1
|
Ono K, Ueno T, Kido MA, Hitomi S, Naniwa M, Nakatomi C, Yoshimoto RU, Sawada T, Kato T. Recent advances in the treatment of oral ulcerative mucositis from clinical and basic perspectives. J Oral Biosci 2024; 66:504-510. [PMID: 38866365 DOI: 10.1016/j.job.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Oral ulcerative mucositis (OUM) is common in patients with cancer, particularly in those undergoing chemoradiation therapy. The effective management of OUM is crucial for continuous cancer care and patient well-being. Recent studies have advanced our understanding of the causes, leading to clinical trials toward novel treatments. This review focuses on the contemporary therapeutic landscape, and provides the latest insights into the mechanisms of mucosal healing and pain. HIGHLIGHTS Management strategies for OUM in patients with cancer include maintaining good oral hygiene, reducing mucosal irritation against radiation, and using various topical analgesic treatments, including herbal medicines. However, the current management practices have limitations that necessitate the development of more efficacious and novel treatments. Molecular research on transient receptor potential (TRP) channels in the oral mucosa is crucial for understanding the mechanisms of wound healing and pain in patients with OUM. Targeting TRPV3 and TRPV4 can enhance wound healing through re-epithelialization. The suppression of TRPV1, TRPA1, and TRPV4 may be effective in alleviating OUM-induced pain. CONCLUSION Research advancements have improved our understanding and potentially led to novel treatments that offer symptomatic relief. This progress highlights the importance of collaborations between clinical researchers and scientists in the development of innovative therapies.
Collapse
Affiliation(s)
- Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan.
| | - Takao Ueno
- Dentistry, National Cancer Center Hospital, Tokyo, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Mako Naniwa
- Department of Oral Health Sciences, Kyushu University of Nursing and Social Welfare, Kumamoto, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Reiko U Yoshimoto
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Japan
| | - Takeshi Sawada
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
2
|
Takayama Y, Tominaga M. Interaction between TRP channels and anoctamins. Cell Calcium 2024; 121:102912. [PMID: 38823351 DOI: 10.1016/j.ceca.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Anoctamin 1 (ANO1) binds to transient receptor potential (TRP) channels (protein-protein interaction) and then is activated by TRP channels (functional interaction). TRP channels are non-selective cation channels that are expressed throughout the body and play roles in multiple physiological functions. Studies on TRP channels increased after the identification of TRP vanilloid 1 (TRPV1) in 1997. Calcium-activated chloride channel anoctamin 1 (ANO1, also called TMEM16A and DOG1) was identified in 2008. ANO1 plays a major role in TRP channel-mediated functions, as first shown in 2014 with the demonstration of a protein-protein interaction between TRPV4 and ANO1. In cells that co-express TRP channels and ANO1, calcium entering cells through activated TRP channels causes ANO1 activation. Therefore, in many tissues, the physiological functions related to TRP channels are modulated through chloride flux associated with ANO1 activation. In this review, we summarize the latest understanding of TRP-ANO1 interactions, particularly interaction of ANO1 with TRPV4, TRP canonical 6 (TRPC6), TRPV3, TRPV1, and TRPC2 in the salivary glands, blood vessels, skin keratinocytes, primary sensory neurons, and vomeronasal organs, respectively.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaiji, Okazaki, Aichi, Japan; Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Aza-Higashiyama, Myodaiji, Okazaki, Aichi, Japan; Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
3
|
Luo C, Nakagawa M, Sumi Y, Matsushima Y, Uemura M, Honda Y, Matsumoto N. Detection of senescent cells in the mucosal healing process on type 2 diabetic rats after tooth extraction for biomaterial development. Dent Mater J 2024; 43:430-436. [PMID: 38644214 DOI: 10.4012/dmj.2023-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The delayed mucosal healing of tooth extraction sockets in diabetes has few known effective treatment strategies, and its underlying mechanism remains unknown. Senescent cells may play a pivotal role in this delay, given the well-established association between diabetes, senescent cells, and wound healing. Here, we demonstrated an increase in p21- or p16-positive senescent cells in the epithelial and connective tissues of extraction sockets in type 2 diabetic rats compared to those in control rats. Between 7 and 14 days after tooth extraction, a decrease in senescent cells and improvement in re-epithelialization failure were observed in the epithelium, while an increase in senescent cells and persistence of inflammation were observed in the connective tissue. These results suggest that cellular senescence may have been induced by diabetes and contributed to delayed mucosal healing by suppressing re-epithelization and persistent inflammation. These findings provide new targets for treatment using biomaterials, cells, and drugs.
Collapse
Affiliation(s)
- Chuyi Luo
- Department of Orthodontics, Osaka Dental University
| | | | - Yoichi Sumi
- Department of Anatomy, Osaka Dental University
| | | | | | | | | |
Collapse
|
4
|
Okada Y, Sato T, Islam ST, Ohke H, Saitoh M, Ishii H. Site-specific autonomic vasomotor responses and their interactions in rat gingiva. Microvasc Res 2024; 152:104646. [PMID: 38092222 DOI: 10.1016/j.mvr.2023.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Blood flow in the gingiva, comprising the interdental papilla as well as attached and marginal gingiva, is important for maintaining of gingival function and is modulated by risk factors such as stress that may lead to periodontal disease. Marked blood flow changes mediated by the autonomic (parasympathetic and sympathetic) nervous system may be essential for gingival hemodynamics. However, differences in autonomic vasomotor responses and their functional significance in different parts of the gingiva are unclear. We examined the differences in autonomic vasomotor responses and their interactions in the gingiva of anesthetized rats. Parasympathetic vasodilation evoked by the trigeminal (lingual nerve)-mediated reflex elicited frequency-dependent blood flow increases in gingivae, with the increases being greatest in the interdental papilla. Parasympathetic blood flow increases were significantly reduced by intravenous administration of the atropine and VIP antagonist. The blood flow increase evoked by acetylcholine administration was higher in the interdental papilla than in the attached gingiva, whereas that evoked by VIP agonist administration was greater in the attached gingiva than in the interdental papilla. Activation of the cervical sympathetic nerves decreased gingival blood flow and inhibited parasympathetically induced blood flow increases. Our results suggest that trigeminal-parasympathetic reflex vasodilation 1) is more involved in the regulation of blood flow in the interdental papilla than in the other parts of the gingiva, 2) is mediated by cholinergic (interdental papilla) and VIPergic systems (attached gingiva), and 3) is inhibited by excess sympathetic activity. These results suggest a role in the etiology of periodontal diseases during mental stress.
Collapse
Affiliation(s)
- Yunosuke Okada
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Syed Taufiqul Islam
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hanako Ohke
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Masato Saitoh
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
5
|
Qu Y, Sun X, Wei N, Wang K. Inhibition of cutaneous heat-sensitive Ca 2+ -permeable transient receptor potential vanilloid 3 channels alleviates UVB-induced skin lesions in mice. FASEB J 2023; 37:e23309. [PMID: 37983944 DOI: 10.1096/fj.202301591rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Ultraviolet B (UVB) radiation causes skin injury by trigging excessive calcium influx and signaling cascades in the skin keratinocytes. The heat-sensitive Ca2+ -permeable transient receptor potential vanilloid 3 (TRPV3) channels robustly expressed in the keratinocytes play an important role in skin barrier formation and wound healing. Here, we report that inhibition of cutaneous TRPV3 alleviates UVB radiation-induced skin lesions. In mouse models of ear swelling and dorsal skin injury induced by a single exposure of weak UVB radiation, TRPV3 genes and proteins were upregulated in quantitative real-time PCR and Western blot assays. In accompany with TRPV3 upregulations, the expressions of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were also increased. Knockout of the TRPV3 gene alleviates UVB-induced ear swelling and dorsal skin inflammation. Furthermore, topical applications of two selective TRPV3 inhibitors, osthole and verbascoside, resulted in a dose-dependent attenuation of skin inflammation and lesions. Taken together, our findings demonstrate the causative role of overactive TRPV3 channel function in the development of UVB-induced skin injury. Therefore, topical inhibition of TRPV3 may hold potential therapy or prevention of UVB radiation-induced skin injury.
