1
|
Blake MJ, Steer CJ. Liver Regeneration in Acute on Chronic Liver Failure. Clin Liver Dis 2023; 27:595-616. [PMID: 37380285 DOI: 10.1016/j.cld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Liver regeneration is a multifaceted process by which the organ regains its original size and histologic organization. In recent decades, substantial advances have been made in our understanding of the mechanisms underlying regeneration following loss of hepatic mass. Liver regeneration in acute liver failure possesses several classic pathways, while also exhibiting unique differences in key processes such as the roles of differentiated cells and stem cell analogs. Here we summarize these unique differences and new molecular mechanisms involving the gut-liver axis, immunomodulation, and microRNAs with an emphasis on applications to the patient population through stem cell therapies and prognostication.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Ai H, Meng F, Ai Y. PathwayKO: An integrated platform for deciphering the systems-level signaling pathways. Front Immunol 2023; 14:1103392. [PMID: 37033947 PMCID: PMC10080220 DOI: 10.3389/fimmu.2023.1103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Systems characterization of immune landscapes in health, disease and clinical intervention cases is a priority in modern medicine. High-throughput transcriptomes accumulated from gene-knockout (KO) experiments are crucial for deciphering target KO signaling pathways that are impaired by KO genes at the systems-level. There is a demand for integrative platforms. This article describes the PathwayKO platform, which has integrated state-of-the-art methods of pathway enrichment analysis, statistics analysis, and visualizing analysis to conduct cutting-edge integrative pathway analysis in a pipeline fashion and decipher target KO signaling pathways at the systems-level. We focus on describing the methodology, principles and application features of PathwayKO. First, we demonstrate that the PathwayKO platform can be utilized to comprehensively analyze real-world mouse KO transcriptomes (GSE22873 and GSE24327), which reveal systemic mechanisms underlying the innate immune responses triggered by non-infectious extensive hepatectomy (2 hours after 85% liver resection surgery) and infectious CASP-model sepsis (12 hours after CASP-model surgery). Strikingly, our results indicate that both cases hit the same core set of 21 KO MyD88-associated signaling pathways, including the Toll-like receptor signaling pathway, the NFκB signaling pathway, the MAPK signaling pathway, and the PD-L1 expression and PD-1 checkpoint pathway in cancer, alongside the pathways of bacterial, viral and parasitic infections. These findings suggest common fundamental mechanisms between these immune responses and offer informative cues that warrant future experimental validation. Such mechanisms in mice may serve as models for humans and ultimately guide formulating the research paradigms and composite strategies to reduce the high mortality rates of patients in intensive care units who have undergone successful traumatic surgical treatments. Second, we demonstrate that the PathwayKO platform model-based assessments can effectively evaluate the performance difference of pathway analysis methods when benchmarked with a collection of proper transcriptomes. Together, such advances in methods for deciphering biological insights at the systems-level may benefit the fields of bioinformatics, systems immunology and beyond.
Collapse
Affiliation(s)
- Hannan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Quality Supervision and Inspection of Automatic Equipment, National Center for Testing and Evaluation of Robots (Guangzhou), CRAT, SINOMACH-IT, Guangzhou, China
- *Correspondence: Hannan Ai, ; Yuncan Ai, .cn
| | - Fanmei Meng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuncan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunity & Immune-mediated Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Hannan Ai, ; Yuncan Ai, .cn
| |
Collapse
|
3
|
Senatus L, MacLean M, Arivazhagan L, Egaña-Gorroño L, López-Díez R, Manigrasso MB, Ruiz HH, Vasquez C, Wilson R, Shekhtman A, Gugger PF, Ramasamy R, Schmidt AM. Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. IMMUNOMETABOLISM 2021; 3:e210024. [PMID: 34178389 PMCID: PMC8232874 DOI: 10.20900/immunometab20210024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental modulation of energy metabolism in immune cells is increasingly being recognized for the ability to impart important changes in cellular properties. In homeostasis, cells of the innate immune system, such as monocytes, macrophages and dendritic cells (DCs), are enabled to respond rapidly to various forms of acute cellular and environmental stress, such as pathogens. In chronic stress milieus, these cells may undergo a re-programming, thereby triggering processes that may instigate tissue damage and failure of resolution. In settings of metabolic dysfunction, moieties such as excess sugars (glucose, fructose and sucrose) accumulate in the tissues and may form advanced glycation end products (AGEs), which are signaling ligands for the receptor for advanced glycation end products (RAGE). In addition, cellular accumulation of cholesterol species such as that occurring upon macrophage engulfment of dead/dying cells, presents these cells with a major challenge to metabolize/efflux excess cholesterol. RAGE contributes to reduced expression and activities of molecules mediating cholesterol efflux. This Review chronicles examples of the roles that sugars and cholesterol, via RAGE, play in immune cells in instigation of maladaptive cellular signaling and the mediation of chronic cellular stress. At this time, emerging roles for the ligand-RAGE axis in metabolism-mediated modulation of inflammatory signaling in immune cells are being unearthed and add to the growing body of factors underlying pathological immunometabolism.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lakshmi Arivazhagan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michaele B. Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Henry H. Ruiz
