1
|
Jiao YY, Song N, Fang XY, Lu XT, Sun N, Jin HX, Chen L, Huang XJ, Wen S, Wu ZT, Wang XP, Cheng TT, Yao GD, Song WY. YTHDF2 regulates MSS51 expression contributing to mitochondria dysfunction of granulosa cells in polycystic ovarian syndrome patients. Mol Cell Endocrinol 2024; 592:112292. [PMID: 38830447 DOI: 10.1016/j.mce.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
RESEARCH QUESTION Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients? DESIGN Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition. RESULTS In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM. CONCLUSIONS YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.
Collapse
Affiliation(s)
- Yun-Yun Jiao
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ning Song
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xing-Yu Fang
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiao-Tong Lu
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ning Sun
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hai-Xia Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lei Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xian-Ju Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Shuang Wen
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhao-Ting Wu
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiao-Peng Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Ting-Ting Cheng
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Gui-Dong Yao
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Wen-Yan Song
- Reproductive Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Nakagawa T, Horiuchi K, Kagami K, Kondo S, Isaji M, Matsuhashi Y, Kitamura K, Adachi T, Chiba K. The alteration of LBX1 expression is associated with changes in parameters related to energy metabolism in mice. PLoS One 2024; 19:e0308445. [PMID: 39110747 PMCID: PMC11305531 DOI: 10.1371/journal.pone.0308445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The LBX1 gene is located near a single nucleotide polymorphism that is highly associated with susceptibility to adolescent idiopathic scoliosis and is considered one of the strongest candidate genes involved in the pathogenesis of this condition. We have previously found that loss of LBX1 from skeletal muscle results not only in spinal deformity but also in lean body mass, suggesting a potential role for LBX1 in energy metabolism. The purpose of the present study was to test this hypothesis by analyzing the phenotype of mice lacking LBX1 in skeletal muscle with a focus on energy metabolism. We found that loss of LBX1 rendered mice more resistant to high-fat diet-induced obesity, despite comparable food intake between mutant and control mice. Notably, the mutant mice exhibited improved glucose tolerance, increased maximal aerobic capacity, and higher core body temperature compared to control mice. In addition, we found that overexpression of LBX1 decreased glucose uptake in cultured cells. Taken together, our data show that LBX1 functions as a negative regulator of energy metabolism and that loss of LBX1 from skeletal muscle increases systemic energy expenditure resulting in lean body mass. The present study thus suggests a potential association between LBX1 dysfunction and lean body mass in patients with adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuki Kagami
- Division of Cardiovascular Medicine, Department of Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shinya Kondo
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masashi Isaji
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuya Kitamura
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takeshi Adachi
- Division of Cardiovascular Medicine, Department of Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Cikes D, Leutner M, Cronin SJF, Novatchkova M, Pfleger L, Klepochová R, Lair B, Lac M, Bergoglio C, Viguerie N, Dürnberger G, Roitinger E, Grivej M, Rullman E, Gustafsson T, Hagelkruys A, Tavernier G, Bourlier V, Knauf C, Krebs M, Kautzky-Willer A, Moro C, Krssak M, Orthofer M, Penninger JM. Gpcpd1-GPC metabolic pathway is dysfunctional in aging and its deficiency severely perturbs glucose metabolism. NATURE AGING 2024; 4:80-94. [PMID: 38238601 DOI: 10.1038/s43587-023-00551-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Skeletal muscle plays a central role in the regulation of systemic metabolism during lifespan. With aging, this function is perturbed, initiating multiple chronic diseases. Our knowledge of mechanisms responsible for this decline is limited. Glycerophosphocholine phosphodiesterase 1 (Gpcpd1) is a highly abundant muscle enzyme that hydrolyzes glycerophosphocholine (GPC). The physiological functions of Gpcpd1 remain largely unknown. Here we show, in mice, that the Gpcpd1-GPC metabolic pathway is perturbed in aged muscles. Further, muscle-specific, but not liver- or fat-specific, inactivation of Gpcpd1 resulted in severely impaired glucose metabolism. Western-type diets markedly worsened this condition. Mechanistically, Gpcpd1 muscle deficiency resulted in accumulation of GPC, causing an 'aged-like' transcriptomic signature and impaired insulin signaling in young Gpcpd1-deficient muscles. Finally, we report that the muscle GPC levels are markedly altered in both aged humans and patients with type 2 diabetes, displaying a high positive correlation between GPC levels and chronological age. Our findings reveal that the muscle GPCPD1-GPC metabolic pathway has an important role in the regulation of glucose homeostasis and that it is impaired during aging, which may contribute to glucose intolerance in aging.
