1
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Guan Z, Worth B, Umstead TM, Amatya S, Booth J, Chroneos ZC. Disruption of the SP-A/SP-R210 L (MYO18Aα) pathway prolongs gestation and reduces fetal survival during lipopolysaccharide-induced parturition in late gestation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L508-L513. [PMID: 38349123 PMCID: PMC11281786 DOI: 10.1152/ajplung.00383.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 04/07/2024] Open
Abstract
Prolonged labor can lead to infection, fetal distress, asphyxia, and life-threatening harm to both the mother and the baby. Surfactant protein A (SP-A) was shown to contribute to the maintenance of pregnancy and timing of term labor. SP-A modulates the stoichiometric expression of the SP-R210L and SP-R210S isoforms of the SP-R210 receptor on alveolar macrophages (AMs). Lack of SP-R210L dysregulates macrophage inflammatory responses. We asked whether SP-A alters normal and inflammation-induced parturition through SP-R210 using SP-A- and SP-R210L-deficient mice. Labor and delivery of time-pregnant mice were monitored in real time using a time-lapse infrared camera. Intrauterine injection with either vehicle or Escherichia coli lipopolysaccharide (LPS) on embryonic (E) day 18.5 post coitus was used to assess the effect of gene disruption in chorioamnionitis-induced labor. We report that either lack of SP-A or disruption of SP-R210L delays parturition by 0.40 and 0.55 days compared with controls, respectively. LPS induced labor at 0.60, 1.01, 0.40, 1.00, and 1.31 days earlier than PBS controls in wild type (WT), SP-A-deficient, littermate controls, heterozygous, and homozygous SP-R210L-deficient mice, respectively. Lack of SP-A reduced litter size in PBS-treated mice, whereas the total number of pups delivered was similar in all LPS-treated mice. The number of live pups, however, was significantly reduced by 50%-70% in SP-A and SP-R210L-deficient mice compared with controls. Differences in gestational length were not associated with intrauterine growth restriction. The present findings support the novel concept that the SP-A/SP-R210 pathway modulates timely labor and delivery and supports fetal lung barrier integrity during fetal-to-neonatal transition in term pregnancy.NEW & NOTEWORTHY To our knowledge, this study is the first to report that SP-A prevents delay of labor and inflammation-induced stillbirth through the receptor SP-R210L.
Collapse
Affiliation(s)
- Zhiwei Guan
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Brandon Worth
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Todd M Umstead
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Shaili Amatya
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Jennifer Booth
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Zissis C Chroneos
- Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
3
|
Arman BM, Binder NK, de Alwis N, Beard S, Debruin DA, Hayes A, Tong S, Kaitu'u-Lino TJ, Hannan NJ. Assessment of the tocolytic nifedipine in preclinical primary models of preterm birth. Sci Rep 2023; 13:5646. [PMID: 37024530 PMCID: PMC10079980 DOI: 10.1038/s41598-023-31077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used in cases of imminent preterm birth to inhibit uterine contractions. Nifedipine is a calcium channel blocking agent used to delay threatened spontaneous preterm birth, however, has limited efficacy and lacks preclinical data regarding mechanisms of action. It is unknown if nifedipine affects the pro-inflammatory environment associated with preterm labour pathophysiology and we hypothesise nifedipine only targets myometrial contraction rather than also mitigating inflammation. We assessed anti-inflammatory and anti-contractile effects of nifedipine on human myometrium using in vitro and ex vivo techniques, and a mouse model of preterm birth. We show that nifedipine treatment inhibited contractions in myometrial in vitro contraction assays (P = 0.004 vs. vehicle control) and potently blocked spontaneous and oxytocin-induced contractions in ex vivo myometrial tissue in muscle myography studies (P = 0.01 vs. baseline). Nifedipine treatment did not reduce gene expression or protein secretion of pro-inflammatory cytokines in either cultured myometrial cells or ex vivo tissues. Although nifedipine could delay preterm birth in some mice, this was not consistent in all dams and was overall not statistically significant. Our data suggests nifedipine does not modulate preterm birth via inflammatory pathways in the myometrium, and this may account for its limited clinical efficacy.
Collapse
Affiliation(s)
- Bridget M Arman
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Danielle A Debruin
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 3000, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St AlbansVictoria, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 3000, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St AlbansVictoria, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Stephen Tong
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | | | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia.
| |
Collapse
|
4
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
5
|
Boros-Rausch A, Shynlova O, Lye SJ. A Broad-Spectrum Chemokine Inhibitor Blocks Inflammation-Induced Myometrial Myocyte-Macrophage Crosstalk and Myometrial Contraction. Cells 2021; 11:cells11010128. [PMID: 35011690 PMCID: PMC8750067 DOI: 10.3390/cells11010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Prophylactic administration of the broad-spectrum chemokine inhibitor (BSCI) FX125L has been shown to suppress uterine contraction, prevent preterm birth (PTB) induced by Group B Streptococcus in nonhuman primates, and inhibit uterine cytokine/chemokine expression in a murine model of bacterial endotoxin (LPS)-induced PTB. This study aimed to determine the mechanism(s) of BSCI action on human myometrial smooth muscle cells. We hypothesized that BSCI prevents infection-induced contraction of uterine myocytes by inhibiting the secretion of pro-inflammatory cytokines, the expression of contraction-associated proteins and disruption of myocyte interaction with tissue macrophages. Myometrial biopsies and peripheral blood were collected from women at term (not in labour) undergoing an elective caesarean section. Myocytes were isolated and treated with LPS with/out BSCI; conditioned media was collected; cytokine secretion was analyzed by ELISA; and protein expression was detected by immunoblotting and immunocytochemistry. Functional gap junction formation was assessed by parachute assay. Collagen lattices were used to examine myocyte contraction with/out blood-derived macrophages and BSCI. We found that BSCI inhibited (1) LPS-induced activation of transcription factor NF-kB; (2) secretion of chemokines (MCP-1/CCL2 and IL-8/CXCL8); (3) Connexin43-mediated intercellular connectivity, thereby preventing myocyte–macrophage crosstalk; and (4) myocyte contraction. BSCI represents novel therapeutics for prevention of inflammation-induced PTB in women.
Collapse
Affiliation(s)
- Adam Boros-Rausch
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +1-416-586-4800 (ext. 5635); Fax: +1-416-586-5116
| | - Stephen James Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Suite 6-1017, Toronto, ON M5G 1X5, Canada; (A.B.-R.); (S.J.L.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
6
|
Martínez-Burnes J, Muns R, Barrios-García H, Villanueva-García D, Domínguez-Oliva A, Mota-Rojas D. Parturition in Mammals: Animal Models, Pain and Distress. Animals (Basel) 2021; 11:2960. [PMID: 34679979 PMCID: PMC8532935 DOI: 10.3390/ani11102960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Parturition is a complex physiological process and involves many hormonal, morphological, physiological, and behavioural changes. Labour is a crucial moment for numerous species and is usually the most painful experience in females. Contrary to the extensive research in humans, there are limited pain studies associated with the birth process in domestic animals. Nonetheless, awareness of parturition has increased among the public, owners, and the scientific community during recent years. Dystocia is a significant factor that increases the level of parturition pain. It is considered less common in polytocous species because newborns' number and small size might lead to the belief that the parturition process is less painful than in monotocous animal species and humans. This review aims to provide elements of the current knowledge about human labour pain (monotocous species), the relevant contribution of the rat model to human labour pain, and the current clinical and experimental knowledge of parturition pain mechanisms in domestic animals that support the fact that domestic polytocous species also experience pain. Moreover, both for women and domestic animal species, parturition's pain represents a potential welfare concern, and information on pain indicators and the appropriate analgesic therapy are discussed.
Collapse
Affiliation(s)
- Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Tamaulipas, Mexico;
| | - Ramon Muns
- Agri-Food and Biosciences Institute, Hillsborough, Co Down BT26 6DR, Northern Ireland, UK;
| | - Hugo Barrios-García
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Tamaulipas, Mexico;
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico;
| |
Collapse
|
7
|
Wendremaire M, Hadi T, Pezze M, Barrichon M, Lopez T, Neiers F, Sagot P, Garrido C, Lirussi F. Macrophage-induced reactive oxygen species promote myometrial contraction and labor-associated mechanisms†. Biol Reprod 2021; 102:1326-1339. [PMID: 32167534 DOI: 10.1093/biolre/ioaa032] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
At labor, the myometrium is infiltrated by a massive influx of macrophages that secrete high levels of pro-inflammatory cytokines inducing the expression of specific labor-associated markers. However, the interactions between myocytes and macrophages and the role of macrophages in the myometrium at labor remain to be elucidated. In this work, we studied the role of myometrium-infiltrated macrophages and their interaction with myocytes in lipopolysaccharide-induced preterm labor. A co-culture model of human primary myometrial cells and macrophages was developed and validated. Collagen lattices were used to evaluate myocyte contraction. Differentiation steps were assessed by (i) phalloidin and vinculin staining for cytoskeleton reorganization, (ii) gap junction protein alpha 1 expression and scrape loading/dye transfer with Lucifer Yellow for gap junction intercellular communication, and (iii) calcium imaging for cell excitability. We demonstrated that macrophages favored lipopolysaccharide-induced contraction and early differentiation of myometrial cells. Transwell assays showed that previous activation of macrophages by lipopolysaccharide was essential for this differentiation and that macrophage/myocyte interactions involved macrophage release of reactive oxygen species (ROS). The effects of macrophage-released ROS in myometrial cell transactivation were mimicked by H2O2, suggesting that superoxide anion is a major intermediate messenger in macrophage/myocyte crosstalk during labor. These novel findings provide the foundation for innovative approaches to managing preterm labor, specifically the use of antioxidants to inhibit the initial stages of labor before the contractile phenotype has been acquired. In addition, the co-culture model developed by our team could be used in future research to decipher pathophysiological signaling pathways or screen/develop new tocolytics.
