1
|
Yang S, Zheng Y, Pu Z, Nian H, Li J. The multiple roles of macrophages in peritoneal adhesion. Immunol Cell Biol 2025; 103:31-44. [PMID: 39471989 DOI: 10.1111/imcb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 12/03/2024]
Abstract
Peritoneal adhesion (PA) refers to the abnormal adhesion of the peritoneum either with the peritoneum itself or with tissues and organs that is caused by abdominopelvic surgery, abdominal infection or peritoneal inflammation. PA is associated with various clinical complications, such as abdominal pain and distension, intestinal obstruction, gastrointestinal disorders and female infertility, and adversely affects the quality of life of patients. Macrophages are essential for PA formation and can undergo polarization into classically activated macrophages (M1) and alternatively activated macrophages (M2), which are influenced by the peritoneal microenvironment. By releasing proinflammatory cytokines and reactive oxygen species, M1 macrophages promote peritoneal inflammatory reactions and the resultant formation of adhesion. In contrast, M2 macrophages secrete anti-inflammatory cytokines and growth factors to inhibit PA formation and to promote repair and healing of peritoneal tissues, and thereby play a significant anti-inflammatory role. This review comprehensively explores the function and mechanism of macrophages and their subtypes in PA formation to gain insight into the prevention and treatment of PA based on the modulation of macrophages.
Collapse
Affiliation(s)
- Shangwei Yang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanhe Zheng
- Digestive Department, The First People's Hospital of Lanzhou New Area, Lanzhou, China
| | - Zhenjun Pu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongyu Nian
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Junliang Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Tabe Y, Naito T, Takahashi K, Hattori K, Heissig B. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Front Immunol 2024; 14:1299792. [PMID: 38313435 PMCID: PMC10835145 DOI: 10.3389/fimmu.2023.1299792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Patients with coronavirus disease-2019 (COVID-19) have an increased risk of thrombosis and acute respiratory distress syndrome (ARDS). Thrombosis is often attributed to increases in plasminogen activator inhibitor-1 (PAI-1) and a shut-down of fibrinolysis (blood clot dissolution). Decreased urokinase-type plasminogen activator (uPA), a protease necessary for cell-associated plasmin generation, and increased tissue-type plasminogen activator (tPA) and PAI-1 levels have been reported in COVID-19 patients. Because these factors can occur in free and complexed forms with differences in their biological functions, we examined the predictive impact of uPA, tPA, and PAI-1 in their free forms and complexes as a biomarker for COVID-19 severity and the development of ARDS. In this retrospective study of 69 Japanese adults hospitalized with COVID-19 and 20 healthy donors, we found elevated free, non-complexed PAI-1 antigen, low circulating uPA, and uPA/PAI-1 but not tPA/PAI-1 complex levels to be associated with COVID-19 severity and ARDS development. This biomarker profile was typical for patients in the complicated phase. Lack of PAI-1 activity in circulation despite free, non-complexed PAI-1 protein and plasmin/α2anti-plasmin complex correlated with suPAR and sVCAM levels, markers indicating endothelial dysfunction. Furthermore, uPA/PAI-1 complex levels positively correlated with TNFα, a cytokine reported to trigger inflammatory cell death and tissue damage. Those levels also positively correlated with lymphopenia and the pro-inflammatory factors interleukin1β (IL1β), IL6, and C-reactive protein, markers associated with the anti-viral inflammatory response. These findings argue for using uPA and uPA/PAI-1 as novel biomarkers to detect patients at risk of developing severe COVID-19, including ARDS.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of the National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Chen J, Tang X, Wang Z, Perez A, Yao B, Huang K, Zhang Y, King MW. Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioeng Transl Med 2023; 8:e10565. [PMID: 38023705 PMCID: PMC10658569 DOI: 10.1002/btm2.10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 12/01/2023] Open
Abstract
Postsurgical adhesions are a common complication of surgical procedures that can lead to postoperative pain, bowel obstruction, infertility, as well as complications with future procedures. Several agents have been developed to prevent adhesion formation, such as barriers, anti-inflammatory and fibrinolytic agents. The Food and Drug Administration (FDA) has approved the use of physical barrier agents, but they have been associated with conflicting clinical studies and controversy in the clinical utilization of anti-adhesion barriers. In this review, we summarize the human anatomy of the peritoneum, the pathophysiology of adhesion formation, the current prevention agents, as well as the current research progress on adhesion prevention. The early cellular events starting with injured mesothelial cells and incorporating macrophage response have recently been found to be associated with adhesion formation. This may provide the key component for developing future adhesion prevention methods. The current use of physical barriers to separate tissues, such as Seprafilm®, composed of hyaluronic acid and carboxymethylcellulose, can only reduce the risk of adhesion formation at the end stage. Other anti-inflammatory or fibrinolytic agents for preventing adhesions have only been studied within the context of current research models, which is limited by the lack of in-vitro model systems as well as in-depth study of in-vivo models to evaluate the efficiency of anti-adhesion agents. In addition, we explore emerging therapies, such as gene therapy and stem cell-based approaches, that may offer new strategies for preventing adhesion formation. In conclusion, anti-adhesion agents represent a promising approach for reducing the burden of adhesion-related complications in surgical patients. Further research is needed to optimize their use and develop new therapies for this challenging clinical problem.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Xiaoqi Tang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ziyu Wang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Arielle Perez
- UNC School of Medicine Department of SurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Benjamin Yao
- Montefiore Medical Center Department of Obstetrics & Gynecology & Women's Health ServicesMontefiore Medical CenterBronxNew YorkUSA
| | - Ke Huang
- Joint Department of Biomedical EngineeringNorth Carolina State University & University of North Carolina at Chapel HillRaleighNorth CarolinaUSA
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - Yang Zhang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Martin W. King
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
- College of Textiles, Donghua UniversityShanghaiSongjiangChina
| |
Collapse
|
4
|
Dawodu O, Baxter B, Kim JH. Update on antiadhesion barriers and therapeutics in gynecological surgery. Curr Opin Obstet Gynecol 2023; 35:352-360. [PMID: 37387697 DOI: 10.1097/gco.0000000000000892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
PURPOSE OF REVIEW Postoperative adhesions remain a clinical challenge to both patients and providers, as they are associated with significant complications and a high economic burden. This article provides a clinical review of currently available antiadhesive agents and promising new therapies that have advanced past animal studies. RECENT FINDINGS Several agents have been investigated on their ability to reduce adhesion formation; however, there is no widely acceptable option. The few available interventions are barrier agents and while low-quality evidence suggests that they may be more effective than no treatment, there is no general agreement on their overall efficacy. There is an abundance of research on new solutions; however, their clinical efficacy is yet to be determined. SUMMARY Although a wide range of therapeutics have been investigated, majority are halted in animal models with only a select few being studied in humans and ultimately available in the market. Many agents have shown effectiveness in reducing adhesion formation, however, that has not been translated to improvement in clinically relevant outcomes; hence the need for high-quality large randomized trials.
Collapse
Affiliation(s)
- Olanrewaju Dawodu
- Division of Gynecologic Specialty Surgery, Department of Obstetrics & Gynecology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | |
Collapse
|
5
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
|
6
|
Gata6 + large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends Immunol 2023; 44:129-145. [PMID: 36623953 DOI: 10.1016/j.it.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.
