1
|
Pan Y, Hochgerner M, Cichoń MA, Benezeder T, Bieber T, Wolf P. Langerhans cells: Central players in the pathophysiology of atopic dermatitis. J Eur Acad Dermatol Venereol 2024. [PMID: 39157943 DOI: 10.1111/jdv.20291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide. AD is a highly complex disease with different subtypes. Many elements of AD pathophysiology have been described, but if/how they interact with each other or which mechanisms are important in which patients is still unclear. Langerhans cells (LCs) are antigen-presenting cells (APCs) in the epidermis. Depending on the context, they can act either pro- or anti-inflammatory. Many different studies have investigated LCs in the context of AD and found them to be connected to all major mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and shape the immune response, especially adaptive immunity via polarization of T cells. As sentinel cells, LCs are primary sensors of the skin microbiome and are important for the decision of immunity versus tolerance. LCs are also involved with the integrity of the skin barrier by influencing tight junctions. Finally, LCs are important cells in the neuro-immune crosstalk in the skin. In this review, we provide an overview about the many different roles of LCs in AD. Understanding LCs might bring us closer to a more complete understanding of this highly complex disease. Potentially, modulating LCs might offer new options for targeted therapies for AD patients.
Collapse
Affiliation(s)
- Yi Pan
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
| | | | - Theresa Benezeder
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
- CK-CARE, Medicine Campus, Davos, Switzerland
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Peter Wolf
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Gerlini G, Susini P, Sestini S, Brandani P, Giannotti V, Borgognoni L. Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients. Cancers (Basel) 2024; 16:1890. [PMID: 38791968 PMCID: PMC11119378 DOI: 10.3390/cancers16101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Langerhans cells (LCs) are professional Dendritic Cells (DCs) involved in immunoregulatory functions. At the skin level, LCs are immature. In response to tissue injuries, they migrate to regional Lymph Nodes (LNs), reaching a full maturation state. Then, they become effective antigen-presenting cells (APCs) that induce anti-cancer responses. Notably, melanoma patients present several DC alterations in the Sentinel Lymph Node (SLN), where primary antitumoral immunity is generated. LCs are the most represented DCs subset in melanoma SLNs and are expected to play a key role in the anti-melanoma response. With this paper, we aim to review the current knowledge and future perspectives regarding LCs and melanoma. METHODS A systematic review was carried out according to the PRISMA statement using the PubMed (MEDLINE) library from January 2004 to January 2024, searching for original studies discussing LC in melanoma. RESULTS The final synthesis included 15 articles. Several papers revealed significant LCs-melanoma interactions. CONCLUSIONS Melanoma immune escape mechanisms include SLN LC alterations, favoring LN metastasis arrival/homing and melanoma proliferation. The SLN LCs of melanoma patients are defective but not irreversibly, and their function may be restored by appropriate stimuli. Thus, LCs represent a promising target for future immunotherapeutic strategies and cancer vaccines.
Collapse
Affiliation(s)
- Gianni Gerlini
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Pietro Susini
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Serena Sestini
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Paola Brandani
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Vanni Giannotti
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| | - Lorenzo Borgognoni
- Plastic and Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (S.S.); (P.B.); (V.G.); (L.B.)