Collapse
Affiliation(s)
- Maeva Wendremaire
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France.,Laboratoire de Pharmacologie-Toxicologie, CHU Dijon-Bourgogne, Dijon, France
| | - Tarik Hadi
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France.,Department of Cardiac Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Maria Pezze
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France
| | - Marina Barrichon
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France
| | - Tatiana Lopez
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Université de Bourgogne Franche-Comté, Dijon, France
| | - Paul Sagot
- Service de Gynécologie-Obstétrique, CHU Dijon-Bourgogne, Dijon, France
| | - Carmen Garrido
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Frédéric Lirussi
- Institut National de la Santéc et de la Recherche Médicale, Lipides Nutrition Cancer, Dijon, France.,Université de Bourgogne Franche-Comté, Lipides Nutrition Cancer, Dijon, France.,Laboratoire de Pharmacologie-Toxicologie, CHU Dijon-Bourgogne, Dijon, France
| |
Collapse
|
8
|
Wiebe M, Pfarrer C, Górriz Martín L, Schmicke M, Hoedemaker M, Bollwein H, Heppelmann M. In vitro effects of lipopolysaccharides on bovine uterine contractility. Reprod Domest Anim 2020; 56:172-182. [PMID: 33170981 DOI: 10.1111/rda.13862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Metritis is an important disorder in dairy cows during the early postpartum period. Myometrial contractility is a prerequisite for uterine involution; however, very scanty literature is available about the effect of metritis on this process and endocrine responsiveness. This study was aimed to evaluate the effect of inflammation on uterine contractility in vitro, and the inflammation was induced by incubating myometrial strips with lipopolysaccharides (LPS). Myometrial samples were collected from 17 healthy Holstein Friesian cows during caesarean section. Eight longitudinal strips from each cow were incubated in organ baths with LPS concentrations of 0 (LPS0 ), 0.1 (LPS0.1 ), 1 (LPS1 ) and 10 µg/ml (LPS10 ). Spontaneous contractility and contractility induced by increasing concentrations of oxytocin (10-10 - 10-7 mol/L) were recorded during nine 30-min intervals (T1 to T9). The minimum amplitude (minA), maximum amplitude (maxA), mean amplitude (meanA) and area under the curve (AUC) were calculated for each time interval. LPS had an effect (p ≤ .05) on maxA, meanA and AUC. In T1, myometrial strips incubated with LPS0.1 and LPS1 had higher (p ≤ .05) maxA, meanA and AUC than the strips incubated with LPS0 . In T9 without oxytocin, LPS0 led to higher (p ≤ .05) maxA, meanA and AUC than LPS0.1 and LPS1 . In T8 and T9 with oxytocin, LPS1 had lower (p ≤ .05) maxA, meanA and AUC than the other LPS concentrations. Interestingly, the results show that LPS has a transient positive effect on myometrial contractility in vitro and that this effect is dependent on LPS concentration and duration of incubation.
Collapse
Affiliation(s)
- Maraike Wiebe
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Lara Górriz Martín
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Marion Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Heiner Bollwein
- Clinic for Animal Reproduction Medicine, University of Zurich, Zurich, Switzerland
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
9
|
Gnecco JS, Brown AT, Kan EL, Baugh L, Ives C, Loring M, Griffith LG. Physiomimetic Models of Adenomyosis. Semin Reprod Med 2020; 38:179-196. [PMID: 33176387 PMCID: PMC7803459 DOI: 10.1055/s-0040-1719084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial–stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.
Collapse
Affiliation(s)
- Juan S Gnecco
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alex T Brown
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen L Kan
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauren Baugh
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Ives
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Megan Loring
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Endometriosis and Adenomyosis Care Collaborative, Center for Minimally Invasive Gynecologic Surgery, Newton Wellesley Hospital, Newton, Massachusetts
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
10
|
Association of periodontitis with pre term low birth weight – A review. Placenta 2020; 95:62-68. [DOI: 10.1016/j.placenta.2020.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
|
11
|
Chopra A, Radhakrishnan R, Sharma M. Porphyromonas gingivalis and adverse pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit Rev Microbiol 2020; 46:213-236. [PMID: 32267781 DOI: 10.1080/1040841x.2020.1747392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis), a Gram-negative facultative anaerobe of the oral cavity, is associated with the onset of various adverse pregnancy outcomes. P. gingivalis is linked with the development of preeclampsia, preterm labour, spontaneous abortion, gestational diabetes, foetal growth restriction, and misconception. The unique virulence factors, surface adhesions, enzymes of P. gingivalis can directly injure and alter the morphology, microbiome the foetal and maternal tissues. P. gingivalis can even exaggerate the production of cytokines, free radicals and acute-phase proteins in the uterine compartment that increases the risk of myometrial contraction and onset of preterm labour. Although evidence confirms the presence of P. gingivalis in the amniotic fluid and placenta of women with poor pregnancy outcomes, the intricate molecular mechanisms by which P. gingivalis initiates various antenatal and postnatal maternal and foetal complications are not well explained in the literature. Therefore, the present review aims to comprehensively summarise and highlight the recent and unique molecular pathogenic mechanisms of P. gingivalis associated with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences & Research, Faridabad, India
| |
Collapse
|
12
|
Wang J, Jiang W. The Effects of RKI-1447 in a Mouse Model of Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet and in HepG2 Human Hepatocellular Carcinoma Cells Treated with Oleic Acid. Med Sci Monit 2020; 26:e919220. [PMID: 32026851 PMCID: PMC7020744 DOI: 10.12659/msm.919220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to investigate the effects of RKI-1447, a selective inhibitor of Rho-associated ROCK kinases, in a mouse model of nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet, and in oleic acid-treated HepG2 human hepatocellular carcinoma cells in vitro. Material/Methods Four study groups of mice included: the control group; the high-fat diet (HFD) group; the HFD+RKI-1447 (2 mg/kg) group; and the HFD+RKI-1447 (8 mg/kg) group. Mice were fed a high-fat diet for 12 weeks. Mice in the HFD+RKI-1447 groups were fed a high-fat diet for 12 weeks and treated with RKI-1447 twice weekly for three weeks. The HepG2 human hepatocellular carcinoma cells were treated with or without RKI-1447 for 2 h and treated with oleic acid for 24 h. Results In the mouse model of NAFLD, RKI-1447 reduced insulin resistance and the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total cholesterol, triglyceride, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and superoxide dismutase (SOD). RKI-1447 reduced the histological changes in the mouse model of NAFLD in mice fed a high-fat diet and significantly inhibited the generations of triglyceride, IL-6, and TNF-α. RKI-1447 reduced the levels of oxidative stress in HepG2 cells treated with oleic acid and significantly down-regulated the expression of RhoA, ROCK1, ROCK2, toll-like receptor 4 (TLR4), p-TBK1, and p-IRF3. RKI-1447 treatment also inhibited RhoA expression. Conclusions In a mouse model of NAFLD, RKI-1447 inhibited ROCK and modulated insulin resistance, oxidative stress, and inflammation through the ROCK/TLR4/TBK1/IRF3 pathway.
Collapse
Affiliation(s)
- Jinshan Wang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Wentao Jiang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
13
|
Frascoli M, Coniglio L, Witt R, Jeanty C, Fleck-Derderian S, Myers DE, Lee TH, Keating S, Busch MP, Norris PJ, Tang Q, Cruz G, Barcellos LF, Gomez-Lopez N, Romero R, MacKenzie TC. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Sci Transl Med 2019; 10:10/438/eaan2263. [PMID: 29695455 DOI: 10.1126/scitranslmed.aan2263] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Healthy pregnancy is the most successful form of graft tolerance, whereas preterm labor (PTL) may represent a breakdown in maternal-fetal tolerance. Although maternal immune responses have been implicated in pregnancy complications, fetal immune responses against maternal antigens are often not considered. To examine the fetal immune system in the relevant clinical setting, we analyzed maternal and cord blood in patients with PTL and healthy term controls. We report here that the cord blood of preterm infants has higher amounts of inflammatory cytokines and a greater activation of dendritic cells. Moreover, preterm cord blood is characterized by the presence of a population of central memory cells with a type 1 T helper phenotype, which is absent in term infants, and an increase in maternal microchimerism. T cells from preterm infants mount a robust proliferative, proinflammatory response to maternal antigens compared to term infants yet fail to respond to third-party antigens. Furthermore, we show that T cells from preterm infants stimulate uterine myometrial contractility through interferon-γ and tumor necrosis factor-α. In parallel, we found that adoptive transfer of activated T cells directly into mouse fetuses resulted in pregnancy loss. Our findings indicate that fetal inflammation and rejection of maternal antigens can contribute to the signaling cascade that promotes uterine contractility and that aberrant fetal immune responses should be considered in the pathogenesis of PTL.