Collapse
Affiliation(s)
- Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria.
| | - Michael Leutner
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Radka Klepochová
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benjamin Lair
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Marlène Lac
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Camille Bergoglio
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Nathalie Viguerie
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | | | | | - Mihaela Grivej
- Vienna Biocenter Core Facilities, Vienna Biocenter, Vienna, Austria
| | - Eric Rullman
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
- Cardiovascular Theme, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Astrid Hagelkruys
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Geneviève Tavernier
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Virginie Bourlier
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Cedric Moro
- Team MetaDiab, Inserm UMR1297, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Martin Krssak
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Orthofer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- JLP health, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, Muratani M, Okada R, Shiba D, Kudo T, Takeda S, Takahashi S. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep 2023; 42:112289. [PMID: 36952339 DOI: 10.1016/j.celrep.2023.112289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.
Collapse
Affiliation(s)
- Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
5
|
Mousa MG, Vuppaladhadiam L, Kelly MO, Pietka T, Ek S, Shen KC, Meyer GA, Finck BN, Brookheart RT. Site-1 protease inhibits mitochondrial respiration by controlling the TGF-β target gene Mss51. Cell Rep 2023; 42:112336. [PMID: 37002920 PMCID: PMC10544680 DOI: 10.1016/j.celrep.2023.112336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
The mitochondrial response to changes in cellular energy demand is necessary for cellular adaptation and organ function. Many genes are essential in orchestrating this response, including the transforming growth factor (TGF)-β1 target gene Mss51, an inhibitor of skeletal muscle mitochondrial respiration. Although Mss51 is implicated in the pathophysiology of obesity and musculoskeletal disease, how Mss51 is regulated is not entirely understood. Site-1 protease (S1P) is a key activator of several transcription factors required for cellular adaptation. However, the role of S1P in muscle is unknown. Here, we identify S1P as a negative regulator of muscle mass and mitochondrial respiration. S1P disruption in mouse skeletal muscle reduces Mss51 expression and increases muscle mass and mitochondrial respiration. The effects of S1P deficiency on mitochondrial activity are counteracted by overexpressing Mss51, suggesting that one way S1P inhibits respiration is by regulating Mss51. These discoveries expand our understanding of TGF-β signaling and S1P function.
Collapse
Affiliation(s)
- Muhammad G Mousa
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Lahari Vuppaladhadiam
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Meredith O Kelly
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Terri Pietka
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Shelby Ek
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Karen C Shen
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Orthopaedic Surgery and Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Brian N Finck
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA
| | - Rita T Brookheart
- John T. Milliken Department of Medicine, Division of Geriatrics and Nutritional Sciences, Washington University School of Medicine, St. Louis, MO 61110, USA.
| |
Collapse
|
6
|
Araki H, Hino S, Anan K, Kuribayashi K, Etoh K, Seko D, Takase R, Kohrogi K, Hino Y, Ono Y, Araki E, Nakao M. LSD1 defines the fiber type-selective responsiveness to environmental stress in skeletal muscle. eLife 2023; 12:84618. [PMID: 36695573 PMCID: PMC9876571 DOI: 10.7554/elife.84618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.