| |
Collapse
|
3
|
Seiser S, Arzani H, Ayub T, Phan-Canh T, Staud C, Worda C, Kuchler K, Elbe-Bürger A. Native human and mouse skin infection models to study Candida auris-host interactions. Microbes Infect 2024; 26:105234. [PMID: 37813159 DOI: 10.1016/j.micinf.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The World Health Organization (WHO) declared certain fungal pathogens as global health threats for the next decade. Candida auris (C. auris) is a newly emerging skin-tropic multidrug-resistant fungal pathogen that can cause life-threatening infections of high mortality in hospitals and healthcare settings. Here, we address an unmet need and present novel native ex vivo skin models, thus extending previous C. auris-host interaction studies. We exploit histology and immunofluorescence analysis of ex vivo skin biopsies of human adult and fetal, as well as mouse origin infected with C. auris via distinct routes. We demonstrate that an intact skin barrier efficiently protects from C. auris penetration and invasion. Although C. auris readily grows on native human skin, it can reach deeper layers only upon physical disruption of the barrier by needling or through otherwise damaged skin. By contrast, a barrier disruption is not necessary for C. auris penetration of native mouse skin. Importantly, we show that C. auris undergoes morphogenetic changes upon skin penetration, as it acquires pseudohyphal growth phenotypes in deeper human and mouse dermis. Taken together, this new human and mouse skin model toolset yields new insights into C. auris colonization, adhesion, growth and invasion properties of native versus damaged human skin. The results form a crucial basis for future studies on skin immune defense to colonizing pathogens, and offer new options for testing the action and efficacy of topical antimicrobial compound formulations.
Collapse
Affiliation(s)
- Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hossein Arzani
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Tanya Ayub
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Trinh Phan-Canh
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Clement Staud
- Medical University of Vienna, Department of Plastic and Reconstructive Surgery, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christof Worda
- Medical University of Vienna, Department of Obstetrics and Gynecology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Cichoń MA, Elbe-Bürger A. Epidermal/Dermal Separation Techniques and Analysis of Cell Populations in Human Skin Sheets. J Invest Dermatol 2023; 143:11-17.e8. [PMID: 36528357 DOI: 10.1016/j.jid.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022]
Abstract
Human skin consists of three compartments, each endowed with a particular structure and the presence of several immune and nonimmune cells that together comprise a protective shield and orchestrate multiple processes in the skin. Appropriate processing of human skin samples acquired from healthy volunteers or patients is essential for successful analysis in basic, translational, and clinical research to obtain accurate and reliable results, despite differences between individuals. From the wide range of available assays and methods, it is necessary to select the suitable method for separation of skin compartments, which will provide preservation or high viability of skin cells or whole structures that will be analyzed or further processed. In this paper, we review and discuss skin separation methods and compare their features such as processing time, cell viability, location of the basement membrane after detachment of the epidermis from the dermis, and their application. Furthermore, we visualize different cell populations and structures in epidermal and dermal sheets using confocal microscopy. It is aimed to provide an overview of the optimal processing of human skin samples and their possible application.
Collapse
|
5
|
Neagu M, Constantin C, Jugulete G, Cauni V, Dubrac S, Szöllősi AG, Zurac S. Langerhans Cells-Revising Their Role in Skin Pathologies. J Pers Med 2022; 12:2072. [PMID: 36556292 PMCID: PMC9782496 DOI: 10.3390/jpm12122072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cells (LCs) constitute a cellular immune network across the epidermis. Because they are located at the skin barrier, they are considered immune sentinels of the skin. These antigen-presenting cells are capable of migrating to skin draining lymph nodes to prime adaptive immune cells, namely T- and B-lymphocytes, which will ultimately lead to a broad range of immune responses. Moreover, LCs have been shown to possess important roles in the anti-cancer immune responses. Indeed, the literature nicely highlights the role of LCs in melanoma. In line with this, LCs have been found in melanoma tissues where they contribute to the local immune response. Moreover, the immunogenic properties of LCs render them attractive targets for designing vaccines to treat melanoma and autoimmune diseases. Overall, future studies will help to enlarge the portfolio of immune properties of LCs, and aid the prognosis and development of novel therapeutic approaches to treating skin pathologies, including cancers.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Section IX—Pediatrics, “Prof. Dr. Matei Balş” National Institute for Infectious Diseases, 050474 Bucharest, Romania
