1
|
Lee PY, Garan H, Wan EY, Scully BE, Biviano A, Yarmohammadi H. Cardiac arrhythmias in viral infections. J Interv Card Electrophysiol 2023; 66:1939-1953. [PMID: 36929368 PMCID: PMC10019413 DOI: 10.1007/s10840-023-01525-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The current COVID-19 pandemic has led to many studies examining its arrhythmogenic effects. However, there are many other viruses that are capable of inducing arrhythmias that have not received as much attention. The objective of this study was to review common viruses and identify studies highlighting their arrhythmogenic effects. METHODS AND RESULTS In this review, we examined 15 viruses and the literature regarding their arrhythmogenic effects. The common mechanisms of action appear to be direct invasion of myocytes leading to immune mediated damage, infection of vascular endothelium, and alteration of cardiac ion channels. CONCLUSIONS This review highlights the growing evidence that supports the involvement of other viral infections in the development of arrhythmia. Physicians should be aware of these potentially life-threatening effects when caring for patients with these viruses, some of which are very common. Additional studies are required to better understand the complex mechanism and risk factors of cardiac arrhythmias in patients suffered from viral infections to determine whether the processes can be reversed or even prevented.
Collapse
Affiliation(s)
- Paul Y Lee
- Department of Medicine, Rutgers University, Newark, NJ, USA
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, New York Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, New York Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brian E Scully
- Department of Medicine, New York Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angelo Biviano
- Department of Medicine, Division of Cardiology, New York Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, New York Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Cardiology and Cardiac Electrophysiology, Columbia University, 177 Fort Washington Avenue, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Peischard S, Möller M, Disse P, Ho HT, Verkerk AO, Strutz-Seebohm N, Budde T, Meuth SG, Schweizer PA, Morris S, Mücher L, Eisner V, Thomas D, Klingel K, Busch K, Seebohm G. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci 2022; 79:440. [PMID: 35864219 PMCID: PMC9304080 DOI: 10.1007/s00018-022-04435-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Melina Möller
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Huyen Tran Ho
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, Amsterdam, The Netherlands
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute of Physiology I, Westfälische-Wilhems Universität Münster, 48149, Münster, Germany
| | - Sven G Meuth
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Silke Morris
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tuebingen, 72076, Tübingen, Germany
| | - Karin Busch
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany. .,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
3
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
4
|
The first versatile human iPSC-based model of ectopic virus induction allows new insights in RNA-virus disease. Sci Rep 2020; 10:16804. [PMID: 33033381 PMCID: PMC7546621 DOI: 10.1038/s41598-020-72966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
A detailed description of pathophysiological effects that viruses exert on their host is still challenging. For the first time, we report a highly controllable viral expression model based on an iPS-cell line from a healthy human donor. The established viral model system enables a dose-dependent and highly localized RNA-virus expression in a fully controllable environment, giving rise for new applications for the scientific community.
Collapse
|
5
|
Daba TM, Zhao Y, Pan Z. Advancement of Mechanisms of Coxsackie Virus B3-Induced Myocarditis Pathogenesis and the Potential Therapeutic Targets. Curr Drug Targets 2020; 20:1461-1473. [PMID: 31215390 DOI: 10.2174/1389450120666190618124722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Viral myocarditis is a cardiac disease caused by Group B Coxsackie virus of Enterovirus genus in the Picorna viridae family. It causes heart failure in children, young and adults. Ten Percent (10%) of acute heart failure and 12% of sudden deaths in young and adults who are less than 40 years is due to this viral myocarditis. If treatment action is not taken earlier, the viral disease can develop into chronic myocarditis and Dilated Cardiomyopathy which lead to congestive heart failure. And these eventually result in a reduced cardiac function which finally brings the victim to death. The only treatment option of the disease is heart transplantation once the acute stage of disease develops to chronic and Dilated Cardiomyopathy. Currently, there is a limitation in daily clinical treatments and even some available treatment options are ineffective. Therefore, focusing on search for treatment options through investigation is imperative. Recent studies have reported that biological molecules show a promising role. But their mechanism of pathogenesis is still unclear. A detailed study on identifying the role of biological molecules involved in Coxsackie B3 virus induced myocarditis and their mechanisms of pathogenesis; compiling and disseminating the findings of the investigation to the scientific communities contribute one step forward to the solution. Therefore, this review is aimed at compiling information from findings of current studies on the potential therapeutic role of micro RNA, cytokines and chemokines on the mechanism of pathogenesis of Coxsackie virus B3- induced myocarditis to give brief information for scholars to conduct a detailed study in the area.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Department of Biology, College of Natural and Computational Sciences, Bule Hora University, Bule Hora, Ethiopia
| | - Yue Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Hu TY, Lee JZ, Asirvatham SJ. Cardiovascular Considerations in Coronavirus Disease 2019 with a Special Focus on Arrhythmia. J Innov Card Rhythm Manag 2020; 11:4191-4198. [PMID: 32874745 PMCID: PMC7452737 DOI: 10.19102/icrm.2020.110804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic, has significant cardiovascular manifestations. Several studies to date have suggested worse outcomes occur in patients with elevated troponin levels. Among hospitalized patients in Wuhan, China, arrhythmias including malignant ventricular arrhythmia have been reported. Conduction abnormalities in COVID-19 patients have also been described. Additionally, there have been concerns raised regarding COVID-19-related myocarditis, of which reported biopsy-proven cases to date appear to be rare. In this review, we address COVID-19 concerns for the cardiologist and electrophysiologist, including arrhythmia and conduction abnormalities, myocarditis, and arrhythmia in critically ill patients; angiotensin-converting enzyme 2 in cardiac patients; hypercoagulability; and the drug properties of hydroxychloroquine as one of the potential therapies under review.