Collapse
Affiliation(s)
- Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kotaro Anan
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasakiJapan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Kensaku Kohrogi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto UniversityKumamotoJapan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| |
Collapse
|
7
|
Takeda K, Takemasa T, Fujita R. High Throughput Screening of Mitochondrial Bioenergetics in Myoblasts and Differentiated Myotubes. Methods Mol Biol 2023; 2640:89-98. [PMID: 36995589 DOI: 10.1007/978-1-0716-3036-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Skeletal muscles contain stem cells called satellite cells, which are essential for muscle regeneration. The population of satellite cells declines with aging and the incidence of pathological conditions such as muscular dystrophy. There is increasing evidence that metabolic switches and mitochondrial function are critical regulators of cell fate decision (quiescence, activation, differentiation, and self-renewal) during myogenesis. Thus, monitoring and identifying the metabolic profile in live cells using the Seahorse XF Bioanalyzer could provide new insights on the molecular mechanisms governing stem cell dynamics during regeneration and tissue maintenance. Here we described a method to assess mitochondrial respiration (oxygen consumption rate) and glycolysis (ECAR) in primary murine satellite cells, multinucleated myotubes, and C2C12 myoblasts.
Collapse
Affiliation(s)
- Kohei Takeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- School of Political Science and Economics, Meiji University, Tokyo, Japan
| | - Tohru Takemasa
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center (TMRC), University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Magaña JC, Deus CM, Giné-Garriga M, Montané J, Pereira SP. Exercise-Boosted Mitochondrial Remodeling in Parkinson's Disease. Biomedicines 2022; 10:biomedicines10123228. [PMID: 36551984 PMCID: PMC9775656 DOI: 10.3390/biomedicines10123228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a movement disorder characterized by the progressive degeneration of dopaminergic neurons resulting in dopamine deficiency in the striatum. Given the estimated escalation in the number of people with PD in the coming decades, interventions aimed at minimizing morbidity and improving quality of life are crucial. Mitochondrial dysfunction and oxidative stress are intrinsic factors related to PD pathogenesis. Accumulating evidence suggests that patients with PD might benefit from various forms of exercise in diverse ways, from general health improvements to disease-specific effects and, potentially, disease-modifying effects. However, the signaling and mechanism connecting skeletal muscle-increased activity and brain remodeling are poorly elucidated. In this review, we describe skeletal muscle-brain crosstalk in PD, with a special focus on mitochondrial effects, proposing mitochondrial dysfunction as a linker in the muscle-brain axis in this neurodegenerative disease and as a promising therapeutic target. Moreover, we outline how exercise secretome can improve mitochondrial health and impact the nervous system to slow down PD progression. Understanding the regulation of the mitochondrial function by exercise in PD may be beneficial in defining interventions to delay the onset of this neurodegenerative disease.
Collapse
Affiliation(s)
- Juan Carlos Magaña
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, 08022 Barcelona, Spain
| | - Cláudia M. Deus
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (C.M.D.); (J.M.)
| | - Maria Giné-Garriga
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, 08022 Barcelona, Spain
- Blanquerna Faculty of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
| | - Joel Montané
- Blanquerna Faculty of Psychology, Education and Sport Sciences, Ramon Llull University, 08022 Barcelona, Spain
- Blanquerna Faculty of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
- Correspondence: (C.M.D.); (J.M.)