| | - Victor Cauni
- Department of Urology, Colentina University Hospital, 050474 Bucharest, Romania
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
6
|
Comparative assessment of commercially available wound gels in ex vivo human skin reveals major differences in immune response-modulatory effects. Sci Rep 2022; 12:17481. [PMID: 36261541 PMCID: PMC9581930 DOI: 10.1038/s41598-022-20997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023] Open
Abstract
Wound healing is a crucial process for maintaining the function of human skin as a protective barrier to pathogens and other external stress factors. Hydrogels-in combination with antimicrobials-are often used, as moist wound care has been widely accepted as standard therapy. Recently, we reported about immune response-modulatory effects of an octenidine-based hydrogel, however little is known about the mechanism of action of other hydrogels including antiseptic molecules or chlorine-based and chlorine-releasing agents, respectively. The aim of this study was the comparative assessment of commercially available wound gels (octenilin®, Prontosan®, Lavanid®, Betadona®, ActiMaris®, Microdacyn60®, VeriforteTMmed) with regard to their effects on the secretion of distinct cytokines (IL-6, IL-8, IL-10), matrix-metalloproteinases as well as their potential to cause alterations in skin structure and apoptosis. Hence, tape-stripped human ex vivo skin biopsies were treated topically with wound gels and cultured for 48 h. Enzyme-linked immunosorbent assays and an enzyme activity assay of culture supernatants revealed that octenilin® demonstrates significantly broader anti-inflammatory and protease-inhibitory capacities than other wound gels. Further, haematoxylin & eosin as well as caspase-3 staining of treated biopsies showed that octenilin® does not alter skin morphology and shows the least interfering effect on human epidermal cells compared to untreated controls. Overall, this study clearly demonstrates totally different effects for several commercially available hydrogels in our wound model, which gives also new insight into their tissue compatibility and mode of action.
Collapse
|
7
|
Cichoń MA, Pfisterer K, Leitner J, Wagner L, Staud C, Steinberger P, Elbe-Bürger A. Interoperability of RTN1A in dendrite dynamics and immune functions in human Langerhans cells. eLife 2022; 11:e80578. [PMID: 36223176 PMCID: PMC9555864 DOI: 10.7554/elife.80578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is an active immune organ where professional antigen-presenting cells such as epidermal Langerhans cells (LCs) link innate and adaptive immune responses. While Reticulon 1A (RTN1A) was recently identified in LCs and dendritic cells in cutaneous and lymphoid tissues of humans and mice, its function is still unclear. Here, we studied the involvement of this protein in cytoskeletal remodeling and immune responses toward pathogens by stimulation of Toll-like receptors (TLRs) in resident LCs (rLCs) and emigrated LCs (eLCs) in human epidermis ex vivo and in a transgenic THP-1 RTN1A+ cell line. Hampering RTN1A functionality through an inhibitory antibody induced significant dendrite retraction of rLCs and inhibited their emigration. Similarly, expression of RTN1A in THP-1 cells significantly altered their morphology, enhanced aggregation potential, and inhibited the Ca2+ flux. Differentiated THP-1 RTN1A+ macrophages exhibited long cell protrusions and a larger cell body size in comparison to wild-type cells. Further, stimulation of epidermal sheets with bacterial lipoproteins (TLR1/2 and TLR2 agonists) and single-stranded RNA (TLR7 agonist) resulted in the formation of substantial clusters of rLCs and a significant decrease of RTN1A expression in eLCs. Together, our data indicate involvement of RTN1A in dendrite dynamics and structural plasticity of primary LCs. Moreover, we discovered a relation between activation of TLRs, clustering of LCs, and downregulation of RTN1A within the epidermis, thus indicating an important role of RTN1A in LC residency and maintaining tissue homeostasis.