Collapse
Affiliation(s)
- Yaxuan Qu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Xiaoying Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Priyadarshi A, Keshri GK, Gupta A. Dual-NIR wavelength (pulsed 810 nm and superpulsed 904 nm lasers) photobiomodulation therapy synergistically augments full-thickness burn wound healing: A non-invasive approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 246:112761. [PMID: 37542937 DOI: 10.1016/j.jphotobiol.2023.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
A thermal burn is the most frequent, distressing form of trauma. Globally, there is a critical necessity to explore novel therapeutic strategies for burn wound care. Combination therapy has marked therapeutic efficacy in positively regulating various phases of wound repair. Photobiomodulation (PBM) is a biophysical, non-thermal therapeutic healing modality to treat chronic non-healing wounds. It hypothesized that PBM using combined NIR wavelengths may absorb through different cellular photoacceptors with varying degrees of tissue penetration, which can potentially regulate the pace of healing. Therefore, the current study investigates the efficacy of dual-NIR wavelength treatment employing pulsed 810 nm and superpulsed 904 nm lasers PBM on transdermal burn repair in rats and unveils the associated molecular mechanistic insights. Rats were randomized into five groups: uninjured skin, burn control (sham-exposed), standalone treatment with pulsed 810 nm laser, superpulsed 904 nm laser, and dual combination groups. The present findings revealed that PBM with dual-NIR wavelength synergistically augmented burn wound healing compared to control and standalone treatments. The efficacy of combined treatment was exhibited by significantly enhanced wound area contraction (α-smooth muscle actin), proliferation (PCNA, cytokeratin-14, TGF-β2), angiogenesis (HIF-1α, CD31), ECM accumulation/ organization (collagen type 3, fibronectin), dermal hydration (AQP3), calcium homeostasis (TRPV3, calmodulin), and bioenergetics activation (CCO, AMPK-α, ATP). Collectively, PBM with dual-NIR wavelength (pulsed/ superpulsed-mode) treatment accelerates full-thickness burn wound healing, which could be used as a non-invasive translational approach in clinical significance in conjunction with existing burn wound care management.
Collapse
Affiliation(s)
- Ashok Priyadarshi
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110 054, India
| | - Gaurav K Keshri
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110 054, India
| | - Asheesh Gupta
- Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110 054, India.
| |
Collapse
|
7
|
Zheng Y, Huang Q, Zhang Y, Geng L, Wang W, Zhang H, He X, Li Q. Multimodal roles of transient receptor potential channel activation in inducing pathological tissue scarification. Front Immunol 2023; 14:1237992. [PMID: 37705977 PMCID: PMC10497121 DOI: 10.3389/fimmu.2023.1237992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential (TRP) channels are a class of transmembrane proteins that can sense a variety of physical/chemical stimuli, participate in the pathological processes of various diseases and have attracted increasing attention from researchers. Recent studies have shown that some TRP channels are involved in the development of pathological scarification (PS) and directly participate in PS fibrosis and re-epithelialization or indirectly activate immune cells to release cytokines and neuropeptides, which is subdivided into immune inflammation, fibrosis, pruritus and mechanical forces increased. This review elaborates on the characteristics of TRP channels, the mechanism of PS and how TRP channels mediate the development of PS, summarizes the important role of TRP channels in the different pathogenesis of PS and proposes that therapeutic strategies targeting TRP will be important for the prevention and treatment of PS. TRP channels are expected to become new targets for PS, which will make further breakthroughs and provide potential pharmacological targets and directions for the in-depth study of PS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Dang TH, Kim JY, Kim HJ, Kim BJ, Kim WK, Nam JH. Alpha-Mangostin: A Potent Inhibitor of TRPV3 and Pro-Inflammatory Cytokine Secretion in Keratinocytes. Int J Mol Sci 2023; 24:12930. [PMID: 37629111 PMCID: PMC10455244 DOI: 10.3390/ijms241612930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The TRPV3 calcium ion channel is vital for maintaining skin health and has been associated with various skin-related disorders. Since TRPV3 is involved in the development of skin inflammation, inhibiting TRPV3 could be a potential treatment strategy. Alpha-mangostin isolated from Garcinia mangostana L. extract exhibits diverse positive effects on skin health; however, the underlying mechanisms remain obscure. This study investigated the TRPV3-inhibitory properties of alpha-mangostin on TRPV3 hyperactive mutants associated with Olmsted syndrome and its impact on TRPV3-induced cytokine secretion and cell death. Our findings demonstrate that alpha-mangostin effectively inhibits TRPV3, with an IC50 of 0.077 ± 0.013 μM, showing inhibitory effects on both wild-type and mutant TRPV3. TRPV3 inhibition with alpha-mangostin decreased calcium influx and cytokine release, protecting cells from TRPV3-induced death. These results indicate that alpha-mangostin reduced inflammation in TRPV3-activated skin keratinocytes, suggesting that alpha-mangostin could be potentially used for improving inflammatory skin conditions such as dermatitis.
Collapse
Affiliation(s)
- Thi Huyen Dang
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Ji Yeong Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea;
| | - Woo Kyung Kim
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
- Department of Internal Medicine Graduate School of Medicine, Dongguk University, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; (T.H.D.); (H.J.K.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| |
Collapse
|
9
|
Lei J, Yoshimoto RU, Matsui T, Amagai M, Kido MA, Tominaga M. Involvement of skin TRPV3 in temperature detection regulated by TMEM79 in mice. Nat Commun 2023; 14:4104. [PMID: 37474531 PMCID: PMC10359276 DOI: 10.1038/s41467-023-39712-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
TRPV3, a non-selective cation transient receptor potential (TRP) ion channel, is activated by warm temperatures. It is predominantly expressed in skin keratinocytes, and participates in various somatic processes. Previous studies have reported that thermosensation in mice lacking TRPV3 was impaired. Here, we identified a transmembrane protein, TMEM79, that acts as a negative regulator of TRPV3. Heterologous expression of TMEM79 was capable of suppressing TRPV3-mediated currents in HEK293T cells. In addition, TMEM79 modulated TRPV3 translocalization and promoted its degradation in the lysosomes. TRPV3-mediated currents and Ca2+ influx were potentiated in primary mouse keratinocytes lacking TMEM79. Furthermore, TMEM79-deficient male mice preferred a higher temperature than did wild-type mice due to elevated TRPV3 function. Our study revealed unique interactions between TRPV3 and TMEM79, both in vitro and in vivo. These findings support roles for TMEM79 and TRPV3 in thermosensation.
Collapse
Affiliation(s)
- Jing Lei
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585, Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 849-8501, Saga, Japan
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, 230-0045, Yokohama, Japan
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, 192-0982, Tokyo, Japan
- Department of Dermatology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, 230-0045, Yokohama, Japan
- Department of Dermatology, Keio University School of Medicine, 160-8582, Tokyo, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 849-8501, Saga, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan.
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), 444-8585, Okazaki, Japan.
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787, Okazaki, Japan.
| |
Collapse
|
10
|
Cao A, Gao W, Sawada T, Yoshimoto RU, Aijima R, Ohsaki Y, Kido MA. Transient Receptor Potential Channel Vanilloid 1 Contributes to Facial Mechanical Hypersensitivity in a Mouse Model of Atopic Asthma. J Transl Med 2023; 103:100149. [PMID: 37059266 DOI: 10.1016/j.labinv.2023.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Sensitive skin, a common pathophysiological feature of allergic diseases, is defined as an unpleasant sensation in response to stimuli that normally should not provoke such sensations. However, the relationship between allergic inflammation and hypersensitive skin in the trigeminal system remains to be elucidated. To explore whether bronchial allergic inflammation affects facial skin and primary sensory neurons, we used an ovalbumin (OVA)-induced asthma mouse model. Significant mechanical hypersensitivity was observed in the facial skin of mice with pulmonary inflammation induced by OVA sensitization compared to mice treated with adjuvant or vehicle as controls. The skin of OVA-treated mice showed an increased number of nerve fibers, especially rich intraepithelial nerves, compared to controls. Transient receptor potential channel vanilloid 1 (TRPV1)-immunoreactive nerves were enriched in the skin of OVA-treated mice. Moreover, epithelial TRPV1 expression was higher in OVA-treated mice than in controls. Trigeminal ganglia of OVA-treated mice displayed larger numbers of activated microglia/macrophages and satellite glia. In addition, more TRPV1 immunoreactive neurons were found in the trigeminal ganglia of OVA-treated mice than in controls. Mechanical hypersensitivity was suppressed in OVA-treated Trpv1-deficient mice, while topical skin application of a TRPV1 antagonist before behavioral testing reduced the reaction induced by mechanical stimulation. Our findings reveal that mice with allergic inflammation of the bronchi had mechanical hypersensitivity in the facial skin that may have resulted from TRPV1-mediated neuronal plasticity and glial activation in the trigeminal ganglion.
Collapse
Affiliation(s)
- Ailin Cao
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; Department of Oral Pathology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Weiqi Gao
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Sawada
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; Department of Oral Pathology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Reona Aijima
- Department of Oral Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuyoshi Ohsaki
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan; Department of Oral Pathology, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
11
|
Kalinovskii AP, Utkina LL, Korolkova YV, Andreev YA. TRPV3 Ion Channel: From Gene to Pharmacology. Int J Mol Sci 2023; 24:ijms24108601. [PMID: 37239947 DOI: 10.3390/ijms24108601] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel's function in normal and pathological states.
