1
|
Li Y, Yishajiang S, Chen Y, Tulahong G, Wen W, Wang M, Li Z. TRPC5-mediated NLRP3 inflammasome activation contributes to myocardial cell pyroptosis in chronic intermittent hypoxia rats. Acta Cardiol 2024; 79:796-804. [PMID: 39377158 DOI: 10.1080/00015385.2024.2408137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) is the primary cause of myocardial inflammation in obstructive sleep apnea-hypopnea syndrome (OSAHS). Pyroptosis is a newly discovered form of programmed cell death accompanying inflammatory reactions. Our previous study showed that TRPC5 is upregulated in the myocardial injury of CIH rats. The present study aimed to explore the role of TRPC5 in CIH-induced myocardial cell pyroptosis. METHODS A model of CIH in OSA rats was established. SD rats were randomly divided into control group(8rats) and OSA group(8rats). Scanning electron microscope(SEM) was performed on left ventricular tissues slides. Western blot were used to detect the expression levels of pyroptosis-related factors and TRPC5 and its downstream proteins in myocardia tissue. RESULTS The pyroptosis of myocardial cells by SEM revealed damaged cell membrane integrity of OSA group rats, with fibrous tissue attached to the cell membrane surface, and vesicular protrusions and pyroptotic bodies were observed. Compared to the control group, the expression of pyroptosis-related proteins, such as caspase1, pro-IL-1β, IL-1β, IL-18, GSDMD, and GSDMD-N was upregulated in the OSA group (p < 0.05). Compared to the control group, the expression of TRPC5, NLPR3, p-CaMKIIβ + δ+γ, and HDAC4 was higher in the OSA group (p < 0.05). CONCLUSIONS These findings indicated that the pyroptosis response increases in CIH-induced myocardial injury, and the mechanism that TRPC5 is upregulated, promoting the expression of NLRP3 and inflammasome formation through CaMKII phosphorylation and HDAC4 cytoplasmic translocation. This might be a potential target for the treatment of OSA-induced myocardial injury.
Collapse
Affiliation(s)
- Yu Li
- Second Department of General Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sharezhati Yishajiang
- Department of Hypertension, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yulan Chen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gulinazi Tulahong
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wen Wen
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengmeng Wang
- Department of Hypertension, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiqiang Li
- Animal Experiments Center, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Sanchez-Collado J, Lopez JJ, Jardin I, Berna-Erro A, Camello PJ, Cantonero C, Smani T, Salido GM, Rosado JA. Orai1α, but not Orai1β, co-localizes with TRPC1 and is required for its plasma membrane location and activation in HeLa cells. Cell Mol Life Sci 2022; 79:33. [PMID: 34988680 PMCID: PMC8732813 DOI: 10.1007/s00018-021-04098-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
The identification of two variants of the canonical pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel Orai1, Orai1α and Orai1β, in mammalian cells arises the question whether they exhibit different functional characteristics. Orai1α and Orai1β differ in the N-terminal 63 amino acids, exclusive of Orai1α, and show different sensitivities to Ca2+-dependent inactivation, as well as distinct ability to form arachidonate-regulated channels. We have evaluated the role of both Orai1 variants in the activation of TRPC1 in HeLa cells. We found that Orai1α and Orai1β are required for the maintenance of regenerative Ca2+ oscillations, while TRPC1 plays a role in agonist-induced Ca2+ influx but is not essential for Ca2+ oscillations. Using APEX2 proximity labeling, co-immunoprecipitation and the fluorescence of G-GECO1.2 fused to Orai1α our results indicate that agonist stimulation and Ca2+ store depletion enhance Orai1α–TRPC1 interaction. Orai1α is essential for TRPC1 plasma membrane location and activation. Thus, TRPC1 function in HeLa cells depends on Ca2+ influx through Orai1α exclusively.
Collapse
Affiliation(s)
- Jose Sanchez-Collado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain.
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Pedro J Camello
- Department of Physiology, (Smooth Muscle Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003, Caceres, Spain
| | - Carlos Cantonero
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio/University of Seville/CSIC, Seville, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, 10003, Caceres, Spain.
| |
Collapse
|
3
|
Cross-Talk between Mechanosensitive Ion Channels and Calcium Regulatory Proteins in Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:ijms22168782. [PMID: 34445487 PMCID: PMC8395829 DOI: 10.3390/ijms22168782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mechanosensitive ion channels are widely expressed in the cardiovascular system. They translate mechanical forces including shear stress and stretch into biological signals. The most prominent biological signal through which the cardiovascular physiological activity is initiated or maintained are intracellular calcium ions (Ca2+). Growing evidence show that the Ca2+ entry mediated by mechanosensitive ion channels is also precisely regulated by a variety of key proteins which are distributed in the cell membrane or endoplasmic reticulum. Recent studies have revealed that mechanosensitive ion channels can even physically interact with Ca2+ regulatory proteins and these interactions have wide implications for physiology and pathophysiology. Therefore, this paper reviews the cross-talk between mechanosensitive ion channels and some key Ca2+ regulatory proteins in the maintenance of calcium homeostasis and its relevance to cardiovascular health and disease.
