2 but stripped more metal from IMP-1 than from NDM-1. In contrast to a previous report, pterostilbene does not appear to bind to IMP-1 under our conditions. These results, along with previous studies, demonstrate similar mechanisms of inhibition toward different MBLs for different MBL inhibitors.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Caitlyn Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Abbie Steinbrunner
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Cecily Pryor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Maya Vulcan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Claire Kemp
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Diego Orea
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | - Allie Y Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
37
|
Kumar R. Mutations in passive residues modulate 3D-structure of NDM (New Delhi metallo-β-lactamase) protein that endue in drug resistance: a MD simulation approach. J Biomol Struct Dyn 2021; 40:9492-9508. [PMID: 34034624 DOI: 10.1080/07391102.2021.1930165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of antimicrobial resistance developed by bacteria enhanced the complexity of bacterial treatment leading a serious threat to human health. Production of β-lactamase by bacteria that inactivates β-lactam is a generic cause of resistance. One such β-lactamase enzyme is New Delhi Metallo-β-lactamase (NDM) which is recently reported to have clinically more importance and recognized as an antibiotic resistance marker. Mutations in active and passive residues of NDM protein play a fateful role in the substrate and inhibitor specificity. In this study, in silico point mutations of residues near the active site and flexible regions of protein were investigated. Hybrid modelling and molecular dynamics (MD) simulations were carried to build up the mutant models and monitored structural stability. Molecular docking results articulated that mutant proteins had lesser binding affinities with methicillin, oxacillin and doripenem drugs. Further, to scrutinize the structural alterations and rescore the binding energies per-residue basis, MD simulations of wildtype (WT) and mutant (MT) NDM proteins with methicillin, oxacillin and doripenem were performed. Our results demonstrated that mutations in N193A, S217A, G219A and T262A residues led to protein destabilization and amend their binding affinities with methicillin, oxacillin and doripenem. The present study exploited computational approaches which displayed differential binding of drugs with WT and MT NDM proteins that confer resistance to oxacillin and doripenem. The study features the significance of passive residues, thus provides a clue to accelerate the process of designing an ergastic antibiotic against NDM protein. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
38
|
Levina EO, Khrenova MG. Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition. BIOCHEMISTRY (MOSCOW) 2021; 86:S24-S37. [PMID: 33827398 DOI: 10.1134/s0006297921140030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review focuses on bacterial metallo-β-lactamases (MβLs) responsible for the inactivation of β-lactams and associated antibiotic resistance. The diversity of the active site structure in the members of different MβL subclasses explains different mechanisms of antibiotic hydrolysis and should be taken into account when searching for potential MβL inhibitors. The review describes the features of the antibiotic inactivation mechanisms by various MβLs studied by X-ray crystallography, NMR, kinetic measurements, and molecular modeling. The mechanisms of enzyme inhibition for each MβL subclass are discussed.
Collapse
Affiliation(s)
- Elena O Levina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
39
|
Wade N, Tehrani KHME, Brüchle NC, van Haren MJ, Mashayekhi V, Martin NI. Mechanistic Investigations of Metallo-β-lactamase Inhibitors: Strong Zinc Binding Is Not Required for Potent Enzyme Inhibition*. ChemMedChem 2021; 16:1651-1659. [PMID: 33534956 PMCID: PMC8248298 DOI: 10.1002/cmdc.202100042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Indexed: 12/21/2022]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent bacterial enzymes that inactivate essentially all classes of β-lactam antibiotics including last-resort carbapenems. At present there are no clinically approved MBL inhibitors, and in order to develop such agents it is essential to understand their inhibitory mechanisms. Herein, we describe a comprehensive mechanistic study of a panel of structurally distinct MBL inhibitors reported in both the scientific and patent literature. Specifically, we determined the half-maximal inhibitory concentration (IC50 ) for each inhibitor against MBLs belonging to the NDM and IMP families. In addition, the binding affinities of the inhibitors for Zn2+ , Ca2+ and Mg2+ were assessed by using isothermal titration calorimetry (ITC). We also compared the ability of the different inhibitors to resensitize a highly resistant MBL-expressing Escherichia coli strain to meropenem. These investigations reveal clear differences between the MBL inhibitors studied in terms of their IC50 value, metal binding ability, and capacity to synergize with meropenem. Notably, our studies demonstrate that potent MBL inhibition and synergy with meropenem are not explicitly dependent on the capacity of an inhibitor to strongly chelate zinc.