Collapse
Affiliation(s)
- Aleksandr P Kalinovskii
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lyubov L Utkina
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Yuliya V Korolkova
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yaroslav A Andreev
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCh RAS), 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trbetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
12
|
Yamanoi Y, Lei J, Takayama Y, Hosogi S, Marunaka Y, Tominaga M. TRPV3-ANO1 interaction positively regulates wound healing in keratinocytes. Commun Biol 2023; 6:88. [PMID: 36690845 PMCID: PMC9870996 DOI: 10.1038/s42003-023-04482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Transient receptor potential vanilloid 3 (TRPV3) belongs to the TRP ion channel super family and functions as a nonselective cation channel that is highly permeable to calcium. This channel is strongly expressed in skin keratinocytes and is involved in warmth sensation, itch, wound healing and secretion of several cytokines. Previous studies showed that anoctamin1 (ANO1), a calcium-activated chloride channel, was activated by calcium influx through TRPV1, TRPV4 or TRPA1 and that these channel interactions were important for TRP channel-mediated physiological functions. We found that ANO1 was expressed by normal human epidermal keratinocytes (NHEKs). We observed that ANO1 mediated currents upon TRPV3 activation of NHEKs and mouse skin keratinocytes. Using an in vitro wound-healing assay, we observed that either a TRPV3 blocker, an ANO1 blocker or low chloride medium inhibited cell migration and proliferation through p38 phosphorylation, leading to cell cycle arrest. These results indicated that chloride influx through ANO1 activity enhanced wound healing by keratinocytes.
Collapse
Affiliation(s)
- Yu Yamanoi
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Research Laboratory, Ikedamohando Co., Ltd., 16 Jinden, Kamiichi, Nakaniikawa, Toyama, 930-0394, Japan
| | - Jing Lei
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Shigekuni Hosogi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yoshinori Marunaka
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Makoto Tominaga
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
13
|
TRPV3: Structure, Diseases and Modulators. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020774. [PMID: 36677834 PMCID: PMC9865980 DOI: 10.3390/molecules28020774] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Transient receptor potential vanillin 3 (TRPV3) is a member of the transient receptor potential (TRP) superfamily. As a Ca2+-permeable nonselective cation channel, TRPV3 can recognize thermal stimulation (31-39 °C), and it plays an important regulatory role in temperature perception, pain transduction, skin physiology, inflammation, cancer and other diseases. TRPV3 is not only activated by the changes in the temperature, but it also can be activated by a variety of chemical and physical stimuli. Selective TRPV3 agonists and antagonists with regulatory effects and the physiological functions for clinical application are highly demanded. In recent years, significant progress has been made in the study of TRPV3, but there is still a lack of modulators with a strong affinity and excellent selectivity. This paper reviews the functional characteristics of TRPV3 in terms of the structure, diseases and the research on TRPV3 modulators.
Collapse
|
14
|
Fan J, Hu L, Yue Z, Liao D, Guo F, Ke H, Jiang D, Yang Y, Lei X. Structural basis of TRPV3 inhibition by an antagonist. Nat Chem Biol 2023; 19:81-90. [PMID: 36302896 DOI: 10.1038/s41589-022-01166-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022]
Abstract
The TRPV3 channel plays vital roles in skin physiology. Dysfunction of TRPV3 causes skin diseases, including Olmsted syndrome. However, the lack of potent and selective inhibitors impedes the validation of TRPV3 as a therapeutic target. In this study, we identified Trpvicin as a potent and subtype-selective inhibitor of TRPV3. Trpvicin exhibits pharmacological potential in the inhibition of itch and hair loss in mouse models. Cryogenic electron microscopy structures of TRPV3 and the pathogenic G573S mutant complexed with Trpvicin reveal detailed ligand-binding sites, suggesting that Trpvicin inhibits the TRPV3 channel by stabilizing it in a closed state. Our G573S mutant structures demonstrate that the mutation causes a dilated pore, generating constitutive opening activity. Trpvicin accesses additional binding sites inside the central cavity of the G573S mutant to remodel the channel symmetry and block the channel. Together, our results provide mechanistic insights into the inhibition of TRPV3 by Trpvicin and support TRPV3-related drug development.
Collapse
Affiliation(s)
- Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Linghan Hu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | | | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Yong Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
15
|
Differences in the regulatory mechanism of blood flow in the orofacial area mediated by neural and humoral systems. J Comp Physiol B 2023; 193:109-124. [PMID: 36436073 DOI: 10.1007/s00360-022-01470-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Marked blood flow (BF) changes mediated by the autonomic neural and humoral systems may be important for orofacial hemodynamics and functions. However, it remains questionable whether differences in the autonomic vasomotor responses mediated by neural and humoral systems exist in the orofacial area. This study examined whether there are differences in changes in the BF and vascular conductance (VC) between the masseter muscle and lower lip mediated by autonomic neural and humoral systems in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve elicited BF increases in the masseter (mainly cholinergic) and lower lip (mainly non-cholinergic), accompanied by an increase in arterial blood pressure (ABP), while cervical sympathetic trunk stimulation consistently decreased BF at both sites. The lingual nerve stimulation induced a biphasic change in the VC in the masseter, consisting of an initial decrease and a successive increase. This decrease in VC was positively correlated with changes in ABP and diminished by guanethidine. Cervical vagus nerve stimulation also induced BF increases at both sites; the increases were greater in the masseter than in the lower lip. Adrenal nerve stimulation and isoproterenol administration induced BF increases in the masseter but not in the lower lip. These results indicate that cholinergic parasympathetic-mediated hemodynamics evoked by trigeminal somatosensory inputs are closely related to ABP changes. The sympathetic nervous system, including the sympathoadrenal system and visceral inputs, may be more involved in hemodynamics in the muscles than in epithelial tissues in the orofacial area.
Collapse
|
16
|
Sahu RP, Goswami C. Presence of TRPV3 in macrophage lysosomes helps in skin wound healing against bacterial infection. Exp Dermatol 2023; 32:60-74. [PMID: 36195996 DOI: 10.1111/exd.14683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
Transient Receptor Potential Vanilloid subtype 3 (TRPV3) is a non-selective cation channel that is known to be activated by physiological temperature and endogenous ligands. Involvement of TRPV3 in different skin functions has been reported. In this work, we demonstrate that activation of TRPV3 by FPP, an endogenous ligand enhances skin wound healing and bacterial clearance there. We report for the first time that TRPV3 is endogenously expressed in macrophages and activation of TRPV3 results in efficient bacterial clearance. At the subcellular level, TRPV3 is present in the lysosome and also in the nucleolus. We demonstrate that pharmacological modulation of TRPV3 protects lysosomal functions at hyperthermic shock conditions. The localization of TRPV3 at the nucleolus is specific, more in case of LPS-treatment and dynamic with respect to the cell signalling. We demonstrate that at certain conditions, the nucleolar localization of TRPV3 is correlated with the presence of TRPV3 at the lysosome and with the cellular stress in general. We propose that TRPV3 act as a lysosomal regulator and sensor for cellular stress. These findings may have broad implications in understanding the cellular stress and TRPV3-induced channelopathies and may have clinical relevance to skin infection treatment.
Collapse
Affiliation(s)
- Ram P Sahu
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, Khurda, Odisha, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological Sciences, Khurda, Odisha, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
17
|
Localization of TRP Channels in Healthy Oral Mucosa from Human Donors. eNeuro 2022; 9:ENEURO.0328-21.2022. [PMID: 36635242 PMCID: PMC9797210 DOI: 10.1523/eneuro.0328-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity is exposed to a remarkable range of noxious and innocuous conditions, including temperature fluctuations, mechanical forces, inflammation, and environmental and endogenous chemicals. How such changes in the oral environment are sensed is not completely understood. Transient receptor potential (TRP) ion channels are a diverse family of molecular receptors that are activated by chemicals, temperature changes, and tissue damage. In non-neuronal cells, TRP channels play roles in inflammation, tissue development, and maintenance. In somatosensory neurons, TRP channels mediate nociception, thermosensation, and chemosensation. To assess whether TRP channels might be involved in environmental sensing in the human oral cavity, we investigated their distribution in human tongue and hard palate biopsies. TRPV3 and TRPV4 were expressed in epithelial cells with inverse expression patterns where they likely contribute to epithelial development and integrity. TRPA1 immunoreactivity was present in fibroblasts, immune cells, and neuronal afferents, consistent with known roles of TRPA1 in sensory transduction and response to damage and inflammation. TRPM8 immunoreactivity was found in lamina propria and neuronal subpopulations including within the end bulbs of Krause, consistent with a role in thermal sensation. TRPV1 immunoreactivity was identified in intraepithelial nerve fibers and end bulbs of Krause, consistent with roles in nociception and thermosensation. TRPM8 and TRPV1 immunoreactivity in end bulbs of Krause suggest that these structures contain a variety of neuronal afferents, including those that mediate nociception, thermosensation, and mechanotransduction. Collectively, these studies support the role of TRP channels in oral environmental surveillance and response.