Collapse
|
4
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
6
|
Transient Receptor Potential Canonical Channels in Health and Disease: A 2020 Update. Cells 2021; 10:cells10030496. [PMID: 33668918 PMCID: PMC7996490 DOI: 10.3390/cells10030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022] Open
|
7
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Martín-Aragón Baudel MAS, Shi J, Large WA, Albert AP. Obligatory role for PKCδ in PIP 2 -mediated activation of store-operated TRPC1 channels in vascular smooth muscle cells. J Physiol 2020; 598:3911-3925. [PMID: 32627185 PMCID: PMC7656825 DOI: 10.1113/jp279947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS In vascular smooth muscle cells (VSMCs), activation of Ca2+ -permeable store-operated channels (SOCs) composed of canonical transient receptor potential channel 1 (TRPC1) subunits mediates Ca2+ entry pathways that regulate contraction, proliferation and migration, which are processes associated with vascular disease. Activation of TRPC1-based SOCs requires protein kinase C (PKC) activity, which is proposed to phosphorylate TRPC1 proteins to promote channel opening by phosphatidylinositol 4,5-bisphosphate (PIP2 ). We investigated the identity of the PKC isoform involved in activating TRPC1-based SOCs in rat mesenteric artery VSMCs. TRPC1-based SOCs were reduced by PKCδ inhibitors and knockdown of PKCδ expression. Store depletion induced interactions between TRPC1 and PKCδ and PKCδ-dependent phosphorylation of TRPC1. Furthermore, generation of store-operated interactions between PIP2 and TRPC1 and activation of TRPC1-based SOCs by PIP2 required PKCδ. These findings reveal that PKCδ activity has an obligatory role in activating TRPC1-based SOCs, through regulating PIP2 -mediated channel opening. ABSTRACT In vascular smooth muscle cells (VMSCs), stimulation of Ca2+ -permeable canonical transient receptor potential channel 1 (TRPC1)-based store-operated channels (SOCs) mediates Ca2+ entry pathways that regulate cell contraction, proliferation and migration, which are processes associated with vascular disease. It is therefore important to understand how TRPC1-based SOCs are activated. Stimulation of TRPC1-based SOCs requires protein kinase C (PKC) activity, with store-operated PKC-dependent phosphorylation of TRPC1 essential for channel opening by phosphatidylinositol 4,5-bisphosphate (PIP2 ). Experimental protocols used to activate TRPC1-based SOCs suggest that the PKC isoform involved requires diacylglycerol (DAG) but is Ca2+ -insensitive, which are characteristics of the novel group of PKC isoforms (δ, ε, η, θ). Hence, the present study examined whether a novel PKC isoform(s) is involved in activating TRPC1-based SOCs in contractile rat mesenteric artery VSMCs. Store-operated whole-cell cation currents were blocked by Pico145, a highly selective and potent TRPC1/4/5 channel blocker and T1E3, a TRPC1 blocking antibody. PKCδ was expressed in VSMCs, and selective PKCδ inhibitory peptides and knockdown of PKCδ expression with morpholinos oligomers inhibited TRPC1-based SOCs. TRPC1 and PKCδ interactions and phosphorylation of TRPC1 induced by store depletion were both reduced by pharmacological inhibition and PKCδ knockdown. In addition, store-operated PIP2 and TRPC1 interactions were blocked by PKCδ inhibition, and PKCδ was required for PIP2 -mediated activation of TRPC1 currents. These results identify the involvement of PKCδ in stimulation of TRPC1-based SOCs and highlight that store-operated PKCδ activity is obligatory for channel opening by PIP2 , the probable activating ligand.
