1
|
Dan L, Guilin Z, Linxue Z, Yao T, Li W, Ying X, Jinkui C, Wenqian Z, Guanchao Z, Hang L, Dehua L. Effect of thumbtack needle on functional constipation: A pragmatic randomized controlled trial. Complement Ther Med 2024; 84:103069. [PMID: 39128533 DOI: 10.1016/j.ctim.2024.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE Thumbtack Needling (TN) has been employed in the treatment of functional constipation (FC), although the existing evidence supporting its effectiveness is limited. This study is to evaluate the efficacy of TN in ameliorating FC. METHOD A total of 482 eligible patients were recruited and randomly assigned to the TN group or the Mosapride Citrate (MC) group. The TN was buried once for three days, rest for one day after two consecutive burials, followed by a 4-week follow-up. The primary outcome measure was the score for Complete and spontaneous bowel movement score (CSBMs). Secondary outcome measures included the Bristol Stool Form Scale (BSFS), Cleveland Clinic Score (CCS), and the Patient Assessment of Constipation Quality of Life Questionnaire (PAC-QOL). RESULTS Out of the 482 patients randomized, 241 were allocated to each group. Of these, 216 patients (89.6 %) in both groups completed the intervention and follow-up. Compared with the baseline, the differences of CSBMs in TN group [1.76(95 % CI, 1.61 to 1.91)] and MC group [1.35(95 % CI, 1.20 to 1.50)] at week 4 meet the threshold for minimal clinically important difference (MCID). However, there were no clinical difference from baseline at week 2 and week 8 in both groups. Mean CSBMs at week 4 was 3.35 ± 0.99 in the TN group and 3 ± 1.03 in the MC group (adjusted difference between groups, 0.37 points [95 % CI, 0.18 to 0.55]; P < 0.001), although differences between the two groups did not meet the MCID threshold. CONCLUSION Compared with mosapride citrate, thumbtack needling produced a greater improvement in CSBMs, although the difference from control was not clinically significant. CLINICALTRIALS GOV IDENTIFIER ChiCTR2100043684.
Collapse
Affiliation(s)
- Li Dan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhang Guilin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhang Linxue
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Tang Yao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Wang Li
- The People's Hospital of Dazu, Chongqing 402360, China.
| | - Xu Ying
- Chengdu Jinxin Traditional Chinese Medicine Hospital, Chengdu 610065, China.
| | - Cao Jinkui
- Shanghai Fourth People's Hospital, Shanghai 200081, China.
| | - Zhao Wenqian
- Sichuan Provincial Rehabilitation Hospital, Chengdu 611135, China.
| | - Zuo Guanchao
- Sichuan Provincial Rehabilitation Hospital, Chengdu 611135, China.
| | - Li Hang
- Chengdu Eighth People's Hospital, Chengdu 610017, China.
| | - Li Dehua
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
2
|
Gonzales J, Dharshika C, Mazhar K, Morales-Soto W, McClain JL, Moeser AJ, Nault R, Price TJ, Gulbransen BD. Early life adversity promotes gastrointestinal dysfunction through a sex-dependent phenotypic switch in enteric glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596805. [PMID: 38895433 PMCID: PMC11185517 DOI: 10.1101/2024.05.31.596805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Irritable bowel syndrome and related disorders of gut-brain interaction (DGBI) are common and exhibit a complex, poorly understood etiology that manifests as abnormal gut motility and pain. Risk factors such as biological sex, stressors during critical periods, and inflammation are thought to influence DGBI vulnerability by reprogramming gut-brain circuits, but the specific cells affected are unclear. Here, we used a model of early life stress to understand cellular mechanisms in the gut that produce DGBIs. Our findings identify enteric glia as a key cellular substrate in which stress and biological sex converge to dictate DGBI susceptibility. Enteric glia exhibit sexual dimorphism in genes and functions related to cellular communication, inflammation, and disease susceptibility. Experiencing early life stress has sex-specific effects on enteric glia that cause a phenotypic switch in male glia toward a phenotype normally observed in females. This phenotypic transformation is followed by physiological changes in the gut, mirroring those observed in DGBI in humans. These effects are mediated, in part, by alterations to glial prostaglandin and endocannabinoid signaling. Together, these data identify enteric glia as a cellular integration site through which DGBI risk factors produce changes in gut physiology and suggest that manipulating glial signaling may represent an attractive target for sex-specific therapeutic strategies in DGBIs.