Collapse
|
18
|
TRPV3 promotes the angiogenesis through HIF-1α-VEGF signaling pathway in A549 cells. Acta Histochem 2022; 124:151955. [DOI: 10.1016/j.acthis.2022.151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
|
19
|
Maier M, Olthoff S, Hill K, Zosel C, Magauer T, Wein LA, Schaefer M. KS0365, a novel activator of the transient receptor potential vanilloid 3 (TRPV3) channel, accelerates keratinocyte migration. Br J Pharmacol 2022; 179:5290-5304. [PMID: 35916168 DOI: 10.1111/bph.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ signalling mediated by the thermosensitive, non-selective, Ca2+ -permeable transient receptor potential channel TRPV3 is assumed to play a critical role in regulating several aspects of skin functions, such as keratinocyte proliferation, differentiation, skin barrier formation and wound healing. Studying the function of TRPV3 in skin homeostasis, however, is still constrained by a lack of potent and selective pharmacological modulators of TRPV3. EXPERIMENTAL APPROACH By screening an in-house compound library using fluorometric intracellular Ca2+ assays, we identified two chemically related hits. The more potent and efficient TRPV3 activator KS0365 was further evaluated in fluo-4-assisted Ca2+ assays, different Ca2+ imaging approaches, electrophysiological studies, cytotoxicity and migration assays. KEY RESULTS KS0365 activated recombinant and native mouse TRPV3 more potently and with a higher efficacy compared to 2-APB and did not activate TRPV1, TRPV2 or TRPV4 channels. The activation of TRPV3 by KS0365 super-additively accelerated the EGF-induced keratinocyte migration, which was inhibited by the TRP channel blocker ruthenium red or by siRNA-mediated TRPV3 knockdown. Moreover, KS0365 induced strong Ca2+ responses in migrating front cells and in leading edges of keratinocytes. CONCLUSIONS AND IMPLICATIONS The selective TRPV3 activator KS0365 triggers increases in [Ca2+ ]i with most prominent signals in the leading edge, and accelerates migration of keratinocytes. TRPV3 activators may promote reepithelialization upon skin wounding.
Collapse
Affiliation(s)
- Marion Maier
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Stefan Olthoff
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Kerstin Hill
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Carolin Zosel
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| | - Thomas Magauer
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Lukas Anton Wein
- Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry and Center for Molecular Biosciences, Innsbruck, Austria
| | - Michael Schaefer
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig, Germany
| |
Collapse
|
20
|
Wang Y, Tan L, Jiao K, Xue C, Tang Q, Jiang S, Ren Y, Chen H, El-Aziz TMA, Abdelazeem KNM, Yu Y, Zhao F, Zhu MX, Cao Z. Scutellarein Attenuates Atopic Dermatitis by Selectively Inhibiting Transient Receptor Potential Vanilloid 3. Br J Pharmacol 2022; 179:4792-4808. [PMID: 35771623 DOI: 10.1111/bph.15913] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Atopic dermatitis (AD) is one of the most common chronic inflammatory cutaneous diseases with unmet clinical needs. As a common ingredient found in several medicinal herbs with efficacy on cutaneous inflammatory diseases, Scutellarein (Scu) has been shown to possess anti-inflammatory and anti-proliferative activities. We aimed to evaluate the therapeutic efficacy of Scu against AD and its underlying molecular mechanism. EXPERIMENTAL APPROACH Efficacy of Scu on AD was evaluated in 2,4-dinitrofluorobenzene (DNFB) and carvacrol-induced dermatitis mouse models. Cytokine mRNA and serum IgE levels were examined using qPCR and ELISA, respectively. Voltage clamp recordings were used to measure currents mediated by transient receptor potential (TRP) channels. In silico docking, site-direct mutagenesis, and covalent modification were used to explore the binding pocket of Scu on TRPV3. KEY RESULTS Subcutaneous administration of Scu efficaciously suppresses DNFB and carvacrol-induced pruritus, epidermal hyperplasia and skin inflammation in wild type mice but has no additional benefit in Trpv3 knockout mice in the carvacrol model. Scu is a potent and selective TRPV3 channel allosteric negative modulator with an apparent affinity of 1.18 μM. Molecular docking coupled with site-direct mutagenesis and covalent modification of incorporated cysteine residues demonstrate that Scu targets the cavity formed between the pore helix and transmembrane helix S6. Moreover, Scu attenuates endogenous TRPV3 activity in human keratinocytes and inhibits carvacrol-induced proliferative and proinflammatory responses. CONCLUSIONS AND IMPLICATIONS Collectively, these data demonstrate that Scu ameliorates carvacrol-induced skin inflammation by directly inhibiting TRPV3, and TRPV3 represents a viable therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Yujing Wang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liaoxi Tan
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejun Jiao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shan Jiang
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | | | - Khalid N M Abdelazeem
- Radiation Biology Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ye Yu
- Department of Basic Medicine, School of Basic Medicine and Clinic Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Neuberger A, Nadezhdin KD, Sobolevsky AI. Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine. Nat Commun 2022; 13:2795. [PMID: 35589741 PMCID: PMC9120478 DOI: 10.1038/s41467-022-30537-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/05/2022] [Indexed: 02/02/2023] Open
Abstract
Skin diseases are common human illnesses that occur in all cultures, at all ages, and affect between 30% and 70% of individuals globally. TRPV3 is a cation-permeable TRP channel predominantly expressed in skin keratinocytes, implicated in cutaneous sensation and associated with numerous skin diseases. TRPV3 is inhibited by the local anesthetic dyclonine, traditionally used for topical applications to relieve pain and itch. However, the structural basis of TRPV3 inhibition by dyclonine has remained elusive. Here we present a cryo-EM structure of a TRPV3-dyclonine complex that reveals binding of the inhibitor in the portals which connect the membrane environment surrounding the channel to the central cavity of the channel pore. We propose a mechanism of TRPV3 inhibition in which dyclonine molecules stick out into the channel pore, creating a barrier for ion conductance. The allosteric binding site of dyclonine can serve as a template for the design of new TRPV3-targeting drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Rozza AL, Beserra FP, Vieira AJ, Oliveira de Souza E, Hussni CA, Martinez ERM, Nóbrega RH, Pellizzon CH. The Use of Menthol in Skin Wound Healing-Anti-Inflammatory Potential, Antioxidant Defense System Stimulation and Increased Epithelialization. Pharmaceutics 2021; 13:pharmaceutics13111902. [PMID: 34834317 PMCID: PMC8620938 DOI: 10.3390/pharmaceutics13111902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Wound healing involves inflammatory, proliferative, and remodeling phases, in which various cells and chemical intermediates are involved. This study aimed to investigate the skin wound healing potential of menthol, as well as the mechanisms involved in its effect, after 3, 7, or 14 days of treatment, according to the phases of wound healing. Skin wound was performed in the back of Wistar rats, which were topically treated with vehicle cream; collagenase-based cream (1.2 U/g); or menthol-based cream at 0.25%, 0.5%, or 1.0% over 3, 7, or 14 days. Menthol cream at 0.5% accelerated the healing right from the inflammatory phase (3 days) by decreasing mRNA expression of inflammatory cytokines TNF-α and Il-6. At the proliferative phase (7 days), menthol 0.5% increased the activity of antioxidant enzymes SOD, GR, and GPx, as well as the level of GSH, in addition to decreasing the levels of inflammatory cytokines TNF-α, IL-6, and IL-1β and augmenting mRNA expression for Ki-67, a marker of cellular proliferation. At the remodeling phase (14 days), levels of inflammatory cytokines were decreased, and the level of Il-10 and its mRNA expression were increased in the menthol 0.5% group. Menthol presented skin wound healing activity by modulating the antioxidant system of the cells and the inflammatory response, in addition to stimulating epithelialization.
Collapse
Affiliation(s)
- Ariane Leite Rozza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
- Correspondence:
| | - Fernando Pereira Beserra
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Ana Júlia Vieira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Eduardo Oliveira de Souza
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Carlos Alberto Hussni
- Department of Surgery and Veterinary Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Dr. Walter M Correa Street, Botucatu 18618-689, Brazil;
| | - Emanuel Ricardo Monteiro Martinez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Rafael Henrique Nóbrega
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| | - Cláudia Helena Pellizzon
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Dr. Antonio Celso W Zanin Street, 250, Botucatu 18618-689, Brazil; (F.P.B.); (A.J.V.); (E.O.d.S.); (E.R.M.M.); (R.H.N.); (C.H.P.)