Collapse
Affiliation(s)
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - William A Large
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St George's, University of London, Cranmer Terrace, London, UK
| | - Anthony P Albert
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St George's, University of London, Cranmer Terrace, London, UK
| |
Collapse
|
9
|
Jahan KS, Shi J, Greenberg HZE, Khavandi S, Baudel MMA, Barrese V, Greenwood IA, Albert AP. MARCKS mediates vascular contractility through regulating interactions between voltage-gated Ca 2+ channels and PIP 2. Vascul Pharmacol 2020; 132:106776. [PMID: 32707323 PMCID: PMC7549404 DOI: 10.1016/j.vph.2020.106776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) acts as substrate and unmodified ligand for Gq-protein-coupled receptor signalling in vascular smooth muscle cells (VSMCs) that is central for initiating contractility. The present work investigated how PIP2 might perform these two potentially conflicting roles by studying the effect of myristoylated alanine-rich C kinase substrate (MARCKS), a PIP2-binding protein, on vascular contractility in rat and mouse mesenteric arteries. Using wire myography, MANS peptide (MANS), a MARCKS inhibitor, produced robust contractions with a pharmacological profile suggesting a predominantly role for L-type (CaV1.2) voltage-gated Ca2+ channels (VGCC). Knockdown of MARCKS using morpholino oligonucleotides reduced contractions induced by MANS and stimulation of α1-adrenoceptors and thromboxane receptors with methoxamine (MO) and U46619 respectively. Immunocytochemistry and proximity ligation assays demonstrated that MARCKS and CaV1.2 proteins co-localise at the plasma membrane in unstimulated tissue, and that MANS and MO reduced these interactions and induced translocation of MARCKS from the plasma membrane to the cytosol. Dot-blots revealed greater PIP2 binding to MARCKS than CaV1.2 in unstimulated tissue, with this binding profile reversed following stimulation by MANS and MO. MANS evoked an increase in peak amplitude and shifted the activation curve to more negative membrane potentials of whole-cell voltage-gated Ca2+ currents, which were prevented by depleting PIP2 levels with wortmannin. This present study indicates for the first time that MARCKS is important regulating vascular contractility and suggests that disinhibition of MARCKS by MANS or vasoconstrictors may induce contraction through releasing PIP2 into the local environment where it increases voltage-gated Ca2+ channel activity.
Collapse
Affiliation(s)
- Kazi S Jahan
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Harry Z E Greenberg
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Sam Khavandi
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Miguel Martín-Aragón Baudel
- Department of Pharmacology, University of California, 451, Health Sciences Drive, Suite 3503, Davis, CA 95615, USA
| | - Vincenzo Barrese
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Corso Umberto I, 40, 80138 Napoli, NA, Italy
| | - Iain A Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Anthony P Albert
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
10
|
Dyrda A, Koenig S, Frieden M. STIM1 long and STIM1 gate differently TRPC1 during store-operated calcium entry. Cell Calcium 2020; 86:102134. [DOI: 10.1016/j.ceca.2019.102134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
|
11
|
Martín-Aragón Baudel MAS, Shi J, Large WA, Albert AP. Insights into Activation Mechanisms of Store-Operated TRPC1 Channels in Vascular Smooth Muscle. Cells 2020; 9:E179. [PMID: 31936855 PMCID: PMC7017204 DOI: 10.3390/cells9010179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 01/10/2023] Open
Abstract
In vascular smooth muscle cells (VMSCs), the stimulation of store-operated channels (SOCs) mediate Ca2+ influx pathways which regulate important cellular functions including contraction, proliferation, migration, and growth that are associated with the development of vascular diseases. It is therefore important that we understand the biophysical, molecular composition, activation pathways, and physiological significance of SOCs in VSMCs as these maybe future therapeutic targets for conditions such as hypertension and atherosclerosis. Archetypal SOCs called calcium release-activated channels (CRACs) are composed of Orai1 proteins and are stimulated by the endo/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) following store depletion. In contrast, this review focuses on proposals that canonical transient receptor potential (TRPC) channels composed of a heteromeric TRPC1/C5 molecular template, with TRPC1 conferring activation by store depletion, mediate SOCs in native contractile VSMCs. In particular, it summarizes our recent findings which describe a novel activation pathway of these TRPC1-based SOCs, in which protein kinase C (PKC)-dependent TRPC1 phosphorylation and phosphatidylinositol 4,5-bisphosphate (PIP2) are obligatory for channel opening. This PKC- and PIP2-mediated gating mechanism is regulated by the PIP2-binding protein myristoylated alanine-rich C kinase (MARCKS) and is coupled to store depletion by TRPC1-STIM1 interactions which induce Gq/PLCβ1 activity. Interestingly, the biophysical properties and activation mechanisms of TRPC1-based SOCs in native contractile VSMCs are unlikely to involve Orai1.