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carolina Vasquez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Robin Wilson
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Paul F. Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Shinozuka K, Tajiri N, Ishikawa H, Tuazon JP, Lee JY, Sanberg PR, Zarriello S, Corey S, Kaneko Y, Borlongan CV. Empathy in stroke rats is modulated by social settings. J Cereb Blood Flow Metab 2020; 40:1182-1192. [PMID: 31366299 PMCID: PMC7238373 DOI: 10.1177/0271678x19867908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rodents display "empathy" defined as perceived physical pain or psychological stress by cagemates when co-experiencing socially distinct traumatic events. The present study tested the hypothesis that empathy occurs in adult rats subjected to an experimental neurological disorder, by allowing co-experience of stroke with cagemates. Psychological stress was measured by general locomotor activity, Rat Grimace Scale (RGS), and plasma corticosterone. Physiological correlates were measured by Western blot analysis of advanced glycation endproducts (AGE)-related proteins in the thymus. General locomotor activity was impaired in stroke animals and in non-stroke rats housed with stroke rats suggesting transfer of behavioral manifestation of psychological stress from an injured animal to a non-injured animal leading to social inhibition. RGS was higher in stroke rats regardless of social settings. Plasma corticosterone levels at day 3 after stroke were significantly higher in stroke animals housed with stroke rats, but not with non-stroke rats, indicating that empathy upregulated physiological stress level. The expression of five proteins related to AGE in the thymus reflected the observed pattern of general locomotor activity, RGS, and plasma corticosterone levels. These results indicate that stroke-induced psychological stress manifested on both the behavioral and physiological levels and appeared to be affected by empathy-associated social settings.
Collapse
Affiliation(s)
- Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Zarriello
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, USF Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
5
|
Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front Cardiovasc Med 2020; 7:37. [PMID: 32211423 PMCID: PMC7076074 DOI: 10.3389/fcvm.2020.00037] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Gautham Yepuri
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa S. Ramirez
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Sergey Reverdatto
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Alexander Shekhtman
- Department of Chemistry, University of Albany, State University of New York, Albany, NY, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta Gen Subj 2019; 1864:129438. [PMID: 31526867 DOI: 10.1016/j.bbagen.2019.129438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice. METHODS Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques. RESULTS We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice. CONCLUSION A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function. GENERAL SIGNIFICANCE RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.
Collapse
Affiliation(s)
- Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Katja Zunkel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Samiya Al-Robaiy
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019; 20:279-301. [PMID: 30968282 DOI: 10.1007/s10522-019-09808-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) was initially characterized and named for its ability to bind to advanced glycation end-products (AGEs) that form upon the irreversible and non-enzymatic interaction between nucleophiles, such as lysine, and carbonyl compounds, such as reducing sugars. The concentrations of AGEs are known to increase in conditions such as diabetes, as well as during ageing. However, it is now widely accepted that RAGE binds with numerous ligands, many of which can be defined as pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The interaction between RAGE and its ligands mainly results in a pro-inflammatory response, and can lead to stress events often favouring mitochondrial dysfunction or cellular senescence. Thus, RAGE should be considered as a pattern recognition receptor (PRR), similar to those that regulate innate immunity. Innate immunity itself plays a central role in inflammaging, the chronic low-grade and sterile inflammation that increases with age and is a potentially important contributory factor in ageing. Consequently, and in addition to the age-related accumulation of PAMPs and DAMPs and increases in pro-inflammatory cytokines from senescent cells and damaged cells, PRRs are therefore important in inflammaging. We suggest here that, through its interconnection with immunity, senescence, mitochondrial dysfunction and inflammasome activation, RAGE is a key contributor to inflammaging and that the pro-longevity effects seen upon blocking RAGE, or upon its deletion, are thus the result of reduced inflammaging.