| |
Collapse
|
24
|
Neuberger A, Nadezhdin KD, Zakharian E, Sobolevsky AI. Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole. EMBO Rep 2021; 22:e53233. [PMID: 34472684 PMCID: PMC8567229 DOI: 10.15252/embr.202153233] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
TRPV3, a representative of the vanilloid subfamily of TRP channels, is predominantly expressed in skin keratinocytes and has been implicated in cutaneous sensation and associated with numerous skin pathologies and cancers. TRPV3 is inhibited by the natural coumarin derivative osthole, an active ingredient of Cnidium monnieri, which has been used in traditional Chinese medicine for the treatment of a variety of human diseases. However, the structural basis of channel inhibition by osthole has remained elusive. Here we present cryo-EM structures of TRPV3 in complex with osthole, revealing two types of osthole binding sites in the transmembrane region of TRPV3 that coincide with the binding sites of agonist 2-APB. Osthole binding converts the channel pore into a previously unidentified conformation with a widely open selectivity filter and closed intracellular gate. Our structures provide insight into competitive inhibition of TRPV3 by osthole and can serve as a template for the design of osthole chemistry-inspired drugs targeting TRPV3-associated diseases.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Eleonora Zakharian
- Department of Cancer Biology & PharmacologyUniversity of Illinois College of MedicinePeoriaILUSA
| | | |
Collapse
|
25
|
Mito K, Sato T, Ishikawa R, Ramadhani R, Okada Y, Hirohata Y, Saito T, Ishii H. Age-related decrease of cholinergic parasympathetic reflex vasodilation in the rat masseter muscle. Microvasc Res 2021; 138:104214. [PMID: 34217740 DOI: 10.1016/j.mvr.2021.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skeletal muscle hemodynamics, including that in jaw muscles, is an important in their functions and is modulated by aging. Marked blood flow increases mediated by parasympathetic vasodilation may be important for blood flow in the masseter muscle (MBF); however, the relationship between parasympathetic vasodilation and aging is unclear. We examined the effect of aging on parasympathetic vasodilation evoked by trigeminal afferent inputs and their mechanisms by investigating the MBF during stimulation of the lingual nerve (LN) in young and old urethane-anesthetized and vago-sympathectomized rats. Electrical stimulation of the central cut end of the LN elicited intensity- and frequency-dependent increases in MBF in young rats, while these increases were significantly reduced in old rats. Increases in the MBF evoked by LN stimulation in the young rats were greatly reduced by hexamethonium and atropine administration. Increases in MBF in young rats were produced by exogenous acetylcholine in a dose-dependent manner, whereas acetylcholine did not influence the MBF in old rats. Significant levels of muscarinic acetylcholine receptor type 1 (MR1) and type 3 (MR3) mRNA were observed in the masseter muscle in young rats, but not in old rats. Our results indicate that cholinergic parasympathetic reflex vasodilation evoked by trigeminal afferent inputs to the masseter muscle is reduced by aging and that this reduction may be mediated by suppression of the expression of MR1 and MR3 in the masseter muscle with age.
Collapse
Affiliation(s)
- Kohei Mito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Rina Ishikawa
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Ratna Ramadhani
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yunosuke Okada
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yuri Hirohata
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tetsuro Saito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
26
|
Burrell KL, Nguyen ND, Deering-Rice CE, Memon TA, Almestica-Roberts M, Rapp E, Serna SN, Lamb JG, Reilly CA. Dynamic Expression of Transient Receptor Potential Vanilloid-3 and Integrated Signaling with Growth Factor Pathways during Lung Epithelial Wound Repair following Wood Smoke Particle and Other Forms of Lung Cell Injury. Mol Pharmacol 2021; 100:295-307. [PMID: 34290137 PMCID: PMC11037451 DOI: 10.1124/molpharm.121.000280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
Prior studies revealed increased expression of the transient receptor potential vanilloid-3 (TRPV3) ion channel after wood smoke particulate matter (WSPM) treatment of human bronchial epithelial cells (HBECs). TRPV3 attenuated pathologic endoplasmic reticulum stress and cytotoxicity mediated by transient receptor potential ankyrin-1. Here, the basis for how TRPV3 expression is regulated by cell injury and the effects this has on HBEC physiology and WSPM-induced airway remodeling in mice was investigated. TRPV3 mRNA was rapidly increased in HBECs treated with WSPM and after monolayer damage caused by tryptic disruption, scratch wounding, and cell passaging. TRPV3 mRNA abundance varied with time, and stimulated expression occurred independent of new protein synthesis. Overexpression of TRPV3 in HBECs reduced cell migration and wound repair while enhancing cell adhesion. This phenotype correlated with disrupted mRNA expression of ligands of the epidermal growth factor, tumor growth factor-β, and frizzled receptors. Accordingly, delayed wound repair by TRPV3 overexpressing cells was reversed by growth factor supplementation. In normal HBECs, TRPV3 upregulation was triggered by exogenous growth factor supplementation and was attenuated by inhibitors of growth factor receptor signaling. In mice, subacute oropharyngeal instillation with WSPM also promoted TRPV3 mRNA expression and epithelial remodeling, which was attenuated by TRPV3 antagonist pre- and cotreatment. This latter effect may be the consequence of antagonist-induced TRPV3 expression. These findings provide insights into the roles of TRPV3 in lung epithelial cells under basal and dynamic states, as well as highlight potential roles for TRPV3 ligands in modulating epithelial damage/repair. SIGNIFICANCE STATEMENT: Coordinated epithelial repair is essential for the maintenance of the airways, with deficiencies and exaggerated repair associated with adverse consequences to respiratory health. This study shows that TRPV3, an ion channel, is involved in coordinating repair through integrated repair signaling pathways, wherein TRPV3 expression is upregulated immediately after injury and returns to basal levels as cells complete the repair process. TRPV3 may be a novel target for understanding and/or treating conditions in which airway/lung epithelial repair is not properly orchestrated.
Collapse
Affiliation(s)
- Katherine L Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Samantha N Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
27
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
28
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
29
|
Liu Q, Wang J, Wei X, Hu J, Ping C, Gao Y, Xie C, Wang P, Cao P, Cao Z, Yu Y, Li D, Yao J. Therapeutic inhibition of keratinocyte TRPV3 sensory channel by local anesthetic dyclonine. eLife 2021; 10:e68128. [PMID: 33876725 PMCID: PMC8112869 DOI: 10.7554/elife.68128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The multimodal sensory channel transient receptor potential vanilloid-3 (TRPV3) is expressed in epidermal keratinocytes and implicated in chronic pruritus, allergy, and inflammation-related skin disorders. Gain-of-function mutations of TRPV3 cause hair growth disorders in mice and Olmsted syndrome in humans. Nevertheless, whether and how TRPV3 could be therapeutically targeted remains to be elucidated. We here report that mouse and human TRPV3 channel is targeted by the clinical medication dyclonine that exerts a potent inhibitory effect. Accordingly, dyclonine rescued cell death caused by gain-of-function TRPV3 mutations and suppressed pruritus symptoms in vivo in mouse model. At the single-channel level, dyclonine inhibited TRPV3 open probability but not the unitary conductance. By molecular simulations and mutagenesis, we further uncovered key residues in TRPV3 pore region that could toggle the inhibitory efficiency of dyclonine. The functional and mechanistic insights obtained on dyclonine-TRPV3 interaction will help to conceive therapeutics for skin inflammation.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Xin Wei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Juan Hu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Conghui Ping
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Yue Gao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Chang Xie
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Peiyu Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Dongdong Li
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, Inserm U1130ParisFrance
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan UniversityWuhanChina
| |
Collapse
|
30
|
Wang Y, Li H, Xue C, Chen H, Xue Y, Zhao F, Zhu MX, Cao Z. TRPV3 enhances skin keratinocyte proliferation through EGFR-dependent signaling pathways. Cell Biol Toxicol 2021; 37:313-330. [PMID: 32535744 DOI: 10.1007/s10565-020-09536-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Transient receptor potential vanilloid 3 (TRPV3) is highly expressed in skin keratinocytes where it forms Ca2+-permeable nonselective cation channels to regulate various cutaneous functions. TRPV3 expression is upregulated in many skin disorders. Here, we examined how TRPV3 affects keratinocyte proliferation and investigated the underlying mechanism. Topical application of TRPV3 agonist, carvacrol, increased skin thickness in wild type (WT) mice but not in TRPV3 knockout (KO) mice. Carvacrol promoted proliferation of human keratinocytes HaCaT cells at concentrations ≤ 100 μM, but at 300 μM, it decreased cell viability, suggesting a nonmonotonic proliferative effect. Suppression of TRPV3 expression abolished carvacrol-induced cell proliferation while overexpression of TRPV3 enhanced HaCaT cell proliferation. Carvacrol also stimulated Ca2+ influx and proliferation of primary keratinocytes prepared from WT but not TRPV3 KO mice, suggesting that carvacrol-stimulated cell proliferation was dependent on TRPV3-mediated Ca2+ influx. Mechanistic investigation demonstrated that carvacrol stimulated TGFα release and increased phosphorylation levels of EGFR, PI3K, and NF-κB, effects abolished by suppression of TRPV3 expression and CaMKII inhibition. Moreover, inhibition of CaMKII, EGFR, PI3K, or NF-κB diminished carvacrol-induced cell proliferation. We conclude that while strong activation of TRPV3 may cause cell death, moderate activation of TRPV3 promotes cell proliferation in keratinocytes through Ca2+/CaMKII→TGFα/EGFR→PI3K→NF-κB signaling. Graphical abstract Headlights 1. Carvacrol induces epidermal hyperplasia and keratinocyte proliferation. 2. TRPV3 mediates carvacrol-induced epidermal hyperplasia and keratinocyte proliferation. 3. TRPV3 acts through Ca2+/CaMKII→TGFα/EGFR→PI3K→NF-κB signaling to promote keratinocyte proliferation.