Collapse
Affiliation(s)
- Nicola Wade
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Kamaleddin H. M. E. Tehrani
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Nora C. Brüchle
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Matthijs J. van Haren
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| | - Vida Mashayekhi
- Department of BiologyUtrecht UniversityPadualaan 83584 CHUtrecht (TheNetherlands
| | - Nathaniel I. Martin
- Biological Chemistry GroupInstitute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeiden (TheNetherlands
| |
Collapse
|
40
|
Ali A, Gupta D, Khan AU. Role of non-active site residues in maintaining New Delhi metallo-β-lactamase-1(NDM-1) function: an approach of site-directed mutagenesis and docking. FEMS Microbiol Lett 2021; 368:fnz003. [PMID: 30624634 DOI: 10.1093/femsle/fnz003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2023] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) has been known to hydrolyze nearly all β-lactam antibiotics, leading to a multidrug-resistant state. Hence, it is important to study its structure and function in relation to controlling infections caused by such resistant bacterial strains. Mutagenesis is one of the approaches used to explore it. No study has been performed to explore the role of non-active site residues in the enzyme activity. This study includes mutations of three non-active site residues to comprehend its structure and function simultaneously. Three non-active site laboratory mutants of NDM-1 were generated by site-directed mutagenesis. The minimum inhibitory concentrations of cefotaxime, cefoxitin, imipenem and meropenem were reduced by up to 4-fold for these mutants compared with wild-type. The hydrolytic activity of mutants was also found to be reduced. Mutants showed a significant change in secondary structure compared with wild-type, as determined by CD spectrophotometry. The catalytic properties and stability of these mutants were found to be reduced. Hence, it revealed an imperative role of non-active site residues in the enzymatic activity of NDM-1.
Collapse
|
41
|
Jackson AC, Pinter TBJ, Talley DC, Baker-Agha A, Patel D, Smith PJ, Franz KJ. Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1. ChemMedChem 2021; 16:654-661. [PMID: 33211374 PMCID: PMC8114186 DOI: 10.1002/cmdc.202000607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Bacterial expression of β-lactamases, which hydrolyze β-lactam antibiotics, contributes to the growing threat of antibacterial drug resistance. Metallo-β-lactamases, such as NDM-1, use catalytic zinc ions in their active sites and hydrolyze nearly all clinically available β-lactam antibiotics. Inhibitors of metallo-β-lactamases are urgently needed to overcome this resistance mechanism. Zinc-binding compounds are promising leads for inhibitor development, as many NDM-1 inhibitors contain zinc-binding pharmacophores. Here, we evaluated 13 chelating agents containing benzimidazole and benzoxazole scaffolds as NDM-1 inhibitors. Six of the compounds showed potent inhibitory activity with IC50 values as low as 0.38 μM, and several compounds restored the meropenem susceptibility of NDM-1-expressing E. coli. Spectroscopic and docking studies suggest ternary complex formation as the mechanism of inhibition, making these compounds promising for development as NDM-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Adnan Baker-Agha
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Dhruvil Patel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Paul J Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
42
|
Lence E, González‐Bello C. Bicyclic Boronate β‐Lactamase Inhibitors: The Present Hope against Deadly Bacterial Pathogens. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Concepción González‐Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica Universidade de Santiago de Compostela calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
43
|
Salari-Jazi A, Mahnam K, Sadeghi P, Damavandi MS, Faghri J. Discovery of potential inhibitors against New Delhi metallo-β-lactamase-1 from natural compounds: in silico-based methods. Sci Rep 2021; 11:2390. [PMID: 33504907 PMCID: PMC7841178 DOI: 10.1038/s41598-021-82009-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
New Delhi metallo-β-lactamase variants and different types of metallo-β-lactamases have attracted enormous consideration for hydrolyzing almost all β-lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-β-lactamases genes have disseminated in hospitals and all parts of the world and became a public health concern. There is no inhibitor for New Delhi metallo-β-lactamase-1 and other metallo-β-lactamases classes, so metallo-β-lactamases inhibitor drugs became an urgent need. In this study, multi-steps virtual screening was done over the NPASS database with 35,032 natural compounds. At first Captopril was extracted from 4EXS PDB code and use as a template for the first structural screening and 500 compounds obtained as hit compounds by molecular docking. Then the best ligand, i.e. NPC120633 was used as templet and 800 similar compounds were obtained. As a final point, ten compounds i.e. NPC171932, NPC100251, NPC18185, NPC98583, NPC112380, NPC471403, NPC471404, NPC472454, NPC473010 and NPC300657 had proper docking scores, and a 50 ns molecular dynamics simulation was performed for calculation binding free energy of each compound with New Delhi metallo-β-lactamase. Protein sequence alignment, 3D conformational alignment, pharmacophore modeling on all New Delhi metallo-β-lactamase variants and all types of metallo-β-lactamases were done. Quantum chemical perspective based on the fragment molecular orbital (FMO) method was performed to discover conserved and crucial residues in the catalytic activity of metallo-β-lactamases. These residues had similar 3D coordinates of spatial location in the 3D conformational alignment. So it is posibble that all types of metallo-β-lactamases can inhibit by these ten compounds. Therefore, these compounds were proper to mostly inhibit all metallo-β-lactamases in experimental studies.