Collapse
Affiliation(s)
| | - Jian Shi
- LIGHT Laboratories, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK;
| | - William A. Large
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George’s, University of London, London SW17 0RE, UK;
| | - Anthony P. Albert
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, St. George’s, University of London, London SW17 0RE, UK;
| |
Collapse
|
12
|
Post-Translational Modification and Natural Mutation of TRPC Channels. Cells 2020; 9:cells9010135. [PMID: 31936014 PMCID: PMC7016788 DOI: 10.3390/cells9010135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transient Receptor Potential Canonical (TRPC) channels are homologues of Drosophila TRP channel first cloned in mammalian cells. TRPC family consists of seven members which are nonselective cation channels with a high Ca2+ permeability and are activated by a wide spectrum of stimuli. These channels are ubiquitously expressed in different tissues and organs in mammals and exert a variety of physiological functions. Post-translational modifications (PTMs) including phosphorylation, N-glycosylation, disulfide bond formation, ubiquitination, S-nitrosylation, S-glutathionylation, and acetylation play important roles in the modulation of channel gating, subcellular trafficking, protein-protein interaction, recycling, and protein architecture. PTMs also contribute to the polymodal activation of TRPCs and their subtle regulation in diverse physiological contexts and in pathological situations. Owing to their roles in the motor coordination and regulation of kidney podocyte structure, mutations of TRPCs have been implicated in diseases like cerebellar ataxia (moonwalker mice) and focal and segmental glomerulosclerosis (FSGS). The aim of this review is to comprehensively integrate all reported PTMs of TRPCs, to discuss their physiological/pathophysiological roles if available, and to summarize diseases linked to the natural mutations of TRPCs.
Collapse
|
13
|
Greenberg HZE, Carlton-Carew SRE, Zargaran AK, Jahan KS, Birnbaumer L, Albert AP. Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced relaxations and nitric oxide production in mesenteric arteries: comparative study using wild-type and TRPC1 -/- mice. Channels (Austin) 2019; 13:410-423. [PMID: 31603369 PMCID: PMC7426016 DOI: 10.1080/19336950.2019.1673131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We have previously provided pharmacological evidence that stimulation of calcium-sensing receptors (CaSR) induces endothelium-dependent relaxations of rabbit mesenteric arteries through activation of heteromeric TRPV4/TRPC1 channels and nitric oxide (NO) production. The present study further investigates the role of heteromeric TRPV4/TRPC1 channels in these CaSR-induced vascular responses by comparing responses in mesenteric arteries from wild-type (WT) and TRPC1-/- mice. In WT mice, stimulation of CaSR induced endothelium-dependent relaxations of pre-contracted tone and NO generation in endothelial cells (ECs), which were inhibited by the TRPV4 channel blocker RN1734 and the TRPC1 blocking antibody T1E3. In addition, TRPV4 and TRPC1 proteins were colocalised at, or close to, the plasma membrane of endothelial cells (ECs) from WT mice. In contrast, in TRPC1-/- mice, CaSR-mediated vasorelaxations and NO generation were greatly reduced, unaffected by T1E3, but blocked by RN1734. In addition, the TRPV4 agonist GSK1016790A (GSK) induced endothelium-dependent vasorelaxations which were blocked by RN1734 and T1E3 in WT mice, but only by RN1734 in TRPC1-/- mice. Moreover, GSK activated cation channel activity with a 6pS conductance in WT ECs but with a 52 pS conductance in TRPC1-/- ECs. These results indicate that stimulation of CaSR activates heteromeric TRPV4/TRPC1 channels and NO production in ECs, which are responsible for endothelium-dependent vasorelaxations. This study also suggests that heteromeric TRPV4-TRPC1 channels may form the predominant TRPV4-containing channels in mouse mesenteric artery ECs. Together, our data further implicates CaSR-induced pathways and heteromeric TRPV4/TRPC1 channels in the regulation of vascular tone.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Simonette R E Carlton-Carew
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Alexander K Zargaran
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Kazi S Jahan
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Anthony P Albert
- Vascular Biology Research Centre, Molecular & Clinical Sciences Research Institute, St. George's, University of London, London, UK
| |
Collapse
|
14
|
Myeong J, Ko J, Kwak M, Kim J, Woo J, Ha K, Hong C, Yang D, Kim HJ, Jeon JH, So I. Dual action of the Gα q-PLCβ-PI(4,5)P 2 pathway on TRPC1/4 and TRPC1/5 heterotetramers. Sci Rep 2018; 8:12117. [PMID: 30108272 PMCID: PMC6092394 DOI: 10.1038/s41598-018-30625-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
The transient receptor potential canonical (TRPC) 1 channel is widely distributed in mammalian cells and is involved in many physiological processes. TRPC1 is primarily considered a regulatory subunit that forms heterotetrameric channels with either TRPC4 or TRPC5 subunits. Here, we suggest that the regulation of TRPC1/4 and TRPC1/5 heterotetrameric channels by the Gαq-PLCβ pathway is self-limited and dynamically mediated by Gαq and PI(4,5)P2. We provide evidence indicating that Gαq protein directly interacts with either TRPC4 or TRPC5 of the heterotetrameric channels to permit activation. Simultaneously, Gαq-coupled PLCβ activation leads to the breakdown of PI(4,5)P2, which inhibits activity of TRPC1/4 and 1/5 channels.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Juyeon Ko
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Misun Kwak