Collapse
Affiliation(s)
- Yujing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Hang Li
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Yanning Xue
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| |
Collapse
|
31
|
Neuberger A, Nadezhdin KD, Sobolevsky AI. TRPV3 expression and purification for structure determination by Cryo-EM. Methods Enzymol 2021; 652:31-48. [PMID: 34059288 DOI: 10.1016/bs.mie.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid-superfamily member 3 (TRPV3) channel is implicated in a variety of physiological processes, including temperature sensing, nociception and itch, maintenance of the skin barrier, wound healing, hair growth, and embryonic development. TRPV3 is also associated with various skin diseases, including Olmsted syndrome, atopic dermatitis, and rosacea. Studies of TRPV3 are of fundamental importance for structural pharmacology aimed at the design of drugs targeting this channel and for understanding the molecular basis of temperature sensing. Here we describe a detailed protocol for expression and purification of chemically pure and stable TRPV3 protein that is suitable for structural and functional characterization of this channel, in particular for cryo-EM sample preparation and high-resolution 3D reconstruction.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
32
|
Kashio M. Thermosensation involving thermo-TRPs. Mol Cell Endocrinol 2021; 520:111089. [PMID: 33227348 DOI: 10.1016/j.mce.2020.111089] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The transient receptor potential (TRP) channels constitute a superfamily of large ion channels that are activated by a wide range of chemical, mechanical and thermal stimuli. TRP channels with temperature sensitivity are called thermo-TRPs. They are involved in diverse physiological functions through their detection of external environmental temperature and internal body temperature. Each thermo-TRP has its own characteristic temperature threshold for activation. As a group, they cover temperatures ranging from cold to nociceptive high temperatures. Recently, many studies have identified the functions of thermo-TRPs residing in deep organs where they are exposed to body temperature. Importantly, temperature thresholds of thermo-TRPs can be regulated by physiological factors enabling their function at relatively constant body temperature. Moreover, several thermo-TRPs are reportedly engaged in body temperature regulation. This review will summarize the current understanding of thermo-TRPs, including their roles in thermosensation and functional regulation of physiological responses at body temperature and the regulation of body temperature.
Collapse
Affiliation(s)
- Makiko Kashio
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
33
|
Bischof M, Olthoff S, Glas C, Thorn-Seshold O, Schaefer M, Hill K. TRPV3 endogenously expressed in murine colonic epithelial cells is inhibited by the novel TRPV3 blocker 26E01. Cell Calcium 2020; 92:102310. [PMID: 33161279 DOI: 10.1016/j.ceca.2020.102310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
TRPV3 is a Ca2+-permeable cation channel, prominently expressed by keratinocytes where it contributes to maintaining the skin barrier, skin regeneration, and keratinocyte differentiation. However, much less is known about its physiological function in other tissues and there is still a need for identifying novel and efficient TRPV3 channel blockers. By screening a compound library, we identified 26E01 as a novel TRPV3 blocker. 26E01 blocks heterologously expressed TRPV3 channels overexpressed in HEK293 cells as assessed by fluorometric intracellular free Ca2+ assays (IC50 = 8.6 μM) but does not affect TRPV1, TRPV2 or TRPV4 channels. Electrophysiological whole-cell recordings confirmed the reversible block of TRPV3 currents by 26E01, which was also effective in excised inside-out patches, hinting to a rather direct mode of action. 26E01 suppresses endogenous TRPV3 currents in the mouse 308 keratinocyte cell line and in the human DLD-1 colon carcinoma cell line (IC50 = 12 μM). In sections of the gastrointestinal epithelium of mice, the expression of TRPV3 mRNA follows a gradient along the gastrointestinal tract, with the highest expression in the distal colon. 26E01 efficiently attenuates 2-aminoethoxydiphenyl borate-induced calcium influx in primary colonic epithelial cells isolated from the distal colon. As 26E01 neither shows toxic effects on DLD-1 cells at concentrations of up to 100 μM in MTT assays nor on mouse primary colonic crypts as assessed by calcein-AM/propidium iodide co-staining, it may serve as a useful tool to further study the physiological function of TRPV3 in various tissues.
Collapse
Affiliation(s)
- Maria Bischof
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Stefan Olthoff
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Carina Glas
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Kerstin Hill
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
34
|
Morita T, Mitsuyama K, Yamasaki H, Mori A, Yoshimura T, Araki T, Morita M, Tsuruta K, Yamasaki S, Kuwaki K, Yoshioka S, Takedatsu H, Torimura T. Gene Expression of Transient Receptor Potential Channels in Peripheral Blood Mononuclear Cells of Inflammatory Bowel Disease Patients. J Clin Med 2020; 9:jcm9082643. [PMID: 32823895 PMCID: PMC7547374 DOI: 10.3390/jcm9082643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
We examined the expression profile of transient receptor potential (TRP) channels in peripheral blood mononuclear cells (PBMCs) from patients with inflammatory bowel disease (IBD). PBMCs were obtained from 41 ulcerative colitis (UC) patients, 34 Crohn's disease (CD) patients, and 30 normal subjects. mRNA levels of TRP channels were measured using the quantitative real-time polymerase chain reaction, and correlation tests with disease ranking, as well as laboratory parameters, were performed. Compared with controls, TRPV2 and TRPC1 mRNA expression was lower, while that of TRPM2, was higher in PBMCs of UC and CD patients. Moreover, TRPV3 mRNA expression was lower, while that of TRPV4 was higher in CD patients. TRPC6 mRNA expression was higher in patients with CD than in patients with UC. There was also a tendency for the expression of TRPV2 mRNA to be negatively correlated with disease activity in patients with UC and CD, while that of TRPM4 mRNA was negatively correlated with disease activity only in patients with UC. PBMCs from patients with IBD exhibited varying mRNA expression levels of TRP channel members, which may play an important role in the progression of IBD.
Collapse
Affiliation(s)
- Taku Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Keiichi Mitsuyama
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
- Correspondence: ; Tel.: +81-942-31-7561
| | - Hiroshi Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Masaru Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Kotaro Kuwaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Hidetoshi Takedatsu
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Takuji Torimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| |
Collapse
|
35
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
36
|
Ohke H, Sato T, Mito K, Terumitsu M, Ishii H. Effect of the parasympathetic vasodilation on temperature regulation via trigeminal afferents in the orofacial area. J Physiol Sci 2020; 70:22. [PMID: 32234014 PMCID: PMC7109144 DOI: 10.1186/s12576-020-00749-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/20/2020] [Indexed: 02/03/2023]
Abstract
The skin temperature (Tm) of the orofacial area influences orofacial functions and is related to the blood flow (BF). Marked increases in BF mediated by parasympathetic vasodilation may be important for orofacial Tm regulation. Therefore, we examined the relationship between parasympathetic reflex vasodilation and orofacial Tm in anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited significant increases in BF and Tm in the lower lip. These increases were significantly reduced by hexamethonium, but not atropine. VIP agonist increased both BF and Tm in the lower lip. The activation of the superior cervical sympathetic trunk (CST) decreased BF and Tm in the lower lip; however, these decreases were significantly inhibited by LN stimulation. Our results suggest that parasympathetic vasodilation plays an important role in the maintaining the hemodynamics and Tm in the orofacial area, and that VIP may be involved in this response.