Collapse
Affiliation(s)
- Tiffany Y. Hu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Justin Z. Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel J. Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
8
|
Wu VCC, Chen TH, Wu M, Huang CH, Chen SW, Cheng CW, Lin YS, Chang PC, Hsieh MJ, Wang CY, Chang SH, Wang CL, Chu PH, Wu CS. Risk of cardiac arrhythmias in patients with chronic hepatitis B and C infections - A 13-year nationwide population-based study. J Cardiol 2019; 74:333-338. [PMID: 30982681 DOI: 10.1016/j.jjcc.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is associated with higher risk of cardiovascular events than chronic hepatitis B virus (HBV). We aimed to investigate whether there is higher risk of arrhythmia in HCV infection. METHODS Electronic medical records from National Health Institute Research Database during 2000-2012 were retrieved for patients with HBV or HCV. Patients with missing information, aged <18 years, diagnosed with HBV or HCV before year 2000, concomitant HBV and HCV, coagulopathy or organ transplant, history of arrhythmia, device implantation, congenital heart disease, rheumatic heart disease, hypertrophic cardiomyopathy, thyroid disease, alcohol or drug abuse, valvular heart disease, or follow-up <6 months were excluded. Primary outcomes were cardiac arrhythmias and all-cause mortality. RESULTS After 1:1 propensity score matching, 5480 patients with HBV and 5480 patients with HCV were included for study. During a mean follow-up of 6.5 years, the risk of all-cause mortality was higher in the HCV patients than in HBV patients [hazard ratio (HR) 1.35, 95% confidence interval (CI) 1.16-1.58]. There was also a trend toward higher incidence of atrial fibrillation (HR 1.25, 95% 0.98-1.59, p=0.070) and a significantly higher incidence of sick sinus syndrome (HR 1.77, 95% CI 1.07-2.91) in HCV patients. In addition, among patients with all-cause mortality, arrhythmia death was significantly higher with chronic HCV infection. CONCLUSIONS In patients with chronic viral hepatitis, patients with HCV were associated with significantly increased risks of sick sinus syndrome, and all-cause mortality compared to patients with HBV.
Collapse
Affiliation(s)
- Victor Chien-Chia Wu
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan.