Collapse
Affiliation(s)
- Thibault Teissier
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.
| | - Éric Boulanger
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.,Department of Geriatrics and Ageing Biology, School of Medicine, Lille University, Lille, France.,Department of Geriatrics, Lille University Hospital, Lille, France
| |
Collapse
|
8
|
Yu T, Yu Q, Chen X, Zhou L, Wang Y, Yu C. Exclusive enteral nutrition protects against inflammatory bowel disease by inhibiting NF‑κB activation through regulation of the p38/MSK1 pathway. Int J Mol Med 2018; 42:1305-1316. [PMID: 29901086 PMCID: PMC6089761 DOI: 10.3892/ijmm.2018.3713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Although enteral nutrition therapy for inflammatory bowel disease has been confirmed to be an effective treatment method, the exact mechanism responsible for the effects of enteral nutrition remains unclear. The aim of the present study was to investigate the protective effect of exclusive enteral nutrition (EEN) against colitis, and to elucidate the potential mechanisms by inhibiting p65 activation via regulating the p38/mitogen‑ and stress‑activated protein kinase‑1 (MSK1) pathway. Experiments were performed by establishing dextran sulfate sodium (DSS)‑mice colitis and picrylsulfonic acid solution (TNBS)‑induced rat colitis, and the results demonstrated that EEN treatment attenuated body weight loss, colon length shortening and colonic pathological damage caused by colitis. EEN also inhibited inflammatory cells infiltration and decreased myeloperoxidase and inducible nitric oxide synthase activities. Furthermore, EEN significantly reduced the production of pro‑inflammatory mediators in serum and the colon. Mechanically, EEN suppressed activation of p65 by inhibiting the p38/MSK1 pathway. In conclusion, the present study demonstrated that EEN attenuated DSS‑ and TNBS‑induced colitis by inhibiting p65 activation via regulating the p38/MSK1 pathway, thus suggesting that EEN is effective in the treatment of colitis.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qian Yu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaotian Chen
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Chenggong Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
9
|
Abstract
Liver regeneration after simple resection represents a unique process in which the organ returns to its original size and histologic structure. Over the past 30 years, there has been significant progress in elucidating the mechanisms associated with regeneration after loss of hepatic mass. Liver regeneration after acute liver failure shares several of these classical pathways. It differs, however, in key processes, including the role of both differentiated and stemlike cells. This article outlines these differences in addition to new molecular mechanisms, including immunomodulation, microRNAs, and the gut-liver axis. In addition, applications to the patient population, including prognostication and stem cell therapies, are explored.
Collapse
Affiliation(s)
- Keith M Wirth
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA.
| | - Scott Kizy
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Hanoudi S, Donato M, Draghici S. Identifying biologically relevant putative mechanisms in a given phenotype comparison. PLoS One 2017; 12:e0176950. [PMID: 28486531 PMCID: PMC5423614 DOI: 10.1371/journal.pone.0176950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
A major challenge in life science research is understanding the mechanism involved in a given phenotype. The ability to identify the correct mechanisms is needed in order to understand fundamental and very important phenomena such as mechanisms of disease, immune systems responses to various challenges, and mechanisms of drug action. The current data analysis methods focus on the identification of the differentially expressed (DE) genes using their fold change and/or p-values. Major shortcomings of this approach are that: i) it does not consider the interactions between genes; ii) its results are sensitive to the selection of the threshold(s) used, and iii) the set of genes produced by this approach is not always conducive to formulating mechanistic hypotheses. Here we present a method that can construct networks of genes that can be considered putative mechanisms. The putative mechanisms constructed by this approach are not limited to the set of DE genes, but also considers all known and relevant gene-gene interactions. We analyzed three real datasets for which both the causes of the phenotype, as well as the true mechanisms were known. We show that the method identified the correct mechanisms when applied on microarray datasets from mouse. We compared the results of our method with the results of the classical approach, showing that our method produces more meaningful biological insights.