| | - Susana P. Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4150-564 Porto, Portugal
| |
Collapse
|
9
|
Sénéchal C, Fujita R, Jamet S, Maiga A, Dort J, Orfi Z, Dumont NA, Bouvier M, Crist C. The adhesion G-protein-coupled receptor Gpr116 is essential to maintain the skeletal muscle stem cell pool. Cell Rep 2022; 41:111645. [DOI: 10.1016/j.celrep.2022.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
|
10
|
Experimental models of lipid overload and their relevance in understanding skeletal muscle insulin resistance and pathological changes in mitochondrial oxidative capacity. Biochimie 2021; 196:182-193. [PMID: 34563603 DOI: 10.1016/j.biochi.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
It remains essential to decipher some of the pathological mechanisms that link obesity with deteriorating human health. Insulin resistance, due to enhanced free fatty acid substrate delivery, results in disrupted glucose homeostasis and altered mitochondrial oxidative capacity, which is a characteristic feature of an obese state. In fact, as a major site for regulating glucose homeostasis and energy production in response to insulin, the skeletal muscle has become an interesting target tissue to understand the impact of lipid overload on the development of insulin resistance and impaired mitochondrial respiratory function. In addition to systematically retrieving the discussed data, the current review brings an essential perspective in understanding the relevance of experimental models of lipid overload such as high fat diets in understanding the pathological link between insulin resistance and pathological changes in mitochondrial oxidative capacity. Importantly, inclusion of evidence from transgenic model highlights some of the unique molecular targets that are implicated in the development of insulin resistance and inefficient mitochondrial respiration processes within an obese state. Importantly, saturation with lipid products such as ceramides and diacylglycerols, especially within the skeletal muscle, appears to be instrumental in paving the path leading to worsening of metabolic complications. These metabolic consequences mostly interfere with the efficiency of the mitochondrial electron transport chain, leading to overproduction of toxic reactive oxygen species. Therefore, therapeutic agents that reverse the effects of lipid overload by improving insulin sensitivity and mitochondrial oxidative capacity are crucial for the management or even treatment of metabolic diseases.
Collapse
|
11
|
Baleva MV, Piunova UE, Chicherin IV, Krasavina DG, Levitskii SA, Kamenski PA. Yeast Translational Activator Mss51p and Human ZMYND17 - Two Proteins with a Common Origin, but Different Functions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1151-1161. [PMID: 34565318 DOI: 10.1134/s0006297921090108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022]
Abstract
Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker's yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5'-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.
Collapse
Affiliation(s)
- Maria V Baleva
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Uliyana E Piunova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan V Chicherin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Darya G Krasavina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey A Levitskii
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Piotr A Kamenski
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
12
|
Moffatt P, Boraschi-Diaz I, Bardai G, Rauch F. Muscle transcriptome in mouse models of osteogenesis imperfecta. Bone 2021; 148:115940. [PMID: 33812081 DOI: 10.1016/j.bone.2021.115940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that is most often caused by mutations in collagen type I encoding genes. Even though bone fragility is the most conspicuous finding in OI, the muscle system is also affected. In the present study we explored the muscle phenotype related to collagen type I mutations on the transcriptome level. RNA sequencing was performed in gastrocnemius muscles of homozygous oim mice and of heterozygous Jrt mice, two models of severe OI. We found that oim and Jrt mice shared 27 differentially expressed genes, of which 11 were concordantly upregulated and 15 concordantly downregulated. Gene Set Enrichment Analysis revealed that in both oim and Jrt mice, genes involved in 'metabolism of lipids' were significantly enriched among upregulated genes. In addition, several genes coding for extracellular matrix components were upregulated in both oim and Jrt mice. Among downregulated genes, genes involved in 'muscle contraction' were enriched in both OI mouse models. These 'muscle contraction' genes coded for slow-twitch type I muscle fiber components. Another shared downregulated gene was Mss51, a metabolic stress-inducible factor that is found in mitochondria. These data show that two mouse models of severe OI share abnormalities in the expression of genes that code for extracellular matrix proteins, lipid and energy metabolism and structural proteins of type I muscle fibers. The muscle disturbances resulting from the collagen type I mutations in these mouse models could be viewed as a mild form of muscle dystrophy.