| | - Tien-Hsing Chen
- Department of Cardiology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Michael Wu
- Division of Cardiovascular Medicine, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Chien-Hao Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chun-Wen Cheng
- Department of Infectious Diseases, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Yu-Sheng Lin
- Department of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Po-Cheng Chang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Ming-Jer Hsieh
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Shang-Hung Chang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chun-Li Wang
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Cheng-Shyong Wu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
9
|
Deckx S, Johnson DM, Rienks M, Carai P, Van Deel E, Van der Velden J, Sipido KR, Heymans S, Papageorgiou AP. Extracellular SPARC increases cardiomyocyte contraction during health and disease. PLoS One 2019; 14:e0209534. [PMID: 30933983 PMCID: PMC6443176 DOI: 10.1371/journal.pone.0209534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/20/2019] [Indexed: 01/04/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a non-structural extracellular matrix protein that regulates interactions between the matrix and neighboring cells. In the cardiovascular system, it is expressed by cardiac fibroblasts, endothelial cells, and at lower levels by ventricular cardiomyocytes. SPARC expression levels are increased upon myocardial injury and also during hypertrophy and fibrosis. We have previously shown that SPARC improves cardiac function after myocardial infarction by regulating post-synthetic procollagen processing, however whether SPARC directly affects cardiomyocyte contraction is still unknown. In this study we demonstrate a novel inotropic function for extracellular SPARC in the healthy heart as well as in the diseased state after myocarditis-induced cardiac dysfunction. We demonstrate SPARC presence on the cardiomyocyte membrane where it is co-localized with the integrin-beta1 and the integrin-linked kinase. Moreover, extracellular SPARC directly increases cardiomyocyte cell shortening ex vivo and cardiac function in vivo, both in healthy myocardium and during coxsackie virus-induced cardiac dysfunction. In conclusion, we demonstrate a novel inotropic function for SPARC in the heart, with a potential therapeutic application when myocyte contractile function is diminished such as that caused by a myocarditis-related cardiac injury.
Collapse
Affiliation(s)
- Sophie Deckx
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Daniel M. Johnson
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marieke Rienks
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Paolo Carai
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elza Van Deel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda Van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Karin R. Sipido
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Anna-Pia Papageorgiou
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
10
|
Cartoski MJ, Nikolov PP, Prakosa A, Boyle PM, Spevak PJ, Trayanova NA. Computational Identification of Ventricular Arrhythmia Risk in Pediatric Myocarditis. Pediatr Cardiol 2019; 40:857-864. [PMID: 30840104 PMCID: PMC6451890 DOI: 10.1007/s00246-019-02082-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.
Collapse
Affiliation(s)
- Mark J Cartoski
- Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Plamen P Nikolov
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Adityo Prakosa
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M Boyle
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Philip J Spevak
- Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Pavlicek V, Kindermann I, Wintrich J, Mahfoud F, Klingel K, Böhm M, Ukena C. Ventricular arrhythmias and myocardial inflammation: Long-term follow-up of patients with suspected myocarditis. Int J Cardiol 2018; 274:132-137. [PMID: 30122502 DOI: 10.1016/j.ijcard.2018.07.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Inflammatory heart disease is known to be associated with ventricular arrhythmias (VA) and impaired ventricular function at presentation or during follow-up. We aimed to investigate the need for implanted cardioverter defibrillator (ICD) due to ventricular dysfunction and occurrence of VA during long-term follow-up in patients admitted with suspected myocarditis. METHODS Between 2000 and 2016, 191 patients (age 43 ± 13 years, 71% male, mean left ventricular ejection fraction (LVEF) 33 ± 15%) with clinically suspected myocarditis, who underwent endomyocardial biopsies (EMB), were prospectively enrolled and followed up in 6-months-intervals (median follow-up was 83 (49-156) months). The primary endpoint was deterioration of cardiac function (LVEF ≤ 35%) or occurrence of VA leading to ICD implantation. RESULTS According to EMB results, patients were stratified in three diagnostic groups: acute myocarditis (5%), chronic myocarditis (50%) and dilated cardiomyopathy (DCM) (45%). An ICD implantation was performed in 58 patients (30%, n = 38 for primary prevention). Besides LVEF at baseline, chronic myocardial inflammation was the only independent predictor of ICD implantation for primary prevention (hazard ratio 2.48 (95% confidence interval 1.02-5.5); p = 0.045). VA requiring ICD therapy occurred in 29 of 58 patients (50%) after a median of 14 (2-37) months without a significant difference between presence and absence of myocardial inflammation. CONCLUSIONS Nearly one third of patients with suspected myocarditis require an ICD due to impaired LVEF or occurrence of VA. Half of these patients experienced VA with adequate ICD therapy.