Collapse
Affiliation(s)
- Samer Hanoudi
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
| | - Michele Donato
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, United States of America
- Department of Obstetrics and Gynecology, Detroit, MI, United States of America
| |
Collapse
|
11
|
Schmidt AM. 22016 ATVB Plenary Lecture: Receptor for Advanced Glycation Endproducts and Implications for the Pathogenesis and Treatment of Cardiometabolic Disorders: Spotlight on the Macrophage. Arterioscler Thromb Vasc Biol 2017; 37:613-621. [PMID: 28183700 PMCID: PMC5364055 DOI: 10.1161/atvbaha.117.307263] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/30/2017] [Indexed: 12/23/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) interacts with a unique repertoire of ligands that form and collect in the tissues and circulation in diabetes mellitus, aging, inflammation, renal failure, and obesity. RAGE is expressed on multiple cell types linked to tissue perturbation in these settings. This brief review focuses on the role of RAGE in monocytes/macrophages and how RAGE ligand engagement on these cells mediates seminal changes in monocyte/macrophage migration, oxidative stress, cholesterol efflux, and pro- versus anti-inflammatory cues that signal to tissue damage. Studies using mice devoid of Ager (gene encoding RAGE) or pharmacological antagonists of RAGE are protective in animal models of diabetes mellitus, atherosclerosis, and high-fat diet-induced obesity, in least in part through key roles in monocytes/macrophages. RAGE signal transduction requires the interaction of RAGE cytoplasmic domain with the formin, DIAPH1 (diaphanous 1) and novel antagonists of this interaction show significant promise in attenuation of the maladaptive effects of RAGE ligands in cellular and in vivo models. Finally, this brief review discusses evidence for RAGE axis perturbation in human monocytes/macrophages and how tracing RAGE activity in these cells may identify target engagement biomarkers of RAGE antagonism for future clinical trials.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- From the Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York.
| |
Collapse
|
12
|
Shekhtman A, Ramasamy R, Schmidt AM. Glycation & the RAGE axis: targeting signal transduction through DIAPH1. Expert Rev Proteomics 2016; 14:147-156. [PMID: 27967251 DOI: 10.1080/14789450.2017.1271719] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.
Collapse
Affiliation(s)
- Alexander Shekhtman
- a Department of Chemistry , University at Albany, State University of New York , Albany , NY , 12222 , USA
| | - Ravichandran Ramasamy
- b Diabetes Research Program, Division of Endocrinology, Department of Medicine , NYU Langone Medical Center , New York , NY , 10016 , USA
| | - Ann Marie Schmidt
- b Diabetes Research Program, Division of Endocrinology, Department of Medicine , NYU Langone Medical Center , New York , NY , 10016 , USA
| |
Collapse
|
13
|
Manigrasso MB, Pan J, Rai V, Zhang J, Reverdatto S, Quadri N, DeVita RJ, Ramasamy R, Shekhtman A, Schmidt AM. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Sci Rep 2016; 6:22450. [PMID: 26936329 PMCID: PMC4776135 DOI: 10.1038/srep22450] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Jinhong Pan
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, 12222 New York, USA
| | - Vivek Rai
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Jinghua Zhang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Sergey Reverdatto
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, 12222 New York, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Robert J DeVita
- RJD Medicinal Chemistry and Drug Discovery Consulting LLC, 332 W. Dudley Avenue, Westfield, New Jersey 07090, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, 12222 New York, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, 10016 New York, USA
| |
Collapse
|
14
|
Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 2015; 20:431-46. [PMID: 26558318 DOI: 10.1517/14728222.2016.1111873] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION This review focuses on the multi-ligand receptor of the immunoglobulin superfamily--receptor for advanced glycation endproducts (RAGE). The accumulation of the multiple ligands of RAGE in cellular stress milieux links RAGE to the pathobiology of chronic disease and natural aging. AREAS COVERED In this review, we present a discussion on the ligands of RAGE and the implications of these ligand families in disease. We review the recent literature on the role of ligand-RAGE interaction in the consequences of natural aging; the macro- and microvascular complications of diabetes; obesity and insulin resistance; autoimmune disorders and chronic inflammation; and tumors and Alzheimer's disease. We discuss the mechanisms of RAGE signaling through its intracellular binding effector molecule--the formin DIAPH1. Physicochemical evidence of how the RAGE cytoplasmic domain binds to the FH1 (formin homology 1) domain of DIAPH1, and the consequences thereof, are also reviewed. EXPERT OPINION We discuss the modalities of RAGE antagonism currently in preclinical and clinical studies. Finally, we present the rationale behind potentially targeting the RAGE cytoplasmic domain-DIAPH1 interaction as a logical strategy for therapeutic intervention in the pathological settings of chronic diseases and aging wherein RAGE ligands accumulate and signal.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| | - Alexander Shekhtman