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joohan Woo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Chosun University School of Medicine, Kwangju, 61452, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Gachon University College of Medicine, Incheon, 21936, Republic of Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
15
|
Tao J, Jiang F, Liu C, Liu Z, Zhu Y, Xu J, Ge Y, Xu K, Yin P. Modulatory effects of bufalin, an active ingredient from toad venom on voltage-gated sodium channels. Mol Biol Rep 2018; 45:721-740. [PMID: 29931533 DOI: 10.1007/s11033-018-4213-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Chan-su (toad venom) has been used as an analgesic agent in China from ancient to modern times. Bufalin, a non-peptide toxin extracted from toad venom, is considered as one of the analgesic components. The molecular mechanism underlying the anti-nociceptive effects of bufalin remains unclear so far. In this study, we investigated the pharmacological effects of bufalin on pain-related ion channels as well as animal models through patch clamping, calcium imaging and animal behavior observation. Using the whole-cell recording, bufalin caused remarkable suppressive effect on the peak currents of Nav channels (voltage gated sodium channels, VGSCs) of dorsal root ganglion neuroblastomas (ND7-23 cell) in a dose-dependent manner. Bufalin facilitated the voltage-dependent activation and induced a negative shift on the fast inactivation of VGSCs. The recovery kinetics of VGSCs were significantly slowed and the recovery proportion were reduced after administering bufalin. However, bufalin prompted no significant effect not only on Kv4.2, Kv4.3 and BK channels heterologously expressed in HEK293T cells, but also on the capsaicin and allyl isothiocyanate induced Ca2+ influx. What's more, bufalin could observably relieve formalin-induced spontaneous flinching and licking response as well as carrageenan-induced thermal and mechanical hyperalgesia in dose-dependent manner in agreement with the results of in vitro experiments. The present results imply that the remarkable anti-nociceptive effects produced by bufalin are probably ascribed to its specific regulation on Nav channels. Bufalin inhibits the Nav channels in a dose-dependent manner, which will provide references for the optimal dose selection of analgesia drugs.
Collapse
Affiliation(s)
- Jie Tao
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Feng Jiang
- Xinhua Hospital (Chongming) Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, China
| | - Cheng Liu
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhirui Liu
- Department of Pharmacology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudan Zhu
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Xu
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqin Ge
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kan Xu
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peihao Yin
- Department of Central Laboratory and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Ge J, Han T, Li X, Shan L, Zhang J, Hong Y, Xia Y, Wang J, Hou M. S-adenosyl methionine regulates calcium channels and inhibits uterine smooth muscle contraction in rats with infectious premature delivery through the transient receptor protein 3/protein kinase Cβ/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa signaling pathway. Exp Ther Med 2018; 16:103-112. [PMID: 29896230 PMCID: PMC5995051 DOI: 10.3892/etm.2018.6164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate the effects of S-adenosyl methionine (SAMe) on infectious premature inflammatory factors and uterine contraction, and to further explore its mechanism of action via the transient receptor protein 3 (TRPC3)/protein kinase Cβ (PKCβ)/C-kinase-activated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) signaling pathway, following intervention by a TRPC3 inhibitor. A rat model of premature delivery induced by lipopolysaccharide (LPS) was established. Following treatment with SAMe and inhibiting TRPC3 expression, rat serum and uterus were isolated. Hematoxylin and eosin staining was used to observe the histopathological changes in the uterus. Uterine muscle strips in vitro were selected to measure the changes in muscle tension. ELISA was utilized to measure the changes in serum inflammatory factor and oxidative stress indexes. Immunohistochemistry, western blot assay and reverse transcription-quantitative polymerase chain reaction were applied to detect calcium channel protein expression in the uterus. Western blot analysis was employed to measure the expression of TRPC3/PKCβ/CPI-17 signaling pathway-related proteins. TRPC3 was highly expressed in the uterus of rat models of premature delivery induced by LPS. Following treatment with SAMe, inflammatory cell infiltration markedly reduced in the uterus and the tension of in vitro uterine muscle strips significantly decreased. SAMe treatment suppressed inflammatory reaction and oxidative stress, and diminished L-type and T-type calcium channel protein expression. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression was also reduced. When TRPC3 expression was suppressed, the effects of SAMe against inflammation and oxidative stress were diminished. TRPC3/PKCβ/CPI-17 signaling pathway-related protein expression significantly increased. SAMe was able to reduce inflammatory reaction and oxidative stress in the uterus of rat model of infectious premature delivery induced by LPS, prolong delivery time, reduce the mortality rate of offspring rats, and serve a therapeutic role. This effect is likely achieved via the regulation of uterine contractions and childbirth through the TRPC3/PKCβ/CPI-17 signaling pathway.