Collapse
Affiliation(s)
- Valerie Pavlicek
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Ingrid Kindermann
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Jan Wintrich
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Karin Klingel
- Kardiopathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität Tübingen, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Christian Ukena
- Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| |
Collapse
|
12
|
Hoffmann M, Pöhlmann S. Cell Entry of Influenza A Viruses: Sweet Talk between HA and Ca V1.2. Cell Host Microbe 2018; 23:697-699. [PMID: 29902433 DOI: 10.1016/j.chom.2018.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Influenza A viruses attach to sialic acids on host cells. In this issue of Cell Host & Microbe, Fujioka et al. (2018) show that binding to a specific sialylated cellular protein facilitates infection: engagement of sialic acids linked to the Ca2+ channel CaV1.2 induces Ca2+ oscillations, which promote infectious entry.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Kaese S, Larbig R, Rohrbeck M, Frommeyer G, Dechering D, Olligs J, Schönhofer-Merl S, Wessely R, Klingel K, Seebohm G, Eckardt L. Electrophysiological alterations in a murine model of chronic coxsackievirus B3 myocarditis. PLoS One 2017. [PMID: 28644868 PMCID: PMC5482483 DOI: 10.1371/journal.pone.0180029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Coxsackievirus B3 (CVB3) is known to induce acute and chronic myocarditis. Most infections are clinically unapparent but some patients suffer from ventricular arrhythmias (VA) and sudden cardiac death (SCD). Studies showed that acute CVB3 infection may cause impaired function of cardiac ion channels, creating a proarrhythmic substrate. However, it is unknown whether low level CVB3+ expression in myocytes may cause altered cardiac electrophysiology leading to VA. METHODS Cellular electrophysiology was used to analyze cellular action potentials (APs) and occurrence of afterdepolarizations from isolated cardiomyocytes of wildtype (WT) and transgenic CVB3ΔVP0 (CVB3+) mice. Further, we studied surface ECGs, monophasic APs, ventricular effective refractory period (VERP) and inducibility of VAs in Langendorff-perfused whole hearts. All used cardiomyocytes and whole hearts originated from male mice. RESULTS Cellular action potential duration (APD) in WT and CVB3+ myocytes was unchanged. No difference in mean occurrence or amplitude of afterdepolarizations in WT and CVB3+ myocytes was found. Interestingly, resting membrane potential in CVB3+ myocytes was significantly hyperpolarized (WT: -90.0±2.2 mV, n = 7; CVB3+: -114.1±3.0 mV, n = 14; p<0.005). Consistently, in Langendorff-perfused hearts, APDs were also not different between WT and CVB3+ whole hearts. Within both groups, we found a heart rate dependent shortening of ADP90 with increasing heart rate in Langendorff-perfused hearts. VERP was significantly prolonged in CVB3+ hearts compared to WT (WT: 36.0±2.7 ms, n = 5; CVB3+: 47.0±2.0 ms, n = 7; p = 0.018). Resting heart rate (HR) in Langendorff-perfused hearts was not significantly different between both genotypes. Electrical pacing protocols induced no VA in WT and CVB3+ hearts. CONCLUSION In CVB3+ mice, prolonged ventricular refractoriness and hyperpolarized resting membrane potentials in presence of unchanged APD were observed, suggesting that low level CVB3 expression does not promote VA by altered cardiac electrophysiology in this type of chronic myocarditis. These findings may suggest that other mechanisms such as chronic myocardial inflammation or fibrosis may account for arrhythmias observed in patients with chronic enteroviral myocarditis.
Collapse
Affiliation(s)
- Sven Kaese
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
- * E-mail:
| | - Robert Larbig
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Matthias Rohrbeck
- The IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), Faculty of Medicine, University of Münster, Münster, Germany
| | - Gerrit Frommeyer
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Dirk Dechering
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Jan Olligs
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - Sabine Schönhofer-Merl
- Deutsches Herzzentrum and Medizinische Klinik, Klinikum rechts der Isar, University of Technology, Munich, Germany
| | - Rainer Wessely
- Deutsches Herzzentrum and Medizinische Klinik, Klinikum rechts der Isar, University of Technology, Munich, Germany
- Zentrum für Herz- und Gefäßmedizin, Im Mediapark 2, Köln, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University of Tübingen, Tübingen, Germany
| | - Guiscard Seebohm
- The IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), Faculty of Medicine, University of Münster, Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels - an emerging anti-viral target? J Gen Virol 2017; 98:345-351. [PMID: 28113044 DOI: 10.1099/jgv.0.000712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Collapse
Affiliation(s)
- Samantha Hover
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Becky Foster