Collapse
Affiliation(s)
- Michela Frascoli
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Lacy Coniglio
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Russell Witt
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Cerine Jeanty
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | | | - Dana E Myers
- Obstetrics and Gynecology, University of California, San Francisco, CA 94143, USA
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Giovanna Cruz
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA. .,Department of Surgery, University of California, San Francisco, CA 94143, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Kusuyama J, Nakamura T, Ohnishi T, Albertson BG, Ebe Y, Eiraku N, Noguchi K, Matsuguchi T. Low‐intensity pulsed ultrasound promotes bone morphogenic protein 9‐induced osteogenesis and suppresses inhibitory effects of inflammatory cytokines on cellular responses via Rho‐associated kinase 1 in human periodontal ligament fibroblasts. J Cell Biochem 2019; 120:14657-14669. [DOI: 10.1002/jcb.28727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine Harvard Medical School Boston Massachusetts
| | - Toshiaki Nakamura
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Brent G. Albertson
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine Harvard Medical School Boston Massachusetts
| | - Yukari Ebe
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
- Division of Clinical Engineering, Department of Dental Hygiene Kagoshima University Hospital Kagoshima Japan
| | - Nahoko Eiraku
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine Harvard Medical School Boston Massachusetts
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Field of Oral and Maxillofacial Rehabilitation Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine Kagoshima University Graduate School of Medical and Dental Sciences Kagoshima Japan
| |
Collapse
|
15
|
Wanhong W, Changchang Y, Ping H. [Research progress on the relationship and mechanisms between periodontal disease and preterm birth and low-birth-weight infants]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 35:527-532. [PMID: 29188651 DOI: 10.7518/hxkq.2017.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Preterm birth (PB) is defined as the birth of a baby less than 37 weeks of gestational age. Low birth weight (LBW) is defined as a newborn baby's weight of less than 2 500 g. PB is often accompanied by LBW. Preterm low birth weight (PLBW) is the leading cause of newborn deaths. Periodontal disease (PD) is a chronic oral infectious disease, and it is closely related with general health. Epidemiological data show that PD is a risk factor for PLBW and other adverse pregnancy outcomes. The possible mechanisms include the direct effects of periodontal bacteria, inflammatory reactions, and immune response; however, the exact pathogenetic mechanism involved remains controversial. This article aims to review the research progress on the relationship between PD and PLBW and their underlying mechanisms, as well as the effects of periodontal treatment on PLBW incidence.
Collapse
Affiliation(s)
- Wu Wanhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ye Changchang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huang Ping
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Bonney EA, Johnson MR. The role of maternal T cell and macrophage activation in preterm birth: Cause or consequence? Placenta 2019; 79:53-61. [PMID: 30929747 DOI: 10.1016/j.placenta.2019.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The role of the immune system in term (TL) and preterm labor (PTL) is unknown. Despite the fact that globally, PTL remains the most important cause of childhood mortality. Infection, typically of the fetal membranes, termed chorioamnionitis, is the best-understood driver of PTL, but the mechanisms underpinning other causes, including idiopathic and stretch-induced PTL, are unclear, but may well involve activation of the maternal immune system. The final common pathway of placental dysfunction, fetal membrane rupture, cervical dilation and uterine contractions are highly complex processes. At term, choriodecidual rather than myometrial inflammation is thought to drive the onset of labor and similar findings are present in different types of PTL including idiopathic PTL. Although accumulated data has confirmed an association between the immune response and preterm birth, there is yet a need to understand if this response is an initiator or a consequence of tissue-level dysregulation. This review focuses on the potential role of macrophages and T cells in innate and adaptive immunity relevant to preterm birth in humans and animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| | - Mark R Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
17
|
Radochova V, Stepan M, Kacerovska Musilova I, Slezak R, Vescicik P, Menon R, Jacobsson B, Kacerovsky M. Association between periodontal disease and preterm prelabour rupture of membranes. J Clin Periodontol 2019; 46:189-196. [PMID: 30638274 DOI: 10.1111/jcpe.13067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Periodontal disease is a possible contributing factor to preterm delivery. The aim of this study was to compare the periodontal status of women with preterm prelabour rupture of membranes (PPROM) and women with uncomplicated singleton pregnancies. PATIENTS AND METHODS Seventy-eight women with PPROM at gestational ages between 24 + 0 and 36 + 6 weeks and 77 healthy women with uncomplicated pregnancies, matched for gestational age at sampling without preterm birth, were included in this study. All women underwent evaluation of periodontal and oral hygiene status. RESULTS Women with PPROM had higher gingival and plaque indexes in crude analysis (gingival index: median 0.80 versus 0.20; p < 0.0001; plaque index: median 0.80 versus 0.10; p < 0.0001), even after adjustment for smoking status (p < 0.0001 and p < 0.0001). Mean clinical attachment loss (CAL) and probing pocket depth (PPD) values were higher in women with PPROM in the crude analysis (CAL: median 2.3 mm versus 1.8 mm; p < 0.0001; PPD: median 2.3 mm versus 1.8; p < 0.0001), as well as after adjustment for smoking status (p < 0.0001 and p < 0.0001). CONCLUSIONS Pregnant women with PPROM residing in central Europe had worse periodontal status than women with uncomplicated pregnancies.
Collapse
Affiliation(s)
- Vladimira Radochova
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martin Stepan
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ivana Kacerovska Musilova
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Radovan Slezak
- Department of Dentistry, Faculty of Medicine in Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Peter Vescicik
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Domain of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Faculty of Medicine in Hradec Kralove, University Hospital in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Boyle AK, Rinaldi SF, Rossi AG, Saunders PTK, Norman JE. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models. FASEB J 2018; 33:2743-2758. [PMID: 30312114 PMCID: PMC6338657 DOI: 10.1096/fj.201801104r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preterm birth (PTB), the leading cause of neonatal morbidity and mortality, urgently requires novel therapeutic agents. Spontaneous PTB, resulting from preterm labor, is commonly caused by intrauterine infection/inflammation. Statins are well-established, cholesterol-lowering drugs that can reduce inflammation and inhibit vascular smooth muscle contraction. We show that simvastatin reduced the incidence of PTB in a validated intrauterine LPS-induced PTB mouse model, decreased uterine proinflammatory mRNA concentrations (IL-6, Cxcl1, and Ccl2), and reduced serum IL-6 concentration. In human myometrial cells, simvastatin reduced proinflammatory mediator mRNA and protein expression (IL-6 and IL-8) and increased anti-inflammatory cytokine mRNA expression (IL-10 and IL-13). Critically, simvastatin inhibited myometrial cell contraction, basally and during inflammation, and reduced phosphorylated myosin light chain concentration. Supplementation with mevalonate and geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate, abolished these anticontractile effects, indicating that the Rho/Rho-associated protein kinase pathway is critically involved. Thus, simvastatin reduces PTB incidence in mice, inhibits myometrial contractions, and exhibits key anti-inflammatory effects, providing a rationale for investigation into the repurposing of statins to treat preterm labor in women.—Boyle, A. K., Rinaldi, S. F., Rossi, A. G., Saunders, P. T. K., Norman, J. E. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models.