Collapse
Affiliation(s)
| | - Karin Pfisterer
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Lena Wagner
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Clement Staud
- Department of Plastic and Reconstructive Surgery, Medical University of ViennaViennaAustria
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | | |
Collapse
|
8
|
Octenidine-based hydrogel shows anti-inflammatory and protease-inhibitory capacities in wounded human skin. Sci Rep 2021; 11:32. [PMID: 33420112 PMCID: PMC7794247 DOI: 10.1038/s41598-020-79378-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Octenidine dihydrochloride (OCT) is a widely used antiseptic molecule, promoting skin wound healing accompanied with improved scar quality after surgical procedures. However, the mechanisms by which OCT is contributing to tissue regeneration are not yet completely clear. In this study, we have used a superficial wound model by tape stripping of ex vivo human skin. Protein profiles of wounded skin biopsies treated with OCT-containing hydrogel and the released secretome were analyzed using liquid chromatography-mass spectrometry (LC–MS) and enzyme-linked immunosorbent assay (ELISA), respectively. Proteomics analysis of OCT-treated skin wounds revealed significant lower levels of key players in tissue remodeling as well as reepithelization after wounding such as pro-inflammatory cytokines (IL-8, IL-6) and matrix-metalloproteinases (MMP1, MMP2, MMP3, MMP9) when compared to controls. In addition, enzymatic activity of several released MMPs into culture supernatants was significantly lower in OCT-treated samples. Our data give insights on the mode of action based on which OCT positively influences wound healing and identified anti-inflammatory and protease-inhibitory activities of OCT.
Collapse
|
9
|
Bellmann L, Zelle-Rieser C, Milne P, Resteu A, Tripp CH, Hermann-Kleiter N, Zaderer V, Wilflingseder D, Hörtnagl P, Theochari M, Schulze J, Rentzsch M, Del Frari B, Collin M, Rademacher C, Romani N, Stoitzner P. Notch-Mediated Generation of Monocyte-Derived Langerhans Cells: Phenotype and Function. J Invest Dermatol 2021; 141:84-94.e6. [PMID: 32522485 PMCID: PMC7758629 DOI: 10.1016/j.jid.2020.05.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-β1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.
Collapse
Key Words
- a647, alexafluor-647
- dc, dendritic cell
- lc, langerhans cell
- mhc, major histocompatibility complex
- mlr, mixed leukocyte reaction
- molc, monocyte-derived lc
- polyi:c, polyinosinic:polycytidylic acid
- rna-seq, rna sequencing
- th, t helper
- tlr, toll-like receptor
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Zelle-Rieser
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Milne
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunological Department, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Theochari
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Mareike Rentzsch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew Collin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Zhang JX, Xu QY, Yang Y, Li N, Zhang Y, Deng LH, Zhu QX, Shen T. Kupffer cell inactivation ameliorates immune liver injury via TNF-α/TNFR1 signal pathway in trichloroethylene sensitized mice. Immunopharmacol Immunotoxicol 2020; 42:545-555. [PMID: 32811237 DOI: 10.1080/08923973.2020.1811306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
METHODS 36 female BALB/c mice were selected and randomly divided the mice into four groups. We established a BALB/c mouse model of TCE sensitization and pretreatment with GdCl3 (40 mg/kg) by intraperitoneal injection during the during the 17th and 19th days. RESULTS We found F4/80, the marker of Kupffer cell, was increased in TCE positive group. GdCl3 treatment successfully blocked the activation of Kupffer cell. TNF-α was increased significantly in liver of TCE sensitized mice and decreased significantly when low-dose GdCl3 was used. We found TNF receptor 1 (TNFR1) was increased significantly and GdCl3 treatment resumed the expression of TNFR1 to normal level, as well as the F4/80, TNF-α and TNFR1 mRNA. We also found both caspase-8 and caspase-3 increased in TCE positive group and decreased in TCE + GdCl3 positive group. The number of apoptotic cells in TCE sensitized mice increased by TUNEL staining, and GdCl3 treatment alleviated this increase. Some cells showed edema and inflammatory cell aggregation in liver of TCE positive group, while in the TCE + GdCl3 positive group, the cytoplasm became loose and vacuole-like degeneration occurred. CONCLUSION Our study unveils cross-talk between Kupffer cell activation and TNFR1 which mediate apoptosis in liver of TCE sensitized mice.