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Rothenberg I, Piccini I, Wrobel E, Stallmeyer B, Müller J, Greber B, Strutz-Seebohm N, Schulze-Bahr E, Schmitt N, Seebohm G. Structural interplay of K V7.1 and KCNE1 is essential for normal repolarization and is compromised in short QT syndrome 2 (K V7.1-A287T). HeartRhythm Case Rep 2016; 2:521-529. [PMID: 28491751 PMCID: PMC5420010 DOI: 10.1016/j.hrcr.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ina Rothenberg
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Ilaria Piccini
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Eva Wrobel
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Jovanca Müller
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
- Interdisziplinäres Zentrum für Klinische Forschung Münster (IZKF Münster) and Innovative Medizinische Forschung (IMF Münster), Faculty of Medicine, University of Münster, Münster, Germany
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
- Interdisziplinäres Zentrum für Klinische Forschung Münster (IZKF Münster) and Innovative Medizinische Forschung (IMF Münster), Faculty of Medicine, University of Münster, Münster, Germany
- Address reprint requests and correspondence: Dr Guiscard Seebohm, Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D48149 Münster, Germany.Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D48149MünsterGermany
| |
Collapse
|
16
|
Zhai X, Bai B, Yu B, Wang T, Wang H, Wang Y, Li H, Tong L, Wang Y, Zhang F, Zhao W, Zhong Z. Coxsackievirus B3 Induces Autophagic Response in Cardiac Myocytes in vivo. BIOCHEMISTRY (MOSCOW) 2016; 80:1001-9. [PMID: 26547068 DOI: 10.1134/s0006297915080052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral myocarditis is a common disease that contributes to dilated cardiomyopathy or heart failure. Coxsackievirus B (CVB) is one of the major causative pathogens of viral myocarditis. Previous studies have shown that autophagy is exploited to promote CVB replication in cell lines. To study whether cardiac myocytes respond to CVB infection in a similar way, viral myocarditis was established by the inoculation of 3-week-old BALB/c mice with CVB3. Electron microscopic observation showed that autophagosome-like vesicles were induced in the cardiac myocytes of mice infected by CVB3 at 3, 5, and 7 days after viral infection. The lipidated microtubule-associated protein 1 light chain 3 (LC3), LC3-II, was also significantly increased in both myocardium and the cardiac myocytes extracted from the ventricles of mice infected with CVB3. The increased LC3-II coincided with high level of viral RNA and proteins in both myocardium and isolated cardiac myocytes. Moreover, viral protein synthesis was significantly decreased in primary cardiac myocytes by the treatment with 3-methyladenine, an inhibitor of autophagy. The expression and the phosphorylation of extracellular signal regulated kinase (ERK) were also increased in both myocardium and in the isolated cardiac myocytes of the virus-infected mice, while the interplay of ERK with autophagic response remains to be studied. This study demonstrated that cardiac myocytes respond to CVB3 infection by increased formation of autophagosomes in vivo, which might be exploited for viral replication.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology, Harbin Medical University, Harbin, 150086, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ettischer-Schmid N, Normann A, Sauter M, Kraft L, Kalbacher H, Kandolf R, Flehmig B, Klingel K. A new monoclonal antibody (Cox mAB 31A2) detects VP1 protein of coxsackievirus B3 with high sensitivity and specificity. Virchows Arch 2016; 469:553-562. [PMID: 27566306 DOI: 10.1007/s00428-016-2008-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/14/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
Abstract
Human enteroviruses, e.g. coxsackieviruses, induce a variety of severe acute and chronic forms of disease, including myocarditis, meningitis and diabetes mellitus type 1. To visualize enterovirus infection with a diagnostic intent, many studies have applied a commercially available antibody (anti-CVB5 VP1, clone 5-D8/1, Dako, Hamburg, Germany) that identifies VP1 of different enteroviral serotypes. Many antibodies, however, have been found to bind non-specifically to proteins of cardiomyocytes and in the interstitial space, resulting in non-specific staining in immunohistochemistry. In this paper we show that the anti-CVB5 VP1 antibody, recognizing VP1 of coxsackieviruses and widely used in diagnostics and research, shows strong cross-reactivity with cellular proteins in the heart (and pancreas) of humans and mice, which calls for a more specific antibody to be used for diagnostic purposes. We observed by Western blot analyses of lysates from human heart tissue samples and HeLa cells two cross-reactive bands when using clone 5-D8/1. Peptide mass fingerprinting (MALDI-TOF) identified these proteins as creatine kinase (B-type) and tubulin, confirming that this mAb detects cellular proteins in addition to viral VP1. In order to overcome the problems of false positive VP1 staining we generated a new highly specific and sensitive monoclonal antibody (Cox mAB 31A2) that recognizes VP1 from CVB3. The new antibody was characterized and was found to function well in immunohistochemistry, immunofluorescence staining, Western blotting, ELISA and FACS analyses.