- b Department of Chemistry , University at Albany, State University of New York , Albany , NY 12222 , USA
| | - Ann Marie Schmidt
- a Diabetes Research Program, Division of Endocrinology, Department of Medicine , New York University Langone Medical Center , New York , NY 10016 , USA
| |
Collapse
|
15
|
Schmidt AM. Soluble RAGEs - Prospects for treating & tracking metabolic and inflammatory disease. Vascul Pharmacol 2015; 72:1-8. [PMID: 26130225 DOI: 10.1016/j.vph.2015.06.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Emerging evidence links the receptor for advanced glycation endproducts (RAGE) to the pathogenesis of tissue damage in chronic metabolic and inflammatory diseases. In human subjects, multiple reports suggest that in the plasma/serum, circulating levels of distinct forms of soluble RAGEs may be biomarkers of the presence or absence, and the extent of chronic disease. These considerations prompt us to consider in this review, what are soluble RAGEs; how are they formed; what might be their natural functions; and may they serve as biomarkers of inflammatory and metabolic disease activity? In this brief review, we seek to address what is known and suggest new areas for scientific investigation to uncover the biology of soluble RAGEs.
Collapse
Affiliation(s)
- Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
16
|
Abstract
Molecular, catalytic and structural properties of glyoxalase pathway enzymes of many species are now known. Current research has focused on the regulation of activity and expression of Glo1 (glyoxalase I) and Glo2 (glyoxalase II) and their role in health and disease. Human GLO1 has MRE (metal-response element), IRE (insulin-response element), E2F4 (early gene 2 factor isoform 4), AP-2α (activating enhancer-binding protein 2α) and ARE (antioxidant response-element) regulatory elements and is a hotspot for copy number variation. The human Glo2 gene, HAGH (hydroxyacylglutathione hydrolase), has a regulatory p53-response element. Glo1 is linked to healthy aging, obesity, diabetes and diabetic complications, chronic renal disease, cardiovascular disease, other disorders and multidrug resistance in cancer chemotherapy. Mathematical modelling of the glyoxalase pathway predicts that pharmacological levels of increased Glo1 activity markedly decrease cellular methylglyoxal and related glycation, and pharmacological Glo1 inhibition markedly increases cellular methylglyoxal and related glycation. Glo1 inducers are in development to sustain healthy aging and for treatment of vascular complications of diabetes and other disorders, and cell-permeant Glo1 inhibitors are in development for treatment of multidrug-resistant tumours, malaria and potentially pathogenic bacteria and fungi.
Collapse
|
17
|
Abstract
OA (osteoarthritis) and RA (rheumatoid arthritis) lead to deterioration of the joints. Early OA is associated with loss of bone due to increased bone remodelling. A role for inflammation is thought to be integral to the pathology. RA is a chronic inflammatory disease of the synovium, a membrane lining the non-weight-bearing surfaces of the joint. The mainstay of RA diagnostic testing is for autoantibodies. Rheumatoid factor has been a primary diagnostic test; however, sensitivity is approximately 75%, but specificity is limited. Recently, detection of antibodies against cyclic citrullinated peptide, identified as a screening marker and marker of disease progression, has been proposed. Studies of glycation in arthritis have focused mostly on levels of AGEs (advanced glycation end-products), Nε-carboxymethyl-lysine and pentosidine. There was a weak correlation of skin and urinary pentosidine with joint damage in early-stage OA. RAGE (receptor for AGEs) is a cell-surface receptor in the synovial tissue of patients with OA and RA. The RAGE agonist S100A12 is increased in RA and OA. Activation of RAGE may decrease expression of Glo1 (glyoxalase I). Conflict between RAGE-activated inflammatory signalling and Nrf2 (nuclear factor-erythroid 2-related factor 2) regulation of basal and inducible expression of Glo1 may be involved. Thereby glyoxal- and methylglyoxal-derived AGEs may be increased in OA and RA. Further studies are now required to investigate the role of glyoxalase and dicarbonyl glycation in OA and RA for early-stage diagnosis and potential novel preventive therapy.