Collapse
Affiliation(s)
- Hanako Ohke
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Toshiya Sato
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kohei Mito
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Makoto Terumitsu
- Division of Dental Anesthesiology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hisayoshi Ishii
- Division of Physiology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
37
|
Wang S, Geng Q, Huo L, Ma Y, Gao Y, Zhang W, Zhang H, Lv P, Jia Z. Transient Receptor Potential Cation Channel Subfamily Vanilloid 4 and 3 in the Inner Ear Protect Hearing in Mice. Front Mol Neurosci 2019; 12:296. [PMID: 31866822 PMCID: PMC6904345 DOI: 10.3389/fnmol.2019.00296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
The transient receptor potential cation channel, vanilloid type (TRPV) 3, is a member of the TRPV subfamily that is expressed predominantly in the skin, hair follicles, and gastrointestinal tract. It is also distributed in the organ of Corti of the inner ear and colocalizes with TRPV1 or TRPV4, but its role in auditory function is unknown. In the present study, we demonstrate that TRPV3 is expressed in inner hair cells (HCs) but mainly in cochlear outer HCs in mice, with expression limited to the cytoplasm and not detected in stereocilia. We compared the number of HCs as well as distortion product otoacoustic emissions (DPOAE) and auditory brainstem response (ABR) thresholds between TRPV3 knockout (V3KO) and wild-type (V3WT) mice and found that although most mutants (72.3%) had normal hearing, a significant proportion (27.7%) showed impaired hearing associated with loss of cochlear HCs. Compensatory upregulation of TRPV4 in HCs prevented HC damage and kanamycin-induced hearing loss and preserved normal auditory function in most of these mice. Thus, TRPV4 and TRPV3 in cochlear HCs protect hearing in mice; moreover, the results suggest some functional redundancy in the functions of TRPV family members. Our findings provide novel insight into the molecular basis of auditory function in mammals that can be applied to the development of strategies to mitigate hearing loss.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaowei Geng
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Lifang Huo
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yirui Ma
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
38
|
Keshri GK, Yadav A, Verma S, Kumar B, Gupta A. Effects of Pulsed 810 nm Al-Ga-As Diode Laser on Wound Healing Under Immunosuppression: A Molecular Insight. Lasers Surg Med 2019; 52:424-436. [PMID: 31483061 DOI: 10.1002/lsm.23156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES Dysregulated inflammation is one of the major contributing factors for the prevalence of non-healing chronic wound in immunosuppressed subjects. Photobiomodulation (PBM) has emerged as a potential non-thermal, light-based therapeutic healing intervention for the treatment of impaired wounds. STUDY DESIGN/MATERIALS AND METHODS The present study delineates the underlying molecular mechanisms of PBM 810 nm laser-induced full-thickness cutaneous wound repair in immunosuppressed rats at continuous and pulsed wave-mode with power-density of 40 mW/cm 2 , fluence 22.6 J/cm 2 for 10 minutes daily for 7 post-wounding days. Molecular markers were assessed using biochemical, enzyme-linked immunosorbent assay quantification, enzyme kinetics and immunoblots analyses pertaining to inflammation, oxidative stress, cell survival, calcium signaling, and proliferation cascades. RESULTS Results distinctly revealed that pulsed 810 nm (10 Hz) PBM potentially influenced the cell survival and proliferation signaling pathway by significantly upregulated phospho-protein kinase B(phospho-Akt), phospho-extracellular-signal-regulated kinase 1 (ERK1), transient receptor potential vanilloid-3 (TRPV3), Ca2+ , calmodulin, transforming growth factor-β1 (TGF-β1), TGF-βR3, and Na + /K + -ATPase pump levels. PBM treatment resulted in reduction of exaggerated inflammatory responses evident by significantly repressed levels of interleukin-1β (IL-1β), IL-6, cyclooxygenase 2 (COX-2), and substance-P receptor (SPR), as well as inhibited apoptotic cell death by decreasing p53, cytochrome C, and caspase 3 levels (P < 0.05), which, in turn, effectively augment the wound repair in immunosuppressed rats. PBM treatment also lowered 4-hydroxynoneal (HNE) adduct level and NADP/NADPH ratio and upregulated the GRP78 expression, which might culminate into reduced oxidative stress and maintained the redox homeostasis. CONCLUSIONS Taken together, these findings would be helpful in better understanding of the molecular aspects involved in pulsed 810 nm laser-mediated dermal wound healing in immunosuppressed rats through regulation of cell survival and proliferation via Ca2+ -calmodulin, Akt, ERK, and redox signaling. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaurav K Keshri
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Anju Yadav
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Saurabh Verma
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Bhuvnesh Kumar
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Asheesh Gupta
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| |
Collapse
|
39
|
Kitsuki T, Yoshimoto RU, Aijima R, Hatakeyama J, Cao AL, Zhang JQ, Ohsaki Y, Mori Y, Kido MA. Enhanced junctional epithelial permeability in TRPV4-deficient mice. J Periodontal Res 2019; 55:51-60. [PMID: 31343743 PMCID: PMC7027751 DOI: 10.1111/jre.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023]
Abstract
Background and Objective As the interface between the oral cavity and the teeth, the junctional epithelial barrier is critical for gingival defense. The junctional epithelium is subject to mechanical stresses from biting force or external insults such as bacterial attacks, but little is known about the effects of mechanical stimuli on epithelial functions. Transient receptor potential vanilloid 4 (TRPV4) functions as a mechanosensitive nonselective cation channel. In the present study, based on marked expression of TRPV4 in the mouse junctional epithelium, we aimed to clarify the putative links between TRPV4 and junctional complexes in the junctional epithelium. Methods and Results Histological observations revealed that the junctional epithelium in TRPV4‐deficient (TRPV4−/−) mice had wider intercellular spaces than that in wild‐type (TRPV4+/+) mice. Exogenous tracer penetration in the junctional epithelium was greater in TRPV4−/− mice than in TRPV4+/+ mice, and immunoreactivity for adherens junction proteins was suppressed in TRPV4−/− mice compared with TRPV4+/+ mice. Analysis of a mouse periodontitis model showed greater bone volume loss in TRPV4−/− mice compared with TRPV4+/+ mice, indicating that an epithelial barrier deficiency in TRPV4−/− mice may be associated with periodontal complications. Conclusion The present findings identify a crucial role for TRPV4 in the formation of adherens junctions in the junctional epithelium, which could regulate its permeability. TRPV4 may be a candidate pharmacological target to combat periodontal diseases.
Collapse
Affiliation(s)
- Tomoko Kitsuki
- Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.,Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Reiko U Yoshimoto
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Reona Aijima
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Junko Hatakeyama
- Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan.,Department of Operative Dentistry and Endodontology, Fukuoka Dental College, Fukuoka, Japan
| | - Ai-Lin Cao
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Jing-Qi Zhang
- Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuyoshi Ohsaki
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshihide Mori
- Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mizuho A Kido
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
40
|
Yan K, Sun X, Wang G, Liu Y, Wang K. Pharmacological Activation of Thermo–Transient Receptor Potential Vanilloid 3 Channels Inhibits Hair Growth by Inducing Cell Death of Hair Follicle Outer Root Sheath. J Pharmacol Exp Ther 2019; 370:299-307. [DOI: 10.1124/jpet.119.258087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/30/2019] [Indexed: 01/26/2023] Open
|
41
|
Zhang ZM, Wu XL, Zhang GY, Ma X, He DX. Functional food development: Insights from TRP channels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Qi H, Ren J, E M, Zhang Q, Cao Y, Ba L, Song C, Shi P, Fu B, Sun H. MiR-103 inhibiting cardiac hypertrophy through inactivation of myocardial cell autophagy via targeting TRPV3 channel in rat hearts. J Cell Mol Med 2019; 23:1926-1939. [PMID: 30604587 PMCID: PMC6378213 DOI: 10.1111/jcmm.14095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR-103 expression was significantly decreased in heart failure patients. However, less is known about the role of miR-103 in cardiac hypertrophy. The present study was designed to investigate the relationship between miR-103 and the mechanism of pressure overload-induced cardiac hypertrophy. TRPV3 protein, cardiac hypertrophy marker proteins (BNP and β-MHC) and autophagy associated proteins (Beclin-1 and LC3-II) were up-regulated, as well as, miR-103 expression and autophagy associated proteins (p62) were down-regulated in cardiac hypertrophy models in vivo and in vitro respectively. Further results indicated that silencing TRPV3 or forcing overexpression of miR-103 could dramatically inhibit cell surface area, relative fluorescence intensity of Ca2+ signal and the expressions of BNP, β-MHC, Beclin-1 and LC3-II, but promote p62 expression. Moreover, TRPV3 protein was decreased in neonatal rat ventricular myocyte transfected with miR-103, but increased by AMO-103. Co-transfection of the miR-103 with the luciferase reporter vector into HEK293 cells caused a sharp decrease in luciferase activity compared with transfection of the luciferase vector alone. The miR-103-induced depression of luciferase activity was rescued by an AMO-103. These findings suggested that TRPV3 was a direct target of miR-103. In conclusion, miR-103 could attenuate cardiomyocyte hypertrophy partly by reducing cardiac autophagy activity through the targeted inhibition of TRPV3 signalling in the pressure-overloaded rat hearts.
Collapse
Affiliation(s)
- Hanping Qi
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Jing Ren
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Mingyao E
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Qianhui Zhang
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Yonggang Cao
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Lina Ba
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Chao Song
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Pilong Shi
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Bowen Fu
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| | - Hongli Sun
- Department of PharmacologyHarbin Medical University‐DaqingDaqingChina
| |
Collapse
|
43
|
Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci 2019; 20:ijms20030526. [PMID: 30691193 PMCID: PMC6387147 DOI: 10.3390/ijms20030526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Farhana Yahya
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|
44
|
Yoshimoto RU, Aijima R, Ohyama Y, Yoshizumi J, Kitsuki T, Ohsaki Y, Cao AL, Danjo A, Yamashita Y, Kiyoshima T, Kido MA. Impaired Junctions and Invaded Macrophages in Oral Epithelia With Oral Pain. J Histochem Cytochem 2018; 67:245-256. [PMID: 30452872 DOI: 10.1369/0022155418812405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recurrent or chronic oral pain is a great burden for patients. Recently, the links between epithelial barrier loss and disease were extended to include initiation and propagation. To explore the effects of pathohistological changes in oral epithelia on pain, we utilized labial mucosa samples in diagnostic labial gland biopsies from patients with suspected Sjögren's syndrome (SS), because they frequently experience pain and discomfort. In most labial mucosa samples from patients diagnosed with SS, disseminated epithelial cellular edema was prevalent as ballooning degeneration. The disrupted epithelia contained larger numbers of infiltrating macrophages in patients with oral pain than in patients without pain. Immunohistochemistry revealed that edematous areas were distinct from normal areas, with disarranged cell-cell adhesion molecules (filamentous actin, E-cadherin, β-catenin). Furthermore, edematous areas were devoid of immunostaining for transient receptor potential channel vanilloid 4 (TRPV4), a key molecule in adherens junctions. In an investigation on whether impaired TRPV4 affect cell-cell adhesion, calcium stimulation induced intimate cell-cell contacts among oral epithelial cells from wild-type mice, while intercellular spaces were apparent in cells from TRPV4-knockout mice. The present findings highlight the relationship between macrophages and epithelia in oral pain processing, and identify TRPV4-mediated cell-cell contacts as a possible target for pain treatment.