Collapse
Affiliation(s)
- Jia-Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Qiong-Ying Xu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yi Yang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Na Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Yan Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Li-Hua Deng
- Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, Guangdong, PR China
| | - Qi-Xing Zhu
- Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China.,Ministry of Education, Key Laboratory of Dermatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Becerril-García MA, Yam-Puc JC, Maqueda-Alfaro R, Beristain-Covarrubias N, Heras-Chavarría M, Gallegos-Hernández IA, Calderón-Amador J, Munguía-Fuentes R, Donis-Maturano L, Flores-Langarica A, Flores-Romo L. Langerhans Cells From Mice at Birth Express Endocytic- and Pattern Recognition-Receptors, Migrate to Draining Lymph Nodes Ferrying Antigen and Activate Neonatal T Cells in vivo. Front Immunol 2020; 11:744. [PMID: 32395120 PMCID: PMC7197463 DOI: 10.3389/fimmu.2020.00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Antigen capturing at the periphery is one of the earliest, crucial functions of antigen-presenting cells (APCs) to initiate immune responses. Langerhans cells (LCs), the epidermal APCs migrate to draining lymph nodes (DLNs) upon acquiring antigens. An arsenal of endocytic molecules is available to this end, including lectins and pathogen recognition receptors (PRRs). However, cutaneous LCs are poorly defined in the early neonatal period. We assessed endocytic molecules expression in situ: Mannose (CD206)-, Scavenger (SRA/CD204)-, Complement (CD2l, CDllb)-, and Fc-Receptors (CD16/32, CD23) as well as CD1d, CD14, CD205, Langerin (CD207), MHCII, and TLR4 in unperturbed epidermal LCs from both adult and early neonatal mice. As most of these markers were negative at birth (day 0), LC presence was revealed with the conspicuous, epidermal LC-restricted ADPase (and confirmed with CD45) staining detecting that they were as numerous as adult ones. Unexpectedly, most LCs at day 0 expressed CD14 and CD204 while very few were MHCII+ and TLR4+. In contrast, adult LCs lacked all these markers except Langerin, CD205, CD11b, MHCII and TLR4. Intriguingly, the CD204+ and CD14+ LCs predominant at day 0, apparently disappeared by day 4. Upon cutaneous FITC application, LCs were reduced in the skin and a CD204+MHCII+FITC+ population with high levels of CD86 subsequently appeared in DLNs, with a concomitant increased percentage of CD3+CD69+ T cells, strongly suggesting that neonatal LCs were able both to ferry the cutaneous antigen into DLNs and to activate neonatal T cells in vivo. Cell cycle analysis indicated that neonatal T cells in DLNs responded with proliferation. Our study reveals that epidermal LCs are present at birth, but their repertoire of endocytic molecules and PRRs differs to that of adult ones. We believe this to be the first description of CDl4, CD204 and TLR4 in neonatal epidermal LCs in situ. Newborns' LCs express molecules to detect antigens during early postnatal periods, are able to take up local antigens and to ferry them into DLNs conveying the information to responsive neonatal T cells.
Collapse
Affiliation(s)
- Miguel Angel Becerril-García
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Juan Carlos Yam-Puc
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico.,Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Raúl Maqueda-Alfaro
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Nonantzin Beristain-Covarrubias
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Monica Heras-Chavarría
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Isis Amara Gallegos-Hernández
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Juana Calderón-Amador
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Rosario Munguía-Fuentes
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| | - Adriana Flores-Langarica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico
| |
Collapse
|
12
|
Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I. Significance and Role of Pattern Recognition Receptors in Malignancy. Arch Immunol Ther Exp (Warsz) 2019; 67:133-141. [PMID: 30976817 PMCID: PMC6509067 DOI: 10.1007/s00005-019-00540-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors (PRRs) are members of innate immunity, playing pivotal role in several immunological reactions. They are known to act as a bridge between innate and adaptive immunity. They are expressed on several normal cell types but have been shown with increasing frequency on/in tumor cells. Significance of this phenomenon is largely unknown, but it has been shown by several authors that they, predominantly Toll-like receptors (TLRs), act in the interest of tumor, by promotion of its growth and spreading. Preparation of artificial of TLRs ligands (agonists) paved the way to use them as a therapeutic agents for cancer, so far in a limited scale. Agonists may be combined with conventional anti-cancer modalities with apparently promising results. PRRs recognizing nucleic acids such as RIG-1 like receptors (sensing RNA) and STING (sensing DNA) constitute a novel promising approach for cancer immunotherapy.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- DNA/immunology
- DNA/metabolism
- Disease Models, Animal
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Ligands
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/pathology
- RNA/immunology
- RNA/metabolism
- Receptors, Pattern Recognition/agonists
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Jan Żeromski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland.