Collapse
Affiliation(s)
- Pierre Moffatt
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Iris Boraschi-Diaz
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Ghalib Bardai
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, Quebec, Canada; Department of Pediatrics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Sorriento D, Di Vaia E, Iaccarino G. Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Front Physiol 2021; 12:660068. [PMID: 33986694 PMCID: PMC8110831 DOI: 10.3389/fphys.2021.660068] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a crucial contributor to heart diseases. Alterations in energetic metabolism affect crucial homeostatic processes, such asATP production, the generation of reactive oxygen species, and the release of pro-apoptotic factors, associated with metabolic abnormalities. In response to energetic deficiency, the cardiomyocytes activate the Mitochondrial Quality Control (MQC), a critical process in maintaining mitochondrial health. This process is compromised in cardiovascular diseases depending on the pathology's severity and represents, therefore, a potential therapeutic target. Several potential targeting molecules within this process have been identified in the last years, and therapeutic strategies have been proposed to ameliorate mitochondria monitoring and function. In this context, physical exercise is considered a non-pharmacological strategy to protect mitochondrial health. Physical exercise regulates MQC allowing the repair/elimination of damaged mitochondria and synthesizing new ones, thus recovering the metabolic state. In this review, we will deal with the effect of physical exercise on cardiac mitochondrial function tracing its ability to modulate specific steps in MQC both in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniela Sorriento
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| | - Eugenio Di Vaia
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- CIRIAPA Interdepartmental Center for Research on Arterial Hypertension and Associated Conditions, Federico II University of Naples, Naples, Italy
| |
Collapse
|
14
|
Song H, Tian X, Liu D, Liu M, Liu Y, Liu J, Mei Z, Yan C, Han Y. CREG1 improves the capacity of the skeletal muscle response to exercise endurance via modulation of mitophagy. Autophagy 2021; 17:4102-4118. [PMID: 33726618 DOI: 10.1080/15548627.2021.1904488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CREG1 (cellular repressor of E1A-stimulated genes 1) is involved in tissue homeostasis and influences macroautophagy/autophagy to protect cardiovascular function. However, the physiological and pathological role of CREG1 in the skeletal muscle is not clear. Here, we established a skeletal muscle-specific creg1 knockout mouse model (creg1;Ckm-Cre) by crossing the Creg1-floxed mice (Creg1fl/fl) with a transgenic line expressing Cre recombinase under the muscle-specific Ckm (creatine kinase, muscle) promoter. In creg1;Ckm-Cre mice, the exercise time to exhaustion and running distance were significantly reduced compared to Creg1fl/fl mice at the age of 9 months. In addition, the administration of recombinant (re)CREG1 protein improved the motor function of 9-month-old creg1;Ckm-Cre mice. Moreover, electron microscopy images of 9-month-old creg1;Ckm-Cre mice showed that the mitochondrial quality and quantity were abnormal and associated with increased levels of PINK1 (PTEN induced putative kinase 1) and PRKN/PARKIN (parkin RBR E3 ubiquitin protein ligase) but reduced levels of the mitochondrial proteins PTGS2/COX2, COX4I1/COX4, and TOMM20. These results suggested that CREG1 deficiency accelerated the induction of mitophagy in the skeletal muscle. Mechanistically, gain-and loss-of-function mutations of Creg1 altered mitochondrial morphology and function, impairing mitophagy in C2C12 cells. Furthermore, HSPD1/HSP60 (heat shock protein 1) (401-573 aa) interacted with CREG1 (130-220 aa) to antagonize the degradation of CREG1 and was involved in the regulation of mitophagy. This was the first time to demonstrate that CREG1 localized to the mitochondria and played an important role in mitophagy modulation that determined skeletal muscle wasting during the growth process or disease conditions.Abbreviations: CCCP: carbonyl cyanide m-chlorophenylhydrazone; CKM: creatine kinase, muscle; COX4I1/COX4: cytochrome c oxidase subunit 4I1; CREG1: cellular repressor of E1A-stimulated genes 1; DMEM: dulbecco's modified eagle medium; DNM1L/DRP1: dynamin 1-like; FCCP: carbonyl cyanide p-trifluoro-methoxy phenyl-hydrazone; HSPD1/HSP60: heat shock protein 1 (chaperonin); IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFF: mitochondrial fission factor; MFN2: mitofusin 2; MYH1/MHC-I: myosin, heavy polypeptide 1, skeletal muscle, adult; OCR: oxygen consumption rate; OPA1: OPA1, mitochondrial dynamin like GTPase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; RFP: red fluorescent protein; RT-qPCR: real-time quantitative PCR; SQSTM1/p62: sequestosome 1; TFAM: transcription factor A, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage-dependent anion channel.