Collapse
|
3
|
Blin J, Gautier C, Aubert P, Durand T, Oullier T, Aymeric L, Naveilhan P, Masson D, Neunlist M, Bach-Ngohou K. Psychological stress induces an increase in cholinergic enteric neuromuscular pathways mediated by glucocorticoid receptors. Front Neurosci 2023; 17:1100473. [PMID: 36866332 PMCID: PMC9971731 DOI: 10.3389/fnins.2023.1100473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Repeated acute stress (RASt) is known to be associated with gastrointestinal dysfunctions. However, the mechanisms underlying these effects have not yet been fully understood. While glucocorticoids are clearly identified as stress hormones, their involvement in RASt-induced gut dysfunctions remains unclear, as does the function of glucocorticoid receptors (GR). The aim of our study was to evaluate the involvement of GR on RASt-induced changes in gut motility, particularly through the enteric nervous system (ENS). Methods Using a murine water avoidance stress (WAS) model, we characterized the impact of RASt upon the ENS phenotype and colonic motility. We then evaluated the expression of glucocorticoid receptors in the ENS and their functional impact upon RASt-induced changes in ENS phenotype and motor response. Results We showed that GR were expressed in myenteric neurons in the distal colon under basal conditions, and that RASt enhanced their nuclear translocation. RASt increased the proportion of ChAT-immunoreactive neurons, the tissue concentration of acetylcholine and enhanced cholinergic neuromuscular transmission as compared to controls. Finally, we showed that a GR-specific antagonist (CORT108297) prevented the increase of acetylcholine colonic tissue level and in vivo colonic motility. Discussion Our study suggests that RASt-induced functional changes in motility are, at least partly, due to a GR-dependent enhanced cholinergic component in the ENS.
Collapse
Affiliation(s)
- Justine Blin
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Nantes Université, CHU Nantes, Department of Biochemistry, Nantes, France,*Correspondence: Justine Blin,
| | - Camille Gautier
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Philippe Aubert
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Tony Durand
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Thibauld Oullier
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Laetitia Aymeric
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Université d’Angers, Department of Biology, Angers, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France
| | - Damien Masson
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Nantes Université, CHU Nantes, Department of Biochemistry, Nantes, France
| | - Michel Neunlist
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Michel Neunlist,
| | - Kalyane Bach-Ngohou
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, Nantes, France,Nantes Université, CHU Nantes, Department of Biochemistry, Nantes, France,Kalyane Bach-Ngohou,
| |
Collapse
|
4
|
Caillaud M, Le Dréan ME, De-Guilhem-de-Lataillade A, Le Berre-Scoul C, Montnach J, Nedellec S, Loussouarn G, Paillé V, Neunlist M, Boudin H. A functional network of highly pure enteric neurons in a dish. Front Neurosci 2023; 16:1062253. [PMID: 36685225 PMCID: PMC9853279 DOI: 10.3389/fnins.2022.1062253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
Collapse
Affiliation(s)
- Martial Caillaud
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France,*Correspondence: Martial Caillaud,
| | - Morgane E. Le Dréan
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
5
|
Chen W, Liao L, Huang Z, Lu Y, Lin Y, Pei Y, Yi S, Huang C, Cao H, Tan B. Patchouli alcohol improved diarrhea-predominant irritable bowel syndrome by regulating excitatory neurotransmission in the myenteric plexus of rats. Front Pharmacol 2022; 13:943119. [PMID: 36452228 PMCID: PMC9703083 DOI: 10.3389/fphar.2022.943119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/31/2022] [Indexed: 09/07/2023] Open
Abstract