Collapse
|
18
|
McVicar CM, Ward M, Colhoun LM, Guduric-Fuchs J, Bierhaus A, Fleming T, Schlotterer A, Kolibabka M, Hammes HP, Chen M, Stitt AW. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice. Diabetologia 2015; 58:1129-37. [PMID: 25687235 PMCID: PMC4392170 DOI: 10.1007/s00125-015-3523-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 01/18/2023]
Abstract
AIMS/HYPOTHESIS The receptor for AGEs (RAGE) is linked to proinflammatory pathology in a range of tissues. The objective of this study was to assess the potential modulatory role of RAGE in diabetic retinopathy. METHODS Diabetes was induced in wild-type (WT) and Rage (-/-) mice (also known as Ager (-/-) mice) using streptozotocin while non-diabetic control mice received saline. For all groups, blood glucose, HbA1c and retinal levels of methylglyoxal (MG) were evaluated up to 24 weeks post diabetes induction. After mice were killed, retinal glia and microglial activation, vasopermeability, leucostasis and degenerative microvasculature changes were determined. RESULTS Retinal expression of RAGE in WT diabetic mice was increased after 12 weeks (p < 0.01) but not after 24 weeks. Rage (-/-) mice showed comparable diabetes but accumulated less MG and this corresponded to enhanced activity of the MG-detoxifying enzyme glyoxalase I in their retina when compared with WT mice. Diabetic Rage (-/-) mice showed significantly less vasopermeability, leucostasis and microglial activation (p < 0.05-0.001). Rage (-/-) mice were also protected against diabetes-related retinal acellular capillary formation (p < 0.001) but not against pericyte loss. CONCLUSIONS/INTERPRETATION Rage (-/-) in diabetic mice is protective against many retinopathic lesions, especially those related to innate immune responses. Inhibition of RAGE could be a therapeutic option to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Carmel M. McVicar
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Micheal Ward
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Liza M. Colhoun
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Angelika Bierhaus
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schlotterer
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kolibabka
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Hans-Peter Hammes
- Department of Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Mei Chen
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT12 6BA Northern Ireland UK
| |
Collapse
|
19
|
Yamagishi SI, Matsui T. Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur J Med Res 2015; 20:15. [PMID: 25888859 PMCID: PMC4328656 DOI: 10.1186/s40001-015-0090-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 02/06/2023] Open
Abstract
Receptor for advanced glycation end products (RAGE) belongs to a immunoglobulin superfamily of cell surface molecules that could bind to a number of ligands such as advanced glycation end products, high-mobility group protein box-1, S-100 calcium-binding protein, and amyloid-β-protein, inducing a series of signal transduction cascades, and being involved in a variety of cellular function, including inflammation, proliferation, apoptosis, angiogenesis, migration, and fibrosis. RAGE is expressed in hepatic stellate cells and hepatocytes and hepatoma cells. There is accumulating evidence that engagement of RAGE with various ligands elicits oxidative stress generation and subsequently activates the RAGE downstream pathway in the liver, thereby contributing to the development and progression of numerous types of hepatic disorders. These observations suggest that inhibition of the RAGE signaling pathway could be a novel therapeutic target for liver diseases. This article summarizes the pathological role of RAGE in hepatic insulin resistance, steatosis and fibrosis, ischemic and non-ischemic liver injury, and hepatocellular carcinoma growth and metastasis and its therapeutic interventions for these devastating disorders.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
20
|
Batkulwar KB, Bansode SB, Patil GV, Godbole RK, Kazi RS, Chinnathambi S, Shanmugam D, Kulkarni MJ. Investigation of phosphoproteome in RAGE signaling. Proteomics 2014; 15:245-59. [DOI: 10.1002/pmic.201400169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/14/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Kedar B. Batkulwar
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Sneha B. Bansode
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Gouri V. Patil
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Rashmi K. Godbole
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Rubina S. Kazi
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | | | - Dhanasekaran Shanmugam
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| | - Mahesh J. Kulkarni
- Proteomics Facility; Division of Biochemical Sciences; CSIR-National Chemical Laboratory; Pune India
| |
Collapse
|
21
|
Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc 2014; 9:1969-79. [PMID: 25058644 DOI: 10.1038/nprot.2014.129] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This protocol describes a method for the detection and quantification of methylglyoxal (MG), the major physiological substrate of the cytosolic glyoxalase system. Accumulation of MG, also called dicarbonyl stress, is implicated in tissue damage in aging and disease. Measurement of MG is important in physiological studies, in the development of glyoxalase 1 (Glo1) inducer and inhibitor therapeutics, and in the characterization of medical products, especially dialysis fluids, and of thermally processed foods and beverages. MG can be derivatized with 1,2-diaminobenzene (DB), resulting in an adduct that can be detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Quantification is achieved by stable isotopic dilution analysis with [(13)C3]MG. Pre-analytic processing at ambient temperature, under acidic conditions with peroxidase inhibition, avoids artifactual overestimation of MG. Estimates obtained from physiological samples can be validated by kinetic modeling of in situ rates of protein glycation by MG for confirmation of the results. This procedure was developed for the analysis of cultured cells, plasma and animal tissue samples, and it can also be used to analyze plant material. Experimental measurement requires 4.5 h for sample batch pre-analytic processing and 30 min per sample for LC-MS/MS analysis.