Collapse
|
7
|
Tanaka K, Harada H, Kamuro H, Sakai H, Yamamoto A, Tomimatsu M, Ikeda A, Chosokabe R, Tanaka S, Okada Y, Fujio Y, Obana M. Arid5a/IL-6/PAI-1 Signaling Is Involved in the Pathogenesis of Lipopolysaccharide-Induced Kidney Injury. Biol Pharm Bull 2023; 46:1753-1760. [PMID: 38044094 DOI: 10.1248/bpb.b23-00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A systemic inflammatory response leads to widespread organ dysfunction, such as kidney dysfunction. Plasminogen activator inhibitor-1 (PAI-1) is involved in the pathogenesis of inflammatory kidney injury; however, the regulatory mechanism of PAI-1 in injured kidneys remains unclear. PAI-1 is induced by interleukin (IL)-6 in patients with sepsis. In addition, the stabilization of IL-6 is regulated by the adenine-thymine-rich interactive domain-containing protein 5a (Arid5a). Therefore, the aim of the present study was to examine the involvement of Arid5a/IL-6/PAI-1 signaling in lipopolysaccharide (LPS)-induced inflammatory kidney injury. LPS treatment to C57BL/6J mice upregulated Pai-1 mRNA in the kidneys. Enzyme-linked immunosorbent assay (ELISA) revealed that PAI-1 expression was induced in the culture supernatants of LPS-treated human umbilical vein endothelial cells, but not in those of LPS-treated human kidney 2 (HK-2) cells, a tubular cell line. Combined with single-cell analysis, endothelial cells were found to be responsible for PAI-1 elevation in LPS-treated kidneys. Administration of TM5441, a PAI-1 inhibitor, reduced the urinary albumin/creatinine ratio, concomitant with downregulation of Il-6 and Arid5a mRNA expressions. IL-6 treatment in LPS model mice further upregulated Pai-1 mRNA expression compared with LPS alone, accompanied by renal impairment. Furthermore, the expression of Il-6 and Pai-1 mRNA was lower in Arid5a knockout mice than in wild-type mice after LPS treatment. Taken together, the vicious cycle of Arid5a/IL-6/PAI-1 signaling is involved in LPS-induced kidney injury.
Collapse
Affiliation(s)
- Koki Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroki Harada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hiroyasu Kamuro
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Hibiki Sakai
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Ayaha Yamamoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masashi Tomimatsu
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Akari Ikeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Renya Chosokabe
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shota Tanaka
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yoshiaki Okada
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University
- Center for Infectious Disease Education and Research (CiDER), Osaka University
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University
- Global Center for Medical Engineering and Informatics (MEI), Osaka University
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University
| |
Collapse
|
8
|
EROĞLU E, UYANIKGİL Y. İntrabdominal Adezyon Oluşum Mekanizmalarına ve Tedavi Stratejilerine Histopatolojik Bakış. ARŞIV KAYNAK TARAMA DERGISI 2022. [DOI: 10.17827/aktd.1116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hayat standartlarını olumsuz etkileyen abdominal adezyonlar, postoperatif dönemde görülen önemli bir sağlık sorunudur. Peritoneal kavite ve serozal yüzeylerde oluşan, abdominal travmalara sebep olan kimyasal ve termal faktörler ya da enfeksiyon ve yabancı cisim reaksiyonları adezyon oluşumuna sebep olabilir. Abdominal adezyonların sınıflandırması genellikle adezyon yoğunluğuna ve prognoz ciddiyetine göre yapılsa da henüz dünya çapında kabul görmüş standart bir sınıflandırma sistemi mevcut değildir. Abdominal adezyonlar ağrı, infertilite, cerrahi sonrası hastanede yatış süresinin uzaması ve ekonomik yük gibi olumsuz sonuçlarla klinik yansımalar gösterir. Sonuç olarak, postoperatif süreçte karşılaşılan adezyonlar ciddi bir sorundur ve adezyon oluşumunu engellemek için ileri çalışmaların laboratuvar ortamından klinik araştırma modellerine uyarlanması gerekmektedir. Bu derleme çalışması intraabdominal adezyon oluşumu, histopatolojisi, derecelendirilmesi, önlenmesi ve klinik önemi ile ilgili literatürü gözden geçirmek için hazırlanmıştır.
Collapse
|
9
|
Robilliard LD, Yu J, Anchan A, Finlay G, Angel CE, Graham ES. Comprehensive Assessment of Secreted Immuno-Modulatory Cytokines by Serum-Differentiated and Stem-like Glioblastoma Cells Reveals Distinct Differences between Glioblastoma Phenotypes. Int J Mol Sci 2022; 23:ijms232214164. [PMID: 36430641 PMCID: PMC9692434 DOI: 10.3390/ijms232214164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells. Here, we wanted to better understand which glioblastoma phenotypes produced the regulatory cytokines, particularly those that are implicated in shaping the immune microenvironment. In this study, we employed nanoString analysis of the glioblastoma transcriptome, and proteomic analysis (proteome profiler arrays and cytokine profiling) of secreted cytokines by different glioblastoma phenotypes. These phenotypes were cultured to reflect a spectrum of glioblastoma cells present in tumours, by culturing an enhanced stem-like phenotype of glioblastoma cells or a more differentiated phenotype following culture with serum. Extensive secretome profiling reveals that there is considerable heterogeneity in secretion patterns between serum-derived and glioblastoma stem-like cells, as well as between individuals. Generally, however, the serum-derived phenotypes appear to be the primary producers of cytokines associated with immune cell recruitment into the tumour microenvironment. Therefore, these glioblastoma cells have considerable importance in shaping the immune landscape in glioblastoma and represent a valuable therapeutic target that should not be ignored.
Collapse
Affiliation(s)
- Laverne D. Robilliard
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Jane Yu
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Graeme Finlay
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E. Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- School of Medical Sciences, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- Correspondence:
| |
Collapse
|
10
|
Wang R, Guo T, Li J. Mechanisms of Peritoneal Mesothelial Cells in Peritoneal Adhesion. Biomolecules 2022; 12:biom12101498. [PMID: 36291710 PMCID: PMC9599397 DOI: 10.3390/biom12101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A peritoneal adhesion (PA) is a fibrotic tissue connecting the abdominal or visceral organs to the peritoneum. The formation of PAs can induce a variety of clinical diseases. However, there is currently no effective strategy for the prevention and treatment of PAs. Damage to peritoneal mesothelial cells (PMCs) is believed to cause PAs by promoting inflammation, fibrin deposition, and fibrosis formation. In the early stages of PA formation, PMCs undergo mesothelial–mesenchymal transition and have the ability to produce an extracellular matrix. The PMCs may transdifferentiate into myofibroblasts and accelerate the formation of PAs. Therefore, the aim of this review was to understand the mechanism of action of PMCs in PAs, and to offer a theoretical foundation for the treatment and prevention of PAs.
Collapse
Affiliation(s)
- Ruipeng Wang
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Junliang Li
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
11
|
Sahputra R, Dejyong K, Woolf AS, Mack M, Allen JE, Rückerl D, Herrick SE. Monocyte-derived peritoneal macrophages protect C57BL/6 mice against surgery-induced adhesions. Front Immunol 2022; 13:1000491. [PMID: 36275765 PMCID: PMC9583908 DOI: 10.3389/fimmu.2022.1000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 02/02/2023] Open
Abstract
Peritoneal adhesions commonly occur after abdominal or pelvic surgery. These scars join internal organs to each other or to the cavity wall and can present with abdominal or pelvic pain, and bowel obstruction or female infertility. The mechanisms underlying adhesion formation remain unclear and thus, effective treatments are not forthcoming. Peritoneal macrophages accumulate after surgery and previous studies have attributed either pro- or anti-scarring properties to these cells. We propose that there are complex and nuanced responses after surgery with respect to both resident and also monocyte-derived peritoneal macrophage subpopulations. Moreover, we contend that differences in responses of specific macrophage subpopulations in part explain the risk of developing peritoneal scars. We characterized alterations in peritoneal macrophage subpopulations after surgery-induced injury using two strains of mice, BALB/c and C57BL/6, with known differences in macrophage response post-infection. At 14 days post-surgery, BALB/c mice displayed more adhesions compared with C57BL/6 mice. This increase in scarring correlated with a lower influx of monocyte-derived macrophages at day 3 post-surgery. Moreover, BALB/c mice showed distinct macrophage repopulation dynamics after surgery. To confirm a role for monocyte-derived macrophages, we used Ccr2-deficient mice as well as antibody-mediated depletion of CCR2 expressing cells during initial stages of adhesion formation. Both Ccr2-deficient and CCR2-depleted mice showed a significant increase in adhesion formation associated with the loss of peritoneal monocyte influx. These findings revealed an important protective role for monocyte-derived cells in reducing adhesion formation after surgery.