Collapse
Affiliation(s)
- HaiXu Song
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Meili Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanxia Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Liu
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhu Mei
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Department of Cardiology and Cardiovascular Research Institute, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
15
|
Yoshioka K, Kitajima Y, Seko D, Tsuchiya Y, Ono Y. The body region specificity in murine models of muscle regeneration and atrophy. Acta Physiol (Oxf) 2021; 231:e13553. [PMID: 32875719 PMCID: PMC7757168 DOI: 10.1111/apha.13553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
AIM Skeletal muscles are distributed throughout the body, presenting a variety of sizes, shapes and functions. Here, we examined whether muscle regeneration and atrophy occurred homogeneously throughout the body in mouse models. METHODS Acute muscle regeneration was induced by a single intramuscular injection of cardiotoxin in adult mice. Chronic muscle regeneration was assessed in mdx mice. Muscle atrophy in different muscles was evaluated by cancer cachexia, ageing and castration mouse models. RESULTS We found that, in the cardiotoxin-injected acute muscle injury model, head muscles slowly regenerated, while limb muscles exhibited a rapid regeneration and even overgrowth. This overgrowth was also observed in limb muscles alone (but not in head muscles) in mdx mice as chronic injury models. We described the body region-specific decline in the muscle mass in muscle atrophy models: cancer cachexia-induced, aged and castrated mice. The positional identities, including gene expression profiles and hormone sensitivity, were robustly preserved in the ectopically engrafted satellite cell-derived muscles in the castrated model. CONCLUSION Our results indicate that positional identities in muscles should be considered for the development of efficient regenerative therapies for muscle weakness, such as muscular dystrophy and age-related sarcopenia.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yasuo Kitajima
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yoshifumi Tsuchiya
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| |
Collapse
|
16
|
Yoshie T, Saito C, Kawano F. Early high-fat feeding improves histone modifications of skeletal muscle at middle-age in mice. Lab Anim Res 2020; 36:25. [PMID: 32793459 PMCID: PMC7414670 DOI: 10.1186/s42826-020-00060-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023] Open
Abstract
The purpose of the present study was to investigate how the effects of high-fat diet feeding on the skeletal muscle persisted during aging using mice. Post-weaned male mice were fed a high-fat diet between 1- and 3-mo-old followed by return to supply a normal diet until 13-mo-old. Monthly physical tests demonstrated that age-related glucose intolerance that was generally developed after 10-mo-old in the control mice was significantly improved in mice fed a high-fat diet. Interestingly, mRNA expressions of Pdk4, Ucp3, and Zmynd17 were up-regulated by high-fat feeding and persisted in the tibialis anterior muscle until 13-mo-old. At Pdk4 and Ucp3 loci, enhanced distributions of active histone modifications were noted in the high-fat-fed mice at 13-mo-old. In contrast, age-related accumulation of histone variant H3.3 at these loci was suppressed. These results indicated that epigenetic modifications caused by early nutrition mediated the changes in skeletal muscle gene expression during aging.