Background and Purpose: Irritable bowel syndrome (IBS) is usually associated with chronic gastrointestinal disorders. Its most common subtype is accompanied with diarrhea (IBS-D). The enteric nervous system (ENS) modulates major gastrointestinal motility and functions whose aberration may induce IBS-D. The enteric neurons are susceptible to long-term neurotransmitter level alterations. The patchouli alcohol (PA), extracted from Pogostemonis Herba, has been reported to regulate neurotransmitter release in the ENS, while its effectiveness against IBS-D and the underlying mechanism remain unknown. Experimental Approach: In this study, we established an IBS-D model in rats through chronic restraint stress. We administered the rats with 5, 10, and 20 mg/kg of PA for intestinal and visceral examinations. The longitudinal muscle myenteric plexus (LMMP) neurons were further immunohistochemically stained for quantitative, morphological, and neurotransmitters analyses. Key Results: We found that PA decreased visceral sensitivity, diarrhea symptoms and intestinal transit in the IBS-D rats. Meanwhile, 10 and 20 mg/kg of PA significantly reduced the proportion of excitatory LMMP neurons in the distal colon, decreased the number of acetylcholine (Ach)- and substance P (SP)-positive neurons in the distal colon and restored the levels of Ach and SP in the IBS-D rats. Conclusion and Implications: These findings indicated that PA modulated LMMP excitatory neuron activities, improved intestinal motility and alleviated IBS-induced diarrheal symptoms, suggesting the potential therapeutic efficacy of PA against IBS-D.
Collapse
Affiliation(s)
- Wanyu Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liao
- Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Guangzhou, China
| | - Zitong Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yulin Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukang Lin
- College of Integrated Chinese and Western Medicines, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Pei
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shulin Yi
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Cao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Tan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Late-Stage Glioma Is Associated with Deleterious Alteration of Gut Bacterial Metabolites in Mice. Metabolites 2022; 12:metabo12040290. [PMID: 35448477 PMCID: PMC9028041 DOI: 10.3390/metabo12040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.
Collapse
|
7
|
Sciascia QL, Prehn C, Adamski J, Daş G, Lang IS, Otten W, Görs S, Metges CC. The Effect of Dietary Protein Imbalance during Pregnancy on the Growth, Metabolism and Circulatory Metabolome of Neonatal and Weaned Juvenile Porcine Offspring. Nutrients 2021; 13:nu13093286. [PMID: 34579160 PMCID: PMC8471113 DOI: 10.3390/nu13093286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Protein imbalance during pregnancy affects women in underdeveloped and developing countries and is associated with compromised offspring growth and an increased risk of metabolic diseases in later life. We studied in a porcine model the glucose and urea metabolism, and circulatory hormone and metabolite profile of offspring exposed during gestation, to maternal isoenergetic low-high (LP-HC), high-low (HP-LC) or adequate (AP) protein-carbohydrate ratio diets. At birth, LP-HC were lighter and the plasma acetylcarnitine to free carnitine ratios at 1 day of life was lower compared to AP offspring. Plasma urea concentrations were lower in 1 day old LP-HC offspring than HP-LC. In the juvenile period, increased insulin concentrations were observed in LP-HC and HP-LC offspring compared to AP, as was body weight from HP-LC compared to LP-HC. Plasma triglyceride concentrations were lower in 80 than 1 day old HP-LC offspring, and glucagon concentrations lower in 80 than 1 day old AP and HP-LC offspring. Plasma urea and the ratio of glucagon to insulin were lower in all 80 than 1 day old offspring. Aminoacyl-tRNA, arginine and phenylalanine, tyrosine and tryptophan metabolism, histidine and beta-alanine metabolism differed between 1 and 80 day old AP and HP-LC offspring. Maternal protein imbalance throughout pregnancy did not result in significant consequences in offspring metabolism compared to AP, indicating enormous plasticity by the placenta and developing offspring.