Collapse
Affiliation(s)
- Ashley K Boyle
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Sara F Rinaldi
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Adriano G Rossi
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T K Saunders
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| |
Collapse
|
19
|
Anton L, Sierra LJ, DeVine A, Barila G, Heiser L, Brown AG, Elovitz MA. Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Front Microbiol 2018; 9:2181. [PMID: 30349508 PMCID: PMC6186799 DOI: 10.3389/fmicb.2018.02181] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Cervicovaginal (CV) microbiota is associated with vaginal health and disease in non-pregnant women. Recent studies in pregnant women suggest that specific CV microbes are associated with preterm birth (PTB). While the associations between CV microbiota and adverse outcomes have been demonstrated, the mechanisms regulating the associations remain unclear. As the CV space contains an epithelial barrier, we postulate that CV microbiota can alter the epithelial barrier function. We investigated the biological, molecular, and epigenetic effects of Lactobacillus crispatus, Lactobacillus iners, and Gardnerella vaginalis on the cervical epithelial barrier function and determined whether L. crispatus mitigates the effects of lipopolysaccharide (LPS) and G. vaginalis on the cervical epithelial barrier as a possible mechanism by which CV microbiota mitigates disease risk. Ectocervical and endocervical cells treated with L. crispatus, L. iners, and G. vaginalis bacteria-free supernatants alone or combined were used to measure cell permeability, adherens junction proteins, inflammatory mediators, and miRNAs. Ectocervical and endocervical permeability increased after L. iners and G. vaginalis exposure. Soluble epithelial cadherin increased after exposure to L. iners but not G. vaginalis or L. crispatus. A Luminex cytokine/chemokine panel revealed increased proinflammatory mediators in all three bacteria-free supernatants with L. iners and G. vaginalis having more diverse inflammatory effects. L. iners and G. vaginalis altered the expression of cervical-, microbial-, and inflammatory-associated miRNAs. L. crispatus mitigated the LPS or G. vaginalis-induced disruption of the cervical epithelial barrier and reversed the G. vaginalis-mediated increase in miRNA expression. G. vaginalis colonization of the CV space of a pregnant C57/B6 mouse resulted in 100% PTB. These findings demonstrate that L. iners and G. vaginalis alter the cervical epithelial barrier by regulating adherens junction proteins, cervical immune responses, and miRNA expressions. These results provide evidence that L. crispatus confers protection to the cervical epithelial barrier by mitigating LPS- or G. vaginalis-induced miRNAs associated with cervical remodeling, inflammation, and PTB. This study provides further evidence that the CV microbiota plays a role in cervical function by altering the cervical epithelial barrier and initiating PTB. Thus, targeting the CV microbiota and/or its effects on the cervical epithelium may be a potential therapeutic strategy to prevent PTB.
Collapse
Affiliation(s)
- Lauren Anton
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Tengesdal IW, Kitzenberg D, Li S, Nyuydzefe MS, Chen W, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A, Dinarello CA. The selective ROCK2 inhibitor KD025 reduces IL-17 secretion in human peripheral blood mononuclear cells independent of IL-1 and IL-6. Eur J Immunol 2018; 48:1679-1686. [PMID: 30098001 DOI: 10.1002/eji.201847652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023]
Abstract
Reducing the activities of the pro-inflammatory cytokine IL-17 is an effective treatment strategy for several chronic autoimmune disorders. Rho-associated coiled-coil containing kinase 2 (ROCK2) is a member of the serine-threonine protein kinase family that regulates IL-17 secretion in T cells via signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. We reported here that the selective ROCK2 inhibitor KD025 significantly reduced in vitro production of IL-17 in unfractionated human peripheral blood mononuclear cells (PBMCs) stimulated with the dectin-1 agonist Candida albicans. C. albicans induced IL-17 was reduced by 70% (p < 0.0001); a similar reduction (80%) was observed in PBMC stimulated with the Toll-like receptor 2 agonist Staphylococcus epidermidis (p < 0.0001). Treatment of PBMC with KD025 was not associated with a reduction in IL-1β, IL-6 or IL-1α levels; in contrast, a 1.5 fold increase in the level of IL-1 receptor antagonist (IL-1Ra) was observed (p < 0.001). KD025 down-regulated C. albicans-induced Myosin Light Chain and STAT3, whereas STAT5 phosphorylation increased. Using anti-CD3/CD28 activation of the TCR, KD025 similarly suppressed IL-17 independent of a reduction in IL-1β. Thus, ROCK2 directly regulates IL-17 secretion independent of endogenous IL-1 and IL-6 supporting development of selective ROCK2 inhibitors for treatment of IL-17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Suzhao Li
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Wei Chen
- Kadmon Corporation, LLC, New York, NY, USA
| | | | | | | | | | - Charles A Dinarello
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Liu L, Zhai C, Pan Y, Zhu Y, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am J Physiol Lung Cell Mol Physiol 2018; 315:L609-L621. [PMID: 29999407 DOI: 10.1152/ajplung.00554.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid, has been shown to be elevated in the airways of individuals with asthma and modulates the airway smooth muscle cell (ASMC) functions, yet its underlying molecular mechanisms are not completely understood. The aim of the present study is to address this issue. S1P induced yes-associated protein (YAP) dephosphorylation and nuclear localization via the S1PR2/3/Rho-associated protein kinase (ROCK) pathway, and this in turn increased forkhead box M1 (FOXM1) and cyclin D1 expression leading to ASMC proliferation, migration, and contraction. Pretreatment of cells with S1PR2 antagonist JTE013, S1PR3 antagonist CAY10444, or ROCK inhibitor Y27632 blocked S1P-induced alterations of YAP, FOXM1, cyclin D1, and ASMC proliferation, migration, and contraction. In addition, prior silencing of YAP or FOXM1 with siRNA reversed the effect of S1P on ASMC functions. Taken together, our study indicates that S1P stimulates ASMC proliferation, migration, and contraction by binding to S1PR2/3 and modulating ROCK/YAP/FOXM1 axis and suggests that targeting this pathway might have potential value in the management of asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| |
Collapse
|
22
|
Salazar AI, Carozzo A, Correa F, Davio C, Franchi AM. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications. Mol Hum Reprod 2018; 23:500-508. [PMID: 28460003 DOI: 10.1093/molehr/gax026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/20/2017] [Indexed: 02/05/2023] Open
Abstract
STUDY QUESTION What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? SUMMARY ANSWER We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. WHAT IS KNOWN ALREADY Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. STUDY DESIGN, SIZE, DURATION An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. PARTICIPANTS/MATERIALS, SETTING, METHODS Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. MAIN RESULTS AND THE ROLE OF CHANCE In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P < 0.05) and a reduction of the tissue content of cAMP (P < 0.05). These effects were mediated by CB2 receptors since exposure to AM630 (a specific CB2 receptor antagonist) prevented these LPS-induced effects (P < 0.05). Collectively, our results suggest a role for the eCS mediating LPS-induced deleterious effects on reproductive tissues. LIMITATIONS, REASONS FOR CAUTION Since our experimental design involves in vitro experiments of uterine explants, the extrapolation of the results presented here to humans is limited. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide evidence for the role of CB2 receptors in reproductive events as well as their participation as a mediator of LPS deleterious effects on reproductive tissues. LARGE SCALE DATA None. STUDY FUNDING AND COMPETING INTEREST(S) Dr Ana María Franchi was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2010/0813 and PICT 2013/0097) and by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013/2050). The authors have no competing interests.