Collapse
Affiliation(s)
- Toshihiro Yoshie
- Department of Sports and Health Science, Faculty of Human Health and Science, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano 390-1295 Japan
| | - Chiharu Saito
- Department of Sports and Health Science, Faculty of Human Health and Science, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano 390-1295 Japan
| | - Fuminori Kawano
- Department of Sports and Health Science, Faculty of Human Health and Science, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano 390-1295 Japan.,Graduate School of Health Sciences, Matsumoto University, 2095-1 Niimura, Matsumoto City, Nagano 390-1295 Japan
| |
Collapse
|
17
|
Lorenzo PM, Izquierdo AG, Diaz-Lagares A, Carreira MC, Macias-Gonzalez M, Sandoval J, Cueva J, Lopez-Lopez R, Casanueva FF, Crujeiras AB. ZNF577 Methylation Levels in Leukocytes From Women With Breast Cancer Is Modulated by Adiposity, Menopausal State, and the Mediterranean Diet. Front Endocrinol (Lausanne) 2020; 11:245. [PMID: 32390948 PMCID: PMC7191069 DOI: 10.3389/fendo.2020.00245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
The methylation levels of ZNF577 in breast tumors has been previously identified as a possible epigenetic mark of breast cancer associated with obesity. The aim of the current study was to investigate differences in methylation levels of ZNF577 depending on obesity, menopausal state and dietary pattern in blood leukocytes, a non-invasive sample. The methylation levels of ZNF577 of two CpG sites (CpGs) located in promoter and island previously identified as differentially methylated according to adiposity and menopausal state by 450 k array (cg10635122, cg03562414) were evaluated by pyrosequencing in DNA from the blood leukocytes of breast cancer patients [n = 90; n = 64 (71.1%) overweight/obesity and n = 26 (28.9%) normal-weight] and paired tumor tissue biopsies (n = 8 breast cancer patients with obesity; n = 3/5 premenopausal/postmenopausal women). Differences in methylation levels were evaluated at each CpGs individually and at the mean of the two evaluated CpGs. Adherence to the Mediterranean diet was evaluated using the MEDAS-validated questionnaire, and the consumption of food groups of interest was also evaluated using the recommended intakes of the Sociedad Española de Nutricion Comunitaria. The methylation levels of ZNF577 were correlated between paired leukocytes and breast tumor biopsies (r = 0.62; p = 0.001). Moreover, higher methylation was found in leukocytes from patients with obesity (p = 0.002) and postmenopausal patients (p = 0.022) than patients with normal-weight or premenopausal, respectively. After adjusting for the body mass index and age, higher levels of ZNF577 methylation were also found in women with greater adherence to the Mediterranean diet (p = 0.017) or specific foods. Relevantly, the methylation levels of ZNF577 showed a good ability for fish consumption detection [area under the ROC curve (AUC) = 0.72; p = 0.016]. In conclusion, the association between methylation of ZNF577 and adiposity, menopausal state, and adherence to the Mediterranean diet can be detected in the blood leukocytes. The results guarantee the need of performing further studies in longer longitudinal cohorts in order to elucidate the role of ZNF577 methylation in the association between breast cancer, adiposity and dietary patterns.