Collapse
Affiliation(s)
- Reiko U Yoshimoto
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Reona Aijima
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yukiko Ohyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junko Yoshizumi
- Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Tomoko Kitsuki
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuyoshi Ohsaki
- Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Ai-Lin Cao
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Atsushi Danjo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshio Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mizuho A Kido
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Histology and Neuroanatomy, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
45
|
Zhang H, Sun X, Qi H, Ma Q, Zhou Q, Wang W, Wang K. Pharmacological Inhibition of the Temperature-Sensitive and Ca2+-Permeable Transient Receptor Potential Vanilloid TRPV3 Channel by Natural Forsythoside B Attenuates Pruritus and Cytotoxicity of Keratinocytes. J Pharmacol Exp Ther 2018; 368:21-31. [DOI: 10.1124/jpet.118.254045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
|
46
|
Macrophage-mediated repair of intraepithelial damage in rat oral mucosa. Arch Oral Biol 2018; 97:185-190. [PMID: 30391795 DOI: 10.1016/j.archoralbio.2018.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE It is important to protect the patient's oral mucosa from injury caused by inappropriate oral care. We established anin vivo model of intraepithelial injury of the oral mucosa and assessed the effects of inappropriate dental apparatus use on inflammatory response of macrophages in rats. DESIGN Using this model, swabbing was performed to the labial mucosa of rats with the interdental brush, and the tissue samples were processed for histological evaluation. RESULTS CD 68-positive macrophage-like cells appeared only in the subepithelial region after intraepithelial injury in the presence and absence of antibiotics. After intraepithelial injury, interleukin-1β levels did not increase beyond those observed in intact rats. The number of bacteria in the lip increased slightly and decreased promptly. In the ear, intraepithelial injury caused an inflammatory response with macrophages infiltrating into the intraepithelial region as well as the subepithelial region, increased interleukin-1β production, and high bacterial levels around tissues. CONCLUSION Our results highlight the importance of protecting against the intraepithelial injury during oral care procedures, and these findings would contribute to oral care risk management in the future.
Collapse
|
47
|
Singh AK, McGoldrick LL, Sobolevsky AI. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat Struct Mol Biol 2018; 25:805-813. [PMID: 30127359 PMCID: PMC6128766 DOI: 10.1038/s41594-018-0108-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022]
Abstract
Transient receptor potential vanilloid subfamily member 3 (TRPV3) channel plays a crucial role in skin physiology and pathophysiology. Mutations in TRPV3 are associated with various skin diseases, including Olmsted syndrome, atopic dermatitis, and rosacea. Here we present the cryo-electron microscopy structures of full-length mouse TRPV3 in the closed apo and agonist-bound open states. The agonist binds three allosteric sites distal to the pore. Channel opening is accompanied by conformational changes in both the outer pore and the intracellular gate. The gate is formed by the pore-lining S6 helices that undergo local α-to-π helical transitions, elongate, rotate, and splay apart in the open state. In the closed state, the shorter S6 segments are entirely α-helical, expose their nonpolar surfaces to the pore, and hydrophobically seal the ion permeation pathway. These findings further illuminate TRP channel activation and can aid in the design of drugs for the treatment of inflammatory skin conditions, itch, and pain.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
Ishii T, Uchida K, Hata S, Hatta M, Kita T, Miyake Y, Okamura K, Tamaoki S, Ishikawa H, Yamazaki J. TRPV2 channel inhibitors attenuate fibroblast differentiation and contraction mediated by keratinocyte-derived TGF-β1 in an in vitro wound healing model of rats. J Dermatol Sci 2018; 90:332-342. [PMID: 29610016 DOI: 10.1016/j.jdermsci.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Keratinocytes release several factors that are involved in wound contracture and scar formation. We previously reported that a three-dimensional reconstruction model derived from rat skin represents a good wound healing model. OBJECTIVE We characterized the role of transient receptor potential (TRP) channels in the release of transforming growth factor (TGF)-β1 from keratinocytes and the differentiation of fibroblasts to identify possible promising pharmacological approaches to prevent scar formation and contractures. METHODS The three-dimensional culture model was made from rat keratinocytes seeded on a collagen gel in which dermal fibroblasts had been embedded. RESULTS Among the TRP channel inhibitors tested, the TRPV2 inhibitors SKF96365 and tranilast attenuated most potently keratinocyte-dependent and - independent collagen gel contraction due to TGF-β signaling as well as TGF-β1 release from keratinocytes and α-smooth muscle actin production in myofibroblasts. Besides the low amounts detected in normal dermis, TRPV2 mRNA and protein levels were increased after fibroblasts were embedded in the gel. TRPV2 was also expressed in the epidermis and keratinocyte layers of the model. Both inhibitors and TRPV2 siRNA attenuated the intracellular increase of Ca2+ induced by the TRPV agonist 2-aminoethoxydiphenyl borate in TGF-β1-pretreated fibroblasts. CONCLUSION This is the first study to show that compounds targeting TRPV2 channels ameliorate wound contraction through the inhibition of TGF-β1 release and the differentiation of dermal fibroblasts in a culture model.
Collapse
Affiliation(s)
- Taro Ishii
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan
| | - Shozaburo Hata
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | - Mitsutoki Hatta
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan
| | - Tomo Kita
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan
| | - Yuki Miyake
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | - Kazuhiko Okamura
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | | | - Jun Yamazaki
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan.
| |
Collapse
|
49
|
Zhang Q, Cao Y, Luo Q, Wang P, Shi P, Song C, E M, Ren J, Fu B, Sun H. The transient receptor potential vanilloid-3 regulates hypoxia-mediated pulmonary artery smooth muscle cells proliferation via PI3K/AKT signaling pathway. Cell Prolif 2018; 51:e12436. [PMID: 29359496 DOI: 10.1111/cpr.12436] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTVES Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+ -permeant cation channels. In this study, we aim to investigate the role of TRPV3 in pulmonary vascular remodeling and PASMCs proliferation under hypoxia. MATERIALS AND METHODS The expression of TRPV3 was evaluated in patients with pulmonary arterial hypertension (PAH) and hypoxic rats, using hematoxylin and eosin (H&E) and immunohistochemistry. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of TRPV3 on proliferation of PASMCs. RESULTS We found that, in vivo, the expression of TRPV3 was increased in patients with PAH and hypoxic rats. Right ventricular hypertrophy measurements and pulmonary pathomorphology data show that the ratio of the heart weight/tibia length (HW/TL), the right ventricle/left ventricle plus septum (RV/LV+S) and the medial width of the pulmonary artery were increased in chronic hypoxic rats. Moreover, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D, Cyclin E and Cyclin A, phospho-CaMKII (p-CaMKII) were induced by hypoxia. In vitro, we revealed that hypoxia promoted PASMCs viability, increased the expression of PCNA, Cyclin D, Cyclin E, Cyclin A p-CaMKII, made more cells from G0 /G1 phase to G2 /M + S phase, enhanced the microtubule formation, and increased [Ca2+ ]i , which could be suppressed by Ruthenium Red, an inhibitor of TRPV3, and TRPV3 silencing has similar effects. Furthermore, the up-regulated expression of PCNA, Cyclin D, Cyclin E and Cyclin A, the increased number of cells in G2 /M and S phase, and the enhanced activation and expression of PI3K and AKT proteins induced by hypoxia and in presence of carvacrol (an agonist of TRPV3), was significantly attenuated by incubation of LY 294002, a specific inhibitor for PI3K/AKT. CONCLUSIONS These findings suggest that TRPV3 is involved in hypoxia-induced pulmonary vascular remodeling and promotes proliferation of PASMCs and the effect is, at least in part, mediated via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qianlong Zhang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Qian Luo
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Mingyao E
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Jing Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Bowen Fu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
50
|
Liu Y, Qi H, E M, Shi P, Zhang Q, Li S, Wang Y, Cao Y, Chen Y, Ba L, Gao J, Huang W, Sun H. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:131-143. [DOI: 10.1007/s00210-017-1443-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
|