Collapse
Affiliation(s)
- Ana Inés Salazar
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro Carozzo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos Davio
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Paraguay 2155, Piso 16, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
23
|
Bafor EE, Onwukpa I, Itemire AO, Omoruyi O, Eferoba-Idio E, Odega K, Eghianruwa OJ. Amelioration ofEscherichia coli-induced endometritis with ascorbic acid in non-pregnant mouse models. Am J Reprod Immunol 2018; 80:e12976. [DOI: 10.1111/aji.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/16/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Enitome Evi Bafor
- Department of Pharmacology & Toxicology; University of Benin; Benin City Edo State Nigeria
| | - Ikechukwu Onwukpa
- Department of Pharmacology & Toxicology; University of Benin; Benin City Edo State Nigeria
| | - Anne Oghenekevwe Itemire
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy; University of Benin; Benin City Edo State Nigeria
| | - Osemelomen Omoruyi
- Department of Pharmacology & Toxicology; University of Benin; Benin City Edo State Nigeria
| | | | - Kevin Odega
- Department of Histopathology and Morbid Anatomy; University of Benin Teaching Hospital; Benin City Nigeria
| | - Osas Jim Eghianruwa
- Department of Anatomy; School of Basic Medical Sciences; University of Benin; Benin City Nigeria
| |
Collapse
|
24
|
Bariani MV, Correa F, Leishman E, Domínguez Rubio AP, Arias A, Stern A, Bradshaw HB, Franchi AM. Resveratrol protects from lipopolysaccharide-induced inflammation in the uterus and prevents experimental preterm birth. Mol Hum Reprod 2018; 23:571-581. [PMID: 28810692 DOI: 10.1093/molehr/gax036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION Is resveratrol able to prevent the lipopolysaccharide (LPS)-induced preterm labor in 15-day pregnant BALB/c mice? SUMMARY ANSWER Resveratrol prevented the LPS-induced onset of preterm labor in 64% of the cases and showed anti-inflammatory and tocolytic effects by downregulating COX-2 and iNOS expression and NOS activity, and by changing the uterine prostaglandin and endocannabinoid profiling. WHAT IS KNOWN ALREADY Genital tract infections by Gram-negative bacteria are a common complication in human pregnancy and have been shown to increase risk of preterm delivery. Bacterial LPS elicits a strong maternal inflammatory response that results in preterm delivery and fetal death in a murine model endotoxin-induced preterm labor. STUDY DESIGN, SIZE, DURATION An in vivo animal study was conducted. On Day 15 of pregnancy, mice received at 8:00 h a dose of vehicle (40% ethanol in saline solution) or resveratrol (3 mg/kg in vehicle) via oral gavage followed by two doses of LPS or vehicle administered intraperitoneally (i.p.), the first one at 10:00 h (0.17 mg/kg in 0.1 ml of sterile saline solution) and the second at 13:00 h (0.5 mg/kg in 0.1 ml of sterile saline solution). The mice were closely observed for any signs of morbidity (piloerection, decreased movement, and diarrhea), vaginal bleeding or preterm delivery. The beginning of preterm delivery was defined by early delivery of the first pup. Normal term labor occurs on Day 19 of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS Time of labor, pregnancy outcome and morphological features were evaluated after LPS and/or resveratrol administration. Uterine stripes were collected 5 h after the last LPS injection and prostaglandin and endocannabinoid profiling was analyzed by mass spectrometry. Nitric oxide synthase (NOS) activity was measured by radioconversion assay. Cyclooxygenase-2 (Cox-2) and 15-hydroxyprostaglandin dehydrogenase (15-Pgdh) mRNA levels were analyzed by RT-PCR whilst the protein expression of inducible nitric oxide synthase (iNOS), COX-1 and COX-2 were studied by western blot. MAIN RESULTS AND THE ROLE OF CHANCE In vivo treatment of 15-day pregnant BALB/c mice with resveratrol prevented the LPS-induced preterm birth in 64% of the cases, whereas only 15% of mice with LPS alone escaped preterm birth. Treatment with resveratrol resulted in a reduced NOS activity (P < 0.05) in the uterus of LPS-treated mice. Similarly, resveratrol reduced the expression of LPS-induced pro-inflammatory agents such as iNOS (P < 0.05), COX-2 (P < 0.05), prostaglandin E2 (PGE2) (P < 0.05) and anandamide (AEA) (P < 0.05). Moreover, resveratrol administration resulted in changes in the uterine endocannabinoid profiling altered by LPS. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Since our experimental design involves the use of mice, the extrapolation of the results presented here to humans is limited. WIDER IMPLICATIONS OF THE FINDINGS Our findings provide evidence for the tocolytic effects of resveratrol. STUDY FUNDING AND COMPETING INTEREST(S) Dr Ana María Franchi was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013/0097) and by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Heather B. Bradshaw was funded by NIH (DA006668). The authors have no competing interests.
Collapse
Affiliation(s)
- María Victoria Bariani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Correa
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana,USA
| | - Ana Paula Domínguez Rubio
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andreína Arias
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aníbal Stern
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana,USA
| | - Ana María Franchi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
25
|
Domokos D, Fülöp F, Falkay G, Gáspár R. Effects of newly synthetized isoquinoline derivatives on rat uterine contractility and ROCK II activity. Bioorg Med Chem Lett 2018; 28:466-469. [PMID: 29269216 DOI: 10.1016/j.bmcl.2017.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Protein kinases have an important role in signal transduction in the cellular system via protein phosphorylation. RhoA activated Rho-kinases have a pivotal role in the regulation of smooth muscle contraction. ROCK I and ROCK II phosphorylate myosin-phosphatase and myosin-kinase, which induces contraction in the myometrium. Several studies have investigated the affinity of isoquinoline alkaloids (HA-1077, H1152P) to Rho-kinases, and these compounds notably inhibited the Ca2+-independent process. We measured the efficiency of 25 original, newly synthesized isoquinoline derivatives for the Rho-kinase activity using Rho-associated kinase activity assay and determined their effects on the non-pregnant, 20-day pregnant and parturient rat myometrial contraction in vitro. The IC50 values of 11 from among the 25 derivatives were significantly lower on the oxytocin-induced non-pregnant rat uterine contraction compared with Y-27632 and fasudil, although their maximal inhibitory effects were weaker than those of Y-27632 and fasudil. We measured the effects of 11 isoquinoline molecules with significant IC50 values on ROCK II activity. We found two isoquinolines out of 11 compounds (218 and 852) which decreased the active ROCK II level similarly as Y-27632. Then we found that 218 and 852 relaxed the 20th-day pregnant and parturient rat uterus with greater potency as compared with fasudil. The majority of the synthesized isoquinoline derivatives have uterus relaxant effects and two of them significantly suppress the Rho-kinase mediated myosin light chain phosphorylation. Our results may suggest that the isoquinoline structure has a promising prospect for the development of new and effective inhibitors of uterine contractions in preterm birth.
Collapse
Affiliation(s)
- D Domokos
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary
| | - F Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6701, P.O. Box 121, Hungary
| | - G Falkay
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary
| | - R Gáspár
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| |
Collapse
|
26
|
Edey LF, Georgiou H, O’Dea KP, Mesiano S, Herbert BR, Lei K, Hua R, Markovic D, Waddington SN, MacIntyre D, Bennett P, Takata M, Johnson MR. Progesterone, the maternal immune system and the onset of parturition in the mouse†. Biol Reprod 2017; 98:376-395. [DOI: 10.1093/biolre/iox146] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Hector Georgiou
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Kieran P O’Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Sam Mesiano
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland Medical Center, Cleveland, Ohio, USA
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Kaiyu Lei
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Renyi Hua
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland Medical Center, Cleveland, Ohio, USA
| | - Danijela Markovic
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Simon N Waddington
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai, China
| | - David MacIntyre
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Philip Bennett
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, UK
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
27
|
Singh N, Herbert B, Sooranna GR, Orsi NM, Edey L, Dasgupta T, Sooranna SR, Yellon SM, Johnson MR. Is myometrial inflammation a cause or a consequence of term human labour? J Endocrinol 2017; 235:69-83. [PMID: 28765265 DOI: 10.1530/joe-17-0318] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
Myometrial inflammation is thought to have a pivotal role in the onset of term and some forms of preterm labour. This is based on the comparison of samples taken from women undergoing term elective CS prior to the onset of labour with those taken from women in established labour. Consequently, it is not clear whether myometrial inflammation is a cause or a consequence of labour. Our objective is to test the hypothesis that myometrial inflammation is a consequence of the onset of labour. To test this hypothesis, we have obtained myometrial samples from women at various stages of pregnancy and spontaneous labour and studied the activation of the AP-1 (c-Jun) and NFκB (p65) systems, cytokine mRNA expression and protein levels and inflammatory cell infiltration and activation. We found that the activation of p65 declined from preterm to term not in labour samples and thereafter increased in early and established labour. Cytokine mRNA expression and protein levels increased in established labour only. Using flow cytometry of myometrial tissue, we found that the number of neutrophils did increase with the onset of labour, but on tissue section, these were seen to be intravascular and not infiltrating into the myometrium. These data suggest that myometrial inflammation is a consequence rather than a cause of term labour.
Collapse
Affiliation(s)
- Natasha Singh
- Chelsea and Westminster HospitalLondon, UK
- Institute of Reproductive and Developmental BiologyImperial College London, London, UK
| | - Bronwen Herbert
- Institute of Reproductive and Developmental BiologyImperial College London, London, UK
| | - Gavin R Sooranna
- Institute of Reproductive and Developmental BiologyImperial College London, London, UK
| | - Nicolas M Orsi
- Leeds Institute of Cancer & PathologyWellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Lydia Edey
- Institute of Reproductive and Developmental BiologyImperial College London, London, UK
| | - Tathagata Dasgupta
- Leeds Institute of Cancer & PathologyWellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Suren R Sooranna
- Chelsea and Westminster HospitalLondon, UK
- Institute of Reproductive and Developmental BiologyImperial College London, London, UK
| | - Steven M Yellon
- Longo Center for Perinatal BiologyLoma Linda University School of Medicine, Loma Linda, California, USA
| | - Mark R Johnson
- Chelsea and Westminster HospitalLondon, UK
- Institute of Reproductive and Developmental BiologyImperial College London, London, UK
| |
Collapse
|
28
|
miR-143 and miR-145 disrupt the cervical epithelial barrier through dysregulation of cell adhesion, apoptosis and proliferation. Sci Rep 2017; 7:3020. [PMID: 28596604 PMCID: PMC5465080 DOI: 10.1038/s41598-017-03217-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular mechanisms regulating preterm birth (PTB)-associated cervical remodeling remain unclear. Prior work demonstrated an altered miRNA profile, with significant increases in miR-143 and miR-145, in cervical cells of women destined to have a PTB. The study objective was to determine the effect of miR-143 and miR-145 on the cervical epithelial barrier and to elucidate the mechanisms by which these miRNAs modify cervical epithelial cell function. Ectocervical and endocervical cells transfected with miR-negative control, miR-143 or miR-145 were used in cell permeability and flow cytometry assays for apoptosis and proliferation. miR-143 and miR-145 target genes associated with cell adhesion, apoptosis and proliferation were measured. Epithelial cell permeability was increased in miR-143 and miR-145 transfected cervical epithelial cells. Cell adhesion genes, JAM-A and FSCN1, were downregulated with overexpression of miR-143 and miR-145. miR-143 and miR-145 transfection decreased cervical cell number by increasing apoptosis and decreasing cell proliferation through initiation of cell cycle arrest. Apoptosis genes, BCL2 and BIRC5, and proliferation genes, CDK1 and CCND2, were repressed by miR-143 and miR-145. These findings suggest that miR-143 and miR-145 play a significant role in cervical epithelial barrier breakdown through diverse mechanisms and could contribute to premature cervical remodeling associated with PTB.