Collapse
Affiliation(s)
- Azhar Salari-Jazi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Biology Department, Faculty of Sciences, Shehrekord University, Shahrekord, Iran
| | - Parisa Sadeghi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Faghri
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
44
|
Rossi MA, Martinez V, Hinchliffe P, Mojica MF, Castillo V, Moreno DM, Smith R, Spellberg B, Drusano GL, Banchio C, Bonomo RA, Spencer J, Vila AJ, Mahler G. 2-Mercaptomethyl-thiazolidines use conserved aromatic-S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chem Sci 2021; 12:2898-2908. [PMID: 34164056 PMCID: PMC8179362 DOI: 10.1039/d0sc05172a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., K i = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(ii) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than d/l-captopril. Unexpectedly, MMTZ binding features a thioether-π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur-π interactions can be exploited for general ligand design in medicinal chemistry.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
| | - Veronica Martinez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Maria F Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University Cleveland OH USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque Bogotá DC Colombia
| | - Valerie Castillo
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| | - Diego M Moreno
- Instituto de Química de Rosario (IQUIR, CONICET-UNR) Suipacha 570 S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Ryan Smith
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Brad Spellberg
- Los Angeles County and University of Southern California (LAC + USC) Medical Center Los Angeles CA USA
| | - George L Drusano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida Orlando FL USA
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine Cleveland OH USA
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland OH USA
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| |
Collapse
|
45
|
Ma G, Wang S, Wu K, Zhang W, Ahmad A, Hao Q, Lei X, Zhang H. Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors. Bioorg Med Chem 2021; 29:115902. [DOI: 10.1016/j.bmc.2020.115902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
|
46
|
Piccirilli A, Segatore B, Brisdelli F, Amicosante G, Perilli M. Potent inhibitory activity of taniborbactam towards NDM-1 and NDM-1 Q119X mutants, and in vitro activity of cefepime/taniborbactam against MBLs producing Enterobacterales. Int J Antimicrob Agents 2020; 57:106228. [PMID: 33246038 DOI: 10.1016/j.ijantimicag.2020.106228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/26/2020] [Accepted: 11/07/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aimed to investigate the in vitro activity of taniborbactam (VNRX-5133), a novel broad-spectrum bicyclic boronate, against NDM-1 and Q119E, Q119K, Q119C, Q119F, Q119V, and Q119Y NDM-1 variants, which showed an increased activity towards some β-lactams, including cefepime. METHODS Inhibition kinetic assays were spectrophotometrically performed using cefepime (50 μM) as the reporter substrate and 80 nM of each enzyme. Taniborbactam behaves as a competitive inhibitor towards NDM-1 and NDM-1 Q119 variants with lower Ki values (range 3-16 nM). The phenotypic profile was assessed in both Enterobacterales clinical isolates and engineered Escherichia coli BL21(DE3) strains by conventional broth microdilution procedures according to the Clinical and Laboratory Standards Institute (CLSI). RESULTS Taniborbactam at a fixed concentration of 4 mg/L was able to restore activity of cefepime in 24 of 26 Enterobacterales clinical isolates harbouring metallo-β-lactamases with MIC50/MIC90 values of 14 mg/L. Cefepime MICs were drastically reduced in all clinical isolates and in NDM-1 and Q119X producing Escherichia coli BL21(DE3). Taniborbactam was unable to restore susceptibility to cefepime in two IMP variants producing clinical isolates. CONCLUSION The inhibition level of NDM enzymes provided by taniborbactam protects the antibacterial activity of cefepime from this important metallo-β-lactamase.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fabrizia Brisdelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
47
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