Collapse
Affiliation(s)
- Quentin L. Sciascia
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gürbüz Daş
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Iris S. Lang
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Winfried Otten
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Solvig Görs
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
| | - Cornelia C. Metges
- Institute of Nutritional Physiology ‘Oskar Kellner’, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (Q.L.S.); (G.D.); (I.S.L.); (S.G.)
- Chair of Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
- Correspondence: ; Tel.: +49-38208-68-650
| |
Collapse
|
8
|
Huang Z, Liao L, Wang Z, Lu Y, Yan W, Cao H, Tan B. An efficient approach for wholemount preparation of the myenteric plexus of rat colon. J Neurosci Methods 2021; 348:109012. [PMID: 33249181 DOI: 10.1016/j.jneumeth.2020.109012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The nerve plexus of the enteric nervous system (ENS) plays a crucial part in regulating gastrointestinal functions, such as muscle contractile activity and nutrient absorption. Studying the nerve plexus can provide vital information for research on ENS disorders. Whole-mount preparation is an important technique for investigating the nerve plexus. However, currently available methods are time consuming and highly technical. NEW METHOD This study describes a simple and rapid method for preparing whole mounts of the longitudinal muscle and myenteric plexuses (LMMPs) of rat colon. Integral LMMPs can be easily separated from the underlying layer by using glass rods and wet cotton swabs. RESULTS The proposed method allows the easy separation of the LMMPs in intact sheets. Immunofluorescence histochemical staining of whole mounts enable clear visualization of enteric ganglia, nerve fibers, and several subtypes of neuronal populations residing in the myenteric plexus. COMPARISON WITH EXISTING METHODS Compared with existing procedures for whole-mount preparations, the proposed method achieves a quicker and more efficient preparation of high-quality LMMPs from intestinal segments in sufficient quantity. CONCLUSIONS This work provides a rapid method for efficiently preparing whole mounts of the intestines. Our method can be used for in situ observation of the morphological and functional alterations of the myenteric plexus for further studies on the ENS.
Collapse
Affiliation(s)
- Zitong Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Liao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhesheng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yulin Lu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Weiming Yan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bo Tan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
9
|
Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol 2020; 29:686-699. [PMID: 33309188 DOI: 10.1016/j.tim.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France.
| |
Collapse
|
10
|
Hu C, Jin P, Yang Y, Yang L, Zhang Z, Zhang L, Yin Y, Tan C. Effects of different maternal feeding strategies from day 1 to day 85 of gestation on glucose tolerance and muscle development in both low and normal birth weight piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5403-5411. [PMID: 32542826 DOI: 10.1002/jsfa.10591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maternal nutrition during gestation plays a vital role in fetal development. The effects of different maternal feeding strategies from day 1 to day 85 of gestation on glucose tolerance and muscle development in low and normal birth weight offspring were investigated by using 80 gilts randomly allotted to T1 and T2 groups and treated respectively with a gradual-increase (T1) and a convex transition (T2) feeding strategy, with no difference in total feed intake. RESULTS T2 group was seen to have a higher percentage of piglets with birth weight less than 500 g, while T1 group was shown to have a higher percentage of piglets with birth weight over 700 g. Meanwhile, for both low and normal birth weight piglets, T1 group was higher than T2 group in terms of muscle free amino acid concentration, mRNA expression levels of muscle growth-related factors, relative muscle fiber number and cross-sectional area. We must emphasize that the T2 group was shown to improve glucose tolerance, slow-twitch muscle fiber protein levels, and muscle mitochondrial function only in low birth weight piglets. CONCLUSION The convex transition feeding strategy can decrease the percentage of piglets with birth weight over 700 g, while improving glucose tolerance, slow-twitch muscle fiber protein levels, and muscle mitochondrial function in low birth weight piglets. Our findings provide new evidence for the potential importance of nutritional strategies during gestation, especially for improving the glucose tolerance and muscle development of low birth weight neonatal. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Jin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linfang Yang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, China