Collapse
Affiliation(s)
- Jing Ge
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Tao Han
- Department of Oncology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiaoqiu Li
- Department of Neurology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Lili Shan
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Jinhuan Zhang
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Hong
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Yanqiu Xia
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Jun Wang
- Department of Maternity, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| | - Mingxiao Hou
- Department of Cardiothoracic Surgery, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
17
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
18
|
Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. Vascul Pharmacol 2017; 96-98:53-62. [PMID: 28867591 PMCID: PMC5614111 DOI: 10.1016/j.vph.2017.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
Stimulation of calcium-sensing receptors (CaSR) by increasing the external calcium concentration (Ca2 +]o) induces endothelium-dependent vasorelaxation through nitric oxide (NO) production and activation of intermediate Ca2 +-activated K+ currents (IKCa) channels in rabbit mesenteric arteries. The present study investigates the potential role of heteromeric TRPV4-TRPC1 channels in mediating these CaSR-induced vascular responses. Immunocytochemical and proximity ligation assays showed that TRPV4 and TRPC1 proteins were expressed and co-localised at the plasma membrane of freshly isolated endothelial cells (ECs). In wire myography studies, increasing [Ca2 +]o between 1 and 6 mM induced concentration-dependent relaxations of methoxamine (MO)-induced pre-contracted tone, which were inhibited by the TRPV4 antagonists RN1734 and HC067047, and the externally-acting TRPC1 blocking antibody T1E3. In addition, CaSR-evoked NO production in ECs measured using the fluorescent NO indicator DAF-FM was reduced by RN1734 and T1E3. In contrast, [Ca2 +]o-evoked perforated-patch IKCa currents in ECs were unaffected by RN1734 and T1E3. The TRPV4 agonist GSK1016790A (GSK) induced endothelium-dependent relaxation of MO-evoked pre-contracted tone and increased NO production, which were inhibited by the NO synthase inhibitor L-NAME, RN1734 and T1E3. GSK activated 6pS cation channel activity in cell-attached patches from ECs which was blocked by RN1734 and T1E3. These findings indicate that heteromeric TRPV4-TRPC1 channels mediate CaSR-induced vasorelaxation through NO production but not IKCa channel activation in rabbit mesenteric arteries. This further implicates CaSR-induced pathways and heteromeric TRPV4-TRPC1 channels in regulating vascular tone.
Collapse
|
19
|
Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 2017; 66:48-61. [PMID: 28807149 DOI: 10.1016/j.ceca.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
Abstract
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system. The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions. The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini. Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Lucía Alonso-Carbajo
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Miklos Kecskes
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Griet Jacobs
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Shi J, Miralles F, Kinet JP, Birnbaumer L, Large WA, Albert AP. Evidence that Orai1 does not contribute to store-operated TRPC1 channels in vascular smooth muscle cells. Channels (Austin) 2017; 11:329-339. [PMID: 28301277 PMCID: PMC5555289 DOI: 10.1080/19336950.2017.1303025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ca2+-permeable store-operated channels (SOCs) mediate Ca2+ entry pathways which are involved in many cellular functions such as contraction, growth, and proliferation. Prototypical SOCs are formed of Orai1 proteins and are activated by the endo/sarcoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1). There is considerable debate about whether canonical transient receptor potential 1 (TRPC1) proteins also form store-operated channels (SOCs), and if they do, is Orai1 involved. We recently showed that stimulation of TRPC1-based SOCs involves store depletion inducing STIM1-evoked Gαq/PLCβ1 activity in contractile vascular smooth muscle cells (VSMCs). Therefore the present work investigates the role of Orai1 in activation of TRPC1-based SOCs in freshly isolated mesenteric artery VSMCs from wild-type (WT) and Orai1−/− mice. Store-operated whole-cell and single channel currents recorded from WT and Orai1−/− VSMCs had similar properties, with relatively linear current-voltage relationships, reversal potentials of about +20mV, unitary conductances of about 2pS, and inhibition by anti-TRPC1 and anti-STIM1 antibodies. In Orai1−/− VSMCs, store depletion induced PLCβ1 activity measured with the fluorescent phosphatidylinositol 4,5-bisphosphate/inositol 1,4,5-trisphosphate biosensor GFP-PLCδ1-PH, which was prevented by knockdown of STIM1. In addition, in Orai1−/− VSMCs, store depletion induced translocation of STIM1 from within the cell to the plasma membrane where it formed STIM1-TRPC1 interactions at discrete puncta-like sites. These findings indicate that activation of TRPC1-based SOCs through a STIM1-activated PLCβ1 pathway are likely to occur independently of Orai1 proteins, providing evidence that TRPC1 channels form genuine SOCs in VSMCs with a contractile phenotype.