48
|
Ranjan VK, Mukherjee S, Thakur S, Gupta K, Chakraborty R. Pandrug-resistant Pseudomonas sp. expresses New Delhi metallo-β-lactamase-1 and consumes ampicillin as sole carbon source. Clin Microbiol Infect 2020; 27:472.e1-472.e5. [PMID: 33160034 DOI: 10.1016/j.cmi.2020.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/21/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study aims to investigate ampicillin catabolism in a pandrug-resistant strain, Pseudomonas sp. MR 02 of P. putida lineage. METHODS The characterization of carbapenem resistance was done following the standard protocol. The broth macrodilution method was used to determine the MIC values of antimicrobial agents both in the presence and in the absence of phenylalanine-β-naphthylamide. High MIC values (>10 000 mg/L) of ampicillin led to speculation that it may serve as a growth substrate, and thus minimal medium was used to evaluate ampicillin as a nutrient. The growth of MR 02 was measured in minimal medium in the presence or absence of 0.4 mM EDTA, supplemented with ampicillin as sole carbon, nitrogen and energy source. RNA-seq was used to generate expression profiles of genes in ampicillin or glucose-grown cells. The blaNDM-1 gene of MR 02 was cloned in the pHSG398 vector and expressed in Escherichia coli DH5α. RESULTS Phenotypic analysis along with genome sequence data identifies Pseudomonas sp. MR 02 as a pandrug-resistant strain. Transcriptome data has revealed that blaNDM-1 was among the top 50 differentially expressed genes in ampicillin grown cells compared to the glucose grown cells in the minimal medium. Heterologous expression of blaNDM-1 gene in E. coli DH5α enabled its growth and subsistence on ampicillin as the sole source of carbon and energy. DISCUSSION The ability of a pandrug-resistant Pseudomonas sp. MR 02 to consume ampicillin for growth has a huge implication in the bioremediation of β-lactam residues in the environment.
Collapse
Affiliation(s)
- Vivek Kumar Ranjan
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Shriparna Mukherjee
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India; Department of Botany, Prasannadeb Women's College, Jalpaiguri, India
| | - Subarna Thakur
- Department of Bioinformatics, University of North Bengal, Siliguri, India
| | - Krutika Gupta
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, India.
| |
Collapse
|
49
|
Demystifying the catalytic pathway of Mycobacterium tuberculosis isocitrate lyase. Sci Rep 2020; 10:18925. [PMID: 33144641 PMCID: PMC7609661 DOI: 10.1038/s41598-020-75799-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/07/2020] [Indexed: 02/04/2023] Open
Abstract
Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)–OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
Collapse
|
50
|
Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin. Nat Commun 2020; 11:5263. [PMID: 33067430 PMCID: PMC7568570 DOI: 10.1038/s41467-020-18939-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global emergence of Gram-negative bacteria carrying the plasmid-borne resistance genes, blaMBL and mcr, raises a significant challenge to the treatment of life-threatening infections by the antibiotics, carbapenem and colistin (COL). Here, we identify an antirheumatic drug, auranofin (AUR) as a dual inhibitor of metallo-β-lactamases (MBLs) and mobilized colistin resistance (MCRs), two resistance enzymes that have distinct structures and substrates. We demonstrate that AUR irreversibly abrogates both enzyme activity via the displacement of Zn(II) cofactors from their active sites. We further show that AUR synergizes with antibiotics on killing a broad spectrum of carbapenem and/or COL resistant bacterial strains, and slows down the development of β-lactam and COL resistance. Combination of AUR and COL rescues all mice infected by Escherichia coli co-expressing MCR-1 and New Delhi metallo-β-lactamase 5 (NDM-5). Our findings provide potential therapeutic strategy to combine AUR with antibiotics for combating superbugs co-producing MBLs and MCRs. Multi-drug resistant pathogens remain a serious public health threat. Here, Sun and colleagues identify a role for auranofin, which is normally used as a drug for rheumatoid arthritis, for reversing antibiotic resistance to carbapenem and colistin.
Collapse
|