| | - Ziwei Zhang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Yang L, Chen H, Wang D, Nie S, Du J, Lu M. PDTC Alleviates Depressive Symptoms and Colon Tissue Injury via Inhibiting NO Overproduction in CUMS Rats. Front Neurosci 2019; 13:1327. [PMID: 31920496 PMCID: PMC6929669 DOI: 10.3389/fnins.2019.01327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Background The accumulated evidence demonstrates that stress plays an important role in the pathogenesis of depression that is associated with intestinal dysfunctions. However, the mechanisms remain unresolved. Methods A total of 40 male Wistar rats were obtained and randomly divided into four equal-sized group: control, PDTC + chronic and unpredictable mild stress (CUMS), FLX + CUMS, and CUMS. Western blotting and qRT-PCR were used to examine the levels of nitric oxide (NO), nuclear factor kappa beta (NF-κB), inducible nitric oxide synthase (iNOS), and iNOS mRNA in spinal cord L1-2 and colon. Key Results Chronic and unpredictable mild stress increased the serum CORT level, decreased body weight and sucrose preference, and altered OFT performance, while increased levels of NO, iNOS mRNA, iNOS and NF-κB protein in colon and spinal cord were accompanied by histopathological changes in colon. Pretreatment with an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), reversed these effects. Fluoxetine failed to prevent NO increase in both spinal cord and colon, while the iNOS protein level, although not statistically significantly increased compared to control, was not decreased compared to CUMS. Also, fluoxetine failed to prevent histological changes. Conclusion In conclusion, the NF-κB/iNOS pathway may be involved in the mechanism of CUMS-induced depressive-like behavior and colon tissue injury.
Collapse
Affiliation(s)
- Lejin Yang
- Department of Psychology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Dongdong Wang
- Brain Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Shuping Nie
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Jinge Du
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Salameh E, Morel FB, Zeilani M, Déchelotte P, Marion-Letellier R. Animal Models of Undernutrition and Enteropathy as Tools for Assessment of Nutritional Intervention. Nutrients 2019; 11:nu11092233. [PMID: 31527523 PMCID: PMC6770013 DOI: 10.3390/nu11092233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/24/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
: Undernutrition is a major public health problem leading to 1 in 5 of all deaths in children under 5 years. Undernutrition leads to growth stunting and/or wasting and is often associated with environmental enteric dysfunction (EED). EED mechanisms leading to growth failure include intestinal hyperpermeability, villus blunting, malabsorption and gut inflammation. As non-invasive methods for investigating gut function in undernourished children are limited, pre-clinical models are relevant to elucidating the pathophysiological processes involved in undernutrition and EED, and to identifying novel therapeutic strategies. In many published models, undernutrition was induced using protein or micronutrient deficient diets, but these experimental models were not associated with EED. Enteropathy models mainly used gastrointestinal injury triggers. These models are presented in this review. We found only a few studies investigating the combination of undernutrition and enteropathy. This highlights the need for further developments to establish an experimental model reproducing the impact of undernutrition and enteropathy on growth, intestinal hyperpermeability and inflammation, that could be suitable for preclinical evaluation of innovative therapeutic intervention.
Collapse
Affiliation(s)
- Emmeline Salameh
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
- Nutriset SAS, 76770 Malaunay, France.
| | | | | | - Pierre Déchelotte
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
- Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| | - Rachel Marion-Letellier
- UniRouen, Inserm UMR 1073 Nutrition, Inflammation and Gut-Brain Axis, Normandie University, 76183 Rouen, France.
| |
Collapse
|