Collapse
|
29
|
Damiani F, Makieva S, Rinaldi SF, Hua L, Marcolongo P, Petraglia F, Norman JE. 11β-hydroxysteroid dehydrogenase type 1 and pregnancy: Role in the timing of labour onset and in myometrial contraction. Mol Cell Endocrinol 2017; 447:79-86. [PMID: 28237720 DOI: 10.1016/j.mce.2017.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Glucocorticoids play a primary role in the maturation of fetal organs and may contribute to the onset of labour. Glucocorticoid activity depends on the 11β-hydroxysteroid dehydrogenase family (11β-HSDs), catalysing the interconversion between "active" cortisol into inactive cortisone. No definitive study exists on 11β-HSD expression profile in human decidua and myometrium during pregnancy. We investigated the implications of 11β-HSD1 in the regulation of uterine activity in pregnancy, examining its role on contraction of a myocyte cell line and murine 11β-hsd1 levels in utero. Murine 11β-hsd1 mRNA and protein levels in utero progressively increased until the last day of gestation and significantly decreased at the onset of labour (P < 0.0001) (n = 3 to 5 in the various gestational days analysed). Experiments on human myometrial samples confirm the significant fall in 11β-hsd1 mRNA levels at labour, compared to end pregnancy samples (n = 5 to 8). In vitro experiments showed that human myometrial contraction is inhibited by using a non-selective inhibitor of 11β-HSD1. The present study shows the temporal localisation of 11β-HSD1 in uterus, highlighting its importance in the timing of gestation and suggesting its contribution in the myometrium contraction.
Collapse
Affiliation(s)
- Francesco Damiani
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| | - Sofia Makieva
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Sara F Rinaldi
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Lei Hua
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Puertas A, Magan-Fernandez A, Blanc V, Revelles L, O'Valle F, Pozo E, León R, Mesa F. Association of periodontitis with preterm birth and low birth weight: a comprehensive review. J Matern Fetal Neonatal Med 2017; 31:597-602. [PMID: 28282773 DOI: 10.1080/14767058.2017.1293023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is estimated that six million perinatal deaths occur every year worldwide, with premature birth being the main cause. Scientific evidence has shown that there is an association between periodontal health during pregnancy and adverse outcomes of labor, although interventional studies based on the treatment of periodontitis have failed to document an impact on reducing the incidence of preterm birth (PB) or low birth weight (LBW). Two pathogenic mechanisms have been proposed to explain this association. The direct pathway is based on the presence of gram-negative anaerobic bacteremia originating in the gingival biofilm, whereas the indirect pathway involves the production of pro-inflammatory markers which enter the bloodstream from the gingival submucosa. The result is the same: the development of an immune inflammatory response and/or the local suppression of growth factors in the fetal-placental unit, which in turn triggers labor. In the present review, we describe current concepts pertinent to PB and LBW, chronic and aggressive periodontitis, and the most frequent aspects of periodontal pathology during pregnancy. We evaluate the scientific evidence available to date, and offer a detailed description of the two pathways proposed to explain the association of maternal periodontitis with preterm and LBW delivery.
Collapse
Affiliation(s)
- Alberto Puertas
- a Department of Obstetrics and Gynecology , "Virgen de las Nieves" University Hospital , Granada , Spain
| | | | - Vanessa Blanc
- c Microbiology Laboratory, Dentaid Research Center , Barcelona , Spain
| | - Laura Revelles
- a Department of Obstetrics and Gynecology , "Virgen de las Nieves" University Hospital , Granada , Spain
| | - Francisco O'Valle
- d Pathology Department, School of Medicine , (IBIMER, CIBM) University of Granada , Granada , Spain
| | - Elena Pozo
- b Periodontology Department, School of Dentistry , University of Granada , Granada , Spain
| | - Ruben León
- c Microbiology Laboratory, Dentaid Research Center , Barcelona , Spain
| | - Francisco Mesa
- b Periodontology Department, School of Dentistry , University of Granada , Granada , Spain
| |
Collapse
|
31
|
Sivarajasingam SP, Imami N, Johnson MR. Myometrial cytokines and their role in the onset of labour. J Endocrinol 2016; 231:R101-R119. [PMID: 27647860 DOI: 10.1530/joe-16-0157] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 12/12/2022]
Abstract
Human labour is an inflammatory event, physiologically driven by an interaction between hormonal and mechanical factors and pathologically associated with infection, bleeding and excessive uterine stretch. The initiation and communicators of inflammation is still not completely understood; however, a key role for cytokines has been implicated. We summarise the current understanding of the nature and role of cytokines, chemokines and hormones and their involvement in signalling within the myometrium particularly during labour.
Collapse
Affiliation(s)
- S P Sivarajasingam
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of MedicineImperial College London, London, UK
| | - M R Johnson
- Department of Surgery and CancerImperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
32
|
Edey LF, O'Dea KP, Herbert BR, Hua R, Waddington SN, MacIntyre DA, Bennett PR, Takata M, Johnson MR. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse. Biol Reprod 2016; 95:125. [PMID: 27760748 PMCID: PMC5333944 DOI: 10.1095/biolreprod.116.143289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 01/30/2023] Open
Abstract
Inflammation plays a key role in human term and preterm labor (PTL). Intrauterine LPS has been widely used to model inflammation-induced complications of pregnancy, including PTL. It has been shown to induce an intense myometrial inflammatory cell infiltration, but the role of LPS-induced inflammatory cell activation in labor onset and fetal demise is unclear. We investigated this using a mouse model of PTL, where an intrauterine injection of 10 μg of LPS (serotype 0111:B4) was given at E16 of CD1 mouse pregnancy. This dose induced PTL at an average of 12.7 h postinjection in association with 85% fetal demise. Flow cytometry showed that LPS induced a dramatic systemic inflammatory response provoking a rapid and marked leucocyte infiltration into the maternal lung and liver in association with increased cytokine levels. Although there was acute placental inflammatory gene expression, there was no corresponding increase in fetal brain inflammatory gene expression until after fetal demise. There was marked myometrial activation of NFκB and MAPK/AP-1 systems in association with increased chemokine and cytokine levels, both of which peaked with the onset of parturition. Myometrial macrophage and neutrophil numbers were greater in the LPS-injected mice with labor onset only; prior to labor, myometrial neutrophils and monocytes numbers were greater in PBS-injected mice, but this was not associated with an earlier onset of labor. These data suggest that intrauterine LPS induces parturition directly, independent of myometrial inflammatory cell infiltration, and that fetal demise occurs without fetal inflammation. Intrauterine LPS provokes a marked local and systemic inflammatory response but with limited inflammatory cell infiltration into the myometrium or placenta.
Collapse
Affiliation(s)
- Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Renyi Hua
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai, China
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom.,Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus DuCane Road, London, United Kingdom
| | - Philip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus DuCane Road, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
33
|
Migale R, MacIntyre DA, Cacciatore S, Lee YS, Hagberg H, Herbert BR, Johnson MR, Peebles D, Waddington SN, Bennett PR. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Med 2016; 14:86. [PMID: 27291689 PMCID: PMC4904357 DOI: 10.1186/s12916-016-0632-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Preterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data. METHODS Myometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data. RESULTS We identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse. CONCLUSIONS Labor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human "functional progesterone withdrawal." This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies.