Collapse
|
22
|
Song F, Hurtado del Pozo C, Rosario R, Zou YS, Ananthakrishnan R, Xu X, Patel PR, Benoit VM, Yan SF, Li H, Friedman RA, Kim JK, Ramasamy R, Ferrante AW, Schmidt AM. RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice. Diabetes 2014; 63:1948-65. [PMID: 24520121 PMCID: PMC4030112 DOI: 10.2337/db13-1636] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.
Collapse
Affiliation(s)
- Fei Song
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Carmen Hurtado del Pozo
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Rosa Rosario
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Yu Shan Zou
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Xiaoyuan Xu
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY
| | - Payal R Patel
- Program in Molecular Medicine and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Vivian M Benoit
- Program in Molecular Medicine and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Shi Fang Yan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Huilin Li
- Departments of Population Health (Biostatistics) and Environmental Medicine, New York University School of Medicine, New York, NY
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| | - Anthony W Ferrante
- Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, NY
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
23
|
Leung C, Herath CB, Jia Z, Goodwin M, Mak KY, Watt MJ, Forbes JM, Angus PW. Dietary glycotoxins exacerbate progression of experimental fatty liver disease. J Hepatol 2014; 60:832-8. [PMID: 24316518 DOI: 10.1016/j.jhep.2013.11.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 11/05/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Advanced glycation end-products (AGEs) levels are high in western diets and contribute to tissue injury via activation of RAGE (receptor for AGEs) and generation of reactive oxygen species (ROS). Here, we determined if high dietary AGE intake worsens progression of non-alcoholic fatty liver disease (NAFLD). METHODS Male Sprague Dawley rats were fed a methionine choline deficient (MCD) diet for 6 weeks before 6 weeks of a high AGE MCD diet through baking. They were compared with animals on MCD diet or a methionine choline replete (MCR) diet alone for 12 weeks. Hepatic ROS, triglycerides, biochemistry, picro-sirius morphometry, hepatic mRNA expression and immunohistochemistry were determined. Primary hepatic stellate cells (HSCs) from both MCR and MCD animals were exposed to AGEs. ROS, proliferation and mRNA expression were determined. RESULTS The high AGE MCD diet increased hepatic AGE content and elevated triglycerides, NADPH dependent superoxide production, HNE adducts, steatosis, steatohepatitis (CD43, IL-6, TNF-α) and fibrosis (α-SMA, CTGF, COL1A, picrosirius) compared to MCD alone. In HSCs, AGEs significantly increased ROS production, bromodeoxyuridine proliferation and MCP-1, IL-6, α-SMA, and RAGE expression in HSCs from MCD but not MCR animals. These effects were abrogated by RAGE or NADPH oxidase blockade. CONCLUSIONS In the MCD model of NAFLD, high dietary AGEs increases hepatic AGE content and exacerbates liver injury, inflammation, and liver fibrosis via oxidative stress and RAGE dependent profibrotic effects of AGEs on activated HSCs. This suggests that pharmacological and dietary strategies targeting the AGE/RAGE pathway could slow the progression of NAFLD.