Collapse
Affiliation(s)
- Paula M. Lorenzo
- Laboratory of Epigenomics in Endocrinology and Nutrition (EpiEndoNut), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Andrea G. Izquierdo
- Laboratory of Epigenomics in Endocrinology and Nutrition (EpiEndoNut), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenetics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER de Oncologia (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos C. Carreira
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Manuel Macias-Gonzalez
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA) and CIBEROBN, Málaga, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit and Epigenomics Core Facility, Health Research Institute La Fe, Valencia, Spain
| | - Juan Cueva
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael Lopez-Lopez
- CIBER de Oncologia (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Ana B. Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition (EpiEndoNut), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Ana B. Crujeiras
| |
Collapse
|
18
|
Yoshioka K, Fujita R, Seko D, Suematsu T, Miura S, Ono Y. Distinct Roles of Zmynd17 and PGC1α in Mitochondrial Quality Control and Biogenesis in Skeletal Muscle. Front Cell Dev Biol 2019; 7:330. [PMID: 31921843 PMCID: PMC6915033 DOI: 10.3389/fcell.2019.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
Maintaining skeletal muscle mitochondrial quality is important not only for muscle activity but also for systemic metabolism. Exercise has long been recognized to have a positive impact on muscle mitochondrial quality. Although exercise triggers various changes in the mitochondrial dynamics, its molecular basis remains to be elucidated. We have previously reported that inactivation of the muscle-specific protein, zinc finger MYND domain-containing protein 17 (Zmynd17), results in mitochondrial abnormalities. To investigate the link between Zmynd17 activity and exercise-induced mitochondrial maintenance, we observed the effect of consecutive exercise on the mitochondrial quality in Zmynd17-deficient muscles. Zmynd17-deficient mice displayed abnormal mitochondrial morphology in limb muscles, which remarkably improved upon voluntary exercise. Interestingly, morphological abnormalities in mitochondria were even more apparent when PGC1α, a regulator of exercise-induced mitochondrial biogenesis, was overexpressed in Zmynd17-KO limb muscle. These abnormalities were also ameliorated by voluntary exercise. Our results show that neither the effect of consecutive exercise on mitochondrial quality nor PGC1α-induced mitochondrial biogenesis are mediated through Zmynd17 activity, thereby suggesting the existence of a complex mechanism of mitochondrial quality control in muscles.
Collapse
Affiliation(s)
- Kiyoshi Yoshioka
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryo Fujita
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takashi Suematsu
- Division of Biological Macromolecular Research Support, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| |
Collapse
|
19
|
Rovira Gonzalez YI, Moyer AL, LeTexier NJ, Bratti AD, Feng S, Sun C, Liu T, Mula J, Jha P, Iyer SR, Lovering R, O’Rourke B, Noh HL, Suk S, Kim JK, Essien Umanah GK, Wagner KR. Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight 2019; 4:122247. [PMID: 31527314 PMCID: PMC6824300 DOI: 10.1172/jci.insight.122247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Myostatin is a negative regulator of muscle growth and metabolism and its inhibition in mice improves insulin sensitivity, increases glucose uptake into skeletal muscle, and decreases total body fat. A recently described mammalian protein called MSS51 is significantly downregulated with myostatin inhibition. In vitro disruption of Mss51 results in increased levels of ATP, β-oxidation, glycolysis, and oxidative phosphorylation. To determine the in vivo biological function of Mss51 in mice, we disrupted the Mss51 gene by CRISPR/Cas9 and found that Mss51-KO mice have normal muscle weights and fiber-type distribution but reduced fat pads. Myofibers isolated from Mss51-KO mice showed an increased oxygen consumption rate compared with WT controls, indicating an accelerated rate of skeletal muscle metabolism. The expression of genes related to oxidative phosphorylation and fatty acid β-oxidation were enhanced in skeletal muscle of Mss51-KO mice compared with that of WT mice. We found that mice lacking Mss51 and challenged with a high-fat diet were resistant to diet-induced weight gain, had increased whole-body glucose turnover and glycolysis rate, and increased systemic insulin sensitivity and fatty acid β-oxidation. These findings demonstrate that MSS51 modulates skeletal muscle mitochondrial respiration and regulates whole-body glucose and fatty acid metabolism, making it a potential target for obesity and diabetes.
Collapse
Affiliation(s)
- Yazmin I. Rovira Gonzalez
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program
| | - Adam L. Moyer
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Cellular and Molecular Medicine Graduate Program
| | - Nicolas J. LeTexier
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - August D. Bratti
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Siyuan Feng
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Congshan Sun
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology
- Department of Neuroscience, and
| | - Ting Liu
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jyothi Mula
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Pankhuri Jha
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shama R. Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brian O’Rourke
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Kathryn R. Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology
- Department of Neuroscience, and
| |
Collapse
|