Collapse
Affiliation(s)
- Roberta Migale
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.
| | - Stefano Cacciatore
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Yun S Lee
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Center, Department of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.,Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.,Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Donald Peebles
- UCL Centre for Perinatal Brain Protection & Repair, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom.,Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.
| |
Collapse
|
34
|
Sharp GC, Hutchinson JL, Hibbert N, Freeman TC, Saunders PTK, Norman JE. Transcription Analysis of the Myometrium of Labouring and Non-Labouring Women. PLoS One 2016; 11:e0155413. [PMID: 27176052 PMCID: PMC4866706 DOI: 10.1371/journal.pone.0155413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/28/2016] [Indexed: 11/18/2022] Open
Abstract
An incomplete understanding of the molecular mechanisms that initiate normal human labour at term seriously hampers the development of effective ways to predict, prevent and treat disorders such as preterm labour. Appropriate analysis of large microarray experiments that compare gene expression in non-labouring and labouring gestational tissues is necessary to help bridge these gaps in our knowledge. In this work, gene expression in 48 (22 labouring, 26 non-labouring) lower-segment myometrial samples collected at Caesarean section were analysed using Illumina HT-12 v4.0 BeadChips. Normalised data were compared between labouring and non-labouring groups using traditional statistical methods and a novel network graph approach. We sought technical validation with quantitative real-time PCR, and biological replication through inverse variance-weighted meta-analysis with published microarray data. We have extended the list of genes suggested to be associated with labour: Compared to non-labouring samples, labouring samples showed apparent higher expression at 960 probes (949 genes) and apparent lower expression at 801 probes (789 genes) (absolute fold change ≥1.2, rank product percentage of false positive value (RP-PFP) <0.05). Although half of the women in the labouring group had received pharmaceutical treatment to induce or augment labour, sensitivity analysis suggested that this did not confound our results. In agreement with previous studies, functional analysis suggested that labour was characterised by an increase in the expression of inflammatory genes and network analysis suggested a strong neutrophil signature. Our analysis also suggested that labour is characterised by a decrease in the expression of muscle-specific processes, which has not been explicitly discussed previously. We validated these findings through the first formal meta-analysis of raw data from previous experiments and we hypothesise that this represents a change in the composition of myometrial tissue at labour. Further work will be necessary to reveal whether these results are solely due to leukocyte infiltration into the myometrium as a mechanism initiating labour, or in addition whether they also represent gene changes in the myocytes themselves. We have made all our data available at www.ebi.ac.uk/arrayexpress/ (accession number E-MTAB-3136) to facilitate progression of this work.
Collapse
Affiliation(s)
- Gemma C. Sharp
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - James L. Hutchinson
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Nanette Hibbert
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom C. Freeman
- Systems Immunology Group, Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane E. Norman
- Tommy’s Centre for Maternal and Fetal Health and Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Rajagopal SP, Hutchinson JL, Dorward DA, Rossi AG, Norman JE. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone. Mol Hum Reprod 2015; 21:672-86. [PMID: 26002969 PMCID: PMC4518137 DOI: 10.1093/molehr/gav027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/19/2015] [Indexed: 11/14/2022] Open
Abstract
Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone.
Collapse
Affiliation(s)
- S P Rajagopal
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J L Hutchinson
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J E Norman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
36
|
Hadi T, Bardou M, Mace G, Sicard P, Wendremaire M, Barrichon M, Richaud S, Demidov O, Sagot P, Garrido C, Lirussi F. Glutathione prevents preterm parturition and fetal death by targeting macrophage-induced reactive oxygen species production in the myometrium. FASEB J 2015; 29:2653-66. [PMID: 25757563 DOI: 10.1096/fj.14-266783] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/19/2015] [Indexed: 11/11/2022]
Abstract
Preterm birth is an inflammatory process resulting from the massive infiltration of innate immune cells and the production of proinflammatory cytokines in the myometrium. However, proinflammatory cytokines, which induce labor in vivo, fail to induce labor-associated features in human myometrial cells (MCs). We thus aimed to investigate if reactive oxygen species (ROS) production could be the missing step between immune cell activation and MC response. Indeed, we found that ROS production is increased in the human preterm laboring myometrium (27% ROS producing cells, respectively, versus 2% in nonlaboring controls), with 90% ROS production in macrophages. Using LPS-stimulated myometrial samples and cell coculture experiments, we demonstrated that ROS production is required for labor onset. Furthermore, we showed that ROS are required first in the NADPH oxidase (NADPHox)-2/NF-κB-dependent macrophage response to inflammatory stimuli but, more importantly, to trigger macrophage-induced MCs transactivation. Remarkably, in a murine model of LPS-induced preterm labor (inducing delivery within 17 hours, with no pup survival), cotreatment with glutathione delayed labor onset up to 94 hours and prevented in utero fetal distress, allowing 46% pups to survive. These results suggest that targeting ROS production with the macrophage-permeable antioxidant glutathione could constitute a promising strategy to prevent preterm birth.
Collapse
Affiliation(s)
- Tarik Hadi
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Marc Bardou
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Guillaume Mace
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Pierre Sicard
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Maeva Wendremaire
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Marina Barrichon
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Sarah Richaud
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Oleg Demidov
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Paul Sagot
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Carmen Garrido
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| | - Frédéric Lirussi
- *Institut National de la Santé et de la Recherche Médicale, U866, Lipides Nutrition Cancer, Dijon, France; Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, Dijon, France; Institut National de la Santé et de la Recherche Médicale Centre d'Investigations Cliniques 1432, Dijon, France; Service de Gynécologie & Obstétrique, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; Université Paul Sabatier, Centre Hospitalier Universitaire of Toulouse, Claudius Regaud Institute, Toulouse, France; and **Anti-cancer Center George-François Leclerc, Centre Georges François Leclerc, Dijon, France
| |
Collapse
|
37
|
Rho kinase mediates Porphyromonas gingivalis outer membrane vesicle-induced suppression of endothelial nitric oxide synthase through ERK1/2 and p38 MAPK. Arch Oral Biol 2015; 60:488-95. [DOI: 10.1016/j.archoralbio.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/18/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023]
|
38
|
Liong S, Lappas M. The Stress-responsive Heme Oxygenase (HO)-1 Isoenzyme is Increased in Labouring Myometrium where it Regulates Contraction-associated Proteins. Am J Reprod Immunol 2015; 74:62-76. [DOI: 10.1111/aji.12366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stella Liong
- Mercy Perinatal Research Centre; Mercy Hospital for Women; Heidelberg Vic. Australia
- Obstetrics, Nutrition and Endocrinology Group; Department of Obstetrics and Gynaecology; University of Melbourne; Melbourne Vic. Australia
| | - Martha Lappas
- Mercy Perinatal Research Centre; Mercy Hospital for Women; Heidelberg Vic. Australia
- Obstetrics, Nutrition and Endocrinology Group; Department of Obstetrics and Gynaecology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
39
|
Voltolini C, Battersby S, Novembri R, Torricelli M, Severi FM, Petraglia F, Norman JE. Urocortin 2 role in placental and myometrial inflammatory mechanisms at parturition. Endocrinology 2015; 156:670-9. [PMID: 25426872 DOI: 10.1210/en.2014-1432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of the study was to investigate urocortin (Ucn)2 involvement in placental and myometrial inflammatory pathways associated with parturition by evaluating: 1) Ucn2 and its receptor, CRH-receptor type 2 (CRH-R2), expression in laboring/nonlaboring human gestational tissues and in mouse utero-placental tissues approaching delivery; and 2) Ucn2 effect on myometrial contractility and on the expression of inflammatory mediators (prostaglandin F2α receptor and cytokines) and regulation of Ucn2 by TNF-α in cultured myometrial cell line. Placenta (n = 16), fetal membranes (n = 16), and myometrium (n = 22) were obtained from healthy pregnant women delivering at term by vaginal/elective caesarean delivery and from timed-pregnant mice on days 16-19. Expression of Ucn2/CRH-R2 in human/mouse tissues and inflammatory mediators in myometrial cell lines were measured by RT-PCR or ELISA, mouse Ucn2/CRH-R2 protein localization by immunohistochemistry. Ucn2 but not CRH-R2 was up-regulated (P < .05) in all human tissues in labor (compared with before labor) and increased significantly (P < .01) in mouse placenta approaching delivery. Ucn2 was up-regulated by TNF-α via nuclear factor-κB (NF-kB) in myometrium cell lines (P < .05 or P < .01 on the basis of treatment doses) and increased proinflammatory mediators and prostaglandin F (PGF2α) receptor expression (P < .05) via CRH-R2, without a direct effect on contractility. Placental and myometrial Ucn2 may play a role in the endocrine-inflammatory processes of parturition, representing a potential target for treating inflammation-induced obstetric complications.
Collapse
Affiliation(s)
- Chiara Voltolini
- Department of Molecular and Developmental Medicine (C.V., R.N., M.T., F.M.S., F.P.), University of Siena, 53100 Siena, Italy; and Medical Research Council Centre for Reproductive Health (S.B., J.E.N.), University of Edinburgh, EH16 4TY Edinburgh, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Zi MYH, Longo PL, Bueno-Silva B, Mayer MPA. Mechanisms Involved in the Association between Periodontitis and Complications in Pregnancy. Front Public Health 2015; 2:290. [PMID: 25688342 PMCID: PMC4310218 DOI: 10.3389/fpubh.2014.00290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/14/2014] [Indexed: 01/08/2023] Open
Abstract
The association between periodontitis and some of the problems with pregnancy such as premature delivery, low weight at birth, and preeclampsia (PE) has been suggested. Nevertheless, epidemiological data have shown contradictory data, mainly due to differences in clinical parameters of periodontitis assessment. Furthermore, differences in microbial composition and immune response between aggressive and chronic periodontitis are not addressed by these epidemiological studies. We aimed to review the current data on the association between some of these problems with pregnancy and periodontitis, and the mechanisms underlying this association. Shifts in the microbial composition of the subgingival biofilm may occur during pregnancy, leading to a potentially more hazardous microbial community. Pregnancy is characterized by physiological immune tolerance. However, the infection leads to a shift in maternal immune response to a pathogenic pro-inflammatory response, with production of inflammatory cytokines and toxic products. In women with periodontitis, the infected periodontal tissues may act as reservoirs of bacteria and their products that can disseminate to the fetus-placenta unit. In severe periodontitis patients, the infection agents and their products are able to activate inflammatory signaling pathways locally and in extra-oral sites, including the placenta-fetal unit, which may not only induce preterm labor but also lead to PE and restrict intrauterine growth. Despite these evidences, the effectiveness of periodontal treatment in preventing gestational complications was still not established since it may be influenced by several factors such as severity of disease, composition of microbial community, treatment strategy, and period of treatment throughout pregnancy. This lack of scientific evidence does not exclude the need to control infection and inflammation in periodontitis patients during pregnancy, and treatment protocols should be validated.