Collapse
Affiliation(s)
- Christopher Leung
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, Victoria, Australia; Glycation and Diabetes Group, Baker IDI Diabetes Institute, Melbourne, Victoria, Australia.
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Zhiyuan Jia
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Michelle Goodwin
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, Victoria, Australia
| | - Kai Yan Mak
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Group, Baker IDI Diabetes Institute, Melbourne, Victoria, Australia; Glycation and Diabetes Complications Group, Mater Medical Research Institute, South Brisbane, Queensland, Australia
| | - Peter W Angus
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia; Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
|
25
|
Foell D, Wittkowski H, Kessel C, Lüken A, Weinhage T, Varga G, Vogl T, Wirth T, Viemann D, Björk P, van Zoelen MAD, Gohar F, Srikrishna G, Kraft M, Roth J. Proinflammatory S100A12 Can Activate Human Monocytes via Toll-like Receptor 4. Am J Respir Crit Care Med 2013; 187:1324-34. [DOI: 10.1164/rccm.201209-1602oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Juranek JK, Geddis MS, Song F, Zhang J, Garcia J, Rosario R, Yan SF, Brannagan TH, Schmidt AM. RAGE deficiency improves postinjury sciatic nerve regeneration in type 1 diabetic mice. Diabetes 2013; 62:931-43. [PMID: 23172920 PMCID: PMC3581233 DOI: 10.2337/db12-0632] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow-derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals.
Collapse
Affiliation(s)
- Judyta K. Juranek
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
- Corresponding author: Ann Marie Schmidt, , or Judyta Juranek,
| | - Matthew S. Geddis
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
- Department of Science, Borough of Manhattan Community College–City University of New York, New York, New York
| | - Fei Song
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Jinghua Zhang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Jose Garcia
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Rosa Rosario
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Shi Fang Yan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Thomas H. Brannagan
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
- Corresponding author: Ann Marie Schmidt, , or Judyta Juranek,
| |
Collapse
|
27
|
RAGE in tissue homeostasis, repair and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:101-9. [DOI: 10.1016/j.bbamcr.2012.10.021] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/21/2012] [Indexed: 12/13/2022]
|
28
|
Receptor for advanced glycation end products (RAGE) and implications for the pathophysiology of heart failure. Curr Heart Fail Rep 2012; 9:107-16. [PMID: 22457230 DOI: 10.1007/s11897-012-0089-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is expressed in the heart in cardiomyocytes, vascular cells, fibroblasts, and in infiltrating inflammatory cells. Experiments in murine, rat, and swine models of injury suggest that RAGE and the ligands of RAGE are upregulated in key injuries to the heart, including ischemia/reperfusion injury, diabetes, and inflammation. Pharmacological antagonism of RAGE or genetic deletion of the receptor in mice is strikingly protective in models of these stresses. Data emerging from human studies suggest that measurement of levels of RAGE ligands or soluble RAGEs in plasma or serum may correlate with the degree of heart failure. Taken together, the ligand-RAGE axis is implicated in heart failure and we predict that therapeutic antagonism of RAGE might be a unique target for therapeutic intervention in this disorder.
Collapse
|
29
|
Ramasamy R, Yan SF, Schmidt AM. The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascul Pharmacol 2012; 57:160-7. [PMID: 22750165 DOI: 10.1016/j.vph.2012.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 02/06/2023]
Abstract
The multi-ligand receptor RAGE was discovered on account of its ability to bind and transduce the cell stress-provoking signals of advanced glycation endproducts (AGEs). The finding that RAGE also bound pro-inflammatory molecules set the stage for linking RAGE and inflammation to the pathogenesis of diabetic macro- and microvascular complications. In this review, we focus on the roles of RAGE and its ligands in diabetes complications. We recount the findings from mice, rats, swine and human subjects suggesting that RAGE action potently contributes to vascular, inflammatory and end-organ stress and damage in types 1 and 2 diabetes. We detail the efforts to track ligands and RAGE in human subjects with diabetes to address if this axis may be a biomarker reflective of the state of the diabetic complications. Lastly, we suggest specific strategies to tackle AGE-ligand-RAGE interactions as potential therapeutic targets for diabetes and its complications.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, NY 10016, United States
| | | | | |
Collapse
|