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Maciej Boruczkowski
- Department of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Agata Kierepa
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| | - Iwona Mozer-Lisewska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
The Antiseptic Octenidine Inhibits Langerhans Cell Activation and Modulates Cytokine Expression upon Superficial Wounding with Tape Stripping. J Immunol Res 2019; 2019:5143635. [PMID: 30944833 PMCID: PMC6421797 DOI: 10.1155/2019/5143635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Ideal agents for the topical treatment of skin wounds should have antimicrobial efficacy without negative influence on wound healing. Octenidine (OCT) has become a widely used antiseptic in professional wound care, but its influence on several components of the wound healing process remains unclear. In the present study, we have used a superficial wound model using tape stripping on human full-thickness skin ex vivo to investigate the influence of OCT on epidermal Langerhans cells (LCs) and cytokine secretion pattern of skin cells during wound healing in a model without disruption of the normal skin structure. Histological and immunofluorescence studies showed that OCT neither altered human skin architecture nor the viability of skin cells upon 48 hours of culture in unwounded or wounded skin. The epidermis of explants and LCs remained morphologically intact throughout the whole culture period upon OCT treatment. OCT inhibited the upregulation of the maturation marker CD83 on LCs and prevented their emigration in wounded skin. Furthermore, OCT reduced both pro- and anti-inflammatory mediators (IL-8, IL-33, and IL-10), while angiogenesis and growth factor mediators (VEGF and TGF-β1) remained unchanged in skin explant cultures. Our data provide novel insights into the host response to OCT in the biologically relevant environment of viable human (wounded) skin.
Collapse
|
14
|
Tajpara P, Mildner M, Schmidt R, Vierhapper M, Matiasek J, Popow-Kraupp T, Schuster C, Elbe-Bürger A. A Preclinical Model for Studying Herpes Simplex Virus Infection. J Invest Dermatol 2018; 139:673-682. [PMID: 30414908 PMCID: PMC7100788 DOI: 10.1016/j.jid.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 01/29/2023]
Abstract
Herpes simplex virus (HSV) infections can cause considerable morbidity. Currently, nucleoside analogues such as acyclovir are widely used for treatment. However, HSV infections resistant to these drugs are a clinical problem among immunocompromised patients. To provide more efficient therapy and to counteract resistance, a different class of antiviral compounds has been developed. Pritelivir, a helicase primase inhibitor, represents a promising candidate for improved therapy. Here, we established an HSV-1 infection model on microneedle-pretreated human skin ex vivo. We identified HSV-1–specific histological changes (e.g., cytopathic effects, multinucleated giant cells), down-regulation of nectin-1, nuclear translocation of NF-κB (p65), interferon regulatory factor 3 (IRF3), and signaling of the IFN-inducible protein MxA. Accordingly, this model was used to test the potency of pritelivir compared with the standard drug acyclovir. We discovered that both drugs had a comparable efficacy for inhibiting HSV-1 replication, suggesting that pritelivir could be an alternative therapeutic agent for patients infected with acyclovir-resistant strains. To our knowledge, we present a previously unreported ex vivo HSV-1 infection model with abdominal human skin to test antiviral drugs, thus bridging the gap between in vitro and in vivo drug screening and providing a valuable preclinical platform for HSV research.
Collapse
Affiliation(s)
- Poojabahen Tajpara
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Ralf Schmidt
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Martin Vierhapper
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Matiasek
- Department of Plastic, Aesthetic and Reconstructive Surgery, St. Josef Hospital, Vienna, Austria
| | - Theresia Popow-Kraupp
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|