Collapse
Affiliation(s)
- Rinal Sahputra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Krittee Dejyong
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Matthias Mack
- Department of Nephrology, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Judith E. Allen
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sarah E. Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Nakamura Y, Matsuda K, Yokoyama S, Iwamoto H, Mizumoto Y, Mitani Y, Oku Y, Yamaue H. High visceral to subcutaneous fat area ratio predicts early postoperative small bowel obstruction after surgery for colorectal cancer. Langenbecks Arch Surg 2022; 407:2021-2026. [PMID: 35488912 DOI: 10.1007/s00423-022-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Risks for postoperative small bowel obstruction have been demonstrated in several reports, most of which indicated male sex was a risk factor, but with the reason remaining unknown. We tested the hypothesis that it could be because males have more visceral fat than females. This prospective observational study aims to examine risks of early postoperative small bowel obstruction (EPSBO) after colorectal cancer surgery and the association between visceral to subcutaneous fat area ratio (V/S ratio) and EPSBO. METHODS Four hundred and seventy-four patients who underwent colectomy for colorectal cancer in our hospital were enrolled in this study. The influence of several factors including V/S ratio on the development of EPSBO was analyzed. RESULTS Thirty-one of the 474 patients (6.5%) developed EPSBO. EPSBO occurred more frequently in males (p = 0.03) and cases who developed postoperative anastomotic leakage (p < 0.001) or wound infection (p = 0.02). Higher V/S ratio was strongly related to male sex (p < 0.001). Multivariate analysis revealed higher V/S ratio (OR 2.25; p = 0.049) and anastomotic leakage (OR 5.86; p < 0.001) were independent risk factors for EPSBO. CONCLUSION Higher V/S ratio was significantly related to EPSBO, suggesting that one of the reasons EPSBO was more likely to occur in males because they have more visceral fat than females. Preoperative identification of this risk factor could help us watch out for this potential complication.
Collapse
Affiliation(s)
- Yuki Nakamura
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Kenji Matsuda
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan.
| | - Shozo Yokoyama
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Hiromitsu Iwamoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Yuki Mizumoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Yasuyuki Mitani
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Yoshimasa Oku
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama, 641-8510, Japan
| |
Collapse
|
13
|
Wu F, Li Y, Yang Q, Wang C, Hou L, Liu W, Hou C. Transcriptome sequencing analysis of primary fibroblasts: a new insight into postoperative abdominal adhesion. Surg Today 2022; 52:151-164. [PMID: 34120243 DOI: 10.1007/s00595-021-02321-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE The specific genes or pathways in fibroblasts responsible for the pathogenesis of postoperative abdominal adhesion (PAA) remain to be elucidated. We aim to provide a new insight into disease mechanisms at the transcriptome level. METHODS Male Sprague-Dawley rats were used to establish a PAA model. Primary fibroblasts were separated from normal peritoneal tissue (NF) and postoperative adhesion tissue (PF). RNA sequencing was used to analyze the transcriptome in NF and PF. RESULTS One thousand two hundred thirty-five upregulated and 625 downregulated DEGs were identified through RNA-Seq. A pathway enrichment analysis identified distinct enriched biological processes, among which the most prominent was related to immune and inflammatory response and fibrosis. HE staining and Masson's trichrome staining histologically validated the RNA-Seq results. Six hub genes, ITGAM, IL-1β, TNF, IGF1, CSF1R and EGFR were further verified by RT-PCR. CONCLUSIONS Our study revealed the roles of the immune and inflammatory responses and fibrosis in the process of PAA. We also found six hub genes that may be potential therapeutic targets for PPA.
Collapse
Affiliation(s)
- Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Canmao Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianbing Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenqin Liu
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Chuqi Hou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Shan MJ, Meng LB, Guo P, Zhang YM, Kong D, Liu YB. Screening and Identification of Key Biomarkers of Gastric Cancer: Three Genes Jointly Predict Gastric Cancer. Front Oncol 2021; 11:591893. [PMID: 34485109 PMCID: PMC8416116 DOI: 10.3389/fonc.2021.591893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers all over the world, causing high mortality. Gastric cancer screening is one of the effective strategies used to reduce mortality. We expect that good biomarkers can be discovered to diagnose and treat gastric cancer as early as possible. Methods We download four gene expression profiling datasets of gastric cancer (GSE118916, GSE54129, GSE103236, GSE112369), which were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between gastric cancer and adjacent normal tissues were detected to explore biomarkers that may play an important role in gastric cancer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of overlap genes were conducted by the Metascape online database; the protein-protein interaction (PPI) network was constructed by the STRING online database, and we screened the hub genes of the PPI network using the Cytoscape software. The survival curve analysis was conducted by km-plotter and the stage plots of hub genes were created by the GEPIA online database. PCR, WB, and immunohistochemistry were used to verify the expression of hub genes. A neural network model was established to quantify the predictors of gastric cancer. Results The relative expression level of cadherin-3 (CDH3), lymphoid enhancer-binding factor 1 (LEF1), and matrix metallopeptidase 7 (MMP7) were significantly higher in gastric samples, compared with the normal groups (p<0.05). Receiver operator characteristic (ROC) curves were constructed to determine the effect of the three genes’ expression on gastric cancer, and the AUC was used to determine the degree of confidence: CDH3 (AUC = 0.800, P<0.05, 95% CI =0.857-0.895), LEF1 (AUC=0.620, P<0.05, 95%CI=0.632-0.714), and MMP7 (AUC=0.914, P<0.05, 95%CI=0.714-0.947). The high-risk warning indicator of gastric cancer contained 8<CDH3<15 and 10<expression of LEF1<16. Conclusions CDH3, LEF1, and MMP7 can be used as candidate biomarkers to construct a neural network model from hub genes, which may be helpful for the early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Meng-Jie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling-Bing Meng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Cardiology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan-Meng Zhang
- Department of Cardiology, The Third Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Dexian Kong
- Department of Endocrinology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Bin Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Salama Y, Jaradat N, Hattori K, Heissig B. Aloysia Citrodora Essential Oil Inhibits Melanoma Cell Growth and Migration by Targeting HB-EGF-EGFR Signaling. Int J Mol Sci 2021; 22:ijms22158151. [PMID: 34360915 PMCID: PMC8347434 DOI: 10.3390/ijms22158151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/25/2022] Open
Abstract
Patients diagnosed with melanoma have a poor prognosis due to regional invasion and metastases. The receptor tyrosine kinase epidermal growth factor receptor (EGFR) is found in a subtype of melanoma with a poor prognosis and contributes to drug resistance. Aloysia citrodora essential oil (ALOC-EO) possesses an antitumor effect. Understanding signaling pathways that contribute to the antitumor of ALOC-EO is important to identify novel tumor types that can be targeted by ALOC-EO. Here, we investigated the effects of ALOC-EO on melanoma growth and tumor cell migration. ALOC-EO blocked melanoma growth in vitro and impaired primary tumor cell growth in vivo. Mechanistically, ALOC-EO blocked heparin-binding-epidermal growth factor (HB-EGF)-induced EGFR signaling and suppressed ERK1/2 phosphorylation. Myelosuppressive drugs upregulated HB-EGF and EGFR expression in melanoma cells. Cotreatment of myelosuppressive drugs with ALOC-EO improved the antitumor activity and inhibited the expression of matrix metalloproteinase-7 and -9 and a disintegrin and metalloproteinase domain-containing protein9. In summary, our study demonstrates that ALOC-EO blocks EGFR and ERK1/2 signaling, with preclinical efficacy as a monotherapy or in combination with myelosuppressive drugs in melanoma.
Collapse
Affiliation(s)
- Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 99900800, Palestine
- Correspondence: (Y.S.); (B.H.)
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine;
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan;
| | - Beate Heissig
- Department of Immunological Diagnosis, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (Y.S.); (B.H.)
| |
Collapse
|
16
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Deniset JF, Fedak PWM. Post-Operative Adhesions: A Comprehensive Review of Mechanisms. Biomedicines 2021; 9:biomedicines9080867. [PMID: 34440071 PMCID: PMC8389678 DOI: 10.3390/biomedicines9080867] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Post-surgical adhesions are common in almost all surgical areas and are associated with significant rates of morbidity, mortality, and increased healthcare costs, especially when a patient requires repeat operative interventions. Many groups have studied the mechanisms driving post-surgical adhesion formation. Despite continued advancements, we are yet to identify a prevailing mechanism. It is highly likely that post-operative adhesions have a multifactorial etiology. This complex pathophysiology, coupled with our incomplete understanding of the underlying pathways, has resulted in therapeutic options that have failed to demonstrate safety and efficacy on a consistent basis. The translation of findings from basic and preclinical research into robust clinical trials has also remained elusive. Herein, we present and contextualize the latest findings surrounding mechanisms that have been implicated in post-surgical adhesion formation.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
- Correspondence:
| |
Collapse
|
17
|
Zwicky SN, Stroka D, Zindel J. Sterile Injury Repair and Adhesion Formation at Serosal Surfaces. Front Immunol 2021; 12:684967. [PMID: 34054877 PMCID: PMC8160448 DOI: 10.3389/fimmu.2021.684967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Most multicellular organisms have a major body cavity containing vital organs. This cavity is lined by a mucosa-like serosal surface and filled with serous fluid which suspends many immune cells. Injuries affecting the major body cavity are potentially life-threatening. Here we summarize evidence that unique damage detection and repair mechanisms have evolved to ensure immediate and swift repair of injuries at serosal surfaces. Furthermore, thousands of patients undergo surgery within the abdominal and thoracic cavities each day. While these surgeries are potentially lifesaving, some patients will suffer complications due to inappropriate scar formation when wound healing at serosal surfaces defects. These scars called adhesions cause profound challenges for health care systems and patients. Therefore, reviewing the mechanisms of wound repair at serosal surfaces is of clinical importance. Serosal surfaces will be introduced with a short embryological and microanatomical perspective followed by a discussion of the mechanisms of damage recognition and initiation of sterile inflammation at serosal surfaces. Distinct immune cells populations are free floating within the coelomic (peritoneal) cavity and contribute towards damage recognition and initiation of wound repair. We will highlight the emerging role of resident cavity GATA6+ macrophages in repairing serosal injuries and compare serosal (mesothelial) injuries with injuries to the blood vessel walls. This allows to draw some parallels such as the critical role of the mesothelium in regulating fibrin deposition and how peritoneal macrophages can aggregate in a platelet-like fashion in response to sterile injury. Then, we discuss how serosal wound healing can go wrong, causing adhesions. The current pathogenetic understanding of and potential future therapeutic avenues against adhesions are discussed.
Collapse
Affiliation(s)
- Simone N Zwicky
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Joel Zindel
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Post-Surgical Peritoneal Scarring and Key Molecular Mechanisms. Biomolecules 2021; 11:biom11050692. [PMID: 34063089 PMCID: PMC8147932 DOI: 10.3390/biom11050692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Post-surgical adhesions are internal scar tissue and a major health and economic burden. Adhesions affect and involve the peritoneal lining of the abdominal cavity, which consists of a continuous mesothelial covering of the cavity wall and majority of internal organs. Our understanding of the full pathophysiology of adhesion formation is limited by the fact that the mechanisms regulating normal serosal repair and regeneration of the mesothelial layer are still being elucidated. Emerging evidence suggests that mesothelial cells do not simply form a passive barrier but perform a wide range of important regulatory functions including maintaining a healthy peritoneal homeostasis as well as orchestrating events leading to normal repair or pathological outcomes following injury. Here, we summarise recent advances in our understanding of serosal repair and adhesion formation with an emphasis on molecular mechanisms and novel gene expression signatures associated with these processes. We discuss changes in mesothelial biomolecular marker expression during peritoneal development, which may help, in part, to explain findings in adults from lineage tracing studies using experimental adhesion models. Lastly, we highlight examples of where local tissue specialisation may determine a particular response of peritoneal cells to injury.
Collapse
|
19
|
Ito T, Shintani Y, Fields L, Shiraishi M, Podaru MN, Kainuma S, Yamashita K, Kobayashi K, Perretti M, Lewis-McDougall F, Suzuki K. Cell barrier function of resident peritoneal macrophages in post-operative adhesions. Nat Commun 2021; 12:2232. [PMID: 33854051 PMCID: PMC8046819 DOI: 10.1038/s41467-021-22536-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Post-operative adhesions are a leading cause of abdominal surgery-associated morbidity. Exposed fibrin clots on the damaged peritoneum, in which the mesothelial barrier is disrupted, readily adhere to surrounding tissues, resulting in adhesion formation. Here we show that resident F4/80HighCD206− peritoneal macrophages promptly accumulate on the lesion and form a ‘macrophage barrier’ to shield fibrin clots in place of the lost mesothelium in mice. Depletion of this macrophage subset or blockage of CD11b impairs the macrophage barrier and exacerbates adhesions. The macrophage barrier is usually insufficient to fully preclude the adhesion formation; however, it could be augmented by IL-4-based treatment or adoptive transfer of this macrophage subset, resulting in robust prevention of adhesions. By contrast, monocyte-derived recruited peritoneal macrophages are not involved in the macrophage barrier. These results highlight a previously unidentified cell barrier function of a specific macrophage subset, also proposing an innovative approach to prevent post-operative adhesions. Peritoneal adhesions are a major cause of complications after abdominal surgery. Here the authors use a post-operative abdominal adhesion model in mice to show that resident F4/80HighCD206− macrophages form a protective barrier that can be enhanced by IL-4 administration or adoptive transfer of these cells.
Collapse
Affiliation(s)
- Tomoya Ito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Yusuke Shintani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Fields
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manabu Shiraishi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mihai-Nicolae Podaru
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satoshi Kainuma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kizuku Yamashita
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fiona Lewis-McDougall
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Yu J, Wang K, Fan C, Zhao X, Gao J, Jing W, Zhang X, Li J, Li Y, Yang J, Liu W. An Ultrasoft Self-Fused Supramolecular Polymer Hydrogel for Completely Preventing Postoperative Tissue Adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008395. [PMID: 33734513 DOI: 10.1002/adma.202008395] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The intermolecular H-bonding density heavily influences the gelation and rheological behavior of hydrogen-bonded supramolecular polymer hydrogels, thus offering a delicate pathway to tailor their physicochemical properties for meeting a specific biomedical application. Herein, one methylene spacer between two amides in the side chain of N-acryloyl glycinamide (NAGA) is introduced to generate a variant monomer, N-acryloyl alaninamide (NAAA). Polymerization of NAAA in aqueous solution affords an unprecedented ultrasoft and highly swollen supramolecular polymer hydrogel due to weakened H-bonds caused by an extra methylene spacer, which is verified by variable-temperature Fourier transform infrared (FTIR) spectroscopy and simulation calculation. Intriguingly, poly(N-acryloyl alaninamide) (PNAAA) hydrogel can be tuned to form a transient network with a self-fused and excellent antifouling capability that results from the weakened dual amide H-bonding interactions and enhanced water-amide H-bonding interactions. This self-fused PNAAA hydrogel can completely inhibit postoperative abdominal adhesion and recurrent adhesion after adhesiolysis in vivo. This transient hydrogel network allows for its disintegration and excretion from the body. The molecular mechanism studies reveal the signal pathway of PNAAA hydrogel in inhibiting inflammatory response and regulating fibrinolytic system balance. This self-fused, antifouling ultrasoft supramolecular hydrogel is promising as a barrier biomaterial for completely preventing postoperative tissue adhesion.
Collapse
Affiliation(s)
- Jing Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoye Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoping Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jia Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yuan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
Louwe PA, Badiola Gomez L, Webster H, Perona-Wright G, Bain CC, Forbes SJ, Jenkins SJ. Recruited macrophages that colonize the post-inflammatory peritoneal niche convert into functionally divergent resident cells. Nat Commun 2021; 12:1770. [PMID: 33741914 PMCID: PMC7979918 DOI: 10.1038/s41467-021-21778-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation generally leads to recruitment of monocyte-derived macrophages. What regulates the fate of these cells and to what extent they can assume the identity and function of resident macrophages is unclear. Here, we show that macrophages elicited into the peritoneal cavity during mild inflammation persist long-term but are retained in an immature transitory state of differentiation due to the presence of enduring resident macrophages. By contrast, severe inflammation results in ablation of resident macrophages and a protracted phase wherein the cavity is incapable of sustaining a resident phenotype, yet ultimately elicited cells acquire a mature resident identity. These macrophages also have transcriptionally and functionally divergent features that result from inflammation-driven alterations to the peritoneal cavity micro-environment and, to a lesser extent, effects of origin and time-of-residency. Hence, rather than being predetermined, the fate of inflammation-elicited peritoneal macrophages seems to be regulated by the environment.
Collapse
Affiliation(s)
- P A Louwe
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - L Badiola Gomez
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - H Webster
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - G Perona-Wright
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - C C Bain
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - S J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom
| | - S J Jenkins
- Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom.
| |
Collapse
|
22
|
Henry S, Trousdell MC, Cyrill SL, Zhao Y, Feigman MJ, Bouhuis JM, Aylard DA, Siepel A, Dos Santos CO. Characterization of Gene Expression Signatures for the Identification of Cellular Heterogeneity in the Developing Mammary Gland. J Mammary Gland Biol Neoplasia 2021; 26:43-66. [PMID: 33988830 PMCID: PMC8217035 DOI: 10.1007/s10911-021-09486-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The developing mammary gland depends on several transcription-dependent networks to define cellular identities and differentiation trajectories. Recent technological advancements that allow for single-cell profiling of gene expression have provided an initial picture into the epithelial cellular heterogeneity across the diverse stages of gland maturation. Still, a deeper dive into expanded molecular signatures would improve our understanding of the diversity of mammary epithelial and non-epithelial cellular populations across different tissue developmental stages, mouse strains and mammalian species. Here, we combined differential mammary gland fractionation approaches and transcriptional profiles obtained from FACS-isolated mammary cells to improve our definitions of mammary-resident, cellular identities at the single-cell level. Our approach yielded a series of expression signatures that illustrate the heterogeneity of mammary epithelial cells, specifically those of the luminal fate, and uncovered transcriptional changes to their lineage-defined, cellular states that are induced during gland development. Our analysis also provided molecular signatures that identified non-epithelial mammary cells, including adipocytes, fibroblasts and rare immune cells. Lastly, we extended our study to elucidate expression signatures of human, breast-resident cells, a strategy that allowed for the cross-species comparison of mammary epithelial identities. Collectively, our approach improved the existing signatures of normal mammary epithelial cells, as well as elucidated the diversity of non-epithelial cells in murine and human breast tissue. Our study provides a useful resource for future studies that use single-cell molecular profiling strategies to understand normal and malignant breast development.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
- Graduate Program in Genetics, Stony Brook University, NY, 11794, US
| | | | | | - Yixin Zhao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | - Mary J Feigman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | | | - Dominik A Aylard
- College of Biological Sciences, University of California, Davis, CA, 95616, US
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, US
| | | |
Collapse
|
23
|
A high-fat diet delays plasmin generation in a thrombomodulin-dependent manner in mice. Blood 2020; 135:1704-1717. [PMID: 32315384 DOI: 10.1182/blood.2019004267] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/02/2020] [Indexed: 01/14/2023] Open
Abstract
Obesity is a prevalent prothrombotic risk factor marked by enhanced fibrin formation and suppressed fibrinolysis. Fibrin both promotes thrombotic events and drives obesity pathophysiology, but a lack of essential analytical tools has left fibrinolytic mechanisms affected by obesity poorly defined. Using a plasmin-specific fluorogenic substrate, we developed a plasmin generation (PG) assay for mouse plasma that is sensitive to tissue plasminogen activator, α2-antiplasmin, active plasminogen activator inhibitor (PAI-1), and fibrin formation, but not fibrin crosslinking. Compared with plasmas from mice fed a control diet, plasmas from mice fed a high-fat diet (HFD) showed delayed PG and reduced PG velocity. Concurrent to impaired PG, HFD also enhanced thrombin generation (TG). The collective impact of abnormal TG and PG in HFD-fed mice produced normal fibrin formation kinetics but delayed fibrinolysis. Functional and proteomic analyses determined that delayed PG in HFD-fed mice was not due to altered levels of plasminogen, α2-antiplasmin, or fibrinogen. Changes in PG were also not explained by elevated PAI-1 because active PAI-1 concentrations required to inhibit the PG assay were 100-fold higher than circulating concentrations in mice. HFD-fed mice had increased circulating thrombomodulin, and inhibiting thrombomodulin or thrombin-activatable fibrinolysis inhibitor (TAFI) normalized PG, revealing a thrombomodulin- and TAFI-dependent antifibrinolytic mechanism. Integrating kinetic parameters to calculate the metric of TG/PG ratio revealed a quantifiable net shift toward a prothrombotic phenotype in HFD-fed mice. Integrating TG and PG measurements may define a prothrombotic risk factor in diet-induced obesity.
Collapse
|
24
|
Ferns GA, Shahini Shams Abadi M, Arjmand MH. The potential association between metabolic syndrome and risk of post-surgical adhesion. Arch Physiol Biochem 2020; 129:649-654. [PMID: 33290664 DOI: 10.1080/13813455.2020.1856882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Metabolic syndrome (MetS) is defined by the clustering of several associated with a group of disorders that include: obesity, dyslipidemia, hypertension, and insulin resistance. The incidence of MetS is increasing globally around the world. Indeed the rates of different types of surgery in older or younger patients with Mets are increasing and they are exposed to a wide range of operations including abdominal, pelvic, urologic, or any invasive procedures. Post-surgical adhesion is a common problem and is a challenge for the surgeon. Despite many studies on its pathogenesis, there remain many un-answered questions about it, for example why certain tissues and patients are more at higher risk of post-surgical adhesions. Many studies have suggested that MetS is associated with up-regulating molecular mechanisms leading to chronic inflammation and hypercoagulability. In this review, we discuss some of the molecular mechanisms by MetS may enhance post-surgical adhesion, and particularly regarding those involved in coagulation and inflammation.
Collapse
Affiliation(s)
- Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Milad Shahini Shams Abadi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cancer Research Center, Shahrekord university of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Hassan Arjmand
- Cancer Research Center, Shahrekord university of Medical Sciences, Shahrekord, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
25
|
Heissig B, Salama Y, Takahashi S, Osada T, Hattori K. The multifaceted role of plasminogen in inflammation. Cell Signal 2020; 75:109761. [PMID: 32861744 PMCID: PMC7452830 DOI: 10.1016/j.cellsig.2020.109761] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
A fine-tuned activation and deactivation of proteases and their inhibitors are involved in the execution of the inflammatory response. The zymogen/proenzyme plasminogen is converted to the serine protease plasmin, a key fibrinolytic factor by plasminogen activators including tissue-type plasminogen activator (tPA). Plasmin is part of an intricate protease network controlling proteins of initial hemostasis/coagulation, fibrinolytic and complement system. Activation of these protease cascades is required to mount a proper inflammatory response. Although best known for its ability to dissolve clots and cleave fibrin, recent studies point to the importance of fibrin-independent functions of plasmin during acute inflammation and inflammation resolution. In this review, we provide an up-to-date overview of the current knowledge of the enzymatic and cytokine-like effects of tPA and describe the role of tPA and plasminogen receptors in the regulation of the inflammatory response with emphasis on the cytokine storm syndrome such as observed during coronavirus disease 2019 or macrophage activation syndrome. We discuss tPA as a modulator of Toll like receptor signaling, plasmin as an activator of NFkB signaling, and summarize recent studies on the role of plasminogen receptors as controllers of the macrophage conversion into the M2 type and as mediators of efferocytosis during inflammation resolution.
Collapse
Affiliation(s)
- Beate Heissig
- Department of Immunological Diagnosis, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Satoshi Takahashi
- Department of Hematology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, 279-0021 Chiba, Japan.
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
26
|
Is There a Genetic Predisposition to Postoperative Adhesion Development? Reprod Sci 2020; 28:2076-2086. [PMID: 33090376 PMCID: PMC7579853 DOI: 10.1007/s43032-020-00356-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
Adhesions are permanent fibrovascular bands between peritoneal surfaces, which develop following virtually all body cavity surgeries. The susceptibility to develop, and the severity, of adhesions following intra-abdominal surgery varies within and between individuals, suggesting that heritable factors influence adhesion development. In this manuscript, we discuss the pathophysiology of adhesion development from the perspective of genetic susceptibility. We restrict our discussion to genes and single-nucleotide polymorphisms (SNPs) that are specifically involved in, or that cause modification of, the adhesion development process. We performed a literature search using the PubMed database for all relevant English language articles up to March 2020 (n = 186). We identified and carefully reviewed all relevant articles addressing genetic mutations or single-nucleotide polymorphisms (SNPs) that impact the risk for adhesion development. We also reviewed references from these articles for additional information. We found several reported SNPs, genetic mutations, and upregulation of messenger RNAs that directly or indirectly increase the propensity for postoperative adhesion development, namely in genes for transforming growth factor beta, vascular endothelial growth factor, interferon-gamma, matrix metalloproteinase, plasminogen activator inhibitor-1, and the interleukins. An understanding of genetic variants could provide insight into the pathophysiology of adhesion development. The information presented in this review contributes to a greater understanding of adhesion development at the genetic level and may allow modification of these genetic risks, which may subsequently guide management in preventing and treating this challenging complication of abdominal surgery. In particular, the information could help identify patients at greater risk for adhesion development, which would make them candidates for anti-adhesion prophylaxis. Currently, agents to reduce postoperative adhesion development exist, and in the future, development of agents, which specifically target individual genetic profile, would be more specific in preventing intraperitoneal adhesion development.
Collapse
|
27
|
Postoperative peritoneal adhesion: an update on physiopathology and novel traditional herbal and modern medical therapeutics. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:317-336. [PMID: 32979062 DOI: 10.1007/s00210-020-01961-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a serious clinical condition that affects the high percentage of patients after abdominal surgery. In this review, we have tried to focus on pathophysiology and different underlying signal pathways of adhesion formation based on recent progress in the molecular and cellular mechanisms. Also, the strategies, developed based on traditional herbal and modern medicines, to prevent and treat the PPA via regulation of the molecular mechanisms were investigated. The search engines such as Google Scholar, PubMed, Scopus, and Science Direct have been used to evaluate the current literature related to the pathogenesis of adhesion formation and novel products. Recently, different mechanisms have been defined for adhesion formation, mainly categorized in fibrin formation and adhesion fibroblast function, inflammation, and angiogenesis. Therefore, the suppression of these mechanisms via traditional and modern medicine has been suggested in several studies. While different strategies with encouraging findings have been developed, most of the studies showed contradictory results and were performed on animals. The herbal products have been introduced as safe and effective agent which can be considered in future preclinical and clinical studies. Although a wide range of therapeutics based on traditional and modern medicines have been suggested, there is no agreement in the efficacy of these methods to prevent or treat adhesion formation after surgeries. Further basic and clinical researches are still needed to propose the efficiency of recommended strategies for prevention and treatment of PPA.
Collapse
|
28
|
van Steensel S, Liu H, Vercoulen TF, Hadfoune M, Breukink SO, Stassen LP, Lenaerts K, Bouvy ND. Prevention of intra-abdominal adhesions by a hyaluronic acid gel; an experimental study in rats. J Biomater Appl 2020; 35:887-897. [PMID: 32878535 DOI: 10.1177/0885328220954188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In 80% to 90% of the patients intra-abdominal adhesions occur after abdominal surgery, which can cause small-bowel obstruction, chronic abdominal pain, female infertility and difficulty during reoperation. A novel crosslinked hyaluronic acid gel is evaluated regarding its anti-adhesive capacities in an ischemic button model in rats. METHOD 51 adult, male Wistar rats from a registered breeder, received eight ischemic buttons each and were treated with hyaluronic acid gel (HA, HyaRegen©), hyaluronic acid carboxymethylcellulose (HA-CMC, Seprafilm©) or no anti-adhesive barrier. After 14 days, the animals were sacrificed and adhesions were scored macroscopically. The number of buttons and organs involved in adhesions were recorded. Per animal, one button with adhesions and one without adhesions was explanted for qPCR analysis. Mann-Whitney U, Fisher's exact and Wilcoxon signed rank test were used for data analysis. A p-value of 0.05 was considered significant. RESULTS Macroscopic evaluation of adhesion formation did not differ between the groups. The number of organs involved in adhesions in the HA gel group was significantly lower compared to HA-CMC (p = .041) and the control group (p = .012). A significantly, 1.36-fold higher clec10a (p = 0.25), 1.80-fold higher cd163 (p = 0.003) and 5.14-fold higher mmp1 expression (p = 0.028) was found in ischemic buttons with adhesions compared to buttons without adhesions. CONCLUSION HA gel application reduces the number of organs involved in adhesions in an ischemic button model, but no overall reduction in adhesion formation was encountered. Macrophage subtype 2 polarization and high mmp1 expression are associated with adhesion formation. Further investigation is needed in the exact pathophysiologic process of adhesion formation and the role of macrophage polarization.
Collapse
Affiliation(s)
- Sebastiaan van Steensel
- Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Hong Liu
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Maastricht University, Maastricht, Netherlands
| | | | - M'hamed Hadfoune
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | | | | | - Kaatje Lenaerts
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Maastricht University, Maastricht, Netherlands
| | - Nicole D Bouvy
- Maastricht Universitair Medisch Centrum+, Maastricht, Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Ding H, Li H, Yu H, Zhang W, Li S. Cytokines in abdominal exudate and serum predict small bowel obstruction following appendectomy. ANZ J Surg 2020; 90:1991-1996. [PMID: 32808444 DOI: 10.1111/ans.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study aimed to investigate the value of inflammatory markers for the prediction of small bowel obstruction (SBO) following appendectomy. METHODS We included cases of acute appendicitis that underwent laparoscopic appendectomy (LA) in the Qingdao Municipal Hospital between January 2017 and January 2019. The cases were divided into an SBO group and a non-SBO group depending on whether patients had or did not have SBO, and patients were followed up for at least 1 year. The levels of interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α) in abdominal exudate and venous blood were examined using enzyme-linked immunosorbent assay. RESULTS After 1 year of follow-up, there were 985 cases in the non-SBO group and 16 cases in the SBO group. The levels of IL-1β, IL-6 and TNF-α in abdominal exudate on post-operative day 1 in the SBO group were 172.5 ± 14.7, 2167.3 ± 372.1 and 253.9 ± 12.9 pg/mL, respectively, which were significantly higher than that in the non-SBO group. The serum levels of IL-1β, IL-6, TNF-α and C-reactive protein (CRP) in the SBO group were significantly higher than that in the non-SBO group before surgery. Post-operatively, the inflammatory markers above decreased significantly and became similar with time in both groups. The logistic regression showed that the levels of peritoneal IL-6, preoperative serum CRP and perforated appendicitis were significant risk factors of SBO. The specificity and sensitivity of peritoneal IL-6 were 0.81 and 0.921, respectively. CONCLUSION The IL-1β, IL-6, TNF-α and CRP in serum and abdominal exudate played an important role in SBO after LA. The peritoneal IL-6 was the most reliable prediction marker for SBO.
Collapse
Affiliation(s)
- Hui Ding
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Hongbo Li
- Department of Colorectal Surgery, Qingdao Municipal Hospital, Qingdao City, China
| | - Hualong Yu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Wenwei Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Siyuan Li
- The First Department of General Surgery, Qingdao Municipal Hospital, Qingdao City, China
| |
Collapse
|
30
|
Bain CC, Gibson DA, Steers NJ, Boufea K, Louwe PA, Doherty C, González-Huici V, Gentek R, Magalhaes-Pinto M, Shaw T, Bajénoff M, Bénézech C, Walmsley SR, Dockrell DH, Saunders PTK, Batada NN, Jenkins SJ. Rate of replenishment and microenvironment contribute to the sexually dimorphic phenotype and function of peritoneal macrophages. Sci Immunol 2020; 5:eabc4466. [PMID: 32561560 PMCID: PMC7610697 DOI: 10.1126/sciimmunol.abc4466] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Macrophages reside in the body cavities where they maintain serosal homeostasis and provide immune surveillance. Peritoneal macrophages are implicated in the etiology of pathologies including peritonitis, endometriosis, and metastatic cancer; thus, understanding the factors that govern their behavior is vital. Using a combination of fate mapping techniques, we have investigated the impact of sex and age on murine peritoneal macrophage differentiation, turnover, and function. We demonstrate that the sexually dimorphic replenishment of peritoneal macrophages from the bone marrow, which is high in males and very low in females, is driven by changes in the local microenvironment that arise upon sexual maturation. Population and single-cell RNA sequencing revealed marked dimorphisms in gene expression between male and female peritoneal macrophages that was, in part, explained by differences in composition of these populations. By estimating the time of residency of different subsets within the cavity and assessing development of dimorphisms with age and in monocytopenic Ccr2 -/- mice, we demonstrate that key sex-dependent features of peritoneal macrophages are a function of the differential rate of replenishment from the bone marrow, whereas others are reliant on local microenvironment signals. We demonstrate that the dimorphic turnover of peritoneal macrophages contributes to differences in the ability to protect against pneumococcal peritonitis between the sexes. These data highlight the importance of considering both sex and age in susceptibility to inflammatory and infectious diseases.
Collapse
Affiliation(s)
- C C Bain
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK.
| | - D A Gibson
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - N J Steers
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - K Boufea
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - P A Louwe
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - C Doherty
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - V González-Huici
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - R Gentek
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - M Magalhaes-Pinto
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - T Shaw
- Lydia Becker Institute for Immunology and Infection, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, UK
| | - M Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - C Bénézech
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - S R Walmsley
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - D H Dockrell
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - P T K Saunders
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - N N Batada
- Institute for Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - S J Jenkins
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
31
|
Gojkovic M, Darmasaputra GS, Veliça P, Rundqvist H, Johnson RS. Deregulated hypoxic response in myeloid cells: A model for high-altitude pulmonary oedema (HAPE). Acta Physiol (Oxf) 2020; 229:e13461. [PMID: 32129933 PMCID: PMC8638671 DOI: 10.1111/apha.13461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
AIM High-altitude pulmonary oedema (HAPE) is a non-cardiogenic pulmonary oedema that can occur during rapid ascent to a high-altitude environment. Classically, HAPE has been described as a condition resulting from a combination of pulmonary vasoconstriction and hypertension. Inflammation has been described as important in HAPE, although as a side effect of pulmonary oedema rather than as a causative factor. In this study, we aim to understand the role of hypoxic response in myeloid cells and its involvement in pathogenesis of HAPE. METHODS We have generated a conditional deletion in mice of the von Hippel-Lindau factor (VHL) in myeloid cells to determine the effect of a deregulated hypoxic response in pulmonary oedema. RESULTS The deletion of VHL in pulmonary myeloid cells gave rise to pulmonary oedema, increased pulmonary vascular permeability and reduced performance during exertion. These changes were accompanied by reduced stroke volume in the left ventricle. CONCLUSION In this model, we show that a deregulated myeloid cell hypoxic response can trigger some of the most important symptoms of HAPE, and thus mice with a deletion of VHL in the myeloid lineage can function as a model of HAPE.
Collapse
Affiliation(s)
- Milos Gojkovic
- Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
| | | | - Pedro Veliça
- Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
| | - Helene Rundqvist
- Department of Physiology and Pharmacology Karolinska Institute Stockholm Sweden
| | - Randall S. Johnson
- Department of Cell and Molecular Biology Karolinska Institute Stockholm Sweden
- Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
| |
Collapse
|
32
|
Fibrin Deposit on the Peritoneal Surface Serves as a Niche for Cancer Expansion in Carcinomatosis Patients. Neoplasia 2019; 21:1091-1101. [PMID: 31734630 PMCID: PMC6889015 DOI: 10.1016/j.neo.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Peritoneal metastasis (PM) is a very serious complication of gastrointestinal and gynecological malignancies which is poorly documented. Modified mesothelial cell layer and their microenvironments can favor fibrin deposition for cancer cell adhesion. Scanning and transmission electron microscopy of peritoneal surface and cancer cell clusters from cancer patients was done. Ascites and its impact on mesothelial cells were assessed by cytokine array. Neprilysin, matrix metalloprotease, epithelial mesenchymal transition (EMT) related molecules (E-cadherin, Snail, Slug, Twist, Vimentin and Fibronectin), tissues factor (TF), endothelial protein C receptors (EPCR) were quantified by q-PCR. Fibrin in the simples were stained using anti fibrin F1E1 antibody. Migration ability was assessed by scratch assay. Cell viability and neprilysin activity were analyzed by bioluminescence. Cancer cells-fibrin interaction was investigated by scanning electron microscopy (SEM) and microcinematography (MCG). Mesothelial cells change their morphology after incubation with carcinomatosis peritoneal fluids in vitro. EMT associated with upregulation of neprilysin, matrix metalloproteinase-2, tissue factor and cytokines secretions such as interleukin-6, and 8, hepatocyte growth factor and granulocyte chemotactic protein-2 mRNA and protein were observed. EPCR expression as a natural anticoagulant was decreased. In parallel, carcinomatosis cell clusters extracted from peritoneal fluids were found to be associated with fibrin. Kinetic analysis of cancer cell-fibrin interaction in vitro studied by MCG showed that fiber filaments generated from clots inhibited cancer cell adhesion on fibrin clots. These results indicated that fibrin deposit on the peritoneal surface serve as niches for cancer expansion in carcinomatosis patients.
Collapse
|
33
|
Brown Y, Hua S, Tanwar PS. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol 2019; 109:90-104. [DOI: 10.1016/j.biocel.2019.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
34
|
The biology of serous cavity macrophages. Cell Immunol 2018; 330:126-135. [DOI: 10.1016/j.cellimm.2018.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|
35
|
Macarak EJ, Lotto CE, Koganti D, Jin X, Wermuth PJ, Olsson AK, Montgomery M, Rosenbloom J. Trametinib prevents mesothelial-mesenchymal transition and ameliorates abdominal adhesion formation. J Surg Res 2018; 227:198-210. [DOI: 10.1016/j.jss.2018.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022]
|
36
|
Bedarida T, Domingues A, Baron S, Ferreira C, Vibert F, Cottart CH, Paul JL, Escriou V, Bigey P, Gaussem P, Leguillier T, Nivet-Antoine V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo. FASEB J 2018; 32:3108-3118. [PMID: 29401599 DOI: 10.1096/fj.201700856rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIPfl/fl cdh5cre). Control (TXNIPfl/fl) and TXNIPfl/fl cdh5cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIPfl/fl and TXNIPfl/fl cdh5cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIPfl/fl cdh5cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.
Collapse
Affiliation(s)
- Tatiana Bedarida
- INSERM, Unité Mixte de Recherche (UMR) S-1140, Paris, France.,Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Alison Domingues
- INSERM, Unité Mixte de Recherche (UMR) S-1140, Paris, France.,Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Stephanie Baron
- Department of Physiology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Chrystophe Ferreira
- Platform Anima 5, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Francoise Vibert
- Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,INSERM, UMR S-1139, Paris, France
| | - Charles-Henry Cottart
- Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Clinical Biochemistry, Necker Hospital, AP-HP, Paris, France
| | - Jean-Louis Paul
- Department of Biochemistry, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Virginie Escriou
- Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Centre National de la Recherche Scientifique, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, Paris, France.,INSERM, UTCBS Unité 1022, Paris, France.,Chimie ParisTech, Paris Sciences et Lettres (PSL) Research University, UTCBS, Paris, France; and
| | - Pascal Bigey
- Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Centre National de la Recherche Scientifique, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), UMR 8258, Paris, France.,INSERM, UTCBS Unité 1022, Paris, France.,Chimie ParisTech, Paris Sciences et Lettres (PSL) Research University, UTCBS, Paris, France; and
| | - Pascale Gaussem
- INSERM, Unité Mixte de Recherche (UMR) S-1140, Paris, France.,Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Department of Hematology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Teddy Leguillier
- INSERM, Unité Mixte de Recherche (UMR) S-1140, Paris, France.,Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Clinical Biochemistry, Necker Hospital, AP-HP, Paris, France
| | - Valerie Nivet-Antoine
- INSERM, Unité Mixte de Recherche (UMR) S-1140, Paris, France.,Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Clinical Biochemistry, Necker Hospital, AP-HP, Paris, France
| |
Collapse
|
37
|
Fang WF, Chen YM, Lin CY, Huang HL, Yeh H, Chang YT, Huang KT, Lin MC. Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression. JOURNAL OF INFLAMMATION-LONDON 2018; 15:3. [PMID: 29344006 PMCID: PMC5763578 DOI: 10.1186/s12950-018-0179-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection, and is primarily characterized by an uncontrolled systemic inflammatory response. In the present study, we developed an effective adjunct therapy mediated by a novel mechanism, to attenuate overt inflammation. LPS-treated macrophages were adopted as an in vitro model of endotoxin-induced inflammation during sepsis. Experiments were carried out using primary mouse peritoneal macrophages and the murine macrophage cell line RAW264.7, to elucidate the mechanisms by which HDAC2 modulates endotoxin-induced inflammation. Results Results revealed that PAI-1, TNF, and MIP-2 expression were inhibited by theophylline, an HDAC2 enhancer, in a RAW macrophage cell line, following LPS-induced inflammation. Thus, HDAC2 plays an important role in immune defense by regulating the expression of inflammatory genes via the c-Jun/PAI-1 pathway. During LPS-induced inflammation, overexpression of HDAC2 was found to inhibit PAI-1, TNF, and MIP-2 expression. Following LPS stimulation, HDAC2 knockdown increased nuclear translocation and DNA binding of c-Jun to the PAI-1 gene promoter, thereby activating PAI-1 gene transcription. Furthermore, inhibition of PAI-1 by TM5275 alone or in combination with theophylline notably suppressed TNF and MIP-2 expression. Conclusion HDAC2 can attenuate lipopolysaccharide-induced inflammation by regulating c-Jun and PAI-1 expression in macrophages.
Collapse
Affiliation(s)
- Wen-Feng Fang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan.,2Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung Dist, Kaohsiung, 833 Taiwan.,3Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, 813 Taiwan
| | - Yu-Mu Chen
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Chiung-Yu Lin
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Hui-Lin Huang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Hua Yeh
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Ya-Ting Chang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Kuo-Tung Huang
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan
| | - Meng-Chih Lin
- 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833 Taiwan.,2Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta-Pei Rd, Niao-Sung Dist, Kaohsiung, 833 Taiwan
| |
Collapse
|
38
|
Tian L, Li H, Li Y, Liu K, Sun Y, Cong Z, Luan X, Li Y, Chen J, Wang L, Ren Z, Cong D, Wang H, Pei J. A Combination of Chitosan, Cellulose, and Seaweed Polysaccharide Inhibits Postoperative Intra-abdominal Adhesion in Rats. J Pharmacol Exp Ther 2017; 364:399-408. [DOI: 10.1124/jpet.117.244400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023] Open
|
39
|
TGF-β-induced intracellular PAI-1 is responsible for retaining hematopoietic stem cells in the niche. Blood 2017; 130:2283-2294. [PMID: 28821477 DOI: 10.1182/blood-2017-02-767384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in the supportive stromal niche in bone marrow (BM); when needed, however, they are rapidly mobilized into the circulation, suggesting that HSPCs are intrinsically highly motile but usually stay in the niche. We questioned what determines the motility of HSPCs. Here, we show that transforming growth factor (TGF)-β-induced intracellular plasminogen activator inhibitor (PAI)-1 activation is responsible for keeping HSPCs in the BM niche. We found that the expression of PAI-1, a downstream target of TGF-β signaling, was selectively augmented in niche-residing HSPCs. Functional inhibition of the TGF-β-PAI-1 signal increased MT1-MMP-dependent cellular motility, causing a detachment of HSPCs from the TGF-β-expressing niche cells, such as megakaryocytes. Furthermore, consistently high motility in PAI-1-deficient HSPCs was demonstrated by both a transwell migration assay and reciprocal transplantation experiments, indicating that intracellular, not extracellular, PAI-1 suppresses the motility of HSPCs, thereby causing them to stay in the niche. Mechanistically, intracellular PAI-1 inhibited the proteolytic activity of proprotein convertase Furin, diminishing MT1-MMP activity. This reduced expression of MT1-MMP in turn affected the expression levels of several adhesion/deadhesion molecules for determination of HSPC localization, such as CD44, VLA-4, and CXCR4, which then promoted the retention of HSPCs in the niche. Our findings open up a new field for the study of intracellular proteolysis as a regulatory mechanism of stem cell fate, which has the potential to improve clinical HSPC mobilization and transplantation protocols.
Collapse
|