Collapse
Affiliation(s)
- Nicole Ettischer-Schmid
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
| | | | - Martina Sauter
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
| | - Lisa Kraft
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
- Interfaculty Institute of Biochemistry, University of Tuebingen, D-72076, Tuebingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, D-72076, Tuebingen, Germany
| | - Reinhard Kandolf
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany
| | | | - Karin Klingel
- Institute for Pathology, Department of Molecular Pathology, University Hospital of Tuebingen, Liebermeisterstrasse 8, D-72076, Tuebingen, Germany.
| |
Collapse
|
18
|
Tse G, Yeo JM, Chan YW, Lai ETHL, Yan BP. What Is the Arrhythmic Substrate in Viral Myocarditis? Insights from Clinical and Animal Studies. Front Physiol 2016; 7:308. [PMID: 27493633 PMCID: PMC4954848 DOI: 10.3389/fphys.2016.00308] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 01/25/2023] Open
Abstract
Sudden cardiac death (SCD) remains an unsolved problem in the twenty-first century. It is often due to rapid onset, ventricular arrhythmias caused by a number of different clinical conditions. A proportion of SCD patients have identifiable diseases such as cardiomyopathies, but for others, the causes are unknown. Viral myocarditis is becoming increasingly recognized as a contributor to unexplained mortality, and is thought to be a major cause of SCD in the first two decades of life. Myocardial inflammation, ion channel dysfunction, electrophysiological, and structural remodeling may play important roles in generating life-threatening arrhythmias. The aim of this review article is to examine the electrophysiology of action potential conduction and repolarization and the mechanisms by which their derangements lead to triggered and reentrant arrhythmogenesis. By synthesizing experimental evidence from pre-clinical and clinical studies, a framework of how host (inflammation), and viral (altered cellular signaling) factors can induce ion electrophysiological and structural remodeling is illustrated. Current pharmacological options are mainly supportive, which may be accompanied by mechanical circulatory support. Heart transplantation is the only curative option in the worst case scenario. Future strategies for the management of viral myocarditis are discussed.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
| | - Jie M. Yeo
- Faculty of Medicine, Imperial College LondonLondon, UK
| | - Yin Wah Chan
- Department of Psychology, School of Biological Sciences, University of CambridgeCambridge, UK
| | - Eric T. H. Lai Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
19
|
Wu H, Zhai X, Chen Y, Wang R, Lin L, Chen S, Wang T, Zhong X, Wu X, Wang Y, Zhang F, Zhao W, Zhong Z. Protein 2B of Coxsackievirus B3 Induces Autophagy Relying on Its Transmembrane Hydrophobic Sequences. Viruses 2016; 8:v8050131. [PMID: 27187444 PMCID: PMC4885086 DOI: 10.3390/v8050131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 01/20/2023] Open
Abstract
Coxsackievirus B (CVB) belongs to Enterovirus genus within the Picornaviridae family, and it is one of the most common causative pathogens of viral myocarditis in young adults. The pathogenesis of myocarditis caused by CVB has not been completely elucidated. In CVB infection, autophagy is manipulated to facilitate viral replication. Here we report that protein 2B, one of the non-structural proteins of CVB3, possesses autophagy-inducing capability. The autophagy-inducing motif of protein 2B was identified by the generation of truncated 2B and site-directed mutagenesis. The expression of 2B alone was sufficient to induce the formation of autophagosomes in HeLa cells, while truncated 2B containing the two hydrophobic regions of the protein also induced autophagy. In addition, we demonstrated that a single amino acid substitution (56V→A) in the stem loop in between the two hydrophobic regions of protein 2B abolished the formation of autophagosomes. Moreover, we found that 2B and truncated 2B with autophagy-inducting capability were co-localized with LC3-II. This study indicates that protein 2B relies on its transmembrane hydrophobic regions to induce the formation of autophagosomes, while 56 valine residue in the stem loop of protein 2B might exert critical structural influence on its two hydrophobic regions. These results may provide new insight for understanding the molecular mechanism of autophagy triggered by CVB infection.
Collapse
Affiliation(s)
- Heng Wu
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
- Department of Reproductive Medicine, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Xia Zhai
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Yang Chen
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Ruixue Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Lexun Lin
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Sijia Chen
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Tianying Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Xiaoyan Zhong
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Xiaoyu Wu
- Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Yan Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Fengmin Zhang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| |
Collapse
|
20
|
Affiliation(s)
- Geoffrey W Abbott
- 1360 Medical Surge II, Dept. of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|