Collapse
Affiliation(s)
- Jian Shi
- a Institute of Cardiovascular & Metabolic Medicine, School of Medicine , University of Leeds , Leeds , UK
| | - Francesc Miralles
- b Vascular Biology Research Centre, Institute of Molecular & Clinical Sciences Research Institute , St. George's, University of London , Cranmer Terrace, London , UK.,c Institute of Medical & Biomedical Education, St. George's , University of London , Cranmer Terrace, London , UK
| | - Jean-Pierre Kinet
- d Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA
| | - Lutz Birnbaumer
- e Laboratory of Neurobiology , National Institute of Environmental Health Sciences , Research Triangle Park, NC , USA.,f Institute of Biomedical Research (BIOMED) , Catholic University of Argentina , Buenos Aires , Argentina
| | - William A Large
- b Vascular Biology Research Centre, Institute of Molecular & Clinical Sciences Research Institute , St. George's, University of London , Cranmer Terrace, London , UK
| | - Anthony P Albert
- b Vascular Biology Research Centre, Institute of Molecular & Clinical Sciences Research Institute , St. George's, University of London , Cranmer Terrace, London , UK
| |
Collapse
|
21
|
Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store-operated interactions between plasmalemmal STIM1 and TRPC1 proteins stimulate PLCβ1 to induce TRPC1 channel activation in vascular smooth muscle cells. J Physiol 2017; 595:1039-1058. [PMID: 27753095 PMCID: PMC5309361 DOI: 10.1113/jp273302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/13/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Depletion of Ca2+ stores activates store-operated channels (SOCs), which mediate Ca2+ entry pathways that regulate cellular processes such as contraction, proliferation and gene expression. In vascular smooth muscle cells (VSMCs), stimulation of SOCs composed of canonical transient receptor potential channel 1 (TRPC1) proteins requires G protein α q subunit (Gαq)/phospholipase C (PLC)β1/protein kinase C (PKC) activity. We studied the role of stromal interaction molecule 1 (STIM1) in coupling store depletion to this activation pathway using patch clamp recording, GFP-PLCδ1-PH imaging and co-localization techniques. Store-operated TRPC1 channel and PLCβ1 activities were inhibited by STIM1 short hairpin RNA (shRNA) and absent in TRPC1-/- cells, and store-operated PKC phosphorylation of TRPC1 was inhibited by STIM1 shRNA. Store depletion induced interactions between STIM1 and TRPC1, Gαq and PLCβ1, which required STIM1 and TRPC1. Similar effects were produced with noradrenaline. These findings identify a new activation mechanism of TRPC1-based SOCs in VSMCs, and a novel role for STIM1, where store-operated STIM1-TRPC1 interactions stimulate Gαq/PLCβ1/PKC activity to induce channel gating. ABSTRACT In vascular smooth muscle cells (VSMCs), stimulation of canonical transient receptor potential channel 1 (TRPC1) protein-based store-operated channels (SOCs) mediates Ca2+ entry pathways that regulate contractility, proliferation and migration. It is therefore important to understand how these channels are activated. Studies have shown that stimulation of TRPC1-based SOCs requires G protein α q subunit (Gαq)/phospholipase C (PLC)β1 activities and protein kinase C (PKC) phosphorylation, although it is unclear how store depletion stimulates this gating pathway. The present study examines this issue by focusing on the role of stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum Ca2+ sensor. Store-operated TRPC1 channel activity was inhibited by TRPC1 and STIM1 antibodies and STIM1 short hairpin RNA (shRNA) in wild-type VSMCs, and was absent in TRPC1-/- VSMCs. Store-operated PKC phosphorylation of TRPC1 was reduced by knockdown of STIM1. Moreover, store-operated PLCβ1 activity measured with the fluorescent phosphatidylinositol 4,5-bisphosphate/inositol 1,4,5-trisphosphate biosensor GFP-PLCδ1-PH was reduced by STIM1 shRNA and absent in TRPC1-/- cells. Immunocytochemistry, co-immunoprecipitation and proximity ligation assays revealed that store depletion activated STIM1 translocation from within the cell to the plasma membrane (PM) where it formed STIM1-TRPC1 complexes, which then associated with Gαq and PLCβ1. Noradrenaline also evoked TRPC1 channel activity and associations between TRPC1, STIM1, Gαq and PLCβ1, which were inhibited by STIM1 knockdown. Effects of N-terminal and C-terminal STIM1 antibodies on TRPC1-based SOCs and STIM1 staining suggest that channel activation may involve insertion of STIM1 into the PM. The findings of the present study identify a new activation mechanism of TRPC1-based SOCs in VSMCs, and a novel role for STIM1, in which store-operated STIM1-TRPC1 interactions stimulate PLCβ1 activity to induce PKC phosphorylation of TRPC1 and channel gating.
Collapse
Affiliation(s)
- Jian Shi
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
| | - Francesc Miralles
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
- Institute of Medical & Biomedical EducationSt George'sUniversity of LondonLondonUK
| | - Lutz Birnbaumer
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Institute of Biomedical Research (BIOMED)School of Medical SciencesCatholic University of ArgentinaBuenos AiresArgentina
| | - William A. Large
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
| | - Anthony P. Albert
- Vascular Biology Research CentreMolecular & Clinical Sciences Research Institute
| |
Collapse
|
22
|
STIM-TRP Pathways and Microdomain Organization: Contribution of TRPC1 in Store-Operated Ca 2+ Entry: Impact on Ca 2+ Signaling and Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:159-188. [PMID: 28900914 DOI: 10.1007/978-3-319-57732-6_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1-7), which are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. While TRPC1 was associated with SOCE and regulation of function in several cell types, none of the TRPC members displayed I CRAC, the store-operated current identified in lymphocytes and mast cells. Intensive search finally led to the identification of Orai1 and STIM1 as the primary components of the CRAC channel. Orai1 was established as the pore-forming channel protein and STIM1 as the ER-Ca2+ sensor protein involved in activation of Orai1. STIM1 also activates TRPC1 via a distinct domain in its C-terminus. However, TRPC1 function depends on Orai1-mediated Ca2+ entry, which triggers recruitment of TRPC1 into the plasma membrane where it is activated by STIM1. TRPC1 and Orai1 form distinct store-operated Ca2+ channels that regulate specific cellular functions. It is now clearly established that regulation of TRPC1 trafficking can change plasma membrane levels of the channel, the phenotype of the store-operated Ca2+ current, as well as pattern of SOCE-mediated [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1. This review will highlight current concepts of the activation and regulation of TRPC1 channels and its impact on cell function.
Collapse
|
23
|
Evans AM. Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in Vascular Smooth Muscles. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:1-47. [PMID: 28212795 DOI: 10.1016/bs.apha.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vasoactive agents may induce myocyte contraction, dilation, and the switch from a contractile to a migratory-proliferative phenotype(s), which requires changes in gene expression. These processes are directed, in part, by Ca2+ signals, but how different Ca2+ signals are generated to select each function is enigmatic. We have previously proposed that the strategic positioning of Ca2+ pumps and release channels at membrane-membrane junctions of the sarcoplasmic reticulum (SR) demarcates cytoplasmic nanodomains, within which site- and function-specific Ca2+ signals arise. This chapter will describe how nanojunctions of the SR may: (1) define cytoplasmic nanospaces about the plasma membrane, mitochondria, contractile myofilaments, lysosomes, and the nucleus; (2) provide for functional segregation by restricting passive diffusion and by coordinating active ion transfer within a given nanospace via resident Ca2+ pumps and release channels; (3) select for contraction, relaxation, and/or changes in gene expression; and (4) facilitate the switch in myocyte phenotype through junctional reorganization. This should serve to highlight the need for further exploration of cellular nanojunctions and the mechanisms by which they operate, that will undoubtedly open up new therapeutic horizons.
Collapse
Affiliation(s)
- A M Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
24
|
From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. SCIENCE CHINA-LIFE SCIENCES 2016; 59:749-63. [PMID: 27376531 DOI: 10.1007/s11427-016-5071-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals select for these processes is enigmatic. We build on the "panjunctional sarcoplasmic reticulum" hypothesis, describing our view that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are preferentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also preferentially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initiation of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and transcriptional cascades.
Collapse
|