Collapse
Affiliation(s)
- Marcela Yang Hui Zi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila Larcher Longo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Rinaldi SF, Catalano RD, Wade J, Rossi AG, Norman JE. 15-epi-lipoxin A4 reduces the mortality of prematurely born pups in a mouse model of infection-induced preterm birth. Mol Hum Reprod 2015; 21:359-68. [PMID: 25567326 PMCID: PMC4381035 DOI: 10.1093/molehr/gau117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
Preterm birth remains the leading cause of neonatal mortality and morbidity worldwide. There are currently few effective therapies and therefore an urgent need for novel treatments. Although there is much focus on trying to alter gestation of delivery, the primary aim of preterm birth prevention therapies should be to reduce prematurity related mortality and morbidity. Given the link between intrauterine infection and inflammation and preterm labour (PTL), we hypothesized that administration of lipoxins, key anti-inflammatory and pro-resolution mediators, could be a useful novel treatment for PTL. Using a mouse model of infection-induced PTL, we investigated whether 15-epi-lipoxin A4 could delay lipopolysaccharide (LPS)-induced PTL and reduce pup mortality. On D17 of gestation mice (n = 9–12) were pretreated with vehicle or 15-epi-lipoxin A4 prior to intrauterine administration of LPS or PBS. Although pretreatment with 15-epi-lipoxin A4 did not delay LPS-induced PTL, there was a significant reduction in the mortality amongst prematurely delivered pups (defined as delivery within 36 h of surgery) in mice treated with 15-epi-lipoxin A4 prior to LPS treatment, compared with those receiving LPS alone (P < 0.05). Quantitative real-time (QRT)-PCR analysis of utero-placental tissues harvested 6 h post-treatment demonstrated that 15-epi-lipoxin A4 treatment increased Ptgs2 expression in the uterus, placenta and fetal membranes (P < 0.05) and decreased 15-Hpgd expression (P < 0.05) in the placenta and uterus, suggesting that 15-epi-lipoxin A4 may regulate the local production and activity of prostaglandins. These data suggest that augmenting lipoxin levels could be a useful novel therapeutic option in the treatment of PTL, protecting the fetus from the adverse effects of infection-induced preterm birth.
Collapse
Affiliation(s)
- S F Rinaldi
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - R D Catalano
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J Wade
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - J E Norman
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
42
|
Liong S, Lappas M. Endoplasmic Reticulum Stress Is Increased after Spontaneous Labor in Human Fetal Membranes and Myometrium Where It Regulates the Expression of Prolabor Mediators1. Biol Reprod 2014; 91. [DOI: 10.1095/biolreprod.114.120741] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
43
|
Li Y, Lorca RA, Ma X, Rhodes A, England SK. BK channels regulate myometrial contraction by modulating nuclear translocation of NF-κB. Endocrinology 2014; 155:3112-22. [PMID: 24914944 PMCID: PMC4098006 DOI: 10.1210/en.2014-1152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The large-conductance Ca(2+)-activated K(+) (BK) channel plays an essential role in maintaining uterine quiescence during pregnancy. Growing evidence has shown a link between the BK channel and bacterial lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in macrophages. In the uterus, NF-κB activation plays an important role in inflammatory processes that lead to parturition. Our objective was to determine whether the BK channel regulates uterine contraction, in part, by modulating NF-κB translocation into the nucleus. We compared the effects of BK channel modulation to those of LPS on NF-κB nuclear translocation and contraction in an immortalized human myometrial cell line (human telomerase reverse transcriptase [hTERT]) and uterine myocytes. Our results showed that BK channel inhibitors paxilline and penitrem A induced translocation of NF-κB into the nucleus in both hTERT cells and uterine myocytes to a similar extent as LPS treatment, and LPS and paxilline similarly reduced BK channel currents. Conversely, neither BK channel openers nor blockade of the small conductance Ca(2+)-activated K(+) channel protein 3 had an effect on NF-κB translocation. Additionally, collagen-based assays showed that paxilline induced contraction of hTERT cells and uterine myocytes. This was dependent upon cyclooxygenase-2 activity. Moreover, paxilline-induced contractility and increased cyclooxygenase-2 expression both depended on availability of free NF-κB. This study suggests that BK channels regulate myometrial contraction, in part, by modulating nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Youe Li
- Center for Women's Reproductive Sciences Research, Department of Obstetrics and Gynecology, Basic Science Division, Washington University in St Louis, St Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
44
|
Rinaldi SF, Catalano RD, Wade J, Rossi AG, Norman JE. Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor. THE JOURNAL OF IMMUNOLOGY 2014; 192:2315-25. [PMID: 24501200 PMCID: PMC3932811 DOI: 10.4049/jimmunol.1302891] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parturition is associated with a leukocyte influx into the intrauterine tissues; however, the exact role these leukocytes play in the onset of labor remains unclear. Neutrophil infiltration of the uteroplacental tissues has been particularly associated with infection-associated preterm labor (PTL) in both women and mouse models. In this study, we investigated the role of neutrophils in a mouse model of infection-induced PTL. Intrauterine administration of LPS on day 17 of gestation resulted in a 7-fold increase in the number of decidual neutrophils compared with control mice receiving PBS (p < 0.01; n = 8–11). We hypothesized that neutrophil influx is necessary for PTL and that neutrophil depletion would abolish preterm birth. To test this hypothesis, mice were depleted of neutrophils by treatment with anti–Gr-1, anti–Ly-6G, or the appropriate IgG control Ab on day 16 of gestation prior to LPS on day 17 (n = 6–7). Successful neutrophil depletion was confirmed by flow cytometry and immunohistochemistry. Neutrophil depletion with Gr-1 resulted in reduced uterine and placental Il-1β expression (p < 0.05). Neutrophil depletion with Ly-6G reduced uterine Il-1β and Tnf-α expression (p < 0.05). However, neutrophil depletion with either Ab did not delay LPS-induced preterm birth. Collectively, these data show that decidual neutrophil infiltration is not essential for the induction of infection-induced PTL in the mouse, but that neutrophils contribute to the LPS-induced inflammatory response of the uteroplacental tissues.
Collapse
Affiliation(s)
- Sara F Rinaldi
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
MacIntyre DA, Lee YS, Migale R, Herbert BR, Waddington SN, Peebles D, Hagberg H, Johnson MR, Bennett PR. Activator protein 1 is a key terminal mediator of inflammation-induced preterm labor in mice. FASEB J 2014; 28:2358-68. [PMID: 24497579 DOI: 10.1096/fj.13-247783] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of uterine inflammatory pathways leads to preterm labor (PTL), associated with high rates of neonatal mortality and morbidity. The transcription factors nuclear factor κB (NFκB) and activator protein 1 (AP-1) regulate key proinflammatory and procontractile genes involved in normal labor and PTL. Here we show that NFκB activation normally occurs in the mouse myometrium at gestation day E18, prior to labor, whereas AP-1 and JNK activation occurs at labor onset. Where labor was induced using the progesterone receptor antagonist RU486, NFkB and AP-1/JNK activation both occurred at the time of labor (20 h compared to 60 h in DMSO-treated controls). Using an LPS (Escherichia coli: serotype O111)-induced PTL model that selectively activates AP-1 but not NFkB, we show that myometrial AP-1 activation drives production of cytokines (Il-6, Il-8, and Il-1β), metalloproteinases (Mmp3 and Mmp10), and procontractile proteins (Cox-2 and Cx43) resulting in PTL after 7 h. Protein levels of CX43 and IL-1β, and IL-1β cleavage, were increased following LPS-induced activation of AP-1. Inhibition of JNK by SP600125 (30 mg/kg) delayed PTL by 6 h (7.5 vs. 13.5 h P<0.05). Our data reveal that NFκB activation is not a functional requirement for infection/inflammation-induced preterm labor and that AP-1 activation is sufficient to drive inflammatory pathways that cause PTL.
Collapse
Affiliation(s)
- David A MacIntyre
- 2Